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Abstract The seminal paper on cloth simulation by Baraff
& Witkin (1998) presents a modified preconditioned conju-
gate gradient (MPCG) algorithm for solving certain large,
sparse systems of linear equations. These arise when employ-
ing implicit time integration methods aimed to achieve large
step cloth simulation in the presence of constraints.

The present paper improves the robustness and efficiency
of this MPCG algorithm. We prove convergence. For this, we
recast the algorithm into a linear algebra setting, identifying
its filtering procedure as an orthogonal projection. This leads
not only to a convergence proof but also to a correction in the
initiation stage of the original algorithm which improves its
efficiency. We give an example to illustrate the performance
improvement offered by this correction.
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1 Introduction

The paper of Baraff & Witkin [4] proposes the use of a semi-
implicit time discretization method for cloth simulation and
develops various algorithmic details. Specifically, a backward
Euler discretization is utilized (see, e.g., [2]), approximated
by the use of one approximate Newton iteration for the result-
ing nonlinear equations at each time step.1 This allows taking
much larger step sizes than possible using explicit time dis-
cretizations, which is useful when there are no frequent col-
lisions [9]. The reason that explicit schemes are then limited
is numerical stability, which is due to the stiffness caused by
the high resistance of cloth to stretching (unlike the resistance
to shearing and bending). The paper [4] has justifiably been
very influential (see, e.g., [7,8,6] and references therein) and
boasts beautiful practical results.

The semi-implicit integration method necessitates solving
a linear system of equations at each time step. This system
can be large and must be solved rapidly for interactive per-
formance. In the absence of constraints, Baraff & Witkin [4]
therefore design a model which yields a symmetric positive
definite system, and they apply a simply preconditioned con-
jugate gradient (PCG) method for its approximate solution.

Constraints have to be accommodated, however. This mod-
ifies the system of equations to be solved. They therefore in-
corporate constraints of certain types directly into the equa-
tions and devise a corresponding modified preconditioned con-
jugate gradient method (MPCG). This algorithm has been
subsequently used by others, see e.g. the recent paper by Choi
& Ko [7], even though no proof, or guarantee, has been given
hitherto for its convergence.

Our contributions are these:

1 This is also occasionally referred to as a linearly implicit
method.

– Proof of convergence. This is done as follows. In order to
put the MPCG on a sounder theoretical footing we re-
cast the algorithm in a linear algebra setting. The cru-
cial observation is that the filtering procedure proposed
in [4] is an orthogonal projection (see, e.g., [10]). This
then allows us to relate the MPCG to the usual precondi-
tioned conjugate gradient method applied to a restricted,
unconstrained, positive definite system. The established
connection then provides a proof of convergence for the
MPCG algorithm, as shown in Section 4.

– An improvement over the initialization procedure pro-
posed in [4] results from our approach. This is expressed
in the choice of initial iterate, as well as in the selection
of a convergence criterion. In Section 5 we give a cloth
simulation example that demonstrates the potential per-
formance improvements gained.

2 The linear algebra problem

Throughout this paper we use boldfaced lowercase roman let-
ters to denote vectors and uppercase roman letters for matri-
ces.

Consider the cloth as a bunch of particles in 3D, i.e. each
particle i has 3 coordinates qi, i = 1, . . . , N . The equations
of motion are assembled, accounting for various forces such
as stretching, shearing, bending, gravity, air-drag and damp-
ing. The time-dependent differential system is large and stiff.
When large time steps are possible (i.e. in the absence of
other reasons to make them small) a discretization method
with stiff decay [2] is advantageous, at least for the stretch-
ing energy term. Baraff & Witkin [4] use the backward Euler
method, but only one approximate Newton iteration is ap-
plied towards the solution of the resulting nonlinear system of
equations. This works when the step size is not too large (it is
well-known that Newton’s method is only guaranteed to con-
verge locally, so stability is not entirely unconditional), yet
the resulting practical step size restriction is typically much
larger than what is possible with explicit time stepping. The
resulting semi-implicit time stepping scheme yields a linear
system of size n = 3N for the unconstrained problem,

Ax = b. (1)

The authors take extra pains to ensure that the matrix A be
symmetric positive definite by dropping some Jacobian terms
(which is one reason why the Newton iteration is only ap-
proximate).

The unknowns x ∈ <3N in [4] are velocity changes of the
particles over a time step. But a similar system may be ob-
tained where the unknowns are position changes (e.g., Choi
& Ko [7]) and everything generalizes to the latter choice.
The cloth simulation example in Section 5 uses the modelling
technique of the latter paper.

