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Abstract
Computers process and store human movement in a different manner from how hu-
mans perceive and observe human movement. We describe an investigation of the
mapping between the linguistic descriptions people ascribe to animated motions and
the parameters utilized to produce the animations. The mapping is validated by com-
paring both the linguistic and parametric descriptions to similarity measures obtained
during experiments in which subjects made judgements about the similarity of pairs
of animated motions. Analysis of the experimental data revealed that similarity judge-
ments are not true distances (they do not form a metric space), but statistical tests
and principal component analyses of the linguistic and parametric descriptions indi-
cate correlations with the similarity judgements that provide the basis for mappings
between the two descriptions. Although there are significant individual differences
in the mappings across subjects, there is some indication that our methodology can
be extended to provide a more robust direct mapping from linguistic descriptions to at
least initial approximations of the corresponding parametric descriptions of the motion
for use in computer animation systems.

Keywords: Computer animation, human figure animation, human movement, judge-
ment of human movement, description of human movement, movement perception.

1. Introduction and Overview

The leading paradigm used by computer animation systems employs three tightly cou-
pled models. These models, used in movies such asToy Story, Final Fantasy: The
Spirits Within, andMonsters Inc., are (1) a set of time signalsQ(t) that specify the
kinematics of the movement, (2) a mappingA betweenQ(t) and the position, orien-
tation, and posture of the human figure, and (3) a “costume” or “visual appearance”
that specifies the outer appearance of the human body.

In sharp contrast to the exactness of computers, it is not well understood how we
visually perceive human movements. It is believed that we utilize the motor control



centers of our brains to recognize and interpret the movements of others. However,
we do not know how observed movements are encoded or how they are translated
into linguistic descriptions. Neither do we understand the process we use to translate
“mental images” of movements into physical movements.

In order to build higher-level computer animation tools for selecting, specifying, or
modifying movements represented by computer models we need to know how the pa-
rameters of a movement,P(Q), affect our perceptions and judgements. We present
results from two participant-based experiments that gathered information on the re-
lationships between three motion spaces: the first motion space is the “mechanical
motion space,” a vector space of motion signals,Q(t); the second motion space is the
“psychological motion space” in which humans encode and organize motions accord-
ing to their features; and the third motion space is the “linguistic motion space” that
humans use to describe movements using words.

In this paper we describe our initial findings about what we believe will eventually
be a novel approach for specifying human motion in computer animation systems.
Unlike traditional techniques that provide animators with tools that deal directly with
the mechanical motion space in which motions are represented parametrically, our
approach tries to bridge between the mechanical motion space and the more intuitive
linguistic motion space in which motion is described using adjectives and adverbs.
The bridging is accomplished using a hypothesized intermediate psychological mo-
tion space, based on human perception of motion and human judgements of motion
similarity.

After providing a conceptual framework for relating the three motion spaces, we
provide a brief summary of previous work including earlier attempts to provide an-
imators with linguistically based tools for specifying motion. This is followed by a
description of two experiments that were conducted to determine the nature of the
mappings between the three motion spaces. The results of the experiments, and how
those results provide a basis for future work that will refine our technique to produce
practical tools for animators are then discussed.

The contribution of this work to the field of computer animation is three-fold:

(a) The conceptual framework relating the three motion spaces, as validated by
our experiments, is a sound basis for mapping the more intuitive linguistic de-
scriptions of motion to the commonly used parametric descriptions employed
in many animation systems.

(b) The experimental methodology we have developed can be used to extend our
preliminary findings to a more robust set of mappings covering a wider range of
motions.

(c) The need to account for individual differences when calibrating the mappings
suggests a number of research questions that should be pursued.

The conceptual framework and experiments reported in this paper were part of the
research described in the first author’s dissertation [9]. In this paper we describe the
components of the conceptual framework, two experiments that were conducted to
validate the framework, and the main conclusions that were drawn from the research.
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2. Three Motion Spaces for Describing Human Movement

Many computer animation researchers focus on the technical aspects of computer an-
imation systems such as increasing the realism of the visual models, refining tech-
niques to record the movement of human actors, and building algorithms to assist in
the editing of recorded movements. In other words, research has tended to focus on
the limitations of computer based representations of human movement rather than on
higher-level techniques for specifying and adjusting motions. For example, if an ani-
mator wanted to adjust the style of a movement while not affecting the gross path of
the movement — making a movement more “happy,” “awkward,” “drunk,” “graceful,”
or “fast” — almost none of the prior work in computer animation is applicable.

