
Approximate Safety Enforcement Using
Computed Viability Envelopes
Maciej Kalisiak

Dept. of Computer Science
University of Toronto
mac@dgp.toronto.edu

Michiel van de Panne
Dept. of Computer Science

University of British Columbia
van@cs.ubc.ca

Abstract— A numerical method is proposed for the constraint
of the state of a dynamical system such that it cannot enter
a predefined failure region. The proposed approach to this
viability problem involves an explicit numerical approximation
of a viability envelope, coupled with a practical strategy for
enforcing containment that is based upon a predictive look-ahead
strategy. The approach can be applied to achieve automated “in-
tervention when necessary” to enforce system safety at interactive
rates. Applications are shown to several low-dimensional systems,
including steering control of a vehicle constrained to a given
environment geometry.

I. I NTRODUCTION

Controlling dynamical systems near the limits of their
performance can often be a challenging task, as is evidenced
by the skill required of a pilot flying near stall-speed during
a landing flare, or the judgement of a race-car driver in
safely executing a high-speed turn. Much of the requisite skill
involves an accurate perception of where the limits of the
system are at any point in time, and how these limits project
themselves onto the control inputs.

The above observations naturally motivate the need for a
mechanism for “enforced safety,” namely ensuring that the
applied controls for a system always result in the avoidance
of predefined failure regions. This entails over-riding a user’s
desired control input in situations that are deemed sufficiently
critical. For situations where the system is more slowly ap-
proaching the limits of safe operation, a similar mechanism
can provide suggestive guidance, given advance knowledge of
an imminent required action. These ideas are formalized and
elaborated throughout the remainder of this paper.

The starting point of our approach is a known model of the
system dynamics and a definedfailure region. The definition of
what constitutes a failure is necessarily application dependent;
for flight control it could encompass the onset of a stall, while
for a driving scenario it could encompass the wheels of a
vehicle leaving the road or beginning to slide. Theviability
envelopeconsists of all “points of no return,” past which the
system will inevitably succumb to failure. It may be immediate
or may come much later, but it is no longer possible to return
to normal operation. Our method begins by building an explicit
model of the viability envelope in a preprocessing step.

Given a model of the viability envelope, the online portion
of the algorithm produces a predicted state trajectory assuming
constant control inputs. When the predicted state trajectory

crosses orbreachesthe viability envelope, a containment-
preserving correction needs to be applied. The duration of
the look-ahead used in predicting the state trajectory confers
choice with respect to how the correction is applied. One
option is to simply override the user’s control input with a non-
infringing one. Alternatively one could employ haptic feed-
back in communicating with the user [1], thereby effectively
providing a guiding force which hints at better courses of
action when a breach is distant, and which applies increasing
corrective forces as the breach becomes imminent.

Viability Theory [2]–[4] provides a theoretical framework
for the class of problems being addressed here. Our work
builds on this framework by developing algorithms for explicit
approximations of the viability region and the online enforce-
ment of viability. In viability theory terms, our work provides
a concrete class of viability kernels. Potential field methods
can do well at solving some types of viability problems using
empirically-defined buffer zones and enforcing local viability
[5]. The use of virtual potential fields has also been explored
for implementing a lanekeeping aid for car steering [6], [7]
and can in some cases be shown to provide analytic guarantees
with regard to the system containment in the absence of human
input. Our work addresses the problem of controllability in a
more direct manner by using an explicit representation of the
viability envelope.

Another related approach applies machine learning tech-
niques to model the controllable regions of a set of given
controllers [8]. However, this work only models whether the
given control policy is capable of controlling the system from
a given state, and not the more general question of the viability
of a state with respect to the set of all feasible control policies,
nor does it deal with the issue of when and how to apply
corrective actions. More distantly related problems are those
of computing reachable sets [9], and solutions to kinodynamic
motion planning [10], [11].

II. FRAMEWORK

Consider a toy rocket that is constrained to fly vertically,
with a user controlling the applied thrust. Wanting to reuse
the rocket, the user would like to bring it down safely by
performing a soft landing. This is complicated by the rocket
having a limited amount of thrust and thereby requiring strict
control of the downward velocity to ensure sufficient time to

z

Xop

XurXfi

βv βr

Xf

βf

dz
dt

failure
inevitable

nominal
operation

failed (crashed)

unreachable

Fig. 1. The subdivision of a rocket’s state-spaceX ; a safe landing requires
bringing the system state to the origin while staying withinXop, or at least
above theviability envelopeβv .

decelerate. The problem can be recast into control-theoretic
terms: the task is to bring the rocket to the goal state,(z, dz

dt) =
(0, 0), while staying within the controllable region of state-
space. We now look at how analytically-defined viability
envelopes can be used to enforce safety in this example task.