Next, there are constraints (cloth-solid), which are ex-
pressed as direct values of no change, or of a specified change,
in the velocities (resp. positions) in certain directions for each
particle. Thus, for each particle (node) i let ndof(i) denote
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its number of degrees of freedom: if ndof(i) = 3 then there
are no constraints on this particle; if ndof(i) = 2 then there is
one direction ξi (|ξi| = 1) of prohibited motion; if ndof(i) =
1 then there are two mutually orthogonal directions ξi and ηi

(|ξi| = 1, |ηi| = 1, ξT

i ηi = 0) of prohibited motion; if
ndof(i) = 0 then all motion is prohibited for this particle.
Define,

Si =



















I ndof(i) = 3

I − ξiξ
T

i ndof(i) = 2

I − ξiξ
T

i − ηiη
T
i

ndof(i) = 1

0 ndof(i) = 0

S = diag{S1, . . . , SN}. (2)

Note that Si is an orthogonal projection, hence so is the
filter S. This is a crucial observation. Recall that an orthogo-
nal projection matrix S satisfies

ST = S2 = S, 0 ≤ rank(S) = r ≤ n.

It can be used to decompose vectors as a direct sum. Thus, if

x = u + v, u = Sx,v = (I − S)x,

then u and v are orthogonal, uT v = 0.
Here, the constrained problem can be written in terms of

the projection matrix S defined in (2) and a given vector z of
dimension n (like x′s) such that the problem is

SAx = Sb, (3a)

(I − S)x = (I − S)z. (3b)

In words, for each particle the equations of motion hold only
in the subspace projected by S, range(S), whereas in the
subspace range(I − S) the given values of z determine ve-
locity or position changes. As the two subspaces are orthog-
onal the two types of motion are separated. This is all written
in the form (3).

3 Modified conjugate gradient method

The method proposed in Baraff & Witkin [4] for the numer-
ical solution of (3) consists of starting from x0 = z and
then applying modified PCG iterations, where the modifica-
tion from usual consists of restricting the iteration to range(S).
Thus, any iterate xk can be written as

xk = Sxk + (I − S)xk = Sxk + (I − S)x0

= Sxk + (I − S)z. (4)

Clearly, then, (I − S)xk = (I − S)z.
Here is our version of the MPCG algorithm. Our choices

of the initial iterate x and of bδ are different from those in [4].
These improvements are discussed in Section 5. For a given
tolerance tol on the relative residual, do:

1. Set the initial iterate as follows: Let y be a natural guess
for the case of no constraints. (In the present context, one
chooses y = 0 or the result from the previous time step.)
Then set the initial iterate to be

x = x0 = Sy + (I − S)z.

2. Initialize

b̂ = S(b− A(I − S)z),

bδ = b̂T P−1b̂,

r = S(b− Ax)

p = SP−1r

δ = rT p.

Here, S is the filter of (2), P is the preconditioner, r is
the residual, p is the PCG direction, and δ is a squared
“energy norm” of the residual comparable to the corre-
sponding squared “energy norm” of the constrained right
hand side, bδ.

3. While δ > tol2 bδ,

s = SAp

α = δ/(pT s)

x = x + αp

r = r − αs

h = P−1r

δ̂ = δ

δ = rT h

p = S(h + (δ/δ̂)p)

It can be readily verified that upon setting S = I the usual
PCG algorithm is obtained from MPCG.

4 Proof of convergence

Consistently good performance is reported in [4] and [7] us-
ing the MPCG (without our corrections). However, a proof of
convergence and a specific set of experiments do not amount
to quite the same thing. Below we prove that the MPCG in-
deed converges.

The fact that S is an orthogonal projection allows us to
write the direct sum in (4) in a unique way. It also allows
to postulate the existence of a matrix U ∈ <n×r having r
orthonormal columns, such that

S = UUT .

Note that UT U = I and rank(S) = r. We never actually
form the matrix U in practice, but we use its existence.

Therefore, we can write

x = Sx + (I − S)x = UUT x + (I − S)z.

Substituting this into (3a) and multiplying by UT yields the
unconstrained, positive definite system

Ãx̃ = b̃, (5)
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where

Ã = UT AU,

b̃ = UT (b − A(I − S)z),

x̃ = UT x.

The linear system of size r in (5) has a symmetric positive
definite matrix. The conjugate gradient method for (5) there-
fore provably converges; see, e.g., [10,3]. Our contention is
that our corrected version of the MPCG algorithm of [4] is
equivalent to the usual PCG method applied to (5). Upon
showing this we will have proved convergence for the MPCG
algorithm.

For this purpose, define

p̃ = UT p,

r̃ = UT r,

s̃ = UT s,

P̃−1 = UT P−1U.

