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Abstract

We present a new algorithm for simplifying the shape of 3D objects
by manipulating their medial axis transform (MAT). From an unor-
ganized set of boundary points, our algorithm computes the MAT,
decomposes the axis into parts, then selectively removes a subset of
these parts in order to reduce the complexity of the overall shape.
The result is a simplified MAT that can be used for a variety of
shape operations. In addition, a polygonal surface of the result-
ing shape can be directly generated from the filtered MAT using
a robust surface reconstruction method. The algorithm presented
is shown to have a number of advantages over other existing ap-
proaches.

CR Categories: I.3.5 [Computing Methodologies]: Computa-
tional Geometry and Object Modeling—Curve, surface, solid, and
object representations

Keywords: medial axis transform, shape simplification, topology
preservation

1 Background and Introduction

Themedial axis transform(MAT) is a shape model that represents
an object by the set of maximal balls that are completely contained
within the object. For a continuous object this set is infinite. The
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medial axis (often called the medialsurfacein 3D) consists of the
centres of the balls, and can be intuitively thought of as theskeleton
of the object. The MAT has numerous applications in visualization
(e.g., [Pizer et al. 1996; N̈af et al. 1997; Paik et al. 1998]), computer
graphics (e.g., [Hubbard 1996; Bloomenthal 2002]) and computer
vision (e.g., [Ogniewicz 1994; Siddiqi et al. 1999]).

The usefulness of the MAT has inspired many methods for its
computation. In most cases, the algorithm operates on a discrete ap-
proximation of the object, such as a set of sample boundary points,
and outputs a polygonal approximation of the medial axis. It is
well known that the medial axis is very sensitive to small pertur-
bations of the object’s boundary, and manyregularizationmeth-
ods have been proposed to remove spurious components associated
with noise or other artifacts. Many of these methods also aim to
preserve the topology of the axis during the pruning process.

In 2D, the preservation of topology during processing of the
medial axis is relatively easy to achieve because the axis is one-
dimensional and structurally hierarchical, thereby providing a natu-
ral processing sequence when progressing from the outer branches
toward the inside. In addition, any cycles in the axis indicate the
presence of real loops in the shape of the object and can be eas-
ily preserved. As a result, a number of very effective algorithms
exist (e.g., [Attali et al. 1995; Ogniewicz 1995; Shaked and Bruck-
stein 1998; Tam and Heidrich 2002]), and the problem is more or
less considered solved. Most of these methods utilize apruning
technique in which certain branches are shortened or removed ac-
cording to their significance.

In 3D, the situation is more complicated. The relationship be-
tween components of the medial axis is much more complex. There
are many cycles that do not represent loops in the object. There is
no natural processing order and there are usually many different
deletion sequences possible. In addition, there is often a mutual de-
pendency between skeletal components where the removal of one
component can change the topological relationship between others.
The result is that the simplification algorithm must impose a pro-
cessing order and perform explicit topology checks as components
are removed. A number of regularization schemes have been pro-
posed (e.g., [Attali and Montanvert 1997; N̈af et al. 1997; Amenta
et al. 2001a; Dey and Zhao 2002]), each with their own advantages
and limitations.



We present a new algorithm that has a number of advantages over
other existing approaches. Our parts-based approach, described in
Section 4, allows the MAT to be simplified to a much greater de-
gree without certain undesirable effects such as the disintegration
caused by some methods that operate on lower order primitives.
This makes the approach suitable for a variety of applications rang-
ing from noise removal to manual modelling. In addition, we can
use the connectivity of the parts to efficiently preserve the topology
of the axis during simplification, a goal unmet by most other 3D
medial axis techniques. Also, our method allows the user to control
the degree of simplification using simple, visually intuitive param-
eters. Finally, we have designed our algorithm to fit very well into
an existing surface reconstruction framework, so that the filtered
MAT can be used directly to generate an accurate polygonal rep-
resentation. The reconstruction algorithm, called thepower crust
([Amenta et al. 2001a]), uses an approximate MAT to compute an
interpolating surface from boundary point samples.

It is important to note that the goals of our algorithm differ signif-
icantly from the manymesh simplificationalgorithms (see [Heck-
bert and Garland 1997; Luebke 2001] for examples) whose primary
aim is to minimize the number of polygons in a model given cer-
tain constraints such as storage size and image resolution. Such
algorithms do not necessarily simplify the shape of the object. In
contrast, our algorithm focuses on the reduction of shape features in
the object by removing parts of the underlying shape model (i.e., the
medial axis). The primary goal of our work is to produce afeature-
basedsimplification algorithm that does not adversely affect the
integrity of the remaining components.

