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z Institut d’Informàtica i Aplicacions, University of Girona, Email: fpvazquezjfeixasjmateug@ima.udg.es
� University of British Columbia, Vancouver, Canada, Email: heidrich@cs.ubc.ca

Abstract

Computation of good viewpoints is important in
several fields: computational geometry, visual ser-
voing, robot motion, graph drawing, etc. In addi-
tion, selection of good views is rapidly becoming a
key issue in computer graphics due to the new tech-
niques of Image Based Rendering. Although there
is no consensus about what a good view means in
Computer Graphics, the quality of a viewpoint is
intuitively related to how much information it gives
us about a scene. In this paper we use the theoreti-
cal basis provided by Information Theory to define
a new measure, viewpoint entropy, that allows us to
compute good viewing positions automatically. We
also show how it can be used to select a set of N
good views of a scene for scene understanding. Fi-
nally, we design an algorithm that uses this measure
to explore automatically objects or scenes.

1 Introduction

The computation of good viewpoints has applica-
tion in several fields: computational geometry, vi-
sual servoing, robot motion, graph drawing, etc.
Moreover, it is becoming a key issue in computer
graphics due to the increased interest in Image
Based Rendering (IBR). IBR techniques use a set
of images instead of a geometric representation of
the scene [1].

It is difficult to define precisely the term good
view in Computer Graphics. It seems intuitive to
consider a view to be good if it provides a high
amount of information for a scene. For instance
Figure 1b seems to be better than 1a, as it gives us
more information about the object seen. If the ge-
ometry of the scene is known, the set of faces of all
objects can be regarded as the information we can
work with. In this paper we present a measure based
on Information Theory [2], which we call viewpoint
entropy, that works on the projected areas of the
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Figure 1: A bad view and a good view of a scene
containing a sphere and a cube.

faces and can be interpreted as the amount of infor-
mation captured from a point. The best viewpoint
will be the one with maximum viewpoint entropy.
We will show that the new defined measure is use-
ful to compute good viewpoints automatically and
the problem of the selection of the minimal set of
N good views will be addressed. This is useful for
the problem of scene understanding. Another appli-
cation for automatic exploration of objects or scenes
will also been presented.

The rest of the paper is organized as follows: In
Section 2 we review related work and examine the
meaning of the term good viewpoint. In Section 3
we present our approach. In Section 4 we address
the problem of computing a set of N best views.
Section 5 covers the application of automatic ex-
ploration of objects or scenes. Finally, in Section 6,
we summarize the results obtained.

2 Previous Work

In the last decade viewpoint selection has become
a very active area of research. In this section we
present some methods and strategies that have been
applied to different fields and objectives.
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2.1 Computer Graphics

Kamada and Kawai [3] consider a viewing direc-
tion to be good if it minimizes the number of de-
generated faces under orthographic projection. This
method fails when comparing scenes with equal
number of degenerated faces and it does not ensure
that the user will see a large amount of details [4].

Barral et al [4] modify Kamada’s coefficient in
order to cope with perspective projections. Then
they create a heuristic with some other parameters
that weigh the number of faces seen from each point
and the projected area, adding an exploration pa-
rameter which accounts for the faces already vis-
ited. An evaluation function is defined that allows to
explore the scene in real time. However, they admit
not having been able to determine a good weighting
scheme for the different factors. This causes some
problems with objects containing holes, as these are
not captured properly by the algorithm.

Hlavac et al [5] use a set of images to represent
an object. Their objective is obtaining an IBR rep-
resentation to be rendered by interpolation. Conse-
quently they choose a set of reference images posi-
tioned around the object in intervals that guarantee
error bounds below some threshold during recon-
struction of intermediate views. This method is not
intended to measure the quality of a single view, as
each image is compared with the previous one and
only chosen if the degree of dissimilarity is high
enough.

2.2 Other Fields

There are several related approaches being used in
other fields.

Bourque and Dudek [6] define an interesting
point in an image as the one different from the sur-
rounding context. These regions are the ones on
which the human attention would focus.

Arbel and Ferrie [7] use entropy for object recog-
nition. In order to do so, they build entropy maps
that are used to encode prior knowledge about the
discriminability of objects as a function of viewing
position. Takeuchi and Onishi [8] measure the en-
tropy of an image based on histograms of intensities
in order to find the complex parts of a scene. In both
cases, the probability distributions used to compute
entropy and the targets pursued are different from
the ones addressed in this paper.