Our ultimate goal is to provide a direct and automatic mapping between everyday
linguistic descriptions of human motion (“a sad, slouching man walking despondently
down the road”) to the mechanical (kinematic) description required by the underlying
modeling and rendering software. This is beyond our current capability, but the work
described here is a first step because it provides a framework for defining the mapping
between the linguistic and mechanical motion spaces.

In order to build higher-level computer animation tools for selecting, specifying,
or modifying movements represented by computer models we need to know how the
parameters of a movement,P(Q), affect our perceptions and judgements. This re-
quires knowledge of computer animation, human-computer interaction, and visual
psychophysics. Thus, it is useful to introduce three different types of motion spaces to
assist in our discussion of the relationship between the parameters of movement and
the perceptions and judgements formed by a human observer.

The first motion space is the standard “mechanical motion space,” a vector space
of motion signalsQ(t) that describes the kinematics of movement. Computer anima-
tion tools operate in this space. It remains an open problem as how to define a basis for
Q(t) which would allow us to interpolate two motion signals while maintaining con-
straints such as foot contacts. Given this problem, we use the set of input parameters
P(Q) to a kinematic walk generator that are used to define the motion signalQ(t).
For example, ifQ(t) is the motion signals for a walking motion,P(Q) includes joint
angle limits, walking speed, step frequency, stride length, etc.

The second motion space is a hypothesized space in which humans encode and
organize motions. We call this space the “psychological motion space.” Although
we know little about the structure or properties of this space, we can hypothesize that
judging the similarity of two movements requires the computation of a “distance”
between them. Although we consider this space to be pre-categorical, when we (as
humans) categorize a movement as belonging to the class “running,” “walking,” or
“throwing,” we probably use the shortest distance between the movement and exem-
plars of these different classes [19].

The third motion space is also a conceptual space in which humans describe move-
ments using words. This “linguistic motion space” contains attributes in which con-
cepts such as “slower” and “bouncy” are defined. This is also the space used to in-
terpret the labels on the user interfaces of computer animation tools, although there
is little reason to believe that there is a solid basis for choosing the labels that are
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Figure 1: The three motion spaces used to discuss the relationship between the param-
eters of a movement and the perceptions and judgements formed by a human observer.
Computer animation tools usually operate in the mechanical motion space, whereas
humans perceive and code the features of movements in the psychological motion
space and they describe movements with words in the linguistic motion space.

currently in use.
Figure 1 illustrates the relationships between these three motion spaces. One con-

tribution of our work is the investigation of the form of the mappings between these
three space. The mechanical motion space is a vector space, which makes it particu-
larly amenable to computation — one of the main reasons it is used as the basis for
most animation systems. The other two spaces are not vector spaces, but may have
some structure that can be exploited. If they were vector spaces, the problem would be
easy. We would simply choose convenient bases in each space and use those to define
the mappings between them.

The linguistic space is defined by a number of categorical dimensions such as
fast-slow, flexible-stiff, smooth-bouncy, etc. But these almost certainly do not form
a vector space in the mathematical sense of the term. Even more problematic is the
psychological space in which similarity-dissimilarity judgements are made. Ideally
dissimilarity would have the properties of a distance measure, but it is not likely that
human judgements form a metric space, much less a vector space. So we are left with
the problem of determining the extent to which we can map between these three ways
of describing motion in a manner that is useful for computer animation.

Computer animation programs represent human movement using a three-compo-
nent model: time signalsQ(t) specifying the movement of the figure, a mapping (A )
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Figure 2: Sample frames from a computer animation display of a human walking
movement.

betweenQ(t) and the position, orientation and posture of the human figure, and the
visual appearance of the human figure (skin, clothing, and other surface attributes).
This low-level representation is suitable for highly trained animators who are experi-
enced at translating high-level natural language descriptions of motions (e.g., scripts
and storyboards) into manipulations of motion signals, but it is not very intuitive for
non-animators.

Motion signals are transformed using the mappingA and the visual appearance
of a human figure into a visual presentation termed acomputer animation display.
Computer animation displays of human figure animations rapidly create and present
images (“frames”) that show successive poses, positions and orientations of a human
movement. Computer animation displays allow changes in viewpoint and arbitrary
playback rates. Figure 2 shows eight frames from a computer animation display of a
human walking movement.

As noted before, our ultimate goal is to allow animators to directly specify motion
using the linguistic motion space, rather than requiring them to perform the tedious
mapping to the less intuitive parametric description of the mechanical motion space.
This is ambitious. It is likely that this will never be achieved in its entirety, but even
a system that gets “most of it right” would substantially improve the process of com-
puter animation. If skilled animators could get “first cut” motion sequences that were
almost right, they could concentrate their efforts on the final tailoring of the details.
This is a more achievable goal, and one that we believe we have made some progress
on.

