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Abstract 
We propose texture maps that contain at each texel all the parameters of a Lafortune representation BRDF 
as a compact, but quite general surface appearance representation. We describe a method for rendering such 
surfaces rapidly on current graphics hardware and demonstrate the method with real, measured surfaces and 
hand-painted surfaces. 

We also propose a method of rendering such spatial bi-directional reflectance distribution functions using 
prefiltered environment maps. Only one set of maps is required for rendering the different BRDFs stored at 
each texel over the surface. 

Categories and Subject Descriptors: I.3.7: Three-Dimensional Graphics and Realism 

Keywords: Graphics Hardware, Reflectance & Shading Models, Rendering Hardware, Texture Mapping 

1. Introduction 

Many real surfaces have detailed reflectance variation both 
spatially over the surface and directionally over the incident 
and exitant hemispheres at each spatial location. We call 
this variation the Spatial Bi-directional Reflectance 
Distribution Function. The SBRDF is a six-dimensional 
function parameterized over incoming and outgoing light 
directions, and surface position. We represent an SBRDF as 
a texture map with all the parameters of a Lafortune BRDF 
(Lafortune, Foo et al. 1997) at each texel. This 
representation is general in that the BRDF at each texel 
may be completely unique, and within each texel, the 
Lafortune BRDF consists of a series of basis lobes that 
approximate the BRDF to any selected level of generality. 

We present two techniques for real-time rendering of 
spatial bi-directional reflectance distribution functions that 
use the Lafortune representation. The first is a multipass 
method suitable for rendering on existing graphics 
hardware with standard point or directional lights. Our 
technique is not based on factoring and preevaluating a 
BRDF, but rather directly evaluating the BRDF equation as 
each fragment is shaded. The rendering algorithm is 
independent of the number of different materials in the 
scene. All SBRDFs can be rendered in the same set of 
rendering passes. 

The second rendering method addresses global 
illumination of SBRDFs using environment maps. Since 
each texel has a unique BRDF we cannot preconvolve the 
environment map with the BRDF. Instead, we preconvolve 
with just the radially symmetric sharpness function 
(specular lobe) of the BRDF for several different sharpness 
values and store these as a 3D environment map. Then 
while rendering, the radiance computation includes 
environment map lookups at the lobe peak direction for 
each lobe of the BRDF. Because of the properties of the 
Lafortune representation, this enables anisotropic peak 
direction, anisotropic lobe shape (using a sum of lobes), the 
increasing reflectance of Fresnel reflection, forward 
scattering, back scattering, off-specular scattering, and 
spatial variation of gloss level. 

2. Previous Work 

Practical representations of BRDFs for hardware rendering 
fall into two major categories: those for surfaces 
illuminated by discrete lights, and those for surfaces 
illuminated by environment maps. Additionally, a growing 
body of work addresses spatial variation of the BRDF over 
a surface. 
2.1. Spatial Variation of Reflectance 

Varying the BRDF, or portions thereof, over a surface has 
been done for decades for offline rendering using hand-
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made maps (Cook 1984), (Hanrahan and Haeberli 1990). 
Acquisition of such surface variation often uses constant 
specularity across a polygon (Yu, Debevec et al. 1999), 
(Sato, Wheeler et al. 1997), (Marschner, Westin et al. 1999) 
or limited angular resolution (Debevec, Taylor et al. 1996).  

(Debevec, Hawkins et al. 2000) acquire a reflection 
model for human skin. Specular and diffuse parameters 
vary sharply across the surface, but other parameters are 
constant. (Lensch, Kautz et al. 2001) compute a shift-
variant isotropic BRDF of an object with known geometry, 
focusing on finding a few basis BRDFs and representing 
each texel as a linear combination of these bases, with 
small per-texel detail. 

(Dana, Ginneken et al. 1999) acquire a reasonably dense 
sampling of a planar surface and compute directionally 
varying image histogram statistics (the Bi-directional 
Texture Function) and the aggregate isotropic BRDF of a 
surface. (Liu, Shum et al. 2001) registered some samples 
from this database using image correlation and constructed 
statistically similar view dependent texture maps for 
rendering. 

Polynomial Texture Maps (PTMs) (Malzbender, Gelb et 
al. 2001) represent a four-dimensional subspace of the 
SBRDF by holding the exitant direction constant 
(approximately in the normal direction) and varying the 
incident light direction over the hemisphere. PTMs may be 
evaluated efficiently in graphics hardware. For 
approximately the same texture size as a PTM, an SBRDF 
allows the variation in exitant direction required to render 
surfaces with arbitrary spatial BRDF variation on arbitrary 
geometry. 

