
Illuminating Micro Geometry Based on Precomputed Visibility

Wolfgang Heidrich∗ Katja Daubert Jan Kautz Hans-Peter Seidel

Max-Planck-Institute for Computer Science

Abstract

Many researchers have been arguing that geometry, bump maps,
and BRDFs present a hierarchy of detail that should be exploited for
efficient rendering purposes. In practice however, this is often not
possible due to inconsistencies in the illumination for these differ-
ent levels of detail. For example, while bump map rendering often
only considers direct illumination and no shadows, geometry-based
rendering and BRDFs will mostly also respect shadowing effects,
and in many cases even indirect illumination caused by scattered
light.

In this paper, we present an approach for overcoming these in-
consistencies. We introduce an inexpensive method for consistently
illuminating height fields and bump maps, as well as simulating
BRDFs based on precomputed visibility information. With this in-
formation we can achieve a consistent illumination across the levels
of detail.

The method we propose offers significant performance benefits
over existing algorithms for computing the light scattering in height
fields and for computing a sampled BRDF representation using a
virtual gonioreflectometer. The performance can be further im-
proved by utilizing graphics hardware, which then also allows for
interactive display.

Finally, our method also approximates the changes in illumina-
tion when the height field, bump map, or BRDF is applied to a
surface with a different curvature.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics processors; I.3.3 [Computer Graphics]:
Picture/Image Generation—Bitmap and frame buffer operations;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, Shading, Shadowing and Texture

Keywords: Illumination Effects, Monte Carlo Techniques, Graph-
ics Hardware, Frame Buffer Tricks, Reflectance & Shading Models,
Texture Mapping

1 Introduction

Geometry, bump maps and bidirectional reflectance distribution
functions (BRDFs) are often considered different levels of detail
for the same surface structure. Although there has been a consid-
erable amount of work on generating smooth transitions between

∗MPI for Computer Science, Im Stadtwald, 66123 Saarbrücken, Ger-
many, {heidrich,daubert,jnkautz,hpseidel}@mpi-sb.mpg.de

these levels [19, 1], the fundamental problem of inconsistent illu-
mination algorithms for the representations still remains.

For example, both simulated and measured BRDFs typically re-
spect not only direct illumination, but also shadowing and masking
effects of the micro geometry, as well as indirect illumination re-
sulting from light that scatters between the micro surfaces. Geom-
etry based representations usually consider direct illumination and
shadowing/masking, but the indirect illumination is often neglected
for performance reasons. Similarly, techniques for shadowing [19]
and masking [1] in bump maps have been developed, but most ap-
plications do not use them; techniques for light scattering in bump
maps have not been available so far. The importance of this indirect,
scattered light to the overall appearance is illustrated in Figure 1.

(a) without scattering (b) with scattering

Figure 1: Indirect light in height fields can have a strong impact on
the overall appearance.

With the advent of new, inexpensive computer graphics hard-
ware that supports both bump mapping (see [23], [22], and [10]
for some possible implementations) and rendering with arbitrary
BRDFs [15, 10], some newly gained interest in making the transi-
tions consistent has evolved. In this paper we introduce a single,
efficient, but high-quality method for illuminating height field ge-
ometry and bump maps, as well as for precomputing BRDFs and
even higher dimensional data structures. The method is suitable for
both ray-tracing and hardware-accelerated rendering.

Our algorithm is based on precomputation and reuse of visibility
information in height fields, simulates both shadowing and indirect
illumination, and is able to approximate the illumination as the un-
derlying base geometry changes. Thus it is capable of consistently
illuminating height field geometry, bump maps, and BRDFs. The
main contributions of this paper are:

• An algorithm for efficient computation of indirect light in
height fields, based on precomputed visibility information.

• An efficient representation for shadowing and masking in
bump maps.

• Hardware-accelerated versions of the above algorithms, us-
ing a generalization of Monte Carlo algorithms known as the
“Method of Dependent Tests”.

• Techniques to approximate the changes in illumination when
the height field is applied to a curved surface.

• Application of all methods to simulate BRDFs and render
other high dimensional data structures such as light fields and
bidirectional texture functions (BTFs).

Throughout this paper we will only deal with height field geom-
etry, which also means that the simulated BRDFs can only originate
from height fields. Furthermore, we assume that the bump heights
are relatively small compared to their distance from light sources
and other objects, so that the only occlusions occurring within a
hight field are caused by parts of the same height field, but not by
any other geometry in the scene.