2 Related Work

An approach used by many researchers uses the Voronoi diagram
(and/or the dual Delaunay tetrahedralization) of a set of sample
points on the object’s boundary to approximate the medial axis.
This method is suitable for many applications as sample points are
typically readily available (e.g., laser scans) or easily derived. Our
algorithm follows this approach.

There are only a few methods for 3D medial axis regularization
that preserve the topology of the object. Because of the lack of
a hierarchical structure, apeelingapproach is usually employed
in which the outermost components are removed one layer at a
time. Two of the most notable techniques are by Attali and Montan-
vert [1997] and N̈af et al.[1997]. Both of these methods begin with
the entire set of interior Delaunay tetrahedra, and delete them one
layer at a time according to some criteria for maintaining topolog-
ical consistency. The main problem with such an approach is that
unlike in 2D, the Voronoi vertices (circumcentres of the tetrahedra)
in 3D do not converge to the medial axis as the sampling density
approaches infinity [Amenta et al. 2001b]. Therefore, regardless of
sampling density, there are many tetrahedra that are not even close
to the medial axis that are being used for enforcing topological con-
straints. This can often hinder the regularization process.

A number of recent approaches are designed to guarantee con-
vergence. For example, Dey and Zhao [2002] have a method for
computing approximations that converge to the medial axis by ap-
plying certain filter conditions to the Voronoi diagram. These filters
are also used to eliminate noisy components. The strongest advan-
tage of their technique is that the filter parameters are independent
of scale and density. Another approach is by Foskeyet al. [2003],
who present an efficient method for computing a simplified medial
axis using a spatial subdivision scheme and graphics hardware. The
primary advantage of their approach is speed. The greatest draw-
back of most of these techniques is that topology is ignored, and
in many cases a disintegration effect is seen in which holes appear
in the axis (e.g., Figure 1). Such errors are particularly prevalent
when simplification is being aggressively applied. In addition to

being visually distracting, these artifacts make subsequent use of
the axis more difficult.
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(Dey and Zhao)
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Figure 1: Example of the holes that are prevented by our algorithm

Another approach that guarantees convergence to the medial axis
uses a relatively small subset of the Voronoi vertices called the
poles. The poles of a boundary samples are defined as the farthest
Voronoi vertex froms in the interior of the object and the farthest
Voronoi vertex froms in the exterior of the object. Thus, each sam-
ple normally has aninner poleand anouter pole. The maximal
balls centred at the poles are calledpolar balls. The inner poles
have been proven to converge to the interior medial axis [Amenta
et al. 2001b]. The pioneers of this approach are Amentaet al., who
use the power diagram of the poles (using the polar ball radii as
weights) to compute an approximate medial axis, called thepower
shape[Amenta et al. 2001a]. The power shape method is robust and
gives visually reasonable results. Unfortunately, for most objects
the power shape is largely composed of very flat tetrahedra instead
of 2D faces, and this geometry complicates tasks such as parts de-
composition. In addition, their proposed method of simplification
can result in an approximation that can diverge quite dramatically
from the true medial axis as the level of detail decreases.

Amenta and Kolluri [2000] use the power shape to produce a
more accurate axis composed only of 2D components. Our experi-
mentation with this algorithm reveals that it produces many dupli-
cate vertices, causing cracks in the resulting medial surface. This
again makes the axis difficult to work with.

Our algorithm for computing the medial axis builds on the work
by Amenta and Kolluri. We make improvements to eliminate the
degeneracies and add a simplification method that preserves topol-
ogy. We choose to work with Amenta and Kolluri’s method be-
cause of its convergence guarantees and because of the existence
of the power crust algorithm, which can take a set of filtered polar
balls and reconstruct a polygonal surface. Figure 2 shows how our
algorithm complements the power crust pipeline.
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Figure 2: Processing pipeline for medial axis simplification and
surface reconstruction



2.1 Summary of Amenta and Kolluri’s Algorithm

As mentioned above, our method for computing the medial axis
builds on the work by Amenta and Kolluri. We briefly summarize
their algorithm here.
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Figure 3: Amenta and Kolluri’s algorithm for computing the medial
axis from the power shape

As shown in Figure 2, Amenta and Kolluri’s algorithm computes
the medial axis from the power diagram of the Voronoi poles. This
computation can be broken down into several steps, as shown in
Figure 3:

1. The power shape of the object, a subcomplex of the power
diagram, is computed by keeping only those simplices whose
vertices are all inner poles.