The state-space for this problem,X , can be subdivided into
several regions as shown in Fig. 1. Three curves partition this
space into four regions:βv marks the bound of controllable
space;βr that of reachable space; andβf encompassesXf ,
the set of failure states (i.e., where the rocket has crashed).
X −Xf is thus partitioned intoXfi, the set of states for which
failure is absent but inevitable,Xur, the set of controllable but
unreachable states, andXop, the desired region of operation.
In this example, the viability envelope is defined by the
“switching” curve for the corresponding bang-bang control
problem, βv. Similar partitions ofX can be made for any
other dynamical system. Last, since we make frequent mention
of the controllable and uncontrollable spaces, we will denote
them withXin andXout, respectively (i.e., “in” and “out”-side
theβv envelope). ThusXin = Xop∪Xur, andXout = Xf∪Xfi.

The problem at hand is to bring the rocket’s state to the
origin of X while staying on or aboveβv. We do not constrain
ourselves toXop alone because minor excursions intoXur will
become possible as we later adopt some approximations and
trade-offs.

A. Single-step containment

The simplest strategy for ensuring that the state stays within
the envelope is to prevent an exit the instant it is about to
occur. This can be achieved by giving the user full reign until
such time, and then simply overriding the unsafe control input
with a safe one. Within a discrete time framework, the control
strategy can be formalized as

uk =
{

vk if xk+1 = F (xk, vk) ∈ Xin

N(xk, vk) otherwise
(1)

where uk is the control input applied at time stepk, vk

is the user-desired control input,xk ∈ X is the system’s

T 1
h

T 2
h

Fig. 2. A larger time horizon frequently allows milder corrections. Above,
the driver on the left has more space and time to maneuver, and so is able to
use a gentler turn.

state,F is a function that embodies the system dynamics in
a discrete time setting, so thatxk+1 = F (xk, uk), andN is
a function that returns an appropriate, safe control input. It
should be noted that sincexk ∈ Xin, at least one such safe
control is guaranteed to exist. Also, since it is desirable to
limit the system’s intrusiveness,N should return thenearest
safe control input.

B. Multi-step containment

The above method has one undesirable property: it may
produce severe corrections. For a user-controlled system the
experience of having control abruptly torn from the user’s
hands is likely to be disorienting and frustrating. One way
to mitigate this is to respond earlier with respect to upcoming
breaches. As Fig. 2 illustrates, using a largertime horizon
(Th) frequently leads to milder corrections. The magnitude of
this horizon will clearly be task-and-system dependent, but
there are practical upper bounds. For example, a car need not
consider an upcoming turn if it is very far away. It is interesting
to note that, for the most part, the time horizon’s magnitude is
driven by human response times and mental capacities, rather
than by the complexity or particulars of the physical system
being controlled.

Thus the multi-step look-ahead approach gives the user
free reign until their control input leads to a breach within
the time horizon, at which time it overrides the user by
supplying a corrected and safe input. This input is chosen by
extrapolating state trajectories for all constant-valued1 control
inputs available, up toTh into the future, and selecting the best
candidate. Although control is still wrested from the user, the
required corrections can be expected to be milder. A further
benefit of the multi-step approach is that the temporal breach
proximity information can be used in other areas, such as the
potential for haptic guidance [1].

The concept of temporal proximity to a breach plays a key
role in our method, so we denote it withTeb(x, u), the time

1This assumption embodies thegeneralized inertia principlefrom viability
theory.

to envelope breach. We note that some(x, u) combinations
will never lead to a breach; rather than leave these values
undefined, it is mathematically convenient to letTeb(x, u) =
+∞ in such cases, thus allowing us to group them with cases
of very distant breach, usingTeb(x, u) >= Th.

