
Interactive Visualization of Complex Real-World Light Sources

Xavier Granier∗ Michael Goesele+ Wolfgang Heidrich∗ Hans-Peter Seidel+

∗The University of British Columbia +MPI Informatik
Vancouver, Canada Saarbrücken, Germany

{xgranier,heidrich}@cs.ubc.ca {goesele,hpseidel}@mpi-sb.mpg.de

Abstract

Interactive visualization of complex, real-world light
sources has so far not been feasible. In this paper, we
present an hardware accelerated direct lighting algorithm
based on a recent high quality light source acquisition tech-
nique. By introducing an approximate reconstruction of the
exact model, a multi-pass rendering approach, and a com-
pact data representation, we are able to achieve interactive
frame rates. The method is part of the processing pipeline
from light source acquisition to high quality lighting of a
virtual world.

Keywords: Local Illumination, Light Source Modeling,
Hardware Rendering, Image-based Rendering, Physically-
based Modeling and Acquisition

1 Introduction

A major contributing factor to the realism of computer
generated images is the complexity of lighting effects. With
some recent image-based techniques, it is possible to ac-
quire real light sources and to use them for global illumina-
tion algorithms [2, 18, 6]. In recent work [6], we introduce
a new optical filtering approach, which projects real light
sources into a predefined basis. With this technique, a high-
quality representation of a real light source can be acquired
with a simple camera system.

Unfortunately, the visualization of direct lighting from
such data is still time-consuming for an exact reconstruc-
tion (see Section 2). Interactivity, on the other hand, would
allow a convenient processing pipeline by presenting a pre-
view even during an acquisition. A fast visualization of
the light source including shadow computations not only
facilitates the design of a scene for high-quality rendering
but is also essential for the acquisition process, giving a
rapid feedback of the quality of the currently acquired light
source.

1.1 Previous Work

We can divide the light representations used in the liter-
ature into two categories. The first one is an approximation
of a light viewed from a far distance compared to its size. In
this case, knowledge of the directional distribution (2D), for
example in the form of a goniometric diagram [20], is suf-
ficient. Unfortunately, this far field approximation is only
valid for a distance greater than about 5 times the largest
dimension of the luminaire [2] and does not allow for the
simulation of near field effects.

On the other hand, light field [7, 12] based approaches
[1, 2] can capture both the far field and the near field
of a light source (4D). We recently introduced a new ap-
proach [6] based on prefiltering with an optical system that
allows an accurate acquisition. Although this approach al-
lows high-quality global illumination rendering, the storage
complexity of the data makes an interactive visualization
difficult.

On the rendering side, a lot of interactive techniques have
been developed to introduce more complex light sources.
The currently existing solutions are mainly based on pro-
jective textures (for slide projector like light sources [17]),
light maps (storing precomputed irradiance [8, 14]) and en-
vironment maps (for glossy direct reflection of the environ-
ment [3]). Combined with a depth test [16, 19], these tech-
niques show that the creation of realistic direct lighting is
possible using graphics hardware acceleration.

Heidrich et al. [11] have described an efficient method to
interactively render a representation similar to ours, which
they called a canned light source. However, this approach
cannot be directly applied to visualize the direct lighting
from our new representation, which requires specialized re-
construction filters. Some approximations to the exact re-
construction [6] and a new rendering path have to be devel-
oped to achieve this goal.

Rθ

light sourcemain light direction

measurement plane

sampling plane

�

��������
	

��������

filter

Figure 1. Configuration of the acquisition
setup. Light is emitted from the light
source, prefiltered on the sampling plane,
and recorded on the measurement plane.

1.2 Overview and Contributions

The main contributions of this paper are the detailed pre-
sentation and justification of the shift-invariant approxima-
tion to our original representation, a hardware accelerated
implementation of direct lighting including shadows, and a
compact representation of a 3 signed-float vector.

The remainder of the paper is structured as follows: first,
we briefly re-introduce the light source representation pre-
sented in [6]. In Section 3, we then describe in more detail
the shift-invariant approximation that allows for interactive
rendering and our solutions for an hardware implementation
in Section 4. Finally, we present our results and conclude
with some ideas for future work.