In the next section we survey earlier work on developing higher-level techniques
for describing human motion for computer animation, emphasizing recent attempts to
specify motion using linguistic or emotional descriptions.
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Figure 3: An articulation approximating the skeletal structure of the human body.
Open (white) circles indicate hinge joints with only one rotational axis. Shaded (gray)
circles indicate joints with two rotational axes. Dark (black) circles indicate joints
with three rotational axes.

3. Related Work

In a computer program, the mappingA typically involves the specification of the
jointed skeletal structure of a human. Originally suggested by Burtnyk and Wein [3],
this structure is usually represented by an acyclic hierarchical articulation with the root
at the hips, the approximate center of mass and movement. Zeltzer [23] presented a
method for defining the articulation using a compact notation and Chadwicket al. [4]
discussed the attachment of the visual form including deformable muscles, fat, skin,
and clothing.

In computer animation applications, the human body requires from seventeen to
over one hundred joints as illustrated in Figure 3. Some joints can be modeled as
simple hinges with one rotational axis while other joints are modeled as “ball and
socket” connections with three rotational axes.1

The movement of the human figure — that is the change in posture, position, and
orientation of the articulation — is specified by the elements ofQ(t), one function
for each rotational or simple translational joint axis, and six functions specifying the
position and orientation of the articulation as a whole. For classes of motions, such
as cyclical symmetric straight-line walking motions, we can summarize the motion
signals of a specific motion from the class with a set of motion parameters,P(Q). For
walking motions,P(Q) includes parameters such as walking speed, stride frequency,

1Many of the joints are in the hands. Excluded from our definition ofA is the ability to include facial
expressions inQ(t) since these are not necessary for gross human body motions.
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stride length, and joint angle limits of the arms, spine, hips, legs and feet.
For our work we used Bruderlin’sWalker and his “Akira” visual form for the

mechanical motion model [2]. Scaled values ofWalker ’s twenty-nine parameters
were used to defineP(Q). These parameters are: walk velocity, step length, step
frequency, shoulder rotation, degrees of arm swing, angle arms are raised from the
sides, elbow rotation (min, max), torso tilt (forward/backward), torso sway (side to
side), torso rotation (left to right), lateral displacement, rotation of the pelvis about the
vertical axis and list from side to side, bounciness on foot strike as the supporting knee
bends, amount of over stride, hip flexion as leg swings forward, knee angle during
swing, midstride and impact, stride width (distance left to right of foot placements),
angle of foot with respect to straight forward (“pigeon or duck toes”), and whether the
heel or toe strikes the ground first, as shown in Figure 4.

Bruderlin’s Walker is one attempt to allow the specification of human move-
ments at a higher level than a full specification of the motion signals,i.e., a particular
parameter setP(Q) for Q(t). Manipulations ofWalker ’s slider-based user in-
terface produces walks with different styles that are always dynamically stable and
physically plausible. Subtle constraints between the parameters are automatically ad-
justed byWalker , e.g., increasing the walking speed increases the stride frequency
and stride length, and leans the figure forward. Nevertheless, Bruderlin’s description
is still in a mechanical motion space.

We are interested in creating techniques that work at the level of movement quality
and style. Other researchers have presented techniques for editing the quality of an
existing motion or blending two motions with different styles to create intermediate
styles. For example, Loomiset al. recorded the movements of native American Sign
Language signers and then created synthetic signs and manipulated their movement
quality independently of spatial path [13].

Much later, Unuma, Anjyo, and Takeuchi attempted to use Fourier analysis to
represent cyclical motions such as running and walking [22, 21]. By interpolating
and extrapolating between the Fourier coefficients they were able to create motions
containing “emotive” content such as happy or sad walks, or normal and brisk walks.
Their goal was to be able to extract the “briskness” factor from a walk and add it
to a run to create a “brisk run.” Along a similar line, Amayaet al. applied signal
processing techniques to create an “emotional transform” capable of determining the
difference between a neutral and emotional movement as contained in the timing and
amplitude differences of the motions [1].

Rose and Cohen presented a system that parameterizes cyclical motion captured
“verbs,” such as walk, with “adverbs” that alter the motion, enabling them to create a
continuous walking motion up and down hills, and turning left and right [20]. They
could also add emotive variations such as happiness and sadness. The target appli-
cation for their work was the real-time control of a digital puppet or video games
character, with smooth transitions between motion verbs and adverbs.