(Kautz and Seidel 2000) propose a flexible paradigm for 
evaluating spatially varying BRDFs in graphics hardware 
in which the BRDF equation is divided into linear 
operations such as dot products that can be evaluated by the 
graphics hardware, and nonlinear operations that are 
precomputed over their domain and stored in lookup tables 
as texture maps. Transformed BRDF parameters are stored 
per texel in texture maps and used for hardware shading. 
The SBRDF rendering method that we propose follows this 
paradigm since it directly stores BRDF parameters per 
texel. We will compare below our specialization of the 
paradigm to the models explored by Kautz.  
2.2. BRDFs With Hardware Lights 

(Fournier 1995) and (Heidrich and Seidel 1999) proposed 
factoring BRDF equations into simpler functions that could 
be precomputed into texture maps and rendered using 
compositing or multitexturing arithmetic in a constant 
number of rendering passes per light. (Kautz and McCool 
1999) perform this factorization numerically using singular 
value decomposition. (McCool, Ang et al. 2001) solve 
problems of previous factorization approaches, with an 
elegant factorization that includes only positive factors. 
This method also works directly with arbitrary scattered bi-
directional reflectance samples. By performing the 

factorization in log space, the highlights tend to be 
smoother, avoiding aliasing (though having broader peaks). 

These methods all apply to surfaces with a uniform 
BRDF over the surface, whereas our method and that of 
(Kautz and Seidel 2000) store BRDF parameters over the 
surface, rather than evaluating the BRDF at regular 
parametric intervals and storing the results in texture maps. 
This is the key characteristic that enables total variation of 
the BRDF over the surface. 

However, some spatial variation can be achieved in 
factorization methods by combining the BRDF with a 
standard diffuse texture, or using a weighted blend of 
several BRDFs. This is done by rendering passes for each 
BRDF for each light and accumulating the weighted 
results. In practice, this only works well for a small number 
of BRDFs because of the rendering cost of the layers and 
the storage space for the weight textures. We compare this 
to our method in Section 5. 

One advantage of the BRDF factorization methods is 
that very flexible BRDFs may be represented, since each 
texel is essentially a coefficient of a BRDF representation. 
This means that these methods typically do not require a 
number of rendering passes proportional to the complexity 
of the BRDF, whereas the number of passes for the 
Lafortune representation used in SBRDFs depends on the 
number of lobes. BRDFs with a single lobe that has a 
depressed center, such as velvet, may require several 
Lafortune lobes to adequately approximate. 
2.3. Environment Map Convolution 

The original use of environment maps in (Blinn 1976) 
enabled mirror reflections. More recent work by (Cabral, 
Olano et al. 1999) and (Heidrich and Seidel 1999) enable 
glossy reflection of environment maps by convolving the 
environment map a priori with portions of the BRDF 
equation. These methods are thus only suitable for a single 
BRDF per set of maps. (Voorhies and Foran 1994) use 
environment maps to store the precomputed highlights 
from directional lights convolved with a Phong BRDF. 
(Bastos, Hoff et al. 1999) represent a sampling of the scene 
geometry using images with depth, and preconvolve these 
with spatially uniform portions of the BRDF for specific 
reflecting surfaces. This method allows reflections of local 
geometry rather than just light at infinity. (Kautz and 
McCool 2000) create a set of prefiltered environment maps 
for a given BRDF by fitting lobes that are fixed in 
orientation relative to a selected exitant polar angle. Many 
such angles are used, creating a 3D environment map. This 
3D map is indexed based on the exitant direction and 
exitant polar angle. When summing multiple lobes each 
lobe uses a separate 3D environment map. This method has 
the important advantage of handling increasing lobe 
sharpness at grazing angles. (Kautz, Vázquez et al. 2000) 
provide faster map convolution, enabling dynamically 
changing glossy environment maps, and anisotropic 
environment maps constrained to an approximate Banks 
model. 
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These techniques do not address different BRDFs at 
each point on a surface, except in simple ways like using a 
textured diffuse term, or potentially modulating the 
sampled environment map with a specular albedo. 

3. Representation 

A spatial bi-directional reflectance distribution function can 
be acquired from measured data or painted by an artist. See 
the conclusion for a discussion of the considerations 
involved in the SBRDF paint program that we have under 
development. 

In other work (McAllister 2002), we describe an 
SBRDF measurement and fitting system. We place a planar 
sample of a material on a pan-tilt-roll unit, and using this 
and a moving light, sample the incident and exitant 
hemispheres at a given angular density using a stationary 
camera. This provides a dense sampling of the entire six-
dimensional SBRDF – between 300 and 8000 poses. We 
rectify these high dynamic range photographs and compute 
a reflectance image from each – typically on the order of 
512 × 512 resolution. Our sampled SBRDFs measure up to 
8 GB in size.  

