
© The Eurographics Association 2002.

 Efficient Rendering of
Spatial Bi-directional Reflectance Distribution Functions

David K. McAllister,1 Anselmo Lastra,1 and Wolfgang Heidrich2

1 Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA
2 Department of Computer Science, University of British Columbia, Vancouver, British Columbia, Canada

Abstract
We propose texture maps that contain at each texel all the parameters of a Lafortune representation BRDF
as a compact, but quite general surface appearance representation. We describe a method for rendering such
surfaces rapidly on current graphics hardware and demonstrate the method with real, measured surfaces and
hand-painted surfaces.

We also propose a method of rendering such spatial bi-directional reflectance distribution functions using
prefiltered environment maps. Only one set of maps is required for rendering the different BRDFs stored at
each texel over the surface.

Categories and Subject Descriptors: I.3.7: Three-Dimensional Graphics and Realism

Keywords: Graphics Hardware, Reflectance & Shading Models, Rendering Hardware, Texture Mapping

1. Introduction

Many real surfaces have detailed reflectance variation both
spatially over the surface and directionally over the incident
and exitant hemispheres at each spatial location. We call
this variation the Spatial Bi-directional Reflectance
Distribution Function. The SBRDF is a six-dimensional
function parameterized over incoming and outgoing light
directions, and surface position. We represent an SBRDF as
a texture map with all the parameters of a Lafortune BRDF
(Lafortune, Foo et al. 1997) at each texel. This
representation is general in that the BRDF at each texel
may be completely unique, and within each texel, the
Lafortune BRDF consists of a series of basis lobes that
approximate the BRDF to any selected level of generality.

We present two techniques for real-time rendering of
spatial bi-directional reflectance distribution functions that
use the Lafortune representation. The first is a multipass
method suitable for rendering on existing graphics
hardware with standard point or directional lights. Our
technique is not based on factoring and preevaluating a
BRDF, but rather directly evaluating the BRDF equation as
each fragment is shaded. The rendering algorithm is
independent of the number of different materials in the
scene. All SBRDFs can be rendered in the same set of
rendering passes.

The second rendering method addresses global
illumination of SBRDFs using environment maps. Since
each texel has a unique BRDF we cannot preconvolve the
environment map with the BRDF. Instead, we preconvolve
with just the radially symmetric sharpness function
(specular lobe) of the BRDF for several different sharpness
values and store these as a 3D environment map. Then
while rendering, the radiance computation includes
environment map lookups at the lobe peak direction for
each lobe of the BRDF. Because of the properties of the
Lafortune representation, this enables anisotropic peak
direction, anisotropic lobe shape (using a sum of lobes), the
increasing reflectance of Fresnel reflection, forward
scattering, back scattering, off-specular scattering, and
spatial variation of gloss level.

2. Previous Work

Practical representations of BRDFs for hardware rendering
fall into two major categories: those for surfaces
illuminated by discrete lights, and those for surfaces
illuminated by environment maps. Additionally, a growing
body of work addresses spatial variation of the BRDF over
a surface.
2.1. Spatial Variation of Reflectance

Varying the BRDF, or portions thereof, over a surface has
been done for decades for offline rendering using hand-

 © The Eurographics Association 2002.

made maps (Cook 1984), (Hanrahan and Haeberli 1990).
Acquisition of such surface variation often uses constant
specularity across a polygon (Yu, Debevec et al. 1999),
(Sato, Wheeler et al. 1997), (Marschner, Westin et al. 1999)
or limited angular resolution (Debevec, Taylor et al. 1996).

(Debevec, Hawkins et al. 2000) acquire a reflection
model for human skin. Specular and diffuse parameters
vary sharply across the surface, but other parameters are
constant. (Lensch, Kautz et al. 2001) compute a shift-
variant isotropic BRDF of an object with known geometry,
focusing on finding a few basis BRDFs and representing
each texel as a linear combination of these bases, with
small per-texel detail.

(Dana, Ginneken et al. 1999) acquire a reasonably dense
sampling of a planar surface and compute directionally
varying image histogram statistics (the Bi-directional
Texture Function) and the aggregate isotropic BRDF of a
surface. (Liu, Shum et al. 2001) registered some samples
from this database using image correlation and constructed
statistically similar view dependent texture maps for
rendering.

Polynomial Texture Maps (PTMs) (Malzbender, Gelb et
al. 2001) represent a four-dimensional subspace of the
SBRDF by holding the exitant direction constant
(approximately in the normal direction) and varying the
incident light direction over the hemisphere. PTMs may be
evaluated efficiently in graphics hardware. For
approximately the same texture size as a PTM, an SBRDF
allows the variation in exitant direction required to render
surfaces with arbitrary spatial BRDF variation on arbitrary
geometry.

(Kautz and Seidel 2000) propose a flexible paradigm for
evaluating spatially varying BRDFs in graphics hardware
in which the BRDF equation is divided into linear
operations such as dot products that can be evaluated by the
graphics hardware, and nonlinear operations that are
precomputed over their domain and stored in lookup tables
as texture maps. Transformed BRDF parameters are stored
per texel in texture maps and used for hardware shading.
The SBRDF rendering method that we propose follows this
paradigm since it directly stores BRDF parameters per
texel. We will compare below our specialization of the
paradigm to the models explored by Kautz.
2.2. BRDFs With Hardware Lights

(Fournier 1995) and (Heidrich and Seidel 1999) proposed
factoring BRDF equations into simpler functions that could
be precomputed into texture maps and rendered using
compositing or multitexturing arithmetic in a constant
number of rendering passes per light. (Kautz and McCool
1999) perform this factorization numerically using singular
value decomposition. (McCool, Ang et al. 2001) solve
problems of previous factorization approaches, with an
elegant factorization that includes only positive factors.
This method also works directly with arbitrary scattered bi-
directional reflectance samples. By performing the

factorization in log space, the highlights tend to be
smoother, avoiding aliasing (though having broader peaks).