Roberts and Marshall [9] select a minimized
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Figure 2: (a) and (b) are from the same scene, which
one should we take?

number of views for complete coverage of the sur-
face of three dimensional objects. They define a
good view for a face to be one that is viewed head
on, or as they put it, “the direction that lies within
the faces visibility region and has the smallest an-
gular offset from its inverse surface normal”. For
a set of faces they define a good view as the direc-
tion that is simultaneously at a minimum angle from
each of the corresponding surface normals. A set of
methods in Computer Vision address the problem of
“Next Best View” selection, which rely on the infor-
mation collected previously in order to choose the
next interesting viewpoint. Unfortunately a unified
quality criterion does not exist yet (see for example
Massios and Fisher [10]).

The problem of computing good viewpoints is
also related to visual servoing (see Marchand and
Courty [11])).

2.3 What is a Good View?

As we have already mentioned, some definitions
have been proposed, but there is no consensus about
what a good viewpoint is. In spite of that, it seems
intuitive that the best viewpoint is the one that ob-
tains the maximum information of a scene. A good
view must help us to understand as much as possi-
ble the object or scene represented.

From the previous work, we extract two param-
eters that are especially related to the quality of a
viewpoint: the projected area and the number of
faces seen. It seems necessary to obtain a quality
function that weighs those two parameters. By it-
self, the projected area does not tell us about the
amount of detail we can see and cannot be used for
indoor scenes, because the projected area is con-
stant. On the other hand, even though we have a
high number of faces, they could be small and thus
provide little information about a scene. In Fig-
ure 2a and 2b two projections of the same scene
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are shown. They exhibit different number of faces
and different projected area. Which one should we
take?

3 Viewpoint Entropy

One of the features we associate with the goodness
(or quality) of a viewpoint is the amount of infor-
mation it provides us with. We assume that the
information we talk about is visibility. Recently,
Information Theory tools have been used to study
scene visibility [13]. Here we define viewpoint en-
tropy, a new measure that allows us to obtain good
viewpoints of a scene. We will see how the view-
point entropy incorporates both the projected area
and the number of faces, and can be understood as
the amount of information captured by the view-
point. In a novel work Rigau et al have arrived to
an equivalent measure when studying the visibility
complexity of 2D scenes [14].

3.1 Viewpoint Entropy

The Shannon entropy [15, 2] of a discrete random
variable X with values in the set fa1; a2; :::; ang is
defined as

H(X) = �

nX

i=1

pi log pi;

where pi = Pr[X = ai], the logarithms are
taken in base 2 and 0 log 0 = 0 for continuity. As
� log pi represents the information associated with
the result ai, the entropy gives the average informa-
tion or the uncertainty of a random variable. The
unit of information is called a bit.

To define viewpoint entropy we use as proba-
bility distribution the relative area of the projected
faces over the sphere of directions centered in the
viewpoint. Thus, we define viewpoint entropy as

I(S; p) = �

NfX

i=0

Ai

At

log
Ai

At

; (1)

where Nf is the number of faces of the scene, Ai

is the projected area of face i over the sphere, A0
represents the projected area of background in open
scenes, and At is the total area of the sphere. In a
closed scene, or if the point does not see the back-
ground, the whole sphere is covered by the pro-
jected faces and consequently A0 = 0. Hence,

Ai=At represents the visibility of face i with respect
to point p. It is important to remark that, with re-
spect to the total area of face i, the projected area
Ai=At is proportional to the cosine of the angle be-
tween the normal of the surface and the line from
the point of view to the object, and it is inversely
proportional to the square distance from the point
of view to the face. Therefore, Ai=At grows when
the face is seen at a better angle and at a shorter dis-
tance. This justifies the use of projected area as the
probability distribution to compute entropy.

The maximum entropy is obtained when a cer-
tain point can see all the faces with the same rela-
tive projected area Ai=At. So, in an open scene the
maximum viewpoint entropy is log(Nf + 1), and
in a closed scene it is equal to logNf . We define
the best viewpoint as the one that has maximum en-
tropy, i.e. maximum information captured.

One of the drawbacks of this measure could be
the use of background as another face. This is re-
quired because when computing entropy we must
use a probability distribution function, otherwise we
would not have a consistent entropy measure. On
the other hand, this is not the only reason, a proba-
bility distribution could be built by normalizing the
measures without using the background, but such
a measure cannot handle with distances: projecting
the scene under the same direction but at a differ-
ent distance would give the same value. The use of
background gives the objects which are near higher
entropy than the ones which are far. It is impor-
tant to notice that this could lead to small errors,
but this can only happen only if we are seeing all
the faces (including background) with the same pro-
jected area (maximum viewpoint entropy). If start-
ing from this position we move the camera in such
a way that the background region decreases and the
rest of faces increase their projected area, the total
entropy would diminish, instead of growing. How-
ever, this does not happen in practice mainly be-
cause it is very difficult to obtain such a viewpoint
(usually a number of faces are not visible). Fur-
thermore, we work with many faces and the maxi-
mum error produced could be log(Nf+1)�logNf ,
which for a big value of N is negligible.