The remainder of this paper is organized as follows: In Section 2
we briefly discuss related work. Then, we introduce our data struc-
tures for precomputed visibility and their applications to comput-
ing indirect illumination in Section 3. We also describe how to
make use of graphics hardware for further performance improve-
ments and interactive viewing (Section 3.3), and introduce new data
structures for shadowing and masking in Section 4. We then discuss
how to adapt both the scattering and the shadow data structures to
varying base geometry (Section 5), and finally conclude with some
results and a discussion (Section 6).

2 Related Work

Articles that discuss enhancing the original bump map algorithm [2]
represent some of the work most closely related to ours. For exam-
ple, Max [19] shows how to compute the self-shadowing of bump
maps with a so-called “horizon map”. This horizon map describes
the horizon for a small number of directions (8 in the original pa-
per) at each point in the height field. During rendering, the shadow
test then simply determines whether the light direction is above or
below the (interpolated) horizon. Stewart [26, 27] introduced a hi-
erarchical approach to determine the visibility in terrains both for
occlusion culling and shading. More recently, Stewart used a simi-
lar idea to simulate the shadowing in cloth [28].

For the shadowing part of our paper, we use a concept similar
to the original horizon map, but in a different representation of the
horizon that allows for a highly efficient shadow test, which can
also be performed with graphics hardware. In addition, we discuss
how the data structure can be adapted to different curvatures of the
underlying base geometry.

Masking is in a sense a dual problem to shadowing: where shad-
owing means that a light ray does not hit a specific surface point
because it is occluded by some portion of the height field, mask-
ing means that the viewing ray does not hit the point for the same
reason. In order to incorporate masking in bump maps, Becker
and Max [1] introduced redistribution bump mapping, which ad-
justs the distribution of normals in the bump map with the viewing
angle. Another possibility is to blend in coarse approximations of
the height field as a displacement map. In our implementation, we
take this latter approach, although using the results from Becker and
Max should also be possible. Furthermore, we can reuse the hori-
zon data structures, which we also apply for shadowing, to compute
BRDFs.

So far, there has been little work on computing the indirect il-
lumination in height fields and bump maps. Although Mostefaoui
et al. [20] do integrate the indirect illumination at micro geometry
scale into a global illumination simulation, their method relies on
both precomputed data (BTFs) and a full geometric description of
the features. It does not address the problem of precomputing these
BTFs, or of computing the illumination in bump maps.

Several approaches for simulating BRDFs have been proposed
in the past. The method by Cabral et al. [3] is based on horizon
maps, while Becker and Max [1] use the normal distribution in a
bump map. Our method is most closely related to the one from
Westin et al. [31], which is based on ray-tracing. At the same time,

we borrow the idea of using precomputed visibility information in
bump maps from Cabral et al. [3], although our data structures are
more comprehensive than simple horizon maps in order to account
for indirect illumination.

For the hardware-accelerated variants of our algorithms we re-
quire some way of rendering bump mapped surfaces. Any of the
recently published algorithms (e.g. [10, 22, 23]) will be sufficient.
Mathematically, the hardware implementation of indirect illumina-
tion uses a generalization of Monte Carlo integration known as the
Method of Dependent Tests [7]. This method, which is described in
more detail in Section 3.1, uses the same random sampling pattern
for estimating an integral at all different points (the indirect illumi-
nation in all different points of a height field, in our case). Several
other hardware-based algorithms have implicitly used the Method
of Dependent Tests in the past, for example most algorithms using
the accumulation buffer [9] or the Instant Radiosity algorithm by
Keller [16]. Another example is the transillumination method [29],
an algorithm for global illumination computations, which is based
on propagating light from all surfaces in one direction. Our method
improves on this by using precomputed visibility that can be reused
for many light paths, and allows for the use of graphics hardware.

While our algorithms yield a significant performance improve-
ment for the generation of single images, they are even more attrac-
tive for the computation of higher dimensional data structures such
as BRDFs, light fields [18, 8], volume representations [21], and spa-
tially variant BRDFs or bidirectional texture functions (BTFs, [5]),
because this allows for a reuse of the precomputed visibility infor-
mation. Thus, the costly precomputation of visibility can be amor-
tized over a larger amount of reuses. For the same reason our meth-
ods are even more attractive if applied to periodic height fields.