2 Light Source Representation

We assume that a light source can be well represented
by the projection of its exitant light field into a 4D basis
{

Ψi jkl(u,v,s, t)
}

i jkl∈ZZ

L(u,v,s, t) ≈ L̃(u,v,s, t) = ∑
i jkl

Ψi jkl(u,v,s, t) ·Li jkl , (1)

where (u,v) (resp. (s, t)) are the 2D coordinate on the sam-
pling (resp. measurement) plane as depicted in Figure 1.

If we use a filter Φ′
mn on the sampling plane, the mea-

sured irradiance on the measurement plane M is:

Emn(s, t) ≈
Z

S

cos2(θ)

R2 ·Φ′
mn(u,v) · L̃(u,v,s, t) du dv

=∑
i jkl

Z

S

cos2(θ)

R2 ·Φ′
mn(u,v) (2)

·Ψi jkl(u,v,s, t) ·Li jkl du dv

filter
basis

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

–3 –2 –1 1 2 3

Figure 2. A quadratic reconstruction basis
and one dual used as a filter.

We can then define the basis Ψi jkl as the product of two 2D
bases – Φi j on the sampling plane and Φkl on the measure-
ment plane – with a geometric term, where {Φ′

mn}mn∈ZZ
is

the dual basis of {Φi j}i j∈ZZ
:

Ψi jkl(u,v,s, t) :=
R2(u,v,s, t)

cos2 (θ(u,v,s, t))
·Φi j(u,v) ·Φkl(s, t) (3)

With this basis, the measured irradiance is now expressed
as

Emn(s, t) =∑
kl

Φkl(s, t) ·Lmnkl , (4)

and Equation 1 can be rewritten as

L̃(u,v,s, t) = ∑
mnkl

Ψmnkl(u,v,s, t) ·Lmnkl

= ∑
mnkl

R2

cos2(θ)
·Φmn(u,v) ·Φkl(s, t) ·Lmnkl (5)

=∑
mn

R2

cos2(θ)
·Φmn(u,v) ·Emn(s, t)

This result shows that we can exactly reconstruct the pro-
jection L̃ of the light field L into the function space spanned
by our basis. In our measurements, as described in [6], we
use a piecewise quadratic basis with compact support on the
sampling plane (cf Figure 2):

Φi,bellq =

1−2x2 |x| ≤ 1
2

2(|x|−1)2 1
2 < |x| ≤ 1

0 else
. (6)

The basis funtion on the sampling plane is a piecewise con-
stant function.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45

%

angle (degree)

rel. filter width s = 0.01
rel. filter width s = 0.04
rel. filter width s = 0.1

Figure 3. Error analysis for the geometric
term. The plots show the relative error Er(θ0)
for angles θ0 and varying relative filter width s.

3 Introducing Approximations

In order to provide a fast evaluation for the direct light-
ing, we introduce two approximations, one for the recon-
struction of the continuous light field, and one for the es-
timation of the illumination. These approximations allow
for a texture-based rendering approach, that is described in
more details in Section 4.

3.1 Shift-Invariant Representation

The exact reconstruction presented before contains a
shift-variant geometric term (i.e. R2/cos2), which makes
this approach not well suited for interactive rendering. We
therefore introduce a shift-invariant reconstruction based on
the same measured irradiance as defined in the previous
sections, but with a different relationship between Ψi jkl ,
the measurement and the reconstruction bases. We define
Ψi jkl(u,v,s, t) := Φi j(u,v) ·Φkl(s, t). From this, we get

Emn(s, t) = ∑
i jkl

Z

S

cos2(θ)

R2 ·Φ′
mn(u,v) ·Φi j(u,v) (7)

·Φkl(s, t) ·Li jkl du dv

To provide a real shift-invariant approximation, we use
the following assumption: if the distance d between the
(u,v)-plane and the (s, t)-plane is large compared to the sup-
port of Φi j(u,v), and if θ is small, then the geometric term
cos2 θ/R2 is well approximated by one constant for each
point on the (s, t)-plane:

g(u,v,s, t) :=
cos2 (θ(u,v,s, t))

R2(u,v,s, t)
≈

cos2 (θkl(s, t))
R2

kl(s, t)
. (8)

This yields an approximation of the measured irradiance:

Emn(s, t) ≈ ∑
kl

cos2 (θkl(s, t))
R2

kl(s, t)
·Φkl(s, t) ·Lmnkl . (9)

Since both the geometric term and Φkl(s, t) are known, it
is in principle possible to compute the approximate incom-
ing radiance