2. For each regular triangle in the power shape, asingular point
is computed. The three polar balls centred at the vertices of
the triangle form two intersection points. One of these points
lies on the surface of the union of polar balls, and the other
lies in the interior. The surface point is the singular point.

3. A Voronoi diagram of the singular points is computed. The
subcomplex of the Voronoi diagram that intersects the power
shape is computed as the medial axis.

More details on the algorithms by Amentaet al., including
the theoretical derivation, sampling assumptions, and convergence
guarantees can be found in [Amenta et al. 2001b].

3 Medial Axis Computation

For use in geometric processing, the most significant limitation of
Amenta and Kolluri’s algorithm is that it produces many duplicate
vertices in the medial axis. These vertices cause double edges that
show up in the form of cracks in the medial surface. By solving
this problem we can produce a medial axis that has much cleaner
geometry for further processing. We take a combinatorial approach
because removing duplicate vertices numerically is computation-
ally expensive and subject to errors in precision.

From our analysis, there are two primary causes of duplicate ver-
tices:

1. Many duplicate singular points are generated. This results in
duplicate vertices in the medial axis because the vertices of the
axis are Voronoi vertices computed from the singular points.

2. Many of the singular points are cospherical. The Voronoi ver-
tices are the circumcentres of the dual Delaunay tetrahedral-
ization of the singular points, so when more than four points
are cospherical, duplicate circumcentres are produced, result-
ing in multiple identical medial vertices.

To address the first problem, we note that Amenta and Kolluri’s
algorithm computes a singular point foreveryregular triangle in the
power shape. However, we observe that two or more neighbouring
triangles can often produce identical singular points. We use Fig-
ure 4 to illustrate the 2D analogy of a situation that happens fre-
quently in real data sets. In this case,A–E are five boundary points
of the object, the dotted lines represent the Delaunay triangulation
of the boundary points,P1–P3 are the polar balls computed from
the triangles, andS1, S2 are two simplices of the power shape

(edges in 2D, triangles in 3D). The construction leads toS1 and
S2 producing the same singular point, located at boundary point
B, becauseP2 intersects bothP1 and P3 at that point. We can
efficiently identify and remove duplicate singular points produced
in this manner by checking which polar balls have corresponding
tetrahedra that share the same boundary point.
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S2

A
B
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D

Figure 4: SimplicesS1 and S2 produce two identical singular
points, co-located atB

The second problem, cospherical singular points, can be at-
tributed to the simple fact that the points are computed by inter-
secting balls. So it should not be surprising to find cases in which
more than four singular points lie on the surface of a polar ball.
We can quickly identify which singular points are cospherical by
keeping track of which polar balls are intersected to form which
singular points. We can thus find and eliminate duplicate medial
vertices very efficiently.

4 Medial Axis Simplification

As with most 3D medial axis regularization methods that preserve
topology, we utilize a peeling approach in which the outer layers of
components are removed over a number of iterations. At the begin-
ning of each iteration, we decompose the medial axis into parts. We
then assign a significance value to each part that is a candidate for
removal. An ordered pruning process then removes all parts that
have a significance value in a given range and can be deleted while
maintaining topological consistency. The number of iterations per-
formed depends on the complexity of the shape and the degree of
simplification required.

4.1 Parts Decomposition of the Medial Axis

After generating the MAT, we decompose the axis into parts before
further processing. We begin by triangulating all faces to make im-
plementation easier. We then form parts by grouping triangles. Our
decomposition scheme takes advantage of the fact that the 3D me-
dial axis can be viewed as a composition of 2D surfaces (sometimes
calledboundary sheets). The result of the decomposition is a set of
connected 2-manifold parts embedded in 3D space. As shown in
Section 4.3, this is very useful for simplifying the topological rep-
resentation used during pruning.

The parts creation process begins at the boundaries of the medial
axis and works inwardly on a level-by-level basis. The first level
parts are at the boundaries of the axis, the second level parts are
inward neighbours of the first level, and so on.

Each first level part starts with a randomly chosen seed triangle
that has an edge with no neighbours (i.e., it is at a boundary of
the axis) and does not yet belong to any part. The part begins to
grow by gathering neighbouring triangles of the seed triangle. For
each of the triangle’s edges, if that edge is shared with only one
other triangle, then the part grows into that neighbour. This growth



process proceeds recursively until no more triangles can be added
to this part. The resulting part is a 2D surface. Another boundary
triangle is then selected to begin another first level part.