3 Light Scattering in Height Fields

To compute the indirect illumination in a height field, we have to
solve an integral equation called the Rendering Equation [13]. This
requires integrating over the incident illumination in each point of
the height field, which can, for example, be achieved with Monte
Carlo ray-tracing. The most expensive part of this integration is
typically the visibility computation, which determines the surface
visible from a given surface point in a certain direction. This is the
part that depends on the complexity of the scene, while the com-
putation of the local interaction of the light with the surface has a
constant time complexity.

In the case of small-scale height fields that describe the irreg-
ularities of a surface, we can make two simplifying assumptions.
Most importantly, we only deal with cases where the visibility in-
side the height field is completely determined by the height field
itself, and not by any external geometry. This is equivalent to re-
questing that no external geometry penetrates the convex hull of the
height field, which is a reasonable assumption for the kind of small
surface structures that we are targeting. It allows us to precompute
the visibility information, and afterwards combine it to a variety of
different paths, so that the cost of its computation can be amortized
over a larger number of light paths.

Secondly, in the case where we want to use our method to com-
pute a BRDF, we request that the height field geometry is small
compared to the remainder of the scene, and therefore any incom-
ing direct light can be assumed parallel. This is necessary simply
because the BRDF by definition is a function of exactly one incom-
ing direction and exactly one outgoing direction. This assumption
is not necessary for the other levels of detail, i.e. bump maps and
displacement maps.

The visibility restriction requests that no other geometry in the
scene will act as an occluder between two points in the height field.
If we now assume the height field is attached to a specific, fixed
base geometry, we can, for a given point p on the height field, and

a given direction ~d, precompute whether the ray originating at p

in direction ~d hits some other portion of the height field, or not.
Furthermore, if it does intersect with the height field, we can pre-
compute the intersection point and store it in a data base. Since
this intersection point is some point in the same height field, it is
unambiguously characterized by a 2D texture coordinate.

Figure 2: One of the scattering textures Si for the triangular height
field on the right.

Now imagine having a set D of N uniformly distributed direc-
tions, and having precomputed the visible surface point for every
direction ~d ∈ D and for every grid point in the height field tex-
ture. If the height field is periodic, this has to be taken into account
for determining this visibility information. Also, for the moment
we assume that the height field is applied to a specific base geom-
etry, typically a flat surface. Section 5 deals with an adaptation to
varying base geometries.

We store this precomputed data as a set of N texture maps Si; for
each direction ~di ∈ D there is one 2D texture with two components
representing the 2D coordinates of the visible point. Each of these
textures is parameterized the same way the height field is, i.e. the
2D texture coordinates directly correspond to height field positions
p. The texture value also corresponds to a point in the height field
and represents the surface point q that is visible from p in direc-
tion ~di. Note again, that these visibility textures are only valid for
a given, predefined base geometry to which the height field is at-
tached. Section 5 will describe how this information can be used to
illuminate the height field when it is attached to other geometries.

By chaining together this visibility information, we can now gen-
erate a multitude of different light paths for computing the indirect
illumination in the height field. This way, it is possible to imple-
ment variants of many existing Monte Carlo algorithms, using the
precomputed data structures instead of on-the-fly visibility compu-
tations. Below, for example, we outline a simple path tracing algo-
rithm that computes the illumination at a given surface point, but
ignores indirect light from geometry other than the height field:

radiance(p, ~v) {
L:= direct illumination(p);
i:= random number in [1 . . . N];
if(q := Si[p] is valid height field coord.){
L:= L + fr(p, ~v, ~di) · cos(6 (~di, ~np))·

radiance(q, −~di);
}
return L;

}

In this algorithm, ~np is the bump map normal in point p, and
fr(p, ~v, ~di) is the BRDF of the height field in that point. The di-
rect illumination in each point is computed using a bump mapping
technique.