Perlin presented a method to generate motion with “personality” by using ex-
pressions containing pseudo-random noise functions to generated the joint angle mo-
tions [16]. Also aimed at real-time motion generation, Perlin’s system allows the
operator to control a character while specifying particular moods and attitudes to be
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Figure 4: Screen shot of Bruderlin’sWalker showing the output window and con-
trols. The program uses twenty-nine inputs to vary the style of the walk by com-
puting the motion of thirty-six joints totaling eighty-three degrees of freedom. The
inputs are: walk velocity, step length, step frequency, shoulder rotation, degrees of
arm swing, angle arms are raised from the sides, elbow rotation (min, max), torso
tilt (forward/backward), torso sway (side to side), torso rotation (left to right), lateral
displacement, rotation of the pelvis about the vertical axis and list from side to side,
bounciness on foot strike as the supporting knee bends, amount of over stride, hip
flexion as leg swings forward, knee angle during swing, midstride and impact, stride
width (distance left to right of foot placements), angle of foot with respect to straight
forward (“pigeon or duck toes”), and whether the heel or toe strikes the ground first.
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conveyed. Kinematic constraints prevent “impossible” transitions.
All of these approaches use kinematics, as represented by the motion signals,

rather than dynamics to model the motions. In contrast, Phillips and Badler presented
a method of maintaining dynamic constraints such as balance and stability, which
they consider “characteristics of human-like movement,” while the animator specified
goal-oriented motions [17]. Popovic and Witkin also employed dynamics rather than
kinematics, but generally focused on manipulating the spatial path of a motion while
maintaining it’s existing movement qualities [18].

The weakness of these and similar techniques is that they are difficult to evaluate
and there have been few attempts to validate the effects of the proposed manipulation
methods. We are interested in descriptions of motion that are directly related to hu-
man perception of motion, and not tied to the underlying mathematics employed by
the computational algorithms. One possible evaluation technique is to employ Certi-
fied Movement Analysts (CMAs) to estimate factors such as the Effort components of
the resulting movements. CMAs are trained and certified by the Dance Notation Bu-
reau [7], and employ a formal descriptive methodology developed by Rudolf von La-
ban [11, 12]. Laban’s four effort elements2 attempt to capture the interactions between
the spatial path and temporal elements of a movement that often occur in coordinated
movements of the whole body.

One of the few computer animation systems evaluated by CMAs is Chi’s PhD
Thesis on creating motion specified through a combination of keyframing and Laban’s
Effort descriptors [5, 6]. Chi created several video sequences of a character moving its
arms, and then presented these sequences with and without effort components. Four
CMAs viewed the video sequences twice, the first time to familiarize themselves with
the character and its movement, and a second time to judge which of the four Effort
elements were present in each segment to what extent (positive, not present, negative).
The CMAs judged at least 53% of the Effort elements correctly — that is, in agreement
with the input settings of Chi’s system, with the in-house consultant judging 76.6%
correctly. The majority of the incorrect judgements were “not present” judgements
rather than opposite to the intended effort element.

Although Chi achieved moderate success with her system for interpolating key-
framed movements, attempting to use Laban’s effort system to translate between com-
puter and human representations of motion is very difficult if not impossible. Because
Laban’s effort elements are a notational system used to communicate stylistic patterns
of whole body movements between two humans they require experience of how hu-
mans move and code movement. While we can approximate the movement of humans
by usingQ(t) andA we do not yet know how humans code movements mentally or
how much they rely on their own experiences of generating movement to code the
observed movements of others.

Another technique is to have participants in an experimental setting categorize the
resulting movements according to their emotional content. This technique has been
used by Paterson and Pollick to determine the role of velocity in affect discrimina-
tion [15, 14]. Using both movements created by actors attempting to express different

2The elements are indirect versus direct, light versus strong, sustained versus quick, and free versus
bound.
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affects and neutral movements manipulated with signal processing similar to Amayaet
al.’s techniques [1], Patersonet al. had participants name the resulting affects asso-
ciated with each movement. Their results indicate a strong effect of velocity on the
modulation of affect.

A final possible technique would be to obtain direct comparisons between two
movements, one created by a computer and one recorded from natural human motion,
and use these as a basis for mapping the linguistic descriptions of the natural hu-
man movement to the parametric description of the closest corresponding computer-
generated movement. We have taken an approach that is related to this, but which
adds a third motion space. Rather than assume that humans rely solely on either a
categorical linguistic motion space — such as Laban’s Effort model or Paterson and
Pollick’s emotional affects — we also assume the existence of a non-categorical non-
linguistic psychological motion space in which observers code, compare, and analyse
human movements.

The goal of our research is to eventually build higher-level computer animation
systems by determining the structure and the bidirectional relationships between the
three motion spaces. In the next section we describe the first steps in augmenting this
basic framework with such mappings through the experimental collection and analysis
of judgements made by human observers of computer-generated human motion.