These methods all apply to surfaces with a uniform
BRDF over the surface, whereas our method and that of
(Kautz and Seidel 2000) store BRDF parameters over the
surface, rather than evaluating the BRDF at regular
parametric intervals and storing the results in texture maps.
This is the key characteristic that enables total variation of
the BRDF over the surface.

However, some spatial variation can be achieved in
factorization methods by combining the BRDF with a
standard diffuse texture, or using a weighted blend of
several BRDFs. This is done by rendering passes for each
BRDF for each light and accumulating the weighted
results. In practice, this only works well for a small number
of BRDFs because of the rendering cost of the layers and
the storage space for the weight textures. We compare this
to our method in Section 5.

One advantage of the BRDF factorization methods is
that very flexible BRDFs may be represented, since each
texel is essentially a coefficient of a BRDF representation.
This means that these methods typically do not require a
number of rendering passes proportional to the complexity
of the BRDF, whereas the number of passes for the
Lafortune representation used in SBRDFs depends on the
number of lobes. BRDFs with a single lobe that has a
depressed center, such as velvet, may require several
Lafortune lobes to adequately approximate.
2.3. Environment Map Convolution

The original use of environment maps in (Blinn 1976)
enabled mirror reflections. More recent work by (Cabral,
Olano et al. 1999) and (Heidrich and Seidel 1999) enable
glossy reflection of environment maps by convolving the
environment map a priori with portions of the BRDF
equation. These methods are thus only suitable for a single
BRDF per set of maps. (Voorhies and Foran 1994) use
environment maps to store the precomputed highlights
from directional lights convolved with a Phong BRDF.
(Bastos, Hoff et al. 1999) represent a sampling of the scene
geometry using images with depth, and preconvolve these
with spatially uniform portions of the BRDF for specific
reflecting surfaces. This method allows reflections of local
geometry rather than just light at infinity. (Kautz and
McCool 2000) create a set of prefiltered environment maps
for a given BRDF by fitting lobes that are fixed in
orientation relative to a selected exitant polar angle. Many
such angles are used, creating a 3D environment map. This
3D map is indexed based on the exitant direction and
exitant polar angle. When summing multiple lobes each
lobe uses a separate 3D environment map. This method has
the important advantage of handling increasing lobe
sharpness at grazing angles. (Kautz, Vázquez et al. 2000)
provide faster map convolution, enabling dynamically
changing glossy environment maps, and anisotropic
environment maps constrained to an approximate Banks
model.

© The Eurographics Association 2002.

These techniques do not address different BRDFs at
each point on a surface, except in simple ways like using a
textured diffuse term, or potentially modulating the
sampled environment map with a specular albedo.

3. Representation

A spatial bi-directional reflectance distribution function can
be acquired from measured data or painted by an artist. See
the conclusion for a discussion of the considerations
involved in the SBRDF paint program that we have under
development.

In other work (McAllister 2002), we describe an
SBRDF measurement and fitting system. We place a planar
sample of a material on a pan-tilt-roll unit, and using this
and a moving light, sample the incident and exitant
hemispheres at a given angular density using a stationary
camera. This provides a dense sampling of the entire six-
dimensional SBRDF – between 300 and 8000 poses. We
rectify these high dynamic range photographs and compute
a reflectance image from each – typically on the order of
512 × 512 resolution. Our sampled SBRDFs measure up to
8 GB in size.

The reflectance values from the corresponding pixel of
all rectified images are used as input to a nonlinear solver
to compute the RMS best fit Lafortune BRDF parameters at
that pixel, for a specified number of lobes. We use either
Levenberg-Marquardt or a more efficient custom data
fitting method. The resulting SBRDF files are less than 10
MB in size.
3.1. The Lafortune Representation

One can approximate the BRDF by projection into general
basis functions (Westin, Arvo et al. 1992), (Lalonde and
Fournier 1997), (Lafortune, Foo et al. 1997). Many models
such as (Phong 1975) and (Ward 1992) only yield
highlights in the reflection direction and thus cannot be
used as a sum of bases for arbitrary BRDFs. The Lafortune
representation is well suited for the shape that BRDFs
typically have, is compact and is capable of representing
interesting BRDF properties such as the increasing
reflectance of Fresnel reflection, off-specular peaks and
retro-reflection. The Lafortune representation consists of a
sum of terms:

 () (), ,
r i r d s j j i r

j

f sω ω ρ ρ ω ω→ + ⋅= ∑ (1)

where ρd is the diffuse reflectance. The terms in the
summation are specular lobes. Each lobe j has an albedo,
ρs,,j, and a lobe shape, sj. The lobe shape is a generalized
Phong lobe:

 ()
, ,

, ,

, ,

,
r x x i x

i r r y y i y

r z z i z

T n
C

s C

C

ω ω
ω ω ω ω

ω ω

 
     
     = ⋅ ⋅     
          
 

 (2)