Of course the visibility information for direction Si is only
known at discrete height field grid positions. At other points, we

can only exactly reconstruct the direct illumination, while the indi-
rect light has to be interpolated. For example, we can simply use
the visibility information of the closest grid point as Si[p]. This
nearest-neighbor reconstruction of the visibility information corre-
sponds to a quantization of texture coordinates, so that these always
point to grid points of the height field. For higher quality, we can
also choose a bilinear interpolation of the indirect illumination from
surrounding grid points. In our implementation, we use the nearest-
neighbor approach for all secondary intersections by simply quan-
tizing the texture coordinates encoded in the visibility textures Si.
On the other hand, we use the interpolation method for all primary
intersections to avoid blocking artifacts. Figure 1b shows a result
of this method. For more complex examples, see Section 6.

The simple algorithm above ignores shadowing, but with the
technique described in Section 4, which is similar to the one in-
troduced by Max [19], shadows can also be included.

Using similar methods, other Monte Carlo algorithms like dis-
tribution ray-tracing [4] can also be built on top of this visibility
information. The advantage of using precomputed visibility for the
light scattering in height fields, as described in this section, is that
the visibility information is reused for different paths. Therefore,
the cost of computing it can be amortized over several uses.

3.1 The Method of Dependent Tests

As mentioned above, we have to solve the Rendering Equation [13]
in order to determine the indirect illumination in a height field.
Based on the precomputed visibility information, we solve the Ren-
dering Equation by Monte Carlo integration of the incident illumi-
nation at any given surface point, and obtain the reflected radiance
for that point and a given viewing direction.

In general, however, we do not only want to compute the re-
flected light for a single point on the height field, but typically for a
large number of points. With standard Monte Carlo integration, we
would use different, statistically independent sample patterns for
each of the surface points we are interested in.

The Method of Dependent Tests [7] is a generalization of Monte
Carlo techniques that uses the same sampling pattern for all surface
points. More specifically, we choose the same set of directions for
sampling the incident light at all surface points. For example, as
depicted in Figure 3, for all points p in the height field, we collect
illumination from the same direction ~di.

As pointed out by Keller [17], there are several instances in the
computer graphics literature, where the Method of Dependent Tests
has been applied implicitly [9, 16]. For example, one of the stan-
dard algorithms for the accumulation buffer [9] is a depth-of-field
effect, which uses identical sampling patterns of the lens aperture
for all pixels. It has been shown by Sobol [25] that the Method of
Dependent Tests is an unbiased variant of Monte Carlo integration.
Recently, hierarchical versions of the Method of Dependent Tests
have been proposed [11, 17], but we do not currently make use of
these results.

3.2 Dependent Test Implementation of Light Scat-
tering in Height Fields

Based on the Method of Dependent Tests, we can rewrite Monte
Carlo algorithms as a sequence of SIMD operations that operate on
the grid cells of the height field. Consider the light path in Figure 3.
Light hits the height field from direction ~l, scatters at each point in
direction −~di ∈ D, and leaves the surface in the direction of the
viewer ~v.

Since all these vectors are constant across the height field, the
only varying parameters are the surface normals. More specifically,
for the radiance leaving a grid point p in direction ~v, the important

v➝

−l
➝

p q

−d
➝

i

Figure 3: With the Method of Dependent Tests, the different paths
for the illumination in all surface points are composed of pieces
with identical directions.

varying parameters are the normal ~np, the point q := Si[p] visible
from p in direction ~di, and the normal ~nq in that point.

In particular, the radiance in direction ~v caused by light arriving
from direction ~l and scattered once in direction −~di is given by the
following formula.

Lo(p, ~v) =fr(~np, ~di, ~v) < ~np, ~di > ·
(

fr(~nq ,~l,−~di) < ~nq,~l > ·Li(q,~l)
)

. (1)

Usually, the BRDF is written as a 4D function of the incoming
and the outgoing direction, both given relative to a local coordi-
nate frame where the local surface normal coincides with the z-axis.
In a height field setting, however, the viewing and light directions
are given in some global coordinate system that is not aligned with
the local coordinate frame, so that it is first necessary to perform
a transformation between the two frames. To emphasize this fact,
we have denoted the BRDF as a function of the incoming and out-
going direction as well as the surface normal. If we plan to use an
anisotropic BRDF on the micro geometry level, we would also have
to include a reference tangent vector.

Note that the term in parenthesis is simply the direct illumination
of a height field with viewing direction −~di, with light arriving
from ~l. If we precompute this term for all grid points in the height
field, we obtain a texture Ld containing the direct illumination for
each surface point. This texture can be generated using a bump
mapping step where an orthographic camera points down onto the
height field, but −~di is used as the viewing direction for shading
purposes.