4. Description of Experiments

We conducted two participant-based experiments to collect information about the re-
lationships between the three motion spaces. The mechanical motion space is defined
by Walker ’s parameters,P(Q). The psychological and linguistic motion spaces
are unique to each participant and are defined by their descriptions and comparison of
human motions. Although we analysed the relationships between the motion spaces
within-participants, we also looked for commonalities between participants.

The psychological motion space of each participant is defined by their judgements
of the similarity of pairs of motions. We used a method similar to those used by earlier
researchers. In both experiments comparison trials presented on a computer monitor
two walking motions, one after the other. A participant then recorded their judgement
of similarity on a continuous scale with the “Similar” end of the scale coded as zero,
indicating “no distance” between the two motions, and the “Dissimilar” end of the
scale coded as one, indicating a “large distance” between the two motions. Figure 5
illustrates a motion comparison trial. Each trial took about ten seconds: seven seconds
for the presentation of the gaits and two to three seconds for the participant to make a
judgement and click on the “Finish Trial” button.

After completing all of the trials involving comparing motions the participants de-
scribed each motion. These descriptions define the linguistic motion space of each
participant. After presentation of a single walking motion the participant recorded a
description of the gait on eight continuous scales labeled with pairs of words with op-
posite meanings: fast-slow, flexible-stiff, smooth-bouncy, young-old, energetic-tired,
light-heavy, graceful-spastic, and normal-strange. Ratings on each scale were coded
in the interval[0,1]. Figure 6 illustrates a motion rating trial. Each trial took about
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Figure 5: Three screen shots illustrating a motion comparison trial.Top images: The
first gait is presented, then the second gait is presented.Bottom image: Next, the
Similar-Dissimilar scale is displayed with the marker at the Similar end of the scale.
After indicating a judgement of dissimilarity, the participant clicks on the “Finish Trial
1 of 3” button in the lower right hand corner of the screen. Participants were instructed
to click on the “skip” button in the lower left hand corner of the screen only if they
felt their attention drifted during the presentation of the stimulus and they failed to
observe the walking motion. The “Tutorial” label in the upper left hand corner of the
screen appears only during the training portion of the experiment.

fifteen seconds: four seconds for the presentation of the gait and about ten seconds for
the participant to record ratings on each of the eight descriptive scales and click on the
“Finish Trial” button.

All trials were replicated in random order in each of four blocks and participants
were instructed to use the first block to learn the task of comparing or describing the
gaits. Participants were shown all of the gaits used in an experiment as many times as
they wished before beginning the first block of trials. Participants were naive to the
hypotheses and were paid for their involvement.

Experiment Onewas a broad initial experiment performed to demonstrate the col-
lection of similarity judgements and descriptions of the movements from human ob-
servers using a wide range of human walking movements. We systematically var-
ied Walker ’s motion parameters to create twenty-six gaits with as wide a variety as
possible of walking motions with the constraint that all gaits had the same walking
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Figure 6: Two screen shots illustrating a motion rating trial.Left to Right: A gait is
presented, then the eight rating scales were displayed. After indicating a description of
the motion, the participant clicks on the “Finish Trial 1 of 3” button in the lower right
hand corner of the screen. Participants were instructed to click on the “skip” button in
the lower left hand corner of the screen only if they felt their attention drifted during
the presentation of the stimulus and they failed to observe the walking motion. The
“Tutorial” label in the upper left hand corner appears only during the training portion
of the experiment.

velocity. Each gait was randomly paired with two other gaits to create fifty-two tri-
als (repeated in each of four blocks). We recruited six participants: five were social
dancers (three females and two males) chosen with the expectation that they would be
able to apply their experience observing, imitating, and discussing human movements;
the remaining participant was a non-dancer (male).

Experiment Twowas an in depth experiment to determine the properties of the
psychological motion space by using a narrower range of walking movements that
included movements created by interpolating motion parameters. Figure 7 illustrates
the two networks used to define the gaits. The first network is a triangle defined by
three “primary” gaits, indicated with the filled circles. The gait parameters of the
primary gaits were interpolated to create the gait in the center of the triangle. The
second network is defined by two primary gaits on the ends of a line and the gait
parameters of the primary gaits are interpolated to create three gaits along the line. The
use of interpolation of gait parameters allows us to test the effect of interpolation in
the mechanical motion space on proximities in the psychological motion space. Each
gait was paired in both orders of presentation with all other gaits and itself within its
network to create forty-one trials (sixteen plus twenty-five).