3.2 Implementation

The computation of viewpoint entropy can be done
with the aid of graphics hardware using OpenGL, in
a similar way to Barral et al [4]. The projected area
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of each face is computed by summing up all the pix-
els that belong to that face, weighted by the solid an-
gle subtended by the pixel. To distinguish between
the different polygons, the faces are colour-coded
in an item buffer, and to cover all the view direc-
tions six different views are used. This is the gen-
eral method for computing viewpoint entropy inside
a scene.

Let us consider the specific example of a single
object or a group of objects surrounded by empty
space. In this case, the process can be simplified
by just rendering one view (if all the projected area
lies inside this view), dividing the relative projected
area of each face by the area of the sphere, and
adding the contribution of the background. The
algorithm renders the scene from a set of points
placed at regular positions over a bounding sphere
of the object. At each point, the item buffer is read
and the entropy is calculated. The distance of the
camera and the number of viewpoints can be modi-
fied by the user. Algorithm 1 solves the problem of
computing the best viewpoint of an object.

Algorithm 1 Computes the view with the highest
entropy of an object.

Select a set of points placed in regular positions
all around the object
maxI 0
viewpoint 0
for all the points do

aux Compute the viewpoint entropy
if aux> maxI then

maxI aux
viewpoint current point

end if
end for
Write maxI and viewpoint

3.3 Results

We have implemented the method described above
and tested it for several objects. We have also com-
pared the results with the relative projected area.
We show how these metrics differ and how entropy
provides good results to get the best view. In the
next section this measure will also be used to com-
pute a set of N good views.

The algorithm computes the viewpoint entropy
of 17-18 fps although no optimizations were made.

camera camera

(a) (b)
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Figure 3: The diagrams in (a) and (b) show two
capture paths of a camera around a cube. (c) and
(d) plot the viewpoint entropy and the projected area
respectively in the Y axis against the rotation angle.
The dashed line corresponds to the first path and the
continuous one to the second.

The method was tested on a Pentium III processor
at 700 MHz.

To prove the quality of our measure, we com-
puted the viewpoint entropy for several points ly-
ing on a sphere that surrounds a cube. The camera
follows the paths depicted in Figures 3a and 3b. In
the second example the cube has been rotated 45
degrees around the Y axis in order to compare the
results. In both cases, when the camera is at the top
of the object the rotation angle is �=2 and at the
bottom ��=2. Figures 3c and 3d show the mea-
sures of viewpoint entropy and the projected area
for both situations respectively. It is easy to see
how entropy depends on the number of faces and
the amount of area seen at every position. Although
the first impression is that results are similar to the
ones obtained from the projected area approach, we
will show later that this does not happen in general.
In Figure 4 we can see four snapshots of what is
captured by the camera at the points of maximum
entropy. Figure 4a and 4b belong to the first case
(Figure 3c) and Figures 4c and 4d to the second
(Figure 3d). As expected, the information received
is largest at the points one would intuitively say that
are the most informative.

Let us consider another example for a more de-
tailed comparison with the projected area approach.
Figure 5a shows another scene we are studying,
and 5b sketches the two paths that the camera fol-
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(a) (b)

(c) (d)

Figure 4: (a) and (b) correspond to the points of
maximum entropy for the path in Figure 3(a), and
(c) and (d) to the path in Figure 3(b).

lows around the cubes. Figure 5c shows how en-
tropy is sensitive to the number of faces in situations
where the projected area by itself (Figure 5d) does
not distinguish if the number of faces is different.

In Figures 6a and 6b we can see the points of
maximum viewpoint entropy computed around a
torus and a desk. Entropy decreases with increas-
ing distance, because the projected area of each face
is smaller. On the other hand, sometimes it is not
enough with a single view, as it might not provide
enough information from the scene and thus, we
will need more images.

4 Selection of Good Views for Scene
Understanding

So far, we have defined a measure to compute the
quality of a view and to find out which is the best
view according to visibility information. In this sec-
tion we will address the problem of selecting a set
ofN views that may be best suited for representing
the scene. This problem has to be faced in differ-
ent ways according to the target pursued. We study
here the problem of scene understanding. The pur-
pose of scene understanding techniques is to select
a minimal set of views that gives a good representa-
tion of the scene to the user. We have the following
restrictions on the views:
� They should contain a high level of informa-

tion about the scene.