After all parts of level 1 have been formed (i.e., there are no more
unused triangles at the axis boundaries), parts of level 2 are com-
puted. For a part of leveli, wherei > 1, a randomly chosen triangle
that neighbours a part of leveli − 1 is used to begin the part. The
growth process is the same as for level 1. In this manner a number
of levels of parts are created. Figure 5 illustrates an example using a
simple medial axis, in this case computed from the boundary points
of a rectangular box. The numbers in the figure indicate the levels
of the respective parts.

11
1

1

2

Figure 5: Medial axis showing level 1 and level 2 parts (the dotted
lines show the boundaries between parts)

The user can limit the number of levels created depending on
the application. During each pruning iteration, only parts of level 1
are removed, and parts of level> 1 are only used for enforcing
topological constraints. Therefore, if topological preservation is
considered unimportant for the current application, only the first
level parts need to be created.

4.2 Medial Axis Pruning

The general simplification strategy is to remove one layer of the
outermost (i.e., level 1) parts at a time. This allows us to check for
and prevent undesirable changes in topology. In order to determine
which parts are to be removed, we apply two significance measures
to evaluate the importance of any given part. In each iteration, the
user selects a significance measure and a threshold value. Every
level 1 part that falls below the threshold and satisfies all topological
constraints is removed.

We have designed our significance measures to be efficient, ver-
satile and intuitive to the average user. The first measure is simply
the number of triangles in the part. We use triangle count because
because it allows us to filter out a large number of insignificant parts
with very little computation. The other measure that we use is the
volume of the feature of the object that would be removed as a result
of pruning the part. We use the volume because it is an intuitive and
visually meaningful property of each component. Useful thresholds
can be easily determined by examining the size of features that the
user wants to remove. To make this measure independent of scale,
we divide the volume of each part by the total volume of the object
to give a relative value.

To estimate the volume for each part, we note that the set of
Delaunay tetrahedra computed from the object’s boundary points
makes a visually reasonable approximation of the object’s interior.
Since these tetrahedra are available from earlier Voronoi computa-
tions, it would be efficient to reuse them for volume estimation. To
do so we need to associate a appropriate set of tetrahedra with each
part. We make use of the following two observations:

Observation 1 ([Amenta and Kolluri 2000]) Every vertex of the
power shape (i.e., an inner pole) must lie on an edge or a vertex of
the medial axis.

Observation 2 Since the medial axis is the intersection between
the power shape and the Voronoi diagram of the singular points,
every part of the axis must contain a subset of the inner poles.

Thus, each part of the axis has a number of inner poles lying
on its edges and/or vertices. We can combinatorially determine the
set of poles that lie in a given part by keeping track of which polar
balls intersect to produce which singular points, and tracking which
singular points are subsequently used to produce which medial ver-
tices and edges. Having the set of inner poles immediately gives us
a set of tetrahedra, because each pole is computed as a circumcentre
from the Delaunay tetrahedralization. We use the sum of the vol-
umes of the tetrahedra associated with a part to estimate the volume
of the object feature corresponding to that part. Figure 6 shows a
feature of an object (the top of the Tweety model in Figure 11a) and
the group of tetrahedra used to estimate its volume.

Figure 6: Feature of an object and the tetrahedra used to estimate
its volume

Although the two significance measures can theoretically be
used in any order or combination, we have found the process gen-
erally more effective and easier to control if the triangle count mea-
sure is used first to remove the very small outer layer parts, followed
by using the volume measure to remove the more significant parts
underneath. The reasoning is that for most data sets, practically all
of the very small parts in the first few layers are discretization or
noise artifacts. After these are removed, the volume measure can
be applied iteratively in a manner appropriate for the data and ap-
plication. Indeed, as discussed in Section 6, our experiments have
shown this to be a useful strategy.

4.3 Topology Constraints and Pruning Order

Our algorithm is able to preserve the topology of the medial axis
during pruning. The topological properties that concern us are the
number of connected components and the number of loops. Each
loop in the axis represents a tunnel going through the object. Given
a set of connected parts representing the medial axis, we need to
determine whether any given level 1 part can be safely removed
without disconnecting the remaining parts and without changing
the number of existing loops.