E ′
mn(s, t) ≈ ∑

kl
Φkl(s, t) ·Lmnkl (10)

by de-convolution. In practice, this is only feasible for basis
functions Φkl(s, t) with a small support. This is not a major
problem, however, since the practical measurement setups
presented in the previous section have a very high resolu-
tion on the (s, t)-plane, so that a bilinear or even a box filter
can be used. Like in the previous section, we apply the def-
inition of Ψi jkl to determine the appropriate reconstruction
filter:

L̃(u,v,s, t) = ∑
mnkl

Ψmnkl(u,v,s, t) ·Lmnkl

= ∑
mnkl

Φmn(u,v) ·Φkl(s, t) ·Lmnkl (11)

≈∑
mn

Φmn(u,v) ·E ′
mn(s, t).

The quality of this approximation depends on the error
introduced by assuming the geometric term constant over
the support of the basis function Φi j(u,v) in Equation 8. To
evaluate the validity of this approximation, we define the
following relative error

Er(θ0) :=
maxθ∈F cos4(θ)−minθ∈F cos4(θ)

cos4(θ0)

where F is the support of the basis Φi j , θ0 is the angle at
the center of this support, and cos4(θ) corresponds to the
geometric term g of Equation 8 for a distance of 1 between
the planes. Its evaluation shows (cf. Figure 3 and [10]) that
the error is below 8% if the ratio s between filter width and
the distance of the two planes S and M equals 0.04.

3.2 Estimation of Direct Illumination

To compute the direct illumination from this shift-
invariant approximation, we have to evaluate the following
equation for a visible point x and viewing direction ~e (see
Figure 4 for the notation):

L(~e,x) = ∑
mn

Z

S

ρ(x,~e,u,v)V (x,u,v)
cos(θ)cos(θ

′

)

δ2(x,u,v)
·

L̃(u,v,s(x,u), t(x,v))dudv

= ∑
mn

Z

S

ρ(x,~e,u,v)V (x,u,v)
cos(θ)cos(θ

′

)

δ2(x,u,v)
·

E
′

mn(s(x,u), t(x,v))Φmn(u,v)dudv,

(12)

x

���������

��

� �!�"$#&%(')#�*���"+#&,�'-'
./ 0

1

2
3

4)5
6

Figure 4. Configuration of a direct reflection.

where ρ(x,~e,u,v) describes the object’s reflection proper-
ties. V (x,u,v) and δ(x,u,v) encode the visibility and the
distance between the light sample (u,v) and the position x.

To simplify this expression, we make the common as-
sumption that the reflection properties, visibility, and the
geometric term are constant on the support of Φmn and are
estimated at its center:

ρmn(x,~e) ≈ ρ(x,~e,u,v), Vmn(x) ≈V (x,u,v),

fmn(x) ≈ (cos(θ)cos(θ
′

))/δ2(x,u,v).

Given these assumptions, Equation 12 can be approximated
by:

L(~e,x) ≈ ∑
mn

Vmn(x)ρmn(x,~e) fmn(x)·

Z

S

E
′

mn(s(x,u), t(x,v))Φmn(u,v)dudv
(13)

For a position x, we then compute E ′

mn(x), the average
value of E

′

mn(s(x,u), t(x,v)) on the support of Φmn in order
to make our final approximation of Equation 12:

L(~e,x) ≈ A∑
mn

Vmn(x)ρmn(x,~e) fmn(x)E ′

mn(x), (14)

where A =
R

S
Φmn(u,v)dudv.

Each term of this sum corresponds now to the reflection
of a textured spot-light [17], located at the center of a filter
support, and pointing toward x (similar to the canned light
source approach [11]).

4 Hardware Implementation

A straightforward implementation of the approximation
described in the previous section, requires two hardware
rendering passes for every term in the sum, one for the depth
map creation to determine Vmn and one for the lighting com-
putation, leading to a total of 2N passes (where N is the
number of measurements). In this section we show how
the rendering can be accelerated by combining some of the
passes and by speeding up each of the individual passes.

depths

texture
coordinates

depth

depth buffer

lighting frame

times

times

attributes

geometry

texturesattributes

data flow

rendering path

vertex program

fragment program

depths

X
N
X

Figure 5. Hardware implementation diagram:
data flow and rendering path

4.1 Combining Multiple Rendering Passes

Using the features of current graphics hardware, the
number of rendering passes can be reduced to speed up the
computation. While the total number of passes for the depth
map computation is fixed, we can combine 3 lighting eval-
uations into a single pass. The rendering is then organized
in N/3 iterations of the following steps (cf Figure 5):

1. creation of depth maps for 3 positions on the sampling
plane, results are stored in a RGB texture

2. illumination computation for these 3 positions, and ad-
dition of the current result to the previous solution

With this approach, the total number of passes is now re-
duced to 4N/3.