First path Second path
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Figure 5: (b) depicts the paths of the camera around
a pair of cubes. (c) and (d) show the entropy and
projected area in the Y axis respectively against the
rotation angle. The dashed line corresponds to the
second path and the continuous one to the first.

(a) (b)

Figure 6: The points of maximum viewpoint en-
tropy of a torus (a), and a desk (b).

� They should cover all the visible faces.

A naive method would be to choose a set of im-
ages with high viewpoint entropy. However, this
does not ensure that all faces are covered. We avoid
this problem with the use of bitmaps to encode the
visibility of the faces from each point. Algorithm 2
depicts this method.

The algorithm stops when a certain percentage of
the total visible faces are visited. By selecting views
with high entropy and which show new faces we
ensure that all the scene is covered and that we get
views of good quality. Figures 9 and 10 show the re-
sulting viewpoints of this algorithm for a molecule
of isobutanolamine and a desk.
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Algorithm 2 Computes the set of views with high
entropy of an object.

Select a set of points placed in regular positions
all around the object
for all the points do

Compute the viewpoint entropy and store it
Store a bitmap encoding the visibility of the
faces from the point

end for
Order the points in decreasing viewpoint entropy
Select the first point fthe one with max. entropyg
Accumulate the visited faces in a bitmap
i 0

while i < totalPoints and not finished do
if numFacesNotSeen(i) > threshold then

Select point i
Accumulate the visited faces in a bitmap
finished isFinished(VisitedFacesno)

end if
i i+ 1

end while

Previous
direction Possible new

directions

Figure 7: The possible directions of the navigation
according to the previous direction.

5 Automatic Exploration of Scenes

In section 4 we have shown how to compute a min-
imal set of views that represents an object or scene.
This method can be confusing to the user when
changing from one view to another if the new one is
completely different from the preceding one. This
can be solved by simulating a walkthrough around
a scene. There are two different approaches in bib-
liography: flying around the scene (over a bounding
scene) and navigating through it. We have designed
an algorithm that uses entropy to fly all around the
objects but an extension inside the scenes can be
implemented in a straightforward fashion.

We initially fix an arbitrary starting point and a
direction of navigation. Similarly to Barral et al [4],
subsequent moves are chosen between three possi-
ble new directions, according to the last movement,

to ensure a smooth displacement of the camera (see
Figure 7).

(a) (b)

Figure 8: Exploration path around a mug and a can-
dlestick.

The next view is chosen according to the entropy
and the number of faces not yet visited (as in the
method in section 4). To evaluate the quality of the
three possible next positions we multiply the view-
point entropy of the next point and the bit differ-
ence of the possible new view and the accumulated
one. In case none of the three possible views shows
a new face we choose the one which lies furthest
from the initial position. At this point other strate-
gies could be selected, such as traveling towards
non-explored regions, continuing in the same direc-
tion of the last movement, etc. The one we chose
is simple and performs well in most cases. Figure 8
shows the path around a mug and a candlestick. The
exploration stops when a certain percentage of the
faces (90-99%) have been visited.

6 Conclusions and Future Work

In this paper we have defined a new measure, the
viewpoint entropy of a point in a scene. This mea-
sure is based on Information Theory and can be in-
terpreted as the amount of information seen from
a point. Consequently, it can be used to determine
good viewpoints. The best viewpoint has been de-
fined as the one that has maximum entropy. Fur-
thermore, viewpoint entropy is used to compute the
minimal set of N good views which gives a good
representation of the scene. This set of views is built
according to the requirements of scene understand-
ing: the set of views must be minimal, and it must
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cover all the visible faces.
We have developed an appearance-based algo-

rithm suitable to addressing these problems. The al-
gorithm is appearance-based in the sense that it only
measures what we can really see. This means that
we will apply equation (1) to the objects that project
at least one pixel in screen, thus, which are perceiv-
able by an observer. In future we will address the
problem of navigating inside an scene. Although
our measure works for indoor scenes, the cam-
era orientation is relevant and thus, extending the
method to navigation inside scenes is not straight-
forward. We also want to study optimization meth-
ods for viewpoint entropy computation, and explore
artistic issues, which could deal to a totally different
definition of viewpoint goodness.
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(a) (b) (c) (d)

Figure 9: The four view points of a molecule of isobutanolamine obtained with the bitmap method.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: The eight view points obtained with the bitmap method for a desk.
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