Reflecting our focus on the psychological motion space, we expanded the number
and backgrounds of our participants to reflect the general population of individuals.
We recruited thirty participants. They had experience in social dancing (seven fe-
males, one male), recreational running (nine females, eight males), or neither (one
female, four males). We also introduced an additional experimentally controlled vari-
able that specified the direction the figure walked across the screen: left to right —
the same condition as in Experiment One (nineteen participants) — and right to left

12



Figure 7: Networks of comparisons for primary gaits (filled circles) and interpolated
gaits (unfilled circles). On the left, a triangle of three primary gaits with an interpo-
lated gait in the center requires sixteen comparisons (arcs) to test the metric properties.
On the right, two primary gaits are interpolated to create three new gaits, requiring ten
comparisons to test metric properties and parameterization.

(eleven participants). We used a variety of measures, such as average judgement vari-
ance, badness of triangular fit, weirdness index (as computed using multidimensional
scaling), and strength of correlation between similarity judgements and differences
between ratings.

5. Analysis of the Properties of the Psychological Motion Space

The purpose ofExperiment Twowas to determine the properties of the psychological
motion space — specifically by using networks of gaits which are compared in all
possible combinations. By using interpolation of the motion parameters we sought to
determine if the psychological motion space has metric properties. These properties
are:

H1m
0 Non-degeneracy: only the self-distance is zero, and distances are never nega-

tive: d(i, j)> d(i, i) = 0.

H2m
0 Symmetry: distances between points are symmetric:d(i, j) = d( j, i).

H3m
0 Triangular Inequality: sum of lengths of two sides of a triangle is never less than

the length of the third side:d(i, j)+d( j,k)≥ d( j,k).

If similarity judgements had the metric properties then we could continue to treat
similarity judgements as approximations of the distance between motions. This would
allow us to move beyond simple correlation between the spaces and begin to build
models of how motion parameters are combined to form similarity judgements.

To test the first metric property we constructed trials in which each motion was
compared to every motion within its network including itself. Our analysis of the
motion comparison trials in which a motion was compared to itself revealed that the
participants recorded a judgement more than one mark along the scale away from
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the similar end on average six times out of twenty-seven trials.3 This indicates that
d(i, i) 6= 0.

We also analysed the trials in which two different motions were presented and
discovered an asymmetry in the pattern of judgements. We believe that if a participant
recorded a similarity judgement for two different motions between the Similar end of
the scale and the first mark on that scale that they thought that either they had seen
the same motion twice or that they had seen two very similar motions. We term these
judgementsmis-judgements.

Participants tended to make a mis-judgement more frequently when the first mo-
tion was more “average” than the second. For example, when the center motion in the
triangular network was presented first followed by one of the corner motions the num-
ber of mis-judgements was much higher — on the order of 50% — than the reversed
order of presentation. These mis-judgements indicate thatd(i, j) = 0 even wheni 6= j.

We tested the symmetry of similarity judgements by testings if the average judge-
ment d(i, j) was equal to the average judgement in the reverse presentation order,
d( j, i) (within participants). The triangular network requires six of these comparisons,
and the linear network requires ten. We usedα = 0.05 to indicate asymmetry of judge-
ments. While each participant had at least one asymmetric average judgement, and the
worst participant had four asymmetric average judgements, we did not feel that these
asymmetries were strong enough to demonstrate violation of the symmetry property.

Finally, we tested the triangle inequality by counting the number of triangles
formed using averaged similarity judgments that did not conform to the triangular
inequality. We concluded that the triangular inequality did not hold because across
the participants 14-30% of the triangles failed the triangular inequality.

We also compared groups of participants as defined by demographics (dancer/
runner/ neither, male/ female) and direction of walking according to the following
measures: average judgement variance, badness of triangular fit, weirdness index (as
computed using multidimensional scaling [8]), and strength of correlation between
similarity judgements and differences between ratings. We found no large systematic
differences between the populations of participants, indicating that perceptual similar-
ity of motions relies on a basic perceptual process common to all humans.4

Since we interpolated the motion parameters to generate some of the gaits we ex-
amined the relationship between interpolation of the parameters and the resulting sim-
ilarity judgements. While the relationship is not linear, we found it to be smooth and
monotonic. This suggests that though the psychological motion space is not metric, it
is locally well behaved.

To summarize, we tested similarity judgements against the metric properties and
found evidence that the judgements do not conform to the non-degeneracy and triangle
inequalities. This means that we cannot treat similarity judgements as approximations
of the distance between gaits in a metric space. Comparison of the participants accord-
ing to demographic and experimental variables indicated that comparing the motion
of human walking figures is a process that does not require special training.