Using Teb one can characterize our online algorithm as
running in one of four modes of operation, based on the
assessed state of the system:

L1: Teb(xk, vk) > Th

L2: Teb(xk, vk) <= Th,
and∃u ∈ U : Teb(xk, u) > Th

L3: ∀u ∈ U : Teb(xk, u) <= Th,
andxk ∈ Xin

L4: xk ∈ Xout

and based on these, the applied (corrected) control input is
then given by

uk =


vk if L1

B(xk, vk) if L2
arg maxu∈Ubf

Teb(xk, u) if L3
N/A if L4

(2)

where Ubf is a set-valued function which describes the set
of constant-valued control inputs which arebreach-freefor a
given state (i.e.,Ubf (xk) ⊆ U), andB is a function that picks
an appropriate, safe control, biased in some way by the user’s
control input,vk. It should be noted that whenever we refer to
any control or trajectory as “breach-free”, we implicitly mean
“within Th”.

In brief, the four modes represent progressive levels of
severity of the system state. L1 and L2 constitute normal
operation, while L3 and L4 correspond to crisis handling
modes. In particular, L1 corresponds to the most benign case,
where the user’s control inputvk does not breach the envelope
within Th, and hence it is applied as is. In L2 the user’s input
does lead to a breach, but other values exist that do not; an
appropriate input is chosen from among these. In L3 all the
control inputs lead to a breach. Sincexk ∈ Xin, an achievable
breach-free control policy is guaranteed to exist, but in this
case it will involve time-varying control inputs. Choosing
the control with the largestTeb is likely to maximize the
chances that the system will follow one of these desired and
non-constant inputs, although this is not guaranteed. Finally,
in L4, the system state is already outside the envelope. No
control law is provided for this case as it does not occur with
analytic envelopes; it is listed here for completeness, and plays
a greater role in further sections.

III. PRACTICAL APPROXIMATIONS

As outlined above, the framework is difficult to implement,
especially in an interactive setting. This section presents some
approximations which make this goal achievable.

A. Discretization ofU
A recurring problem throughout the framework is the need

to search all ofU for some desired control input, or performing

a computation on each of its members. A simple remedy to
this is to discretizeU . We thus definêU as the set of controls
uniformly sampled fromU , and use this subset whereverU is
called for. This then, for example, allows direct computation
of the “nearest safe input” functionN , which can now be
formally defined as

N(xk, vk) = arg min
u∈bUbf

|u− vk| (3)

whereÛbf (xk) ⊆ Û is the discretized equivalent ofUbf (xk).
One can now also easily establish the system’s mode (i.e.,
∈ {L1, L2, L3, L4}), sinceTeb only has to be computed for a
finite set of control inputs.

The size of Û is chosen to be as small as possible to
reduce computational load, but large enough so that under
most circumstances it captures at least one breach-free input.
For simple systems (e.g., those amenable to bang-bang control)
the discretization can be very sparse, since either the minimal
or maximal input is frequently breach-free. For complex
systems, on the other hand, even very dense discretizations
can sometimes fail to produce a suitable candidate, with
the sought-yet-undiscovered control input falling outsideÛ .
This carries important repercussions, most principally that the
convention of settinguk to the control with the largestTeb

when in L3 (see Equation 2) likely becomes ineffective then,
and admits breaches. The best one can do then is to treat the
situation more severely, applying the L4 control law instead,
which we discuss in the next subsection.

B. Approximate envelopes

Analytic descriptions of the viability envelopes can usually
only be obtained for the simplest of systems. For more com-
plex systems the envelope may be approximated through some
form of empirical sampling of the state space, and the use
of classification methods from machine learning to infer the
controllability of the system for arbitrary query states. We have
explored the use of both, Support Vector Machines and Nearest
Neighbor techniques, and found the latter to be preferable
for reasons of speed and algorithmic “transparency”, which
make it amenable to application-specific customization and
extension.

In general then, the envelope approximation is captured
using a NN classifier

NN (x) =
{

1 if minz∈ bXin
|x− z| ≤ minz∈ bXout

|x− z|
0 otherwise

(4)
where X̂in and X̂out are the empirically-obtained sets of
samples which are known to be inside and outside the en-
velope, respectively. These sets are obtained in an offline pre-
computation step, as detailed in the following section. Fig. 3
shows an example of a part of a viability envelope that was
computed for a 2D dynamical system.

By virtue of being approximations, these envelopes will
under- and over-approximate at various points bordering the
true envelope, leading to false negatives (NN (x) = 0 when
x ∈ Xin) and positives (NN (x) = 1 when x ∈ Xout). The

xk

Xout

Xin

Fig. 3. A rocket’s NN envelope; the set of trajectories originating atxk

show the computation ofTeb(xk, u) ∀u ∈ bU , with Tgr = 1. The user’s
zero-thrust input (leftmost) is being overridden to the one shown in thick.
Also shown are the band of samples adjoining the envelope, and the resultant
Voronoi tessellation.

former is less of a problem than the latter since marking
extra regions of state-space as uncontrollable merely results
in a more conservative envelope. The key problem is the
presence of the false positives, which can deceive the system
into unknowingly enteringXout. That is, the L4 mode now
becomes a practical possibility.