The Lafortune representation is evaluated in local
surface coordinates. The X and Y axes are the principal
directions of anisotropy and Z is the normal. The matrix C
is defined as Cx=-1, Cy=-1, Cz=1 to cause ωi to reflect
about the normal, yielding a standard Phong lobe. But each
lobe is significantly more general than a Phong lobe: the C
coefficients may also take on other values to shear the
specular lobe in ways that represent real surface scattering
behavior but still enforce reciprocity and conservation of
energy. The lobe's peak will be in the direction C ·ω i. For
isotropic BRDFs, Cx = Cy. For off-specular reflection, | Cz |
< | Cx |, pulling the lobe toward the tangent plane. For
retroreflection, Cx > 0 and Cy > 0. When Cx and Cy have
opposite sign, a lobe will forward scatter when parallel to
the principal direction of anisotropy, but back scatter when
perpendicular to it, as arises with parallel cylinder
microgeometries (Westin, Arvo et al. 1992). The Lafortune
representation’s great flexibility to aim and scale each
scattering lobe is key in using few lobes to approximate
BRDFs. This property also enables our glossy environment
mapping technique.

We represent the ρ albedo values as RGB channels but
share the Cx, Cy, Cz, and n values between channels. For
anisotropic materials we may also store the direction of
anisotropy at each pixel, shared for all lobes.

4. Hardware Rendering

Surfaces with SBRDFs may be rendered using current
graphics hardware such as an Nvidia Geforce 4 or an ATI
Radeon 8500. This section provides the details of our
formulation, texture representation, and rendering
implementation, which we have implemented within a
typical interactive rendering engine.

We first store the SBDRF parameters in texture maps.
We store ρd in a single map, with the alpha channel being
used for transparency. For each lobe j, two additional
texture maps are defined. A three-channel map contains ρs
and a four-channel map contains the lobe shape Cx, Cy, Cz,

and n.
The value of a BRDF ranges from 0 to ∞, so it is

possible for ρs to be greater than 1. Since seven parameters
are used per lobe but the lobe only contains six degrees of
freedom, ρs at each pixel may be scaled by an arbitrary
factor e, while C is scaled by n e to preserve precision
where necessary, since on current hardware all values will

Figure 1: Texture maps used in Figure 5(d): diffuse albedo
(ρd), lobe albedo (ρs), lobe shape (C), and lobe exponent
(n). Lobe shape maps -1..1 to 0..1. The lobe exponent is
stored in the alpha channel of the lobe shape texture.

 © The Eurographics Association 2002.

be represented in 8-bit fixed point. Also, C may be mapped
using the hardware’s -2..2 mapping to preserve C values
greater than 1.
4.1. Shader Formulation

The surface reflectance equation is:

 () () ()()
i

r i rr r i i i if LL N dω ωω ω ω ω
Ω

→= ⋅∫
v

 (3)

where ωi is the incident direction, ωr is the exitant
direction, Ωi is the incident hemisphere domain, N

v
 is the

surface normal, fr is the BRDF, and L(ω) is the radiance in
the direction ω.

To implement Equation (3) in graphics hardware the
equation must be expressed entirely using discrete
arithmetic and split into portions corresponding to
hardware operations. Let us first substitute the Lafortune
BRDF representation into Equation (3) and replace the
integral over the incident hemisphere by a discrete sum
over the hardware lights:

() () ()(),
1

,d i

k

r r s j j i r i i
l j

LL s Nρ ωω ρ ω ω ω
=

+
 

= ⋅ ⋅ 
 

∑ ∑
v

 (4)

We then move ρd within the sum over the BRDF lobes
by using a delta function to cause ρd to only be added once
per light:

() () ()() ()(),
1

1 ,
k

r r d s j j i r i i i
l j

L j s L Nδω ρ ρ ω ω ω ω
=

= − + ⋅∑∑
v (5)

On current graphics hardware we evaluate Equation (5)
in two rendering passes per lobe per light. The pair of
passes corresponds to the term within the double sum.
These exitant radiance terms are summed in the frame
buffer to yield the total exitant radiance.

The exponentiation within s(ωi,ωr) may not be
performed directly in current graphics hardware, so,
following (Kautz and Seidel 2000), we create a 256 × 256
lookup table storing f(x,n)= xn, and store this in a texture.
However, we are unable to sample this map using sub-texel
precision, as will be explained below. Because of this it is
important to avoid sharp discontinuities in this map. In
particular, for large n, the highlight falloff is very steep as x
diminishes from 1. We thus remap x as: x’=x2. Also, visual
difference between highlight size is much greater for small
specular exponents than for large, with specular exponents
ranging from 0 to ∞. The lobe sharpness portion of the
Lafortune representation could be replaced with an
arbitrary sharpness function of the generalized dot product,
such as a roughness parameter that varied from 0 to 1.
However, our measured data uses the standard specular
exponent formulation, so we remap n as: n’=255 (n/255)2
to give more precision for smaller exponents.
4.2. First Pass

The first of each pair of passes is rendered into a p-buffer –
a portion of video card memory that can store an off-screen
image. P-buffers may be rendered to like a screen window

and read from as texture maps. This first pass computes the
lobe shape, s(ωi,ωr), except for the exponentiation. The
application sends vertex positions, normals, tangents, and
texture coordinates for all objects with SBRDF surfaces. A
vertex program transforms the camera and light vectors (for
either point or directional lights) by the T

v
, B
v

, N
v

 frame
into local surface coordinates. When normalized, this yields
ωr and ωi. These are stored as texture coordinates and
rasterized along with the standard surface texture
coordinates. These vectors must be renormalized at each
pixel. This is performed in the texture shader using a
normalization cube map (Kilgard 1999).