3There were eighteen regions along the Similar-Dissimilar scale demarcated with seventeen thin vertical
lines. Thus the marks were placed 5.6% of the width of the scale apart.

4We could not test for interaction effects due to empty cells.
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6. Analysis of Relationships Between Motion Spaces

In Experiment Onethe participants compared pairs of the gaits as to their similarity
and described each of the gaits using eight descriptive rating scales. Combined with
the parameters of the motionsP(Q), we have three sets of relationships:

1. Mechanical and Linguistic Motion Spaces: which parametersP(Q) correlate
with descriptions along each rating scale?

2. Mechanical and Psychological Motion Spaces: differences in which parameters
correlate with similarity judgements of pairs of motions?

3. Psychological and Linguistic Motion Spaces: difference along which rating
scales correlate with similarity judgements of pairs of motions?

Relationship between Mechanical and Linguistic Motion Spaces
For each participant, we determined which of the parameters influenced their ratings
along the descriptive scales by computing the strength of linear correlations between
the motion parameters and the descriptions. While the pattern of correlations differs
for each participant, we found that each participant’s ratings along each scale co-varied
significantly with two to five parameters (α = 0.05), indicating that each participant
focused on particular body part movements to form their descriptions.

To determine which parameters most strongly influenced the ratings, we counted
the number of participants with significant correlations for each combination of rating
scale and parameter and list here those combinations which a majority of the partici-
pants (four or more out of six) had significant correlations:

fast-slow step length and knee swing (controls the amount the foot “kicks
up” as it leaves the ground).

flexible-stiff upper torso rotation (vertical axis) and pelvis rotation (vertical
axis).

smooth-bouncy bounciness (up and down motion of the body on each step).

young-old magnitude of arm swing (at shoulder), magnitude of elbow rota-
tion, and knee swing.

energetic-tired magnitude of arm swing (at shoulder), magnitude of elbow ro-
tation, tilt of torso, knee swing, average knee bend throughout
stride.

light-heavy heel or toe strike on each step.

graceful-spastic magnitude of elbow rotation, torso sway (front and back tilt),
bounciness, and hip swing (height of leg swing as foot swings
forward).

normal-strange torso sway, bounciness, and hip swing.
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These relationships are not too surprising — we carefully picked our set of de-
scriptive scales and Bruderlin carefully pickedWalker ’s controls.

Relationship between Mechanical and Psychological Motion Spaces
We computed the strength of the correlations between the mechanical and psycholog-
ical motion spaces by approximating the distance between pairs of gaits in the me-
chanical motion space by the difference in their parameters, as well as the differences
of the Z-scores of the parameter computed using principal components analysis [10].
To summarize our findings, we found individual parameters that correlated stronger
than 0.4 for all participants, and some correlations as strong as 0.6. The most popular
parameters were those controlling the height the arms were raised from the sides of
the body, the bounciness of the stride, and the fixed tilt of the torso. The strongest
correlations between the similarity judgements and the principal components of the
parameters were along the first principal component for all participants and ranged
from 0.33 to 0.72 with a median value of 0.48. This indicates that the principal com-
ponents of the parameters capture the interesting variation of the gaits in both the
mechanical and psychological motion spaces.

We attempted to improve on the strength of these correlations by combining the
principal components of the parameters by using the City-Block, Euclidean, and Dom-
inance distance metrics (L1, L2, and L∞, respectively). The strongest correlations
varied from 0.41 to 0.73, with the Dominance norm (L∞) producing the strongest cor-
relations for four of the six participants.

Relationship between the Psychological and Linguistic Motion Spaces
For the relationships between the psychological and linguistic motion spaces we com-
puted the strength of the correlations in a similar fashion. The strongest correlation
between dissimilarities and differences along any single rating scale varied across the
participants from 0.42 to 0.68 with a median of 0.58. The strongest correlations oc-
curred along the young-old scale for four of the participants, and along the fast-slow
and energetic-tired scale for the other two participants.

These correlations indicate that the rating scales can be used to indicate the similar-
ity of gaits: similar gaits have similar descriptions and dissimilar gaits have dissimilar
descriptions. As we saw before, the participants also tended to agree as to which pa-
rameters most strongly influenced each rating scale. This leads to our next question:
do the participants’ linguistic motion spaces have common features? To answer this
question we computed the principal components of each participant’s ratings. We nor-
malized the ratings along each scale to have zero mean and unit variance. This gives
each scale equal weight and tends to equalize the participants’ interpretations of the
scales.