Once we have Ld, the second reflection is just another bump
mapping step with ~v as the viewing direction and ~di as the light
direction. This time, the incoming radiance is not determined by
the intensity of the light source, but rather by the content of the
Ld texture. For each surface point p we look up the corresponding
visible point q = Si[p]. The outgoing radiance at q, which is
stored in the texture as Ld[q], is at the same time the incoming
radiance at p.

Thus, we have reduced computing the once-scattered light in
each point of the height field to two successive bump mapping op-
erations, where the second one requires an additional indirection
to look up the illumination. We can easily extend this technique to
longer paths, and also add in the direct term at each scattering point.
This is illustrated in the Figure 4.

For the total illumination in a height field, we sum up the contri-
butions for several such paths (some 40-100 in most of our scenes).
This way, we compute the illumination in the complete height field
at once, using two SIMD-style operations on the whole height field
texture: bump mapping for direct illumination, using two given di-
rections for incoming and outgoing light, as well as a lookup of
the indirect illumination in a texture map using the precomputed
visibility data in form of the textures Si.

This is in itself a performance improvement over the regular
Monte Carlo algorithms presented before, because the illumination

+

+

Indirect Illum.

d➛n , v
➛

Indirect Illum.

d➛2 ,−d➛3

Indirect Illum.

d➛1 ,−d➛2

Direct Illum.

l➛,−d➛1

Direct Illum.

 l
➛,−d➛2

Direct Illum.

 l
➛

 ,−d➛3

Direct Illum.

 l
➛, v➛

+

+

Figure 4: Extending the dependent test scattering algorithm to mul-
tiple scattering. Each box indicates a texture that is generated with
regular bump mapping.

in one grid cell will contribute to many other points on the surface
in the final image via light scattering. In contrast to standard Monte
Carlo, our dependent test approach avoids recomputing this contri-
bution for each individual pixel.

What remains to be done is an efficient test of whether a given
point lies in shadow with respect to the light direction ~l. While it is
possible to interpolate this information directly from the visibility
database Si, we can also find a more efficient, although approxi-
mate representation, that will be described in Section 4.

3.3 Use of Graphics Hardware

In addition to the above-mentioned performance improvements we
get from the implementation of the Method of Dependent Tests in
software, we can also utilize graphics hardware for an additional
performance gain. In recent graphics hardware, both on the work-
station and on the consumer level, several new features have been
introduced that we can make use of. In particular, we assume a
standard OpenGL-like graphics pipeline [24] with some extensions
as described in the following.

Firstly, we assume the hardware has some way of rendering
bump maps. This can either be supported through specific exten-
sions (e.g. [22]), or through the OpenGL imaging subset [24], as
described by Heidrich and Seidel [10]. Any kind of bump mapping
scheme will be sufficient for our purposes, but the kind of reflection
model available in this bump mapping step will determine what re-
flection model we can use to illuminate our hight field.

Secondly, we will need a way of interpreting the components
stored in one texture or image as texture coordinates pointing into
another texture. One way of supporting this is the so-called pixel
texture extension [12, 10], which performs this operation during
transfer of images into the frame buffer, and is currently only avail-
able on some high-end SGI machines. Alternatively, we can use
dependent texture lookups, a variant of multi-texturing, that has re-
cently been announced by several vendors for the next generation
of consumer level hardware (the Matrox G400 offers a restricted
version of this today). With dependent texturing, we can map two
or more textures simultaneously onto an object, where the texture
coordinates of the second texture are obtained from the components
of the first texture. This is exactly the feature we are looking for. In
case we have hardware that supports neither of the two, it is quite
simple, although not very fast, to implement the pixel texture exten-
sion in software: the framebuffer is read out to main memory, and
each pixel is replaced by a value looked up from a texture, using the

previous contents of the pixel as texture coordinates.
Using these two features, dependent texturing and bump map-

ping, the implementation of the dependent test method as described
above is simple. As mentioned in Section 3.2 and depicted in Fig-
ure 3, the scattering of light via two points p and q in the height
field first requires us to compute the direct illumination in q. If we
do this for all grid points we obtain a texture Ld containing the re-
flected light caused by the direct illumination in each point. This
texture Ld is generated using the bump mapping mechanism the
hardware provides. Typically, the hardware will support only dif-
fuse and Phong reflections, but if it supports more general models,
then these can also be used for our scattering implementation.