Note that for any n-vector w ∈ range(S), w = Sw. Hence,
defining the r-vector w̃ = UT w also implies the inverse
transformation

w = Sw = Uw̃.

By definition, p, r, s ∈ Range(S), so they all have such in-
verse transformations.

Initially

1. The setting of the initial iterate in MPCG implies the ini-
tial iterate for x̃,

UT x = x̃0 = UT x0.

2. The definition of bδ implies

bδ = b̃T P̃−1b̃.

3. r̃ = UT r = UT (b − Ax) = UT (b − A(I − S)z −
AU x̃) = b̃− Ãx̃.

4. p̃ = UT p = P̃−1r̃.
5. δ = rT p = r̃T P̃−1r̃.

The resulting values for δ and bδ provide for a sensible con-
vergence criterion when comparing δ to tol2 bδ.

At each iteration

1. s̃ = UT Ap = Ãp̃.
2. α = δ/(pT s) = δ/(p̃T UT Ap) = δ/(p̃T Ãp̃) = δ/(p̃T s̃).

Hence, both α and δ are the same in the MPCG algorithm
as they would be in the usual PCG algorithm for (5).

3. x̃ = x̃ + αp̃.
Here, as in all previous relevant lines, there is a unique,
well-defined inverse transformation from x̃ to x.

4. r̃ = r̃ − αs̃.
5. h̃ = UT h = UT P−1r = UT P−1U r̃ = P̃−1r̃.
6. δ = rT h = r̃T P̃−1r̃ = r̃T h̃.
7. p̃ = UT (h + (δ/δ̂)p) = h̃ + (δ/δ̂)p̃ .

The usual PCG algorithm for (5) has thus been shown
to be equivalent to the slightly corrected MPCG algorithm
of Baraff & Witkin [4]. Hence the latter converges with the
usual convergence performance of the PCG algorithm for the
symmetric positive definite system (5).

5 Examples

In the original MPCG algorithm [4] the convergence crite-
rion uses bδ = (Sb)T P (Sb). We have modified this to bδ =
(S(b−A(I − S)z))T P−1(S(b−A(I − S)z)) because the
latter is more directly comparable to δ, as is evident from the
proof in Section 4. For the experiment described below we
tried both values for bδ. While this difference can be absorbed
by modifying the value of the error tolerance, our definition
of bδ is the natural one.

More importantly, the original MPCG algorithm uses the
initial iterate x = z, whereas we advocate x = Sy+(I−S)z.
This allows us to use the solution from the previous time
step as our inital guess for x, while still maintaining the con-
straints z. Next, we construct such an experiment with the
sole purpose of highlighting this difference and studying its
effect on the effective convergence rate of the MPCG algo-
rithm.

Our experiment involves one square sheet of cloth and no
collisions, where each of the four corners are constrained to
move sinusoidally in time in the vertical direction. See Fig-
ure 1.

The modeling approach of Choi & Ko [7] is used, where
x in (3) stands for changes in particle positions. The vector
z therefore involves the derivative of this sinusoidal forcing
function, given by a sin(ωt) with various values chosen for
amplitude a and frequency ω.

We use the semi-implicit backward Euler method with the
constant time step ∆t = 0.05, and set tol = 0.01. A block
diagonal preconditioner P = diag{Aii}

N
i=1

is applied, where
Aii is the ith 3 × 3 block on the diagonal of A.

Using this technique, we have observed an improvement
in the average number of MPCG iterations (over 100 time
steps), generally requiring only 45% to 75% of that required
by the original algorithm. We have found this to hold true
upon variation of the following parameters:

– stiffnesses (stretch, shear, bend)
– cloth density
– amplitude and frequency of the forcing function
– constraint configurations (sheet over square and round ta-

bles, two corners, etc.)
– mesh size (number of particles, distance between parti-

cles)
– preconditioner (diagonal and block-diagonal parts of A)
– discretization method (backward Euler [4] and BDF2 [7])
– time step size

Specific iteration counts for varying densities and error
tolerances tol are given in Tables 1 and 2. Varying density has
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Fig. 1 Snapshots from animation: four pinned ends are constrained
to move sinusoidally up and down.

a strong influence on convergence, with high densities caus-
ing A to approach the identity matrix. And of course decreas-
ing the error tolerance tol causes an increase in the number
of iterations. The point here is that regardless of the iteration
count, the improvement ratio holds.