The reflectance values from the corresponding pixel of 
all rectified images are used as input to a nonlinear solver 
to compute the RMS best fit Lafortune BRDF parameters at 
that pixel, for a specified number of lobes. We use either 
Levenberg-Marquardt or a more efficient custom data 
fitting method. The resulting SBRDF files are less than 10 
MB in size. 
3.1. The Lafortune Representation 

One can approximate the BRDF by projection into general 
basis functions (Westin, Arvo et al. 1992), (Lalonde and 
Fournier 1997), (Lafortune, Foo et al. 1997). Many models 
such as (Phong 1975) and (Ward 1992) only yield 
highlights in the reflection direction and thus cannot be 
used as a sum of bases for arbitrary BRDFs. The Lafortune 
representation is well suited for the shape that BRDFs 
typically have, is compact and is capable of representing 
interesting BRDF properties such as the increasing 
reflectance of Fresnel reflection, off-specular peaks and 
retro-reflection. The Lafortune representation consists of a 
sum of terms: 
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where ρd is the diffuse reflectance. The terms in the 
summation are specular lobes. Each lobe j has an albedo, 
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Phong lobe: 

 ( )
, ,

, ,

, ,

,
r x x i x

i r r y y i y

r z z i z

T n
C

s C

C

ω ω
ω ω ω ω

ω ω

 
     
     = ⋅ ⋅     
          
 

 (2) 

The Lafortune representation is evaluated in local 
surface coordinates. The X and Y axes are the principal 
directions of anisotropy and Z is the normal. The matrix C 
is defined as Cx=-1, Cy=-1, Cz=1 to cause ωi to reflect 
about the normal, yielding a standard Phong lobe. But each 
lobe is significantly more general than a Phong lobe: the C 
coefficients may also take on other values to shear the 
specular lobe in ways that represent real surface scattering 
behavior but still enforce reciprocity and conservation of 
energy. The lobe's peak will be in the direction C ·ω i. For 
isotropic BRDFs, Cx = Cy. For off-specular reflection, | Cz | 
< | Cx |, pulling the lobe toward the tangent plane. For 
retroreflection, Cx > 0 and Cy > 0. When Cx and Cy have 
opposite sign, a lobe will forward scatter when parallel to 
the principal direction of anisotropy, but back scatter when 
perpendicular to it, as arises with parallel cylinder 
microgeometries (Westin, Arvo et al. 1992). The Lafortune 
representation’s great flexibility to aim and scale each 
scattering lobe is key in using few lobes to approximate 
BRDFs. This property also enables our glossy environment 
mapping technique. 

We represent the ρ albedo values as RGB channels but 
share the Cx, Cy, Cz, and n values between channels. For 
anisotropic materials we may also store the direction of 
anisotropy at each pixel, shared for all lobes. 

4. Hardware Rendering 

Surfaces with SBRDFs may be rendered using current 
graphics hardware such as an Nvidia Geforce 4 or an ATI 
Radeon 8500. This section provides the details of our 
formulation, texture representation, and rendering 
implementation, which we have implemented within a 
typical interactive rendering engine. 

We first store the SBDRF parameters in texture maps. 
We store ρd in a single map, with the alpha channel being 
used for transparency. For each lobe j, two additional 
texture maps are defined. A three-channel map contains ρs 
and a four-channel map contains the lobe shape Cx, Cy, Cz, 

and n.  
The value of a BRDF ranges from 0 to ∞, so it is 

possible for ρs to be greater than 1. Since seven parameters 
are used per lobe but the lobe only contains six degrees of 
freedom, ρs at each pixel may be scaled by an arbitrary 
factor e, while C is scaled by n e to preserve precision 
where necessary, since on current hardware all values will 

Figure 1: Texture maps used in Figure 5(d): diffuse albedo 
(ρd), lobe albedo (ρs), lobe shape (C), and lobe exponent 
(n). Lobe shape maps -1..1 to 0..1. The lobe exponent is
stored in the alpha channel of the lobe shape texture.  
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be represented in 8-bit fixed point. Also, C may be mapped 
using the hardware’s -2..2 mapping to preserve C values 
greater than 1. 
4.1. Shader Formulation 

The surface reflectance equation is: 

 ( ) ( ) ( )( )
i

r i rr r i i i if LL N dω ωω ω ω ω
Ω

→= ⋅∫
v

 (3) 

where ωi is the incident direction, ωr is the exitant 
direction, Ωi is the incident hemisphere domain, N

v
 is the 

surface normal, fr is the BRDF, and L(ω) is the radiance in 
the direction ω. 

To implement Equation (3) in graphics hardware the 
equation must be expressed entirely using discrete 
arithmetic and split into portions corresponding to 
hardware operations. Let us first substitute the Lafortune 
BRDF representation into Equation (3) and replace the 
integral over the incident hemisphere by a discrete sum 
over the hardware lights: 
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We then move ρd within the sum over the BRDF lobes 
by using a delta function to cause ρd to only be added once 
per light: 
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On current graphics hardware we evaluate Equation (5) 
in two rendering passes per lobe per light. The pair of 
passes corresponds to the term within the double sum. 
These exitant radiance terms are summed in the frame 
buffer to yield the total exitant radiance. 