Structure of the Linguistic Motion Space
We found that all of the participant’s ratings could be compressed from eight rating
scales to three or four principal components by taking only those components with
a variance greater than one. This cut-off corresponds to a total variance accounted
of more than 80%. Additionally we found several patterns across the participants’
components:

• Five participants (#2, #3, #4, #5, and #6) had a very similar first principal com-
ponent which is an average of all the rating scales and describes motions as
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either bouncy, spastic, strange, fast, heavy, energetic, young, stiff or as smooth,
graceful, normal, slow, light, tired, old, flexible.

• Four participants had a single component dominated by the young-old, energetic-
tired, flexible-stiff scales with the expected orientation: young, energetic, flex-
ible versus old, tired, stiff. These components are the second principal compo-
nents of #1, #3, and #4, and the third principal component of #6.

• The third and fourth principal components tend to be dominated by one or two
scales — possibly reflecting the biases of each participant.

We computed the correlations between the similarity judgements and the Z-scores
of the principal components of the descriptions and found for five of the participants
the strongest correlation occurred along the first principal component (min = 0.47,
max = 0.74, median = 0.62), and for the sixth participant the strongest correlation
was 0.32 along her second component. We attempted to improve on the strength of
these correlations by combining the principal components of the descriptions using
the City-Block, Euclidean, and Dominance distance metrics. We were able to exceed
the strength of the correlations for only half of the participants beyond the correlations
computed along the components. For five of the participants the strongest correlations
were produced using the City-Block norm, for the sixth participant the Euclidean norm
produced the strongest correlations.

To summarize, inExperiment Onefor each participant we found moderately strong
to strong linear correlations between the three motion spaces. We also found agree-
ments between the participants as to which motion parameters influenced their similar-
ity judgements and their descriptions, as well as common structures in their linguistic
motion spaces. In each case, when we computed the principal components of the
motion space we were able to find stronger correlations between the spaces using the
principal components, rather than the original dimensions.

These results validate our experimental methodology and demonstrate that al-
though we cannot assume that the participants would have similar biases as to the
similarity of two gaits or how a gait should be described, the agreements between the
participants suggest that higher-level human-computer interfaces to animation systems
would not need to be custom tailored for each user, rather they could be “initialized”
with a set of standard controls and then refined by adjusting the standard controls, or
by choosing a set of controls that reflects the user’s perceptual biases.

7. Conclusions and Future Work

Computer graphics has benefited greatly from an understanding of human vision. For
example, design guidelines based in knowledge of trichromacy, opponent colors, and
JND measurements have informed the design of graphics hardware and software. For
more complex stimuli and tasks, however, the basic perceptual abilities and bottle-
necks are not well described. In the case of human figure animation, we know very
little. This paper begins a process of exploring the motion spaces associated with
human figure movement. We postulated two human-based representations of human
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figure movement, a linguistic space whose nature is determined in part by our ability
to describe and categorize movements, and a psychological space more closely tied
to perceptual events. Both contribute to our visual experience, and an understand-
ing of both will support the creation of authoring and database management tools for
character animation.

Experiment Oneexamined the classification of gaits within the structure of pairs
of opposite movement description terms. We found that the focus of attention varied
among subjects, but that similar stimulus characteristics were salient in determining
the classification of gaits, and that classification was somewhat consistent across most
of our subjects and could be reduced to three to four principal components.Experi-
ment Twoexplored the metric properties of the psychological space by asking subjects
to make comparisons between a limited range of movements that were unlikely to
span boundaries between multiple linguistic descriptors, but which were perceptually
distinct. We concluded that similarity judgements do not have all of the metric prop-
erties. Our analysis was complicated by order effects of stimulus pair presentation,
a not uncommon finding in complex perceptual tasks. Despite this, we did achieve
some support for our hypothesis that the underlying perceptual evaluation was similar
across subjects. The persistence of intersubject performance differences does suggest
that future animation systems should be customizable not only for the user’s prefer-
ences, but for their perceptual abilities and cognitive/linguistic structures as well. If
our findings are correct, we can predict that this customization might be achieved by
altering parameter values associated with the relative weights given to common per-
ceptual cues without the need to add or substantially modify the nature of the cues
themselves.

Our findings are preliminary, and more research will be needed before we begin
to achieve our goal of creating animation environments capable of mapping between
the intuitive linguistic descriptions of motions and computer representations by incor-
porating our understanding of the non-categorical aspects of human motions captured
by the psychological motion space. Future experiments will explore the perceptual
and linguistic spaces in more detail, and additional experimental controls for order
effects should enable us to build models of the relationships between the three mo-
tion spaces with increasing predictive validity. In themselves, the present experiments
have demonstrated that both the linguistic and psychological spaces have a level of
structure and internal consistency that will support just such a parametric analysis.

Additional details of both experiments are available in the first author’s doctoral
dissertation [9].
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