If confronted with L4 and the unavoidable crossing intoXf ,
we choose to minimize a metric of the failure’s severity. This
is done by selecting the “least detrimental” control input, one
which causes the system to spend the least amount of time in
Xout. Because the time spent inXout for any input may be
arbitrarily large, the search for envelope re-entries needs to be
bounded using a suitable criterion.

A complementary measure one may take is to use a con-
servative envelope, one which errs on the side of safety when
placing the boundary. We have not yet explored any methods
for doing this, but a straight-forward one would be to shrink
an original envelope by some small percentage. The benefit of
this is that any shallow breach of this envelope, such as given
by the least-detrimental criterion above, will likely not incur
a breach of the true envelope, thus maintaining system safety.

The final improvement is to employ agrace periodwhen
identifying envelope crossings, primarily to combat the error-
induced noisy nature of NN envelopes. As trajectoriesτ1 and
τ2 of Fig. 4 show, the longer a trajectory stays within the
latter region, the more likely it is that the perceived transition
did in fact occur, and was not an artifact of the envelope
representation. We thus defineTgr, the grace period, as the
maximum amount of time that a trajectory may enter an alter-
nate region without incurring a transition label. Conversely, a
transition is only pronounced if the trajectory excursion into

Xout

Xin

τ1

τ3

τ2

Fig. 4. Using agrace periodto combat envelope (approximation) noise:
for Tgr = 2, τ1 forms a definite breach,τ2 a definite re-entry, andτ3 a
“brushing” of the envelope.

the latter region lasts longer thanTgr. Thus a trajectory such
as τ3 in Fig. 4 does not qualify as a transition according to
this criterion.

IV. I MPLEMENTATION

A. Computation ofTeb(x, u)

We defineTeb(x, u) in the discrete case as the time period
to the first state that is classified as being inXout. Although
measuringTeb in seconds may seem natural, it is more
practical to express it as an integer number of fixed time steps
∆t, with Th and Tgr measured likewise. In computingTeb

there is usually no need to search for a breach pastTh; it is
always sufficient to know thatTeb > Th instead of the actual
value.

When searching for re-entries, we search up to an additional
Th into the future. If a re-entry is not found within that span,
the next best thing is to select the control input whose state-
space trajectory comes the closest. The relative proximity of
the various trajectory endpoints can be effectively approxi-
mated as the average distance to thek nearest NN samples
from Xin, with k = 3 usually being sufficient;k = 1 tends to
be unreliable.

B. Blending function

There are a number of ways to implementB(xk, vk) from
Equation 2. We have mostly used a conservative approach,
namelyB(xk, vk) = N(xk, vk). A more flexible and general
approach is to implement it as a blending function

Bf (xk, vk) = αvk + (1− α)N(xk, vk) (5)

where

α = min

(
Teb(xk, vk)− 1

Th
, 1

)
(6)

This modulates the strength of the correction based on the
immediacy of a breach, and thus allows the user more freedom
at longer lead times. The approach gives corrections whose
magnitudes vary between those of single-step containment and
the B = N case above.

C. Envelope construction

As mentioned earlier, we employ NN methods to classify
query points based upon sample points that are known to be
viable or unviable. Algorithm 1 describes how the classified
sample point are obtained, while Equation 4 describes their
application in the classifier.

Algorithm 1 Computation ofX̂in, X̂out for the NN classifier

X̂in, X̂out ← {∅}
for i = 1 to n do

~x← randuniform(X)
if oracle(~x) = 1 then
X̂in ← X̂in + ~x

else
X̂out ← X̂out + ~x

end if
end for
X̂in, X̂out ← scalesamples(X̂in, X̂out)
X̂in, X̂out ← dumpredundant(X̂in, X̂out)