Generally speaking, if we manage to evaluate the light-
ing from X measurements at a time, we need (X + 1)N/X
passes. Currently, it is possible to store up to 4 depth maps
in a RGBA texture. But due to the limited number of at-
tributes available for a fragment in graphics hardware, and
given the fact that we still need to provide either diffuse
color and/or texture coordinates, we are limited to X = 3.
Thus, considering that the gain for combining a new light-
ing (i.e. X = 4) is 6.25%, the limit of 3 is not so severe.

4.2 Floating-Point Representation

All operations described in the previous section can (and
should) be performed using the floating-point buffers avail-
able on recent graphics hardware. But as there are no
blending operations available for floating-point precision
buffers [15] on current hardware, we need to save each in-
termediate frame into a texture in order to make it available
for the next rendering pass.

The large amount of on-board memory transfer needed
to exchange both the depth buffer and the frame buffer be-
tween rendering passes, is currently one of the main bot-
tlenecks of our approach, even with current available band-
width. To reduce this transfer cost, we save both buffers as
classical 8 bit per component textures. The frame-buffer is
converted to an extended version of the RGBE [21] format,
that we call signed RGBE (or sRGBE), and transfered as a
RGBA texture. The depth buffer values are hereby scaled
from [znear,z f ar] to [0,1] and transfered as a RGB texture.
This linear scaling insure a uniform discretization of the
depth range, reducing the impact of a lower resolution on
the depth test (as described in [9]).

The sRGBE representation allows to encode positive as
well as negative values and is adapted to the color rep-
resentation in the frame buffer, where each color compo-
nent is clamped to [0,1] as an 8 bit fixed point value. A
floating-point RGB value (R f ,G f ,B f) can be converted to
an (R,G,B,E) sRGBE value by the following operations:

1. Computing the exponent e:

e = blog2(max(|R f |, |G f |, |B f |))c+2

where b.c is the floor operation. (Note that the classical
RGBE exponent is e−1.)

2. Scaling the RGB value to [0,1]:

[R,G,B] = [R f ,G f ,B f] ·2−e +0.5

3. Scaling the exponent to [0,1]:

E = (e+126)/255

The decompression is done by:

[R f ,G f ,B f] = ([R,G,B]−0.5) ·2255·E−126

This representation saves 67% of on-board memory and
requires only about 15 fragment program instructions.
The Cg [13] code for compressing and decompressing in
sRGBE format is available in Appendix A.

Size Crypt Cloister
(500 polygons) (8000 polygons)

one iteration — 40 (35) ms 85 (70) ms
Mag-Lite 1 5×5 2.7 (3.2) fps 1.3 (1.6) fps
Mag-Lite 2 7×7 1.5 (1.7) fps 0.7 (0.85) fps
bike light 9×7 1.2 (1.4) fps 0.55 (0.7) fps

Table 1. Rendering speeds for a single pass
and the complete light source(cf Figure 2):
models. Numbers in brackets correspond to
renderings without shadow computation.

5 Results

We implemented this approach on a Linux workstation
with an Intel Xeon 1.7 GHz processor, 512 MB mem-
ory and an NVIDIA GeForce FX 5800 Ultra, using the
NV_vertex_program2, NV_fragment_program,
NV_texture_rectangle and NV_float_buffer
OpenGL extensions [15]. Using several measured light
datasets and the two test scenes depicted in Figure 7, we
evaluated the influence of the light source model and scene
complexity on the frame-rate.

The light source datasets were acquired with the
method introduced in [6] which corresponds directly to the
schematic drawing in Figure 1. The light source is projected
onto a screen through the filter kernel (implemented as a
printed slide) and the projected pattern is recorded with a
digital camera. A complete dataset is captured by moving
the light source to all positions on the sampling grid (deter-
mined by the filter size). All measurements use as filter ker-
nel the dual of a piecewise biquadratic basis (cf Section 2)
with a filter spacing of 5 mm or 7.5 mm corresponding to
a dual filter of 20 mm (resp. 30 mm) width. The acquired
images are down-sampled to a size of 300×300 pixels.