Density
(kg/m2)

# Iterations

Original
MPCG

Corrected
MPCG

0.01 27 19
0.1 22 15
1.0 16 10
10 11 6
100 6 3

Table 1 MPCG Iteration Counts vs. Cloth Density

6 Conclusions and further comments

Viewing the MPCG algorithm in a linear algebra setting iden-
tifying the filtering procedure of [4] as an orthogonal projec-
tion, we have improved both robustness of this algorithm by

Tolerance tol # Iterations
Original
MPCG

Corrected
MPCG

0.1 22 15
0.01 22 15
0.001 30 22
0.0001 45 31
0.00001 60 43

Table 2 MPCG Iteration Counts vs. Convergence Tolerance

proving convergence and performance efficiency by using a
better initialization.

The effect of our improved initialization depends on the
application. Specifically, the more the given constraint z dif-
fers from y the more pronounced is the improvement. This ef-
fect is clearly demonstrated in Section 5. (Of course, if z = y

then Sy + (I − S)z = z and there is no improvement at all.)
Below we make some additional remarks which lead be-

yond the scope of the present article.

1. The purpose of the preconditioner is to cluster the eigen-
values of P̃−1Ã tightly. How do we achieve this with P ?
Note that

P̃−1Ã = UT P−1SAU.

So, the spectrum of P̃−1Ã is different from the spectrum
of P−1A. In [4] the authors used P = diag{A}. In [7]
the authors used P = diag{Aii}

N
i=1

. The latter also ex-
perimented with SOR and ILU [11,5], but without much
additional success. Our experiment reported in Section
5 also did not display much sensitivity to the choice of
preconditioner. Perhaps this is because the systems con-
sidered for rapid animation cannot be too detailed, hence
the eigenvalue spectra are not as wide as they typically
are when elliptic partial differential equations are approx-
imated on a fine grid by a finite element or finite volume
method [3,1]. Also, it is possible that treating A with P
as if there are no constraints is less effective when con-
straints modify the system into (3). Applying these stan-
dard preconditioners to SA rather than to A could be bet-
ter, because the eigenvalues of P̃−1Ã are the same as the
nonzero eigenvalues of P−1SA. However, note that then
the matrix “P−1” may be singular.

2. In the derivation of the unconstrained equations (1) in
both [4] and [7] the authors drop a term in the Jacobian
of the damping forces without any physical justification
(according to them), just to keep A symmetric. But the
problem (3) can be written as a system of linear equations

Bx = c, where (6)

B = SA + (I − S),

c = Sb + (I − S)z.

Some preconditioned Krylov-space method (see, e.g., [11])
can be applied to (6), where B no longer needs to be
strictly symmetric positive definite.
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What Krylov-space method would be particularly good
for (6)? How would this method compare against the MPCG
method given above? One idea is to consider applying
(preconditioned) BICGstab to the unconstrained problem
(1), where now A is no longer symmetric positive definite,
but one hopes it is not far from such a matrix; see [11,5]
and Section 5 of [1]. Then modify this method for the
constrained case precisely as outlined above for the PCG
method. It is unclear a priori how this approach would
compare to attacking (6) directly – this may well depend
on the specifics of an application of cloth animation and
is left for future work.

Acknowledgements We wish to thank Xavier Granier for going
over this manuscript and making useful suggestions.

References

1. D. Aruliah, U. Ascher, E. Haber, and D. Oldenburg. A method
for the forward modelling of 3D electromagnetic quasi-static
problems. Math Models and Methods in Appl. Science, 11:1–
21, 2001.

2. U. Ascher and L. Petzold. Computer Methods for Ordinary
Differential Equations and Differential-Algebraic Equations.
SIAM, Philadelphia, PA, 1998.

3. O. Axelsson and V.A. Barker. Finite Element Solution of
Boundary Value Problems. AP, 1984.

4. D. Baraff and A. Witkin. Large steps in cloth simulation. In
SIGGraph, pages 43–54. ACM, 1998.

5. R. Barrett, M. Berry, T.F. Chan, J. Demmel, , J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst.
Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, Philadelphia, 1994.

6. R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of
collisions, contact and friction for cloth animation. In SIG-
Graph. ACM, 2002.

7. K-J Choi and H-S Ko. Stable but responsive cloth. In SIG-
Graph. ACM, 2002.

8. F. Cordier and N. Magnenat-Thalmann. Real-time animation of
dressed virtual humans. In Eurographics. Blackwell Publishers,
2002.

9. M. Courshesnes, P. Volino, and N. Magnenat-Thalmann. Ver-
satile and efficient techniques for simulating cloth and other de-
formable objects. In SIGGraph, pages 137–144. ACM, 1995.

10. G.H. Golub and C.F. van Loan. Matrix Computations. Johns
Hopkins University Press, 1988.

11. Y. Saad. Iterative Methods for Sparse Linear Systems. PWS
Publishing Company, 1996.