Theoracle(~x) is a function that authoritatively answers the
question of whether the given state is controllable. The reason
we do not consult the oracle directly during online simulation
is that frequently these are extremely slow; the NN classifier
essentially serves to embody the oracle’s knowledge in a form
that is optimized for query speed. For more complex systems,
the oracle usually resorts to heuristic methods, and thus is not
always correct. This is not a problem as long as none of the
errors are particularly egregious. We have found it generally
preferable to manually construct and tailor the oracles to the
particular system in use, but our online use of the envelopes
suggests a general method for constructing an oracle for an
arbitrary system: compute a simulation tree, rooted at the
query state-space point, by applying all of the inputs inÛ
at each node, and checking each node or leaf for failure; if
all control combinations lead to failure, then the initial state
is deemed uncontrollable. Note that since the online system’s
control input is limited to the set̂U whenevervk is unviable,
any resultant trajectory taken by the system at that time will
be present in this tree; conversely, if the system is controllable
but only through a trajectory not present in the tree, then the
system might as well be uncontrollable, since our method will
not be able to implement the recovery.

The only difficulty with this approach is that the tree con-
struction needs to be bounded. This requires some knowledge,
possibly heuristic again, of the maximum period within which
a system will fail if initially uncontrollable. This construction
method is obviously extremely expensive to compute, and gen-
erally much simpler heuristics can be found for any particular
system.

As with most learning methods, it is necessary to scale or
normalize the training data prior to use, given that the NN
classifier uses anL2 norm distance metric in state-space. At
present we select appropriate scaling factors manually, based
on some understanding of the shape of the controllable region;

Fig. 5. A car constrained to stay on the track; see Fig.7 for plot of
corresponding control inputs.

Fig. 6. Less conventional terrain for the car (perspective view).

automatic, naive scaling to a hypercube is suboptimal. The
parameters should be chosen so that the significant features of
the envelope surface (i.e., bumps, valleys, ridges, etc.) are of
similar magnitude in all the state-space dimensions in which
they lie, to avoid being trivialized and hidden in the noise or
error inherent in the classifier’s representation of the surface.

A final measure taken to reduce unnecessary load is to
discard redundant samples, ones which do not contribute to the
NN decision surface, and consequently ones whose removal
does not change it. Although a number of methods exist to do
this [12], [13], we employ a simpler technique which trades-
off thoroughness (i.e., does not drop every redundant sample)
for large gains in speed. We make use of the fact that the
samples are uniformly distributed, and compute the average
inter-sample distanceδs. We then discard all samples which
are further thank δs from the decision surface2. The value
of k is chosen by trying a number of possibilities, typically
k ∈ {5, 10, 20, . . . }, and seek the one which results in a
consistent subset, one that properly classifies every sample
from the original sets. This yields a well-structured band of
samples around the decision surface.

V. RESULTS

We have successfully applied the viability envelope method
to four systems: (1) the rocket, as discussed in section II; (2)

2This can be approximated by measuring instead the distance to the nearest
NN sample of opposite class.

time

Û

-0.7854

-0.58905

-0.3927

-0.19635

0

0.19635

0.3927

0.58905

0.7854
unviable

vk
uk

Fig. 7. Plot ofvk, uk, and the viability ofu ∈ bU for the simulation run shown in Fig.5.

Fig. 8. The viability of bU for a car in various situations; empty circles indicate breach-free controls.

a dynamic model of bicycle balance having a 2D state space
(θ, dθ/dt), whereθ represents the tilt angle of the bicycle; (3)
a steerable car restricted to an infinitely long straight road
of limited width, having a 2D state space(y, θ) where y
represents the distance of the car from one edge of the road,
andθ represents the car’s orientation with respect to the road;
and (4) a steerable car restricted to a road of a given geometry.
The last example is the most complex in terms of having a 3D
state-space(x, y, θ) and no easily-modeled analytic solution.
Due to space limitations, we restrict our results and discussions
to this last example.

Fig. 5 shows the results of applying the algorithm to a
system having a 3D viability envelope. The user is able to
interactively steer the car at will but is prevented by the system
from leaving the track. Fig. 7 shows how the safety constraints
project onto the control input space for this problem. The user
input, vk consists of a sequence of right and left turns of
the steering wheel, as represented by the smooth line on the
graph. The unviable control inputs are given by the shaded
areas. The applied control input,uk is computed as given by
Equation 2 and is represented by the line taking discrete steps,
reflecting the discretization of the control input space. Lastly,
Fig. 8 shows the set of viable and unviable steering directions
for various states of the car during a simulation.

Our method runs interactively on a 2.4GHz Pentium IV.
We target a 30Hz interactive simulation rate to give the user
reasonable responsiveness. Table I lists the various parameters
used for the scenarios: number of NN samples3, discretization
of control space, time horizon, and grace period. The latter

3In the case of a car on a straight road, which was the first we experimented
with, a hand-generated polygonal envelope was used instead of a NN classifier.