We deal first with the loops. The part removal method described
in the previous section guarantees that new loops are never created,
because only parts at the borders of the axis are candidates for prun-
ing. In order to save existing loops, we first determine which parts
join together to form loops in the axis. We can then preserve these
parts during pruning. In 3D, finding loops is not just a simple matter
of detecting cycles, because there are many cycles that do not form
loops. For example, the three connected parts on the left in Figure 7
form a cycle (A→B→C→A) but do not make a loop. Removal of
any of the three parts would not change the topology of the object.
In contrast, the three parts on the right in Figure 7 do make a loop.

To detect loops efficiently, we take advantage of the simplicity of
our parts-based representation to build a topology graph that con-
cisely captures the connectivity information between the parts. In
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Figure 7: The three parts on the left do not form a loop, while the
three parts on the right do.

this graph, each node represents a “point” of contact between two
neighbouring parts. This “point”, called acontact curve, takes the
form of an unbroken polyline shared by the touching parts. The
edges of the topology graph represent the parts themselves. In or-
der to eliminate cycles that are not loops, two nodes are collapsed
into one if the corresponding contact curves are connected. For ex-
ample, Figure 8 shows the graphs representing the topology of the
two sets of parts in Figure 7. In the first graph, there is only one
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Figure 8: Graphs representing the topology of the parts in Figure 7

node because the contact curves between partsA andB, B andC,
and A and C are all connected. The edges of this graph do not
connect to any other nodes. The second graph has a loop in the
configuration because the contact curves do not touch each other.
Figure 9 shows a less trivial example computed by our algorithm.
The topology graph has four nodes interconnected by six parts.
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Figure 9: (a) Object (b) Medial axis (c) Topology graph

With the loops preserved, maintaining topology then becomes a
matter of ensuring that the number of connected components stays
the same. We satisfy this constraint by checking that the removal of
a part does not disconnect any of the neighbouring parts.

The lack of a natural processing order and the fact that there
are no theoretical results known about the effect of the deletion se-
quence on the skeleton mean that we need to impose a pruning or-
der. Our algorithm takes the simple approach of sorting the parts in
order from lowest to highest value, using the significance measures
defined in the previous section. The reasoning is that in general,
we want to remove the less important parts first whenever possible
so that they do not prevent the more significant parts that typically
represent more salient features from being pruned.

5 Surface Reconstruction

After pruning, we use the power crust algorithm [Amenta et al.
2001a] to reconstruct a surface of the simplified object. The algo-
rithm works by computing a piecewise linear boundary between the
inner and outer polar balls. Before simplification, each boundary
point sample has an inner and outer pole. Afterwards, only a subset
of the inner poles remain. We take our simplified axis and use the
method described in Section 4.2 to determine which inner poles lie
on the remaining parts. For most data sets, we only need to remove
the inner poles. However, as mentioned in [Amenta et al. 2001a],
for objects with sharp corners, more accurate reconstructions can
be had by removing the corresponding outer poles as well. The po-
lar balls associated with the remaining poles are used to compute
the surface.

6 Results

This section describes the results of testing our algorithm with a
number of data sets. In all of the examples shown, it is easily no-
ticed that our approach can greatly reduce the complexity of the axis
without creating holes or breaks in the remaining components. Ta-
ble 1 lists the examples presented, along with the processing times
for computing and simplifying their medial axis. A Pentium 4 pro-
cessor running at 2.0 Ghz is used. Our implementation makes ex-
tensive use of the CGAL and LEDA libraries.

Model Points Axis Generation (sec.) Pruning (sec.)

Tweety 48668 186 205
Max Planck 25044 57 92
Hip bone 70688 348 354
Bunny 34835 103 136

Table 1: Processing times for our examples

The typically pruning scheme that we use is to first apply the
triangle count significance measure for one to three iterations with
a very low value (≤ 5 triangles) and without topology checks. This
usually removes many very small and visually unimportant parts
with little computation. Then we apply the volume measure with
topology checks for one or more iterations as required to achieve
the desired level of detail. Figure 10 shows a plot of the number
of parts of the medial axis of the Tweety model (Figure 11) as it
undergoes several iterations of pruning. The first three iterations
use the triangle count measure, and the fourth iteration uses the
volume measure. A dramatic drop in the number of parts removed
while using the triangle count measure, such as that observed in the
third iteration, is typically a good indication to switch to the more
discerning volume measure.

The Tweety model is shown in Figure 11a. Its medial axis is in
Figure 11b. This example is provided to illustrate how our algo-
rithm can be used to remove small noise-type artifacts. Figure 11d
shows the medial axis after five iterations of pruning (3× tt = 5,
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Figure 10: Number of axis parts at the end of each pruning iteration
for the Tweety model

2×tv = 1.0%, wherett is the triangle count threshold, andtv is the
volume threshold). The simplified axis is clearly much cleaner, and
potentially much more useful for applications such as shape match-
ing. Figures 11c and 11e show a closeup of the original model and
the simplified model, respectively. The simplified model is clean of
the small bumps seen on the back and leg of the original model.