The exponentiation within s(ωi,ωr) may not be 
performed directly in current graphics hardware, so, 
following (Kautz and Seidel 2000), we create a 256 × 256 
lookup table storing f(x,n)= xn, and store this in a texture. 
However, we are unable to sample this map using sub-texel 
precision, as will be explained below. Because of this it is 
important to avoid sharp discontinuities in this map. In 
particular, for large n, the highlight falloff is very steep as x 
diminishes from 1. We thus remap x as: x’=x2. Also, visual 
difference between highlight size is much greater for small 
specular exponents than for large, with specular exponents 
ranging from 0 to ∞. The lobe sharpness portion of the 
Lafortune representation could be replaced with an 
arbitrary sharpness function of the generalized dot product, 
such as a roughness parameter that varied from 0 to 1. 
However, our measured data uses the standard specular 
exponent formulation, so we remap n as: n’=255 (n/255)2 
to give more precision for smaller exponents. 
4.2. First Pass 

The first of each pair of passes is rendered into a p-buffer – 
a portion of video card memory that can store an off-screen 
image. P-buffers may be rendered to like a screen window 

and read from as texture maps. This first pass computes the 
lobe shape, s(ωi,ωr), except for the exponentiation. The 
application sends vertex positions, normals, tangents, and 
texture coordinates for all objects with SBRDF surfaces. A 
vertex program transforms the camera and light vectors (for 
either point or directional lights) by the T

v
, B
v

, N
v

 frame 
into local surface coordinates. When normalized, this yields 
ωr and ωi. These are stored as texture coordinates and 
rasterized along with the standard surface texture 
coordinates. These vectors must be renormalized at each 
pixel. This is performed in the texture shader using a 
normalization cube map (Kilgard 1999).  

For each rasterized fragment, the texture shader also 
reads the lobe shape parameters Cx, Cy, Cz and n’. The first 
register combiner stage component-wise multiplies ωi by 
<Cx, Cy, Cz>. The second combiner stage computes the dot 
product of this product with ωr, yielding x, the result of the 
generalized dot product portion of s(ωi,ωr). This value is 
squared in the final combiner to yield x’, then converted to 
eight-bit fixed point and replicated across the red, green, 
and blue components of the output; n’ is bound to the alpha 
output, and the resulting fragment is written to the p-buffer. 
4.3. Second Pass 

The second of the two passes performed per lobe per light 
computes the rest of one term of Equation (5). The vertex 
program of pass 2 transforms the vertex to screen space, 
passing the result as texture coordinates. Interpolation of 
these texture coordinates must not use perspective 
correction so that the interpolated coordinates will precisely 
index the p-buffer pixel corresponding to the fragment now 
being rasterized. To disable perspective correct texture 
interpolation we multiply the texture coordinates by the 
vertex’s w coordinate (Akeley 1992). The vertex program 
also passes the standard surface texture coordinates, then 

Figure 2: Hardware rendered result using our method. The 
couch, tan chair, blue chairs, table cloth, leaves, brass 
table, and gift wrap have measured SBRDFs. The cherry 
wood and floor wood are painted SBRDFs. Surfaces have 1 
or 2 lobes per texel. Three hardware lights are used.
Average frame rate for this scene is 18 fps. 
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computes the irradiance due to light l. The light direction is 
computed as in pass 1. The dot product with the vertex 
normal is computed in world space. Negative values of the 
dot product represent a light behind the polygon and are 
thus clamped to 0. This value is multiplied by the radiance 
of the light, optionally including the inverse squared falloff, 
and the result is stored as a color. 

The p-buffer created in pass 1 is indexed by the screen 
coordinates to fetch the value written to this pixel in pass 1. 
This is x’, n’, which are used to perform a dependent 
texture read sj(ωi,ωr) = map(x’,n’). The result is stored in 
all three channels of the output color sent to the register 
combiners. The lobe albedo and diffuse albedo at the given 
point are also sampled and passed to the register combiners. 

The first register combiner stage component-wise 
multiplies ρs,j by sj(ωi,ωr) and to input A of the second 
stage. The interpolated irradiance is mapped to inputs B 
and D. For the first lobe (j=1) the combiner maps ρd to C 
and otherwise maps 0 to C. The output AB+CD is the 
exitant radiance for this term of Equation (5), and is sent to 
the frame buffer, with the alpha component of ρd being 
sent as the transparency of the fragment. 

5. Hardware Rendering Results 

Figure 5 and Figure 2 show rendered results for a variety of 
measured and painted surfaces. These were hardware 
rendered using an Nvidia Geforce 4 card.  