For each rasterized fragment, the texture shader also
reads the lobe shape parameters Cx, Cy, Cz and n’. The first
register combiner stage component-wise multiplies ωi by
<Cx, Cy, Cz>. The second combiner stage computes the dot
product of this product with ωr, yielding x, the result of the
generalized dot product portion of s(ωi,ωr). This value is
squared in the final combiner to yield x’, then converted to
eight-bit fixed point and replicated across the red, green,
and blue components of the output; n’ is bound to the alpha
output, and the resulting fragment is written to the p-buffer.
4.3. Second Pass

The second of the two passes performed per lobe per light
computes the rest of one term of Equation (5). The vertex
program of pass 2 transforms the vertex to screen space,
passing the result as texture coordinates. Interpolation of
these texture coordinates must not use perspective
correction so that the interpolated coordinates will precisely
index the p-buffer pixel corresponding to the fragment now
being rasterized. To disable perspective correct texture
interpolation we multiply the texture coordinates by the
vertex’s w coordinate (Akeley 1992). The vertex program
also passes the standard surface texture coordinates, then

Figure 2: Hardware rendered result using our method. The
couch, tan chair, blue chairs, table cloth, leaves, brass
table, and gift wrap have measured SBRDFs. The cherry
wood and floor wood are painted SBRDFs. Surfaces have 1
or 2 lobes per texel. Three hardware lights are used.
Average frame rate for this scene is 18 fps.

© The Eurographics Association 2002.

computes the irradiance due to light l. The light direction is
computed as in pass 1. The dot product with the vertex
normal is computed in world space. Negative values of the
dot product represent a light behind the polygon and are
thus clamped to 0. This value is multiplied by the radiance
of the light, optionally including the inverse squared falloff,
and the result is stored as a color.

The p-buffer created in pass 1 is indexed by the screen
coordinates to fetch the value written to this pixel in pass 1.
This is x’, n’, which are used to perform a dependent
texture read sj(ωi,ωr) = map(x’,n’). The result is stored in
all three channels of the output color sent to the register
combiners. The lobe albedo and diffuse albedo at the given
point are also sampled and passed to the register combiners.

The first register combiner stage component-wise
multiplies ρs,j by sj(ωi,ωr) and to input A of the second
stage. The interpolated irradiance is mapped to inputs B
and D. For the first lobe (j=1) the combiner maps ρd to C
and otherwise maps 0 to C. The output AB+CD is the
exitant radiance for this term of Equation (5), and is sent to
the frame buffer, with the alpha component of ρd being
sent as the transparency of the fragment.

5. Hardware Rendering Results

Figure 5 and Figure 2 show rendered results for a variety of
measured and painted surfaces. These were hardware
rendered using an Nvidia Geforce 4 card.

The model of Figure 2 consists of 221,925 vertices and
261,549 triangles. Some surfaces have simple texture maps,
but most surfaces use SBRDFs accounting for 188,833
vertices and 213,828 triangles. Twelve different SBRDFs
are used, consuming 26 MB of texture memory. On a 2500
frame walkthrough path that renders an average of
approximately 25% of the geometry per frame, rendering
performance is shown in Table 1.

Especially for a single lobe, the rendering performance
is very acceptable. One lobe is usually sufficient for
interactive applications, with multiple lobes being more
suitable for CAD applications where users typically study a
surface more closely. Also, a single lobe is more acceptable
within the SBRDF regime than for a spatially uniform

surface since the high surface frequency can mask detailed
highlight shape, as with our fabric samples. The white
fabric of the lobby model uses two lobes. All other surfaces
use one lobe.

The major source of visual artifacts stems from using
the lookup table. The rounding to eight bits as x’ and n’ are
stored in the p-buffer causes adjacent pixels with slightly
different x’ values to index the same table entry, yielding
artifacts at highlight tails.

Another artifact results from clamping x’ to 1 before
writing it to the p-buffer in the first pass. The Lafortune
representation depends on dot product values x > 1 to
represent the increasing reflectance at grazing angles of
Fresnel reflection. If n ≥ 1, for x > 1 we have xn > x, but
for x < 1 we have xn < x. With x being clamped to 1 it is
impossible to yield a bi-directional reflectance value xn
greater than 1. Using the exponentiation lookup table the
lookup result will instead exactly equal 1. This value is
then multiplied by the irradiance, which approaches zero as
the light direction approaches the grazing angle, yielding a
final exitant radiance usually less than 1. This artifact will
be alleviated by increased frame buffer dynamic range.
5.1. Comparison to BRDF Factorization

With BRDF factorization methods, for a given surface to
have different BRDFs at different points, each unique
BRDF must be stored in a set of texture maps, and a
number of rendering passes must be performed for each
BRDF for each light, as mentioned in (McCool, Ang et al.
2001). These results are modulated by per-texel weights for
each BRDF in order to composite the per-BRDF renderings
into a final result. For a very small number of BRDFs, this
representation is compact, since it is essentially a palette
with per-texel weights, and the rendering method works
quite well.

However, an advantage of storing BRDF parameters per
texel is that the number of required rendering passes does
not depend on the number of different BRDFs. Table 2
compares the number of rendering passes required on
Nvidia Geforce 4 hardware for a varying number of lights,
and for varying surface complexity. For SBRDFs, each
texel has a unique BRDF, but the number of lobes is fixed
for the surface (though not for a whole scene). For
McCool’s method, the total number of BRDFs in the
surface is fixed, and each BRDF is evaluated at each texel.