5.1 Analysis

The real light sources and some of the rendered images
are depicted in Figures 8, 6, 9, and 10. The global shape
of the generated lighting patterns as well as the near field
effects are faithfully reproduced. The changes in the pro-
jected pattern in Figures 6 and 9 – apart from simple scaling
operations – and the presence of soft shadows (cf Figure 6-
right) are due to near field effects. The blocky appearance
in this image is due to the fact that the current floating point
textures do not support linear interpolation combined with
the traditional problem of limited depth map resolution for
shadow generation.

The current implementation allows to render all of our
light source models interactively with a frame rate from

3.2 fps down to 0.55 fps at a window size of 400×400 pix-
els. This corresponds to a range of 40 to 85 ms for each
iteration (one depth and lighting computation), depending
on the geometric complexity of the scene. A detailed list
of rendering times is given in Table 1. There we also show
that disabling the shadow computation leads to a speedup
of only about 15% caused by the fact that the correspond-
ing rendering passes are relatively cheap (only geometry is
rendered, with no attributes on the vertices, and the corre-
sponding vertex/fragment programs are minimal).

There are two main user-controllable factors which in-
fluence the frame rate. The first one is, of course, the size
of the light source datasets. As the number of passes is
proportional to the number of measurements, rendering a
larger dataset takes also more time. The upcoming exten-
sions GLX_ARB_render_texture can improve the full
rendering with a lower latency for transferring the buffers
to textures.

The geometric complexity directly influences the render-
ing time of a single pass, as shown by the decrease of the
frame rate between the two scenes. The twenty fold increase
in complexity leads to 2 times lower frame rate correspond-
ing to fact that the rendering time is changing from 40 ms
to 85 ms. For very large scenes, this factor will be the major
bottleneck of our approach.

This shows also that in the current implementation, most
of the time is spent in the fragment program for the lighting
computation. This time is highly dependent on the instruc-
tion order and on the parameter access. The rendering time
can definitively be improved by further optimizations.

6 Conclusion and Future Work

In this paper we presented a new approach for an inter-
active visualization of direct lighting from complex light
sources. The acquisition technique includes an optical pre-
filtering that allows an accurate projection into a prede-
fined function basis. The shift-invariant approximation pre-
sented here is suitable for hardware accelerated rendering
techniques. By additionally combining multiple rendering
passes into a single pass and with an compact data represen-
tation, we reach an interactive frame rate of up to 3.2 frames
per second depending on the complexity of the light model
and of the illuminated scene.

In the future, we plan to investigate in different directions
in order to increase both the quality of the reconstruction
and the frame rate. Introducing techniques similar to mip-
mapping (like summed-area tables [5]) for the light source
models would allow us to improve the rendering quality,
as unfortunately, mip-mapping of floating point textures is
currently not supported by graphics hardware. The qual-
ity of the shadows can be improved by adding more ad-
vanced shadow mapping algorithms [19, 4]. We expect fur-

thermore that better support of floating point buffers in the
next generation of graphics cards combined with additional
research on more compact representations for floating point
data, will improve both the frame rates and the quality of
the results.

References

[1] I. Ashdown. Near-Field Photometry: A New Approach.
Journal of the Illuminating Engineering Society, 22(1):163–
180, Winter 1993.

[2] I. Ashdown. Near-Field Photometry: Measuring and Mod-
eling Complex 3-D Light Sources. In ACM SIGGRAPH ’95
Course Notes - Realistic Input for Realistic Images, pages
1–15. ACM, 1995.

[3] J. F. Blinn and M. E. Newell. Texture and reflection in
computer generated images. Communications of the ACM,
19(10):542–547, 1976.

[4] S. Brabec, T. Annen, and H.-P. Seidel. Practical shadow
mapping. Journal of Graphics Tools, 2003. to be published.

[5] F. C. Crow. Summed-area tables for texture mapping. In
Proceedings of the SIGGRAPH 84 annual conference, pages
207–212. ACM Press, 1984.

[6] M. Goesele, X. Granier, W. Heidrich, and H.-P. Seidel.
Accurate light source acquisition and rendering. In Pro-
ceedings of the SIGGRAPH 2003 annual conference. ACM
Press, July 2003. to be published.