The model of Figure 2 consists of 221,925 vertices and 
261,549 triangles. Some surfaces have simple texture maps, 
but most surfaces use SBRDFs accounting for 188,833 
vertices and 213,828 triangles. Twelve different SBRDFs 
are used, consuming 26 MB of texture memory. On a 2500 
frame walkthrough path that renders an average of 
approximately 25% of the geometry per frame, rendering 
performance is shown in Table 1.  

Especially for a single lobe, the rendering performance 
is very acceptable. One lobe is usually sufficient for 
interactive applications, with multiple lobes being more 
suitable for CAD applications where users typically study a 
surface more closely. Also, a single lobe is more acceptable 
within the SBRDF regime than for a spatially uniform 

surface since the high surface frequency can mask detailed 
highlight shape, as with our fabric samples. The white 
fabric of the lobby model uses two lobes. All other surfaces 
use one lobe. 

The major source of visual artifacts stems from using 
the lookup table. The rounding to eight bits as x’ and n’ are 
stored in the p-buffer causes adjacent pixels with slightly 
different x’ values to index the same table entry, yielding 
artifacts at highlight tails. 

Another artifact results from clamping x’ to 1 before 
writing it to the p-buffer in the first pass. The Lafortune 
representation depends on dot product values x > 1 to 
represent the increasing reflectance at grazing angles of 
Fresnel reflection. If n ≥ 1, for x > 1 we have xn > x, but 
for x < 1 we have xn < x. With x being clamped to 1 it is 
impossible to yield a bi-directional reflectance value xn 
greater than 1. Using the exponentiation lookup table the 
lookup result will instead exactly equal 1. This value is 
then multiplied by the irradiance, which approaches zero as 
the light direction approaches the grazing angle, yielding a 
final exitant radiance usually less than 1. This artifact will 
be alleviated by increased frame buffer dynamic range. 
5.1. Comparison to BRDF Factorization 

With BRDF factorization methods, for a given surface to 
have different BRDFs at different points, each unique 
BRDF must be stored in a set of texture maps, and a 
number of rendering passes must be performed for each 
BRDF for each light, as mentioned in (McCool, Ang et al. 
2001). These results are modulated by per-texel weights for 
each BRDF in order to composite the per-BRDF renderings 
into a final result. For a very small number of BRDFs, this 
representation is compact, since it is essentially a palette 
with per-texel weights, and the rendering method works 
quite well. 

However, an advantage of storing BRDF parameters per 
texel is that the number of required rendering passes does 
not depend on the number of different BRDFs. Table 2 
compares the number of rendering passes required on 
Nvidia Geforce 4 hardware for a varying number of lights, 
and for varying surface complexity. For SBRDFs, each 
texel has a unique BRDF, but the number of lobes is fixed 
for the surface (though not for a whole scene). For 
McCool’s method, the total number of BRDFs in the 
surface is fixed, and each BRDF is evaluated at each texel.  

Figure 5(d) shows a single SBRDF made by combining 
many measured and synthetic SBRDFs. This SBRDF 
consists of over one million unique BRDFs since it is a 
1024 × 1024 image. However, many texels are obviously 
very similar to others. We have not exploited this 
similarity, but a method such as (Lensch, Kautz et al. 2001) 
would do so. By manually analyzing this SBRDF, we 
estimate that 48 significantly different basis BRDFs appear 
in the SBRDF. Assuming that factorization methods such 
as McCool’s could be extended to handle the per-texel 
deviation from the bases and still render in N+1 passes per 
BRDF for N lights, the final column of Table 2 shows the 

 SBRDF 

# lights # lobes 

 1 2 3 

No 
light, 
no tex  

Light, 
no tex 

No 
light, 
tex 

Light, 
tex 

1 50.7 29.5 20.8 156.8 95.7 

2 29.4 16.2 11.1 140.6 93.1 

3 20.8 11.1 7.57 

176.5 

122.1 

109.7 

77.0 

Table 1: Frame rate for SBRDF shader, for the Figure 2
scene. 800×600, 2× AA. Although the model contains 
SBRDFs with 1 or 2 lobes, for timing tests, all surfaces 
were forced to the stated number of lobes. SBRDF results 
are compared against simple one-pass approaches. 
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estimated number of passes to render Figure 5(d) using 
McCool’s method. The values are comparable for other 
BRDF factorization methods. This shows that rendering 
surfaces with BRDF parameters per texel is more efficient 
than rendering basis BRDFs for surfaces with a great deal 
of spatial BRDF variation. On more programmable 
hardware, these numbers could be reduced to a constant 
cost by storing BRDF indices rather than weights per texel, 
and evaluating only the indexed BRDFs at each pixel. 
5.2. Comparison to Kautz-Seidel 

The SBRDF rendering method that we propose fits the 
paradigm of (Kautz and Seidel 2000) in that linear 
operations are used to compute texture indices. Nonlinear 
operations are stored in texture maps, and the results are 
used in additional linear operations, completing the BRDF 
evaluation. Kautz & Seidel demonstrated their method with 
a novel anisotropic Blinn-Phong model. The potential 
flexibility of the paradigm was shown using other models 
demonstrated with software simulations. Our method 
shares some precision and clamping artifacts that Kautz & 
Seidel encountered. We have successfully applied this 
paradigm despite dependent texture reads not being as 
general as predicted by Kautz and Seidel. 