Figure 5(d) shows a single SBRDF made by combining
many measured and synthetic SBRDFs. This SBRDF
consists of over one million unique BRDFs since it is a
1024 × 1024 image. However, many texels are obviously
very similar to others. We have not exploited this
similarity, but a method such as (Lensch, Kautz et al. 2001)
would do so. By manually analyzing this SBRDF, we
estimate that 48 significantly different basis BRDFs appear
in the SBRDF. Assuming that factorization methods such
as McCool’s could be extended to handle the per-texel
deviation from the bases and still render in N+1 passes per
BRDF for N lights, the final column of Table 2 shows the

 SBRDF

lights # lobes

 1 2 3

No
light,
no tex

Light,
no tex

No
light,
tex

Light,
tex

1 50.7 29.5 20.8 156.8 95.7

2 29.4 16.2 11.1 140.6 93.1

3 20.8 11.1 7.57

176.5

122.1

109.7

77.0

Table 1: Frame rate for SBRDF shader, for the Figure 2
scene. 800×600, 2× AA. Although the model contains
SBRDFs with 1 or 2 lobes, for timing tests, all surfaces
were forced to the stated number of lobes. SBRDF results
are compared against simple one-pass approaches.

 © The Eurographics Association 2002.

estimated number of passes to render Figure 5(d) using
McCool’s method. The values are comparable for other
BRDF factorization methods. This shows that rendering
surfaces with BRDF parameters per texel is more efficient
than rendering basis BRDFs for surfaces with a great deal
of spatial BRDF variation. On more programmable
hardware, these numbers could be reduced to a constant
cost by storing BRDF indices rather than weights per texel,
and evaluating only the indexed BRDFs at each pixel.
5.2. Comparison to Kautz-Seidel

The SBRDF rendering method that we propose fits the
paradigm of (Kautz and Seidel 2000) in that linear
operations are used to compute texture indices. Nonlinear
operations are stored in texture maps, and the results are
used in additional linear operations, completing the BRDF
evaluation. Kautz & Seidel demonstrated their method with
a novel anisotropic Blinn-Phong model. The potential
flexibility of the paradigm was shown using other models
demonstrated with software simulations. Our method
shares some precision and clamping artifacts that Kautz &
Seidel encountered. We have successfully applied this
paradigm despite dependent texture reads not being as
general as predicted by Kautz and Seidel.

But the major difference we propose that applies to
current graphics hardware is to use the Lafortune
representation, which has several properties not possessed
by the models explored by Kautz & Seidel. In particular,
the lobe directions of the Lafortune representation can aim
in arbitrary directions relative to the incident direction,
which makes a sum of lobes much more effective than with
Phong (Phong 1975) or Ward (Ward 1992) bases.

The Lafortune representation is also particularly well
suited to this paradigm. Our method requires two passes per
lobe per light on a GeForce 4, but could most likely be
done in one pass on hardware that allows register combiner
results to be used as dependent texture coordinates within
the same pass. On a GeForce 4, the anisotropic Ward model
would require at least ten texture reads and four rendering
passes per lobe per light, but likely only three passes on a
Radeon 8500. The Banks model could be evaluated in two
passes per light.

6. Global Illumination of SBRDFs

Beyond illuminating SBRDFs with discrete point or
directional lights, this section discusses illuminating
SBRDFs with incident light from all directions using
environment maps. Environment maps represent only the
incident direction of the radiance, as if all illumination
comes from infinity. Each point in the scene receives the
same illumination, invariant of its location.

 Previous methods for glossy reflection of environment
maps in graphics hardware share the constraint that the
environment map must be preconvolved with (a portion of)
each different BRDF. Thus, a different set of environment
maps is required for each different BRDF. Although
burdensome, this is at least possible for scenes consisting of
a fairly small number of objects, each with one or a few
discrete BRDFs. However, in the SBRDF regime, every
point on every surface is treated as having a unique BRDF,
so the existing methods do not directly apply. We present a
method for rendering from preconvolved environment
maps that allows each point on each surface to have a
completely different BRDF.
6.1. Environment Map Convolution Formulation

The formulation begins with a modified form of Equation
(3), applied to the Lafortune representation, with separate
diffuse and specular terms:

() ()()

() ()(), ,
i

i

d i i

s j j i r i i i i
j

r r i iL

s L N d

L N dρ ω ω

ρ ω ω ω ω ω

ω ω

Ω

Ω

⋅

= ⋅ +

∑ ∫

∫
v

v

 (6)

The incident radiance Li(ωi) is stored in the environment
map, indexed by the incident direction. The diffuse term
can be easily encoded in an environment map indexed
simply by N

v
:

 () () ()
i

i ii iLD N N dω ωω
Ω

= ⋅∫
v v

 (7)

()D N
v

is independent of the BRDF, so it is precomputed
once for all objects that are to reflect the environment map
Li(ωi). This was done by (Miller and Hoffman 1984) and
(Green 1986). The specular terms also take advantage of
precomputed maps. Just as N

v
 is used to index the

preconvolved diffuse map, a function of the view direction
will index a preconvolved specular environment map:

 ()
,

,

,

x r x

j r y r y

z r z

C

p C

C

ω
ω ω

ω

  
  = ⋅   
     

 (8)

pj(ωr) is the peak vector of the lobe-shaped sampling
kernel – the incident direction of maximum influence on
the exitant radiance toward ωr due to lobe j. Equation (6)
becomes

 SBRDF McCool

lights # lobes # BRDFs

 1 2 3 1 2 3 48

1 2 4 6 2 4 6 96

2 4 8 12 3 6 9 144
3 6 12 18 4 8 12 192

4 8 16 24 5 10 15 240

Table 2: Number of passes required for our method vs. the
factorization method of McCool for varying number of
lights and varying surface complexity on an Nvidia
GeForce 4.