The Max Planck model, shown in Figure 12a, is given as an ex-
ample of how an object can be edited by manually specifying parts
of the medial axis to be removed. After four pruning iterations
(2× tt = 5, 2× tv = 1.0%), we have a relatively clean axis to
work with (Figure 12c). We can manually select the left ear and
its stump by simply specifying a single triangle in each part. The
medial axis without the left ear is shown in Figure 12d and the re-
sulting surface is shown in Figure 12e. The ear is removed without
appreciable distortion to the surrounding area.

The hip bone model (Figure 12f) is an example of where topol-
ogy preservation becomes very useful. Figure 12g shows the origi-
nal medial axis, which is full of small details. Figure 12h shows the
medial axis after six pruning iterations (3×tt = 5, 3×tv = 5.0%).
The algorithm greatly reduces the amount of small details, but is
able to preserve the narrow arch in the axis. Many other existing
pruning methods would break or disintegrate this loop, particular
where it is thin. The reconstructed simplified object with the nar-
row loop clearly intact is shown in Figure 12i.

We use the Bunny model (title image) to demonstrate how our
algorithm can be used to automatically remove large features for
a more radical simplification. After four iterations (2× tt = 5,
1× tv = 1.0%, 1× tv = 10.0%), the resulting object has lost all
of its small details, such as the eyes, as well as most of the large
features such as the ears and the tail. The reconstructed surface is a
considerably simpler version of the original. However, this example
also shows a limitation of the approach: our simple decomposition
method does not always completely divide the parts in the way a hu-
man or a more complex medial axis analysis technique (e.g., shocks
approach [Giblin and Kimia 2002]) would. In this case, the feet of
the bunny are not separated from the rest of the body, and cannot be
thresholded out. Consequently, the feet are only mildly simplified
compared to the rest of the object. In such cases, more sophis-
ticatedmesh segmentationtechniques (e.g., [Zhang et al. 2002])
should prove useful for further decomposition of the axis.

7 Future Work

There are a number of avenues we would like to pursue in order
to further enhance our current algorithm. First, so far we have as-
sumed that the input data is adequately sampled. While this is usu-

ally the case for data sources such as laser scanners, other sources
of data may result in undersampled point sets. More research in the
detection of undersampling, based on previous work (e.g., [Amenta
and Bern 1999; Dey and Giesen 2001; Boissonnat and Flötotto
2002]), should be done to improve the robustness of the algorithm.

As mentioned in the Results section, even though our method of
simply using the number of triangle neighbours to divide the axis
into parts works well in general, there are cases that warrant a more
advanced parts decomposition technique. We would also like to
find a more automatic method for estimating the parameter values.
Even though simply estimating the parameter values by visual in-
spection gives reasonable results, an automatic or semiautomatic
method based on an analysis of data characteristics is preferable. In
addition, we would like to further investigate the effect of process-
ing order (both during decomposition and pruning), other signifi-
cance measures, and different types of data, especially those with
complex topology. Lastly, we would like to improve the efficiency
and speed of our method to facilitate the processing of much larger
data sets.

8 Summary and Conclusion

This paper presents a new algorithm for simplifying 3D shapes by
pruning their medial axes. The approach is particularly novel in
that the axis is decomposed into parts before simplification. This
feature-based approach is to shown to have a number of advantages
over existing techniques. Our results demonstrate that the algorithm
is able to greatly reduce the amount of in detail in the medial axis
without negatively affecting the remaining components. We use
the power crust method to reconstruct a polygonal surface from the
filtered MAT.
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Figure 11: (a) Tweety model (b) Medial axis (c) Back of Tweety
model, with obvious noise artifacts on the back and leg (d) Sim-
plified medial axis (e) Back of simplified model, with noise clearly
reduced



(a) Max Planck model
 (b) Medial axis of Planck model


(c) Simplified MA of 

Planck model


(d) Simplified MA of Planck model

(left ear removed)


(e) Simplified Planck model

(left ear removed)


(i) Simplified hip bone

(f) Hip bone model

(g) Hip bone medial axis

(h) Hip bone simplified axis

Figure 12: Results of applying our simplification algorithm to the Max Planck and hip bone models