But the major difference we propose that applies to 
current graphics hardware is to use the Lafortune 
representation, which has several properties not possessed 
by the models explored by Kautz & Seidel. In particular, 
the lobe directions of the Lafortune representation can aim 
in arbitrary directions relative to the incident direction, 
which makes a sum of lobes much more effective than with 
Phong (Phong 1975) or Ward (Ward 1992) bases. 

The Lafortune representation is also particularly well 
suited to this paradigm. Our method requires two passes per 
lobe per light on a GeForce 4, but could most likely be 
done in one pass on hardware that allows register combiner 
results to be used as dependent texture coordinates within 
the same pass. On a GeForce 4, the anisotropic Ward model 
would require at least ten texture reads and four rendering 
passes per lobe per light, but likely only three passes on a 
Radeon 8500. The Banks model could be evaluated in two 
passes per light.  

6. Global Illumination of SBRDFs 

Beyond illuminating SBRDFs with discrete point or 
directional lights, this section discusses illuminating 
SBRDFs with incident light from all directions using 
environment maps. Environment maps represent only the 
incident direction of the radiance, as if all illumination 
comes from infinity. Each point in the scene receives the 
same illumination, invariant of its location.  

 Previous methods for glossy reflection of environment 
maps in graphics hardware share the constraint that the 
environment map must be preconvolved with (a portion of) 
each different BRDF. Thus, a different set of environment 
maps is required for each different BRDF. Although 
burdensome, this is at least possible for scenes consisting of 
a fairly small number of objects, each with one or a few 
discrete BRDFs. However, in the SBRDF regime, every 
point on every surface is treated as having a unique BRDF, 
so the existing methods do not directly apply. We present a 
method for rendering from preconvolved environment 
maps that allows each point on each surface to have a 
completely different BRDF. 
6.1. Environment Map Convolution Formulation 

The formulation begins with a modified form of Equation 
(3), applied to the Lafortune representation, with separate 
diffuse and specular terms: 
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The incident radiance Li(ωi) is stored in the environment 
map, indexed by the incident direction. The diffuse term 
can be easily encoded in an environment map indexed 
simply by N

v
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is independent of the BRDF, so it is precomputed 
once for all objects that are to reflect the environment map 
Li(ωi). This was done by (Miller and Hoffman 1984) and 
(Green 1986). The specular terms also take advantage of 
precomputed maps. Just as N

v
 is used to index the 

preconvolved diffuse map, a function of the view direction 
will index a preconvolved specular environment map: 

 ( )
,

,

,

x r x

j r y r y

z r z

C

p C

C

ω
ω ω

ω

  
  = ⋅   
     

 (8) 

pj(ωr) is the peak vector of the lobe-shaped sampling 
kernel – the incident direction of maximum influence on 
the exitant radiance toward ωr due to lobe j. Equation (6) 
becomes 

 SBRDF McCool 

# lights # lobes # BRDFs 

 1 2 3 1 2 3 48 

1 2 4 6 2 4 6 96 

2 4 8 12 3 6 9 144
3 6 12 18 4 8 12 192

4 8 16 24 5 10 15 240

Table 2: Number of passes required for our method vs. the 
factorization method of McCool for varying number of 
lights and varying surface complexity on an Nvidia 
GeForce 4. 
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We define the specular environment map as: 

 ( ) ( ),
i

p
p i i i i

p

n

S n L d
ω

ω ω ω ω
ωΩ

 
 = ⋅
 
 
∫  (10) 

As discussed below, this map is parameterized both on 
the incident kernel peak direction ωp and on the exponent 
n. The exitant radiance formulation used in hardware 
rendering becomes: 

( ) ( )
( )( ) ( ) ( )( ), ,

d

s j r j r
j

r r

j
rS p n N p

L D N

n
p

ρ

ρ ω ω

ω

ω ⋅

≈ +

∑
v

v

 (11) 

The ( ) jn

rp ω factor arises because S is computed with 
a normalized ωp, so the incident radiance must still be 
scaled by the magnitude of the lobe. This equation is only 
an approximation since the irradiance falloff iN ω⋅

v
 must 

be computed inside the integral over ωi, but this could not 
then be stored in an environment map since it would be 
parameterized by both p(ωr) and N

v
. We instead weight all 

incident directions equally within the integral but weight 
S(ωp,n) by ( )rN p ω⋅

v
. This problem and resolution were 

explained by (Kautz and McCool 2000). This is a high 
quality approximation, and the quality improves for 
increasing values of n. A problem our method shares with 
many preconvolution methods is that by removing iN ω⋅

v
 

from the integral, some light from below the surface is 
included in L(ωr). This has not presented a practical 
problem. 