[7] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The lumigraph. In Proceedings of the SIGGRAPH 96 annual
conference, pages 43–54. ACM Press, 1996.

[8] P. S. Heckbert. Adaptive radiosity textures for bidirectional
ray tracing. In Proceedings of the SIGGRAPH 90 annual
conference, pages 145–154. ACM Press, 1990.

[9] W. Heidrich. High-quality Shading and Lighting for
Hardware-accelerated Rendering. PhD thesis, University of
Erlangen, Computer Graphics Group, Erlangen - Germany,
1999. http://www.cs.ubc.ca/~heidrich/Papers/phd.pdf.

[10] W. Heidrich and M. Goesele. Image-based measure-
ment of light sources with correct filtering. Tech-
nical Report TR-2001-08, Department of Computer
Science, The University of British Columbia, 2001.
http://www.cs.ubc.ca/~heidrich/Papers/TR-2001-08.pdf.

[11] W. Heidrich, J. Kautz, P. Slusallek, and H.-P. Seidel. Canned
lightsources. In Rendering Techniques ’98, pages 293–300.
Eurographics, June 1998.

[12] M. Levoy and P. Hanrahan. Light field rendering. In Pro-
ceedings of the SIGGRAPH 96 annual conference, pages
31–42. ACM Press, 1996.

[13] W. R. Mark, S. Glanville, and K. Akeley. Cg: A system
for programming graphics hardware in a c-like language.
In Proceedings of the SIGGRAPH 2003 annual conference.
ACM Press, July 2003. to be published.

[14] K. Myszkowski and T. Kunii. Texture mapping as an alterna-
tive for meshing during walkthrough animation. In G. Sakas,
P. Shirley, and S. Mueller, editors, Photorealistic Rendering
Techniques, pages 375–388. Springer, 1994.

[15] NVIDIA OpenGL extensions specification, Jan. 2003.
http://developer.nvidia.com.

[16] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering an-
tialiased shadows with depth maps. In Proceedings of the
SIGGRAPH 87 annual conference, pages 283–291. ACM
Press, 1987.

[17] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and
P. Haeberli. Fast shadows and lighting effects using tex-
ture mapping. In Proceedings of the SIGGRAPH 92 annual
conference, pages 249–252. ACM Press, 1992.

[18] M. W. Siegel and R. D. Stock. A General Near-Zone Light
Source Model and its Application to Computer Automated
Reflector Design. SPIE Optical Engineering, 35(9):2661–
2679, September 1996.

[19] M. Stamminger and G. Drettakis. Perspective shadow maps.
In Proceedings of the SIGGRAPH 2002 annual conference,
pages 557–562. ACM Press, 2002.

[20] C. P. Verbeck and D. P. Greenberg. A comprehensive light
source description for computer graphics. IEEE Computer
Graphics & Applications, 4(7):66–75, July 1984.

[21] G. Ward. Real pixels. In J. Arvo, editor, Graphics Gems II,
pages 80–83. Morgan Kauffman Publishers Inc., San Fran-
cisco, CA, USA, 1991.

A Cg code for sRGBE representation

The compression procedure, from high-dynamic range
RGB color values to sRGBE coefficients between [0,1], is
expressed as follow:

float4 RGB2sRGBE(float3 rgb)
{

float e = max(abs(rgb.r),
abs(rgb.g));

e = max(e,abs(rgb.b));
e = floor(log2(e))+2;
return float4((rgb*exp2(-e))+0.5,

(e+126)/255);
}

The decompression procedure is expressed as follow:

float3 sRGBE2RGB(float4 srgbe)
{

return (srgbe.rgb-0.5)*
exp2(srgbe.a*255-126);

}

Figure 6. Rendering of the 5×5 Mag-Lite data set in the low polygon count environment (Crypt). Left:
original position - Center: closer position - Right: zoom on a detail with soft shadow. Rendering
speed: 2.7 to 3.2 frames per second.

Figure 7. Test scenes. Left: "Crypt" (500 poly-
gons). Right: "Cloister" (8000 polygons).

Figure 8. The Mag-Lite and a rendering of
the 7×7 dataset in the "Crypt" environment at
1.5 frames per second.

Figure 9. Rendering of the 5×5 Mag-Lite data
set the complex environment. Rendering
speed: 1.3 frames per second.

Figure 10. The bike light and the bike light
dataset (9×7 measurements) rendered at
0.55 frames per second in the "Cloister".