TABLE I

SYSTEM PARAMETERS PER SCENARIO

scenario # samples | bU | Th Tgr

rocket 1,218 9 15 1
bike 3,513 9 10 1

car (straight road) N/A 9 10 0
car (track) 42,117 31 10 1

car (4 obstacles) 176,545 15 10 1

two are expressed in terms of number of simulation steps (i.e.,
1
30s). It should be also noted that the original number of NN
samples for each case is much larger; the reported number is
that of the remaining set when redundant samples have been
removed bydump redundant(X̂in , X̂out).

For the case of the car on the straight roadway we have also
implemented haptic feedback using aPhantomdevice through
which the user steers the car. Preliminary results are promising,
and we hope to investigate this extension further.

VI. D ISCUSSION

There is a necessary compromise that must be struck
between control flexibility and smoothness. By giving the user
more flexibility in control when a breach is still relatively
distant (e.g., with the blending function), allowing him or her
to “push into the envelope”, the system potentially incurs a
larger correction later on when the envelope is approached.
Related to this is the observation we have made earlier, that
a largerTh gives milder corrections and therefore results in
smoother motions.

The worst-case time complexity of the online algorithm is
O(| Û |Th), where the system is applying least-detrimental

control selection in L3 or L4, and thus must simulate and
inspect| Û | trajectories, each consisting of2 Th time steps (the
factor2 is due to the extended search for envelope re-entries).
This worst case also holds for L2, where all control inputs
tested, other thatvk, are breach-free. L1 time complexity is
alwaysO(1), the constant time it takes to simulatexk+1 =
F (xk, vk) and establish its presence inXin.

VII. C ONCLUSION

In this paper we have presented a method of enforcing the
controllability of a user-steered system, using an explicitly
computed approximation of the viability envelope. We have
also detailed an implementation and applied it to the motion
of a number of simple vehicles.

In future work we intend to apply the method to more
complex systems, where complexity implies both more discon-
tinuous dynamics as well as systems with higher dimensional
state-spaces. In a related line of inquiry, we plan to look into
working with multi-dimensional control input spaces. A key
question to answer here is how to distribute any corrections
among the control parameters. We also hope to revisit our
original motivation for this work and further investigate how
haptic feedback can be applied to yield a more effective
system-user interaction by better communicating imminent
corrections to a user.

REFERENCES

[1] B. Forsyth and K. Maclean, “Haptic path guidance,”IEEE Int. Confer-
ence on Robotics and Automation, submitted for review.

[2] J.-P. Aubin and A. Cellina,Differential Inclusions. Springer-Verlag,
1984.

[3] J.-P. Aubin,Viability Theory, ser. Systems & Control: Foundations &
Applications, C. I. Byrnes, Ed. Birkḧauser, 1991.

[4] ——, “A survey of viability theory,”SIAM J. of control and optimization,
vol. 28, no. 4, pp. 749–788, July 1990.

[5] R. J. Spiteri, D. K. Pai, and U. M. Ascher, “Programming and control
of robots by means of differential algebraic inequalities,”IEEE Trans.
on Robotics and Automation, vol. 16, no. 2, pp. 135–145, April 2000.

[6] E. J. Rossetter, “A potential field framework for active vehicle lanekeep-
ing assisstance,” Ph.D. dissertation, Stanford University, August 2003.

[7] “Artificial potential fields for vehicle control.” [Online]. Available:
http://www-cdr.stanford.edu/dynamic/PF/pfields.html

[8] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Autonomous reac-
tive control for simulated humanoids,” inIEEE International Conference
on Robotics and Automation, 2003.

[9] I. Mitchell, “Application of level set methods to control and reachability
problems in continuous and hybrid systems,” Ph.D. dissertation, Stanford
University, 2002.

[10] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,”AIAA Journal of Guidance, Control, and
Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[11] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodyamic motion
planning,” Journal of ACM, vol. 40, no. 5, pp. 1048–1066, Nov 1993.

[12] P.E.Hart, “The condensed nearest neighbor rule,”IEEE Trans. Inform.
Theory, vol. IT-14, no. 3, pp. 515–516, May 1968.

[13] B. V. Dasarathy,Nearest Neighbor(NN) norms: NN pattern classification
techniques. IEEE Computer Society Press, 1991.