Two key facts allow environment maps to illuminate 
spatial BRDFs. First, the Lafortune representation uses a 
specular exponent, which creates radially symmetric lobes. 
In general, only radially symmetric lobes may be used to 
preconvolve an environment map because otherwise the 
map would only be correct for a single normal direction. 
Second, the Lafortune representation directly computes a 
general lobe peak vector. Thus, all BRDF properties that 
the Lafortune representation expresses using the peak 
vector – anisotropic peak direction, anisotropic lobe shape 
(by summing radially symmetric lobes), the increasing 
reflectance of Fresnel reflection, and forward reflective, 
retroreflective, and off-specular peaks – are independent of 
the environment map. 
6.2. Implementation for Graphics Hardware 

Several representation alternatives arise for the S(ωp,n) 
map. The possibilities are constrained by the graphics 
hardware’s small choice of texture representations. One 
possibility is to represent S in a single cube map, with the 

most specular value of n being stored in the finest MIP 
level, and successively diffuse n being stored in coarser 
levels. The decreasing resolution of MIP levels corresponds 
nicely to the decreasing high frequency content of 
environment maps convolved with wider specular lobes. 
This property allows the most compact representation of S. 
Another approach is to store a small set of cube maps for 
discrete values of n, and render with each of these, 
weighting each by basis functions evaluated at the pixel’s 
n, yielding a result interpolated to the pixel’s n from maps 
for nearby values of n. A third possibility is to use a 3D 
texture, with the s and t map dimensions mapping to a 
parabolic map (Heidrich and Seidel 1999) and the r 
dimension mapping to n. This is similar to the 
representation by (Kautz and McCool 2000), except their r 
dimension mapped to exitant polar angle. 

We believe glossy environment reflection of SBRDFs is 
impractical for graphics hardware with register combiner 
fragment shading. Today’s hardware does not allow 
choosing MIP levels based on a value sampled from a 
texture map, so there is no way to choose a gloss level 
based on the pixel’s n. This prevents use of the single MIP-
map representation. The 3D texture representation could be 
used, except it would be difficult to compute the indices 
into this map for each fragment being shaded. If the Cx, Cy, 
and Cz values were constant over the polygon, the s and t 
coordinates could easily be computed in a vertex program 
with a per-fragment n value possibly mapped to r. This 
would yield spatially varying gloss level, but would not 
enable spatially varying lobe direction effects. The 
representation with several cube maps could be rendered 
with one pass per lobe per map level by using the bump 
map vector perturbation circuit to compute p(ωr) at each 
fragment. However, the computation of fragment weights 
based on the fragment n and the current map’s n would be 
difficult and may require different weight maps for each 

Figure 3: Software rendering simulating our prefiltered 
environment map technique. Specular exponents range 
from 1 to 5 for the couch, 5 to 15 for the grain of the wood, 
and 75 to 150 for the wood foreground. The wood is 
increasingly reflective at grazing angles. 
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environment map n. Alternatively, n could be held constant 
here, yielding a modified form of bump mapped 
environment mapping. 

For future hardware, we believe all three representations 
will be practical as fragment (pixel) shading becoming 
more general. Using a software renderer, we have 
implemented both cube map approaches. The shader 
directly follows Equation (11), with the note that the view 
vector is rasterized in local surface coordinates, 
transformed by C to yield p(ωr), and then transformed by 
the local frame to world coordinates for sampling the 
environment map. This requires rasterizing and 
renormalizing N

v
 and T

v
. As well all linear interpolation 

and renormalization of vectors, this can cause artifacts in 
regions of high curvature. 

For the set of discrete cube maps, we used linear 
interpolation between values of n for specular exponents 1, 
4, 16, 64, and 256. The blending artifacts were minimal, 
but the large number of texture accesses makes this method 
less suitable for real-time rendering.  

The MIP-mapped cube map representation works well. 
This method is the most space efficient, requiring a single 
map, the most bandwidth efficient, requiring a single 
trilinear sample, and finally, it is the most computationally 
efficient since the texture coordinate computation is 
performed in a dedicated cube mapping circuit, rather than 
in staged fragment shader computations. Cube map MIP 
levels generated via environment map convolution with 
different specular exponents are not equivalent to general 
MIP level computation. However, it is very visually similar 
and has not presented a problem. 

We have not yet implemented the 3D texture 
representation with parabolic maps. Although the parabolic 
mapping would need to be computed in the fragment 
shader, rather than a dedicated circuit, we believe the 
implementation should be straightforward and provide 
good results. 