© The Eurographics Association 2002.

() ()

()() ()(),

i

d

s j r i i i i i

j

r r

jp L N d

L D N

n

ρ

ρ ω ω ω ω ω

ω

Ω

⋅

= +

⋅∑ ∫
v

v

 (9)

We define the specular environment map as:

 () (),
i

p
p i i i i

p

n

S n L d
ω

ω ω ω ω
ωΩ

 
 = ⋅
 
 
∫ (10)

As discussed below, this map is parameterized both on
the incident kernel peak direction ωp and on the exponent
n. The exitant radiance formulation used in hardware
rendering becomes:

() ()
()() () ()(), ,

d

s j r j r
j

r r

j
rS p n N p

L D N

n
p

ρ

ρ ω ω

ω

ω ⋅

≈ +

∑
v

v

 (11)

The () jn

rp ω factor arises because S is computed with
a normalized ωp, so the incident radiance must still be
scaled by the magnitude of the lobe. This equation is only
an approximation since the irradiance falloff iN ω⋅

v
 must

be computed inside the integral over ωi, but this could not
then be stored in an environment map since it would be
parameterized by both p(ωr) and N

v
. We instead weight all

incident directions equally within the integral but weight
S(ωp,n) by ()rN p ω⋅

v
. This problem and resolution were

explained by (Kautz and McCool 2000). This is a high
quality approximation, and the quality improves for
increasing values of n. A problem our method shares with
many preconvolution methods is that by removing iN ω⋅

v

from the integral, some light from below the surface is
included in L(ωr). This has not presented a practical
problem.

Two key facts allow environment maps to illuminate
spatial BRDFs. First, the Lafortune representation uses a
specular exponent, which creates radially symmetric lobes.
In general, only radially symmetric lobes may be used to
preconvolve an environment map because otherwise the
map would only be correct for a single normal direction.
Second, the Lafortune representation directly computes a
general lobe peak vector. Thus, all BRDF properties that
the Lafortune representation expresses using the peak
vector – anisotropic peak direction, anisotropic lobe shape
(by summing radially symmetric lobes), the increasing
reflectance of Fresnel reflection, and forward reflective,
retroreflective, and off-specular peaks – are independent of
the environment map.
6.2. Implementation for Graphics Hardware

Several representation alternatives arise for the S(ωp,n)
map. The possibilities are constrained by the graphics
hardware’s small choice of texture representations. One
possibility is to represent S in a single cube map, with the

most specular value of n being stored in the finest MIP
level, and successively diffuse n being stored in coarser
levels. The decreasing resolution of MIP levels corresponds
nicely to the decreasing high frequency content of
environment maps convolved with wider specular lobes.
This property allows the most compact representation of S.
Another approach is to store a small set of cube maps for
discrete values of n, and render with each of these,
weighting each by basis functions evaluated at the pixel’s
n, yielding a result interpolated to the pixel’s n from maps
for nearby values of n. A third possibility is to use a 3D
texture, with the s and t map dimensions mapping to a
parabolic map (Heidrich and Seidel 1999) and the r
dimension mapping to n. This is similar to the
representation by (Kautz and McCool 2000), except their r
dimension mapped to exitant polar angle.

We believe glossy environment reflection of SBRDFs is
impractical for graphics hardware with register combiner
fragment shading. Today’s hardware does not allow
choosing MIP levels based on a value sampled from a
texture map, so there is no way to choose a gloss level
based on the pixel’s n. This prevents use of the single MIP-
map representation. The 3D texture representation could be
used, except it would be difficult to compute the indices
into this map for each fragment being shaded. If the Cx, Cy,
and Cz values were constant over the polygon, the s and t
coordinates could easily be computed in a vertex program
with a per-fragment n value possibly mapped to r. This
would yield spatially varying gloss level, but would not
enable spatially varying lobe direction effects. The
representation with several cube maps could be rendered
with one pass per lobe per map level by using the bump
map vector perturbation circuit to compute p(ωr) at each
fragment. However, the computation of fragment weights
based on the fragment n and the current map’s n would be
difficult and may require different weight maps for each

Figure 3: Software rendering simulating our prefiltered
environment map technique. Specular exponents range
from 1 to 5 for the couch, 5 to 15 for the grain of the wood,
and 75 to 150 for the wood foreground. The wood is
increasingly reflective at grazing angles.

 © The Eurographics Association 2002.

environment map n. Alternatively, n could be held constant
here, yielding a modified form of bump mapped
environment mapping.

For future hardware, we believe all three representations
will be practical as fragment (pixel) shading becoming
more general. Using a software renderer, we have
implemented both cube map approaches. The shader
directly follows Equation (11), with the note that the view
vector is rasterized in local surface coordinates,
transformed by C to yield p(ωr), and then transformed by
the local frame to world coordinates for sampling the
environment map. This requires rasterizing and
renormalizing N

v
 and T

v
. As well all linear interpolation

and renormalization of vectors, this can cause artifacts in
regions of high curvature.

For the set of discrete cube maps, we used linear
interpolation between values of n for specular exponents 1,
4, 16, 64, and 256. The blending artifacts were minimal,
but the large number of texture accesses makes this method
less suitable for real-time rendering.