The second reflection in p is also a bump mapping step (although
with different viewing- and light directions), but this time the direct
illumination from the light source has to be replaced by a per-pixel
radiance value corresponding to the reflected radiance of the point
q visible from p in the scattering direction. We achieve this by
bump mapping the surface with a light intensity of 1, and by af-
terwards applying a pixel-wise multiplication of the value looked
up from Ld with the help of dependent texturing. Figure 5 shows
how to conceptually set up a multi-texturing system with dependent
textures to achieve this result.

Si
p

q

Li
Ld

Figure 5: For computing the indirect light with the help of graphics
hardware, we conceptually require a multi-texturing system with
dependent texture lookups. This figure illustrates how this system
has to be set up. Boxes indicate one of the two textures, while
incoming arrows signal texture coordinates and outgoing ones mean
the resulting color values.

The first texture is the Si that corresponds to the scattering di-
rection di. For each point p it yields q, the point visible from p

in direction di. The second texture Ld contains the reflected direct
light in each point, which acts as an incoming radiance at p.

By using this hardware approach, we treat the graphics board as
a SIMD-like machine which performs the desired operations, and
computes one light path for each of the grid points at once. As
shown in Section 6, this use of hardware dramatically increases the
performance over the software version to an almost interactive rate.

4 Approximate Bump Map Shadows

As mentioned in Section 3.1, we can simply use scattering informa-
tion stored in Si for determining the shadows cast in a height field.
For example, to determine if a given grid point p lies in shadow
for some light direction, we could simply find the closest direction
~di ∈ D, and use texture Si to determine whether p sees another
point of the height field in direction ~di.

For a higher quality test, we can precompute a triangulation of
all points points on the unit sphere corresponding to the unit vectors
~di (since the set of directions is the same for all surface points, this
is just one triangle mesh for all points on the height field). The
same triangulation will later be used in Section 5 for other purposes.
Based on this mesh, we can easily determine the three directions ~di

that are closest to any given light direction, and then interpolate
those directions’ visibility values. This yields a visibility factor
between 0 and 1 defining a smooth transition between light and
shadow.

Although this approach works, we have also implemented a more
approximate method that is better suited for hardware implementa-
tion and much faster.

We start by projecting all the unit vectors for the sampling di-
rections ~di ∈ D of the upper hemisphere over the shading normal
into the tangent plane, i.e. we drop the z coordinate of ~di in the lo-
cal coordinate frame. Then we fit an ellipse containing as many of
those 2D points that correspond to unshadowed directions as pos-
sible, without containing too many shadowed directions. This el-
lipse is uniquely determined by its (2D) center point c, a direction
(ax, ay)T describing the direction of the major axis (the minor axis
is then simply (−ay, ax)T), and two radii r1 and r2, one for the
extent along each axis.

a
c

r2

r1

Figure 6: For the shadow test we precompute 2D ellipses at each
point of the height field, by fitting them to the projections of the
scattering directions into the tangent plane.

For the fitting process, we begin with the ellipse represented by
the eigenvectors of the covariance matrix of all points correspond-
ing to unshadowed directions. We then optimize the radii with a
local optimization method. As an optimization criterion we try to
maximize the number of light directions inside the ellipse while at
the same time minimizing the number of shadowed directions in-
side it.

Once we have computed this ellipse for each grid point in the
height field, the shadow test is simple. The light direction ~l is also
projected into the tangent plane, and it is checked whether the re-
sulting 2D point is inside the ellipse (corresponding to a lit point) or
not (corresponding to a shadowed point). This approach is similar
to the one described by Max [19] using horizon maps. Only here
the horizon map is replaced by a map of ellipses, each uniquely
determined by 6 parameters.

Both the projection and the in-ellipse test can mathematically be
expressed very easily. First, the 2D coordinates lx and ly have to be
transformed into the coordinate system defined by the axes of the
ellipse:

l
′
x := <

(

ax

ay

)

,

(

lx − cx

ly − cy

)

>, (2)

l
′
y := <

(

−ay

ax

)

,

(

lx − cx

ly − cy

)

> (3)

Afterwards, the test

1−
(l′x)2

r2

1

−
(l′y)2

r2

2

≥