Figure 3 shows a rendered result that employs the high 
dynamic range environment map of Figure 4. Note the 

synthetic texture of wood. The grain, which has a specular 
exponent of about 10, yields much lower gloss highlights 
than the wood foreground, with a specular exponent of 
about 150. The measured white upholstery fabric is 
represented with two lobes. At most texels, these have 
specular exponents of about 1 and 5 for the silky thread and 
about 1 and 2 for the cotton thread. For most silk texels the 
high exponent lobe is anisotropic – forward scattering when 
parallel to the threads, and back scattering when 
perpendicular to them. 

Figure 6 shows a rendered result with a brushed metal 
and fabric SBRDF, illuminated by the environment map of 
Figure 4. For the metal texels of the SBRDF, only the 
direction of anisotropy varies. The metal BRDF uses three 
anisotropic lobes with specular exponents of 18, 56, and 
184. 

7. Conclusion and Discussion 

Rendering surfaces with completely different BRDFs at 
each texel is practical on today’s graphics hardware using 
the representation and method described in this paper. The 
method builds upon existing work by using a flexible, 
compact Lafortune BRDF representation that yields quite 
convincing renderings of many measured or synthetic 
surfaces at satisfactory frame rates. For near future 
hardware, this paper offers an additional rendering method 
that again takes advantage of the flexibility of the BRDF 
representation to yield spatially varying environment 
mapped illumination.  

To conclude, we would like to discuss hardware-related 
issues that arose during this work, and discuss some future 
directions. First, we observe that, although lookup tables 
are the key enabler of many advanced shading techniques 
today, such as BRDF factorizations, normalization maps, 
the nonlinear function maps of (Kautz and Seidel 2000), 
and our exponent table, this is probably not the most viable 
approach in the long term. This is because memory 
bandwidth has been growing much more slowly than on-
chip computation power, so it makes sense to reserve 
memory bandwidth for content that cannot be derived by 
computation. This calls for efficient, general per-fragment 
shading. 

Texture sampling within graphics hardware assumes 
that texel values are linear in the exitant radiance of the 
pixel, so linear interpolation of texels is acceptable. 
However, when storing input parameters to nonlinear 
functions in texture maps, linear interpolation is 
inappropriate. We haven’t noticed artifacts due to 
interpolating C values. We believe the main artifact would 
be a depressed highlight similar to failing to renormalize an 
interpolated normal, but that would only occur when two 
adjacent texels had very different C values. 

One approach to this problem is to allow the fragment 
shader the flexibility of receiving all sampled texels for this 
texture lookup unfiltered, together with their filter weights, 
and processing them as desired in the fragment shader. For 

 
Figure 4: Left: One face of high dynamic range cube map
used in figure 3. Right: Prefiltered maps for specular
exponents (top to bottom, left to right) 256, 64, 16, 4, 1, 0
(diffuse). All prefiltered maps are 128 × 128 pixels.
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minification filtering, MIP levels may be created with 
parameters that will yield shader results that approximate 
shading followed by filtering. 

Regarding future work, the C matrix consists of simply 
the diagonal elements Cx, Cy, Cz and can perturb a vector 
arbitrarily within the local coordinate frame. However, it is 
not as general as bump mapping. For rendering SBRDFs 
with bump maps one could use two three-channel maps to 
represent the entire (symmetric) matrix C, including the 
normal perturbation for bump mapping, rotation to the 
direction of anisotropy, and the shear by Cx, Cy, Cz. At each 
fragment, ωr is simply transformed by this 3×3 matrix. 

We believe it may be possible to render two lights per 
pair of passes in our current rendering regime. The first 
pass would compute x’ for each light, and store x’ and n’ 
for each in the frame buffer. The second pass would 
employ dependent texture reads for each light. 

For creating and editing SBRDFs, we have in progress a 
paint program that natively supports SBRDFs. Many 
common painting operations treat pixel values simply as 
data to be copied. These are simple to apply to BRDF 
pixels. Other paint operations require interpolation of pixel 
values. For nonlinear BRDF representations such as 
Lafortune, the most accurate interpolation method is to 
sample the BRDFs over their domain, interpolate between 
the samples, and fit a new BRDF to the interpolated sample 
vector. This always yields a physically plausible BRDF 
(McAllister 2002). 
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Figure 5: Hardware rendered results using the method of this
paper. a) measured gilded wall paper, b) hand painted cherry
wood, c) measured gift wrap, d) hand-composite map with 10
measured and synthetic materials. e,f) Measured, anisotropic
upholstery fabric with two lobes per texel. The foreground and
background threads change relative brightness  under 30 ˚  
rotation.  

Figure 6: Anisotropic brushed metal teapot with spatially 
varying direction of anisotropy, with white fabric lettering. 
One SBRDF with three lobes is used for the entire surface. 
Illumination comes from the prefiltered high dynamic range 
lobby environment map. 