The MIP-mapped cube map representation works well.
This method is the most space efficient, requiring a single
map, the most bandwidth efficient, requiring a single
trilinear sample, and finally, it is the most computationally
efficient since the texture coordinate computation is
performed in a dedicated cube mapping circuit, rather than
in staged fragment shader computations. Cube map MIP
levels generated via environment map convolution with
different specular exponents are not equivalent to general
MIP level computation. However, it is very visually similar
and has not presented a problem.

We have not yet implemented the 3D texture
representation with parabolic maps. Although the parabolic
mapping would need to be computed in the fragment
shader, rather than a dedicated circuit, we believe the
implementation should be straightforward and provide
good results.

Figure 3 shows a rendered result that employs the high
dynamic range environment map of Figure 4. Note the

synthetic texture of wood. The grain, which has a specular
exponent of about 10, yields much lower gloss highlights
than the wood foreground, with a specular exponent of
about 150. The measured white upholstery fabric is
represented with two lobes. At most texels, these have
specular exponents of about 1 and 5 for the silky thread and
about 1 and 2 for the cotton thread. For most silk texels the
high exponent lobe is anisotropic – forward scattering when
parallel to the threads, and back scattering when
perpendicular to them.

Figure 6 shows a rendered result with a brushed metal
and fabric SBRDF, illuminated by the environment map of
Figure 4. For the metal texels of the SBRDF, only the
direction of anisotropy varies. The metal BRDF uses three
anisotropic lobes with specular exponents of 18, 56, and
184.

7. Conclusion and Discussion

Rendering surfaces with completely different BRDFs at
each texel is practical on today’s graphics hardware using
the representation and method described in this paper. The
method builds upon existing work by using a flexible,
compact Lafortune BRDF representation that yields quite
convincing renderings of many measured or synthetic
surfaces at satisfactory frame rates. For near future
hardware, this paper offers an additional rendering method
that again takes advantage of the flexibility of the BRDF
representation to yield spatially varying environment
mapped illumination.

To conclude, we would like to discuss hardware-related
issues that arose during this work, and discuss some future
directions. First, we observe that, although lookup tables
are the key enabler of many advanced shading techniques
today, such as BRDF factorizations, normalization maps,
the nonlinear function maps of (Kautz and Seidel 2000),
and our exponent table, this is probably not the most viable
approach in the long term. This is because memory
bandwidth has been growing much more slowly than on-
chip computation power, so it makes sense to reserve
memory bandwidth for content that cannot be derived by
computation. This calls for efficient, general per-fragment
shading.

Texture sampling within graphics hardware assumes
that texel values are linear in the exitant radiance of the
pixel, so linear interpolation of texels is acceptable.
However, when storing input parameters to nonlinear
functions in texture maps, linear interpolation is
inappropriate. We haven’t noticed artifacts due to
interpolating C values. We believe the main artifact would
be a depressed highlight similar to failing to renormalize an
interpolated normal, but that would only occur when two
adjacent texels had very different C values.

One approach to this problem is to allow the fragment
shader the flexibility of receiving all sampled texels for this
texture lookup unfiltered, together with their filter weights,
and processing them as desired in the fragment shader. For

Figure 4: Left: One face of high dynamic range cube map
used in figure 3. Right: Prefiltered maps for specular
exponents (top to bottom, left to right) 256, 64, 16, 4, 1, 0
(diffuse). All prefiltered maps are 128 × 128 pixels.

© The Eurographics Association 2002.

minification filtering, MIP levels may be created with
parameters that will yield shader results that approximate
shading followed by filtering.

Regarding future work, the C matrix consists of simply
the diagonal elements Cx, Cy, Cz and can perturb a vector
arbitrarily within the local coordinate frame. However, it is
not as general as bump mapping. For rendering SBRDFs
with bump maps one could use two three-channel maps to
represent the entire (symmetric) matrix C, including the
normal perturbation for bump mapping, rotation to the
direction of anisotropy, and the shear by Cx, Cy, Cz. At each
fragment, ωr is simply transformed by this 3×3 matrix.

We believe it may be possible to render two lights per
pair of passes in our current rendering regime. The first
pass would compute x’ for each light, and store x’ and n’
for each in the frame buffer. The second pass would
employ dependent texture reads for each light.

For creating and editing SBRDFs, we have in progress a
paint program that natively supports SBRDFs. Many
common painting operations treat pixel values simply as
data to be copied. These are simple to apply to BRDF
pixels. Other paint operations require interpolation of pixel
values. For nonlinear BRDF representations such as
Lafortune, the most accurate interpolation method is to
sample the BRDFs over their domain, interpolate between
the samples, and fit a new BRDF to the interpolated sample
vector. This always yields a physically plausible BRDF
(McAllister 2002).

Acknowledgements

We appreciate the talents of Ben Cloward of Vicious Cycle,
Inc. for creating the Carolina Inn lobby model. We
appreciate Alexander Stevenson who helped port the
rendering code to use vertex programs. We appreciate
helpful discussions with Steve Molnar, Chris Wynn, and
others at Nvidia.

References

Akeley, K. (1992). Reality Engine Graphics. Proc. of
SIGGRAPH '92, Chicago, IL.

Bastos, R., K. Hoff, et al. (1999). Increased Photorealism
for Interactive Walkthroughs. Proc. of Symposium on
Interactive 3D Graphics.

Blinn, J. F. (1976). "Texture and Reflection in Computer
Generated Images." Communications of the ACM
19(10): 542-546.

Cabral, B., M. Olano, et al. (1999). Reflection Space Image
Based Rendering. Proc. of SIGGRAPH '99, Los
Angeles, CA.

Cook, R. L. (1984). Shade Trees. Proc. of SIGGRAPH '84.
Dana, K. J., B. v. Ginneken, et al. (1999). "Reflectance and

texture of real-world surfaces." ACM Transactions on
Graphics 18(1): 1-34.

Debevec, P., T. Hawkins, et al. (2000). Acquiring the
Reflectance Field of a Human Face. Proc. of
SIGGRAPH ’00.

Debevec, P. E., C. J. Taylor, et al. (1996). Modeling and
Rendering Architecture from Photographs. Proc. of
SIGGRAPH ’96, New Orleans, LA.

Fournier, A. (1995). Separating Reflection Functions for
Linear Radiosity. Rendering Techniques '95 (Proc. of
Eurographics Workshop on Rendering), Springer.

Green, N. (1986). "Environment Mapping and Other
Applications of World Projections." Computer
Graphics and Applications 6(11): 21-29.

Hanrahan, P. and P. Haeberli (1990). Direct WYSIWYG
Painting and Texturing on 3D Shapes. Proc. of
SIGGRAPH '90, Dallas, TX.

Heidrich, W. and H.-P. Seidel (1999). Realistic, Hardware-
accelerated Shading and Lighting. Proc. of SIGGRAPH
'99, Los Angeles, CA.

Kautz, J. and M. D. McCool (1999). Interactive Rendering
with Arbitrary BRDFs using Separable
Approximations. Rendering Techniques '99 (Proc. of
Eurographics Workshop on Rendering), Granada,
Spain.

Kautz, J. and M. D. McCool (2000). Approximation of
Glossy Reflection with Prefiltered Environment Maps.
Graphics Interface '00.

Kautz, J. and H.-P. Seidel (2000). Towards Interactive
Bump Mapping with Anisotropic Shift-Variant BRDFs.
Proc. of Eurographics/SIGGRAPH Workshop on
Graphics Hardware.

Kautz, J., P.-P. Vázquez, et al. (2000). A Unified Approach
to Prefiltered Environment Maps. Rendering
Techniques '00 (Proc. of Eurographics Workshop on
Rendering), Springer.

Kilgard, M. J. (1999). NVIDIA OpenGL Cube Map
Texturing.

Lafortune, E. P. F., S.-C. Foo, et al. (1997). Non-Linear
Approximation of Reflectance Functions. Proc. of
SIGGRAPH ’97.

Lalonde, P. and A. Fournier (1997). "A Wavelet
Representation of Reflectance Functions." IEEE
Transactions on Visualization and Computer Graphics
3(4): 329-336.

Lensch, H., J. Kautz, et al. (2001). Image-Based
Reconstruction of Spatially Varying Materials.
Rendering Techniques '01 (Proc. of Eurographics
Workshop on Rendering), London, England.

Liu, X., H.-Y. Shum, et al. (2001). Synthesizing
Bidirectional Texture Functions for Real-World
Surfaces. Proc. of SIGGRAPH '01, Los Angeles, CA.

Malzbender, T., D. Gelb, et al. (2001). Polynomial Texture
Maps. Proc. of SIGGRAPH '01, Los Angeles, CA.

Marschner, S. R., S. H. Westin, et al. (1999). Image-based
BRDF Measurement Including Human Skin. Rendering
Techniques '99 (Proc. of Eurographics Workshop on
Rendering), Granada, Spain.

McAllister, D. K. (2002). A generalized Representation of
Surface Appearance. Department of Computer Science.
Chapel Hill, North Carolina, University of North
Carolina at Chapel Hill: 103.

 © The Eurographics Association 2002.

McCool, M., J. Ang, et al. (2001). Homomorphic
Factorization of BRDFs for High-Performance
Rendering. Proc. of SIGGRAPH '01, Los Angeles, CA.

Miller, G. and R. Hoffman (1984). Illumination and
Reflection Maps: Simulated Objects in Simulated and
Real Environments. SIGGRAPH '84 Course Notes -
Advanced Computer Graphics Animation.

Phong, B. T. (1975). "Illumination for Computer Generated
Pictures." Communications of the ACM 18: 311-317.

Sato, Y., M. D. Wheeler, et al. (1997). Object Shape and
Reflectance Modeling From Observation. Proc. of
SIGGRAPH ’97, Los Angeles, FL.

Voorhies, D. and J. Foran (1994). Reflection Vector
Shading Hardware. Proc. of SIGGRAPH '94.

Ward, G. (1992). Measuring and Modeling Anisotropic
Reflection. Proc. of SIGGRAPH ’92, Chicago, IL.

Westin, S. H., J. R. Arvo, et al. (1992). Predicting
Reflectance Functions from Complex Surfaces. Proc. of
SIGGRAPH ’92, Chicago, IL.

Yu, Y., P. Debevec, et al. (1999). Inverse Global
Illumination: Recovering Reflectance Models of Real
Scenes from Photographs. Proc. of SIGGRAPH '99,
Los Angeles, CA.

© The Eurographics Association 2002.

Figure 5: Hardware rendered results using the method of this
paper. a) measured gilded wall paper, b) hand painted cherry
wood, c) measured gift wrap, d) hand-composite map with 10
measured and synthetic materials. e,f) Measured, anisotropic
upholstery fabric with two lobes per texel. The foreground and
background threads change relative brightness under 30 ˚
rotation.

Figure 6: Anisotropic brushed metal teapot with spatially
varying direction of anisotropy, with white fabric lettering.
One SBRDF with three lobes is used for the entire surface.
Illumination comes from the prefiltered high dynamic range
lobby environment map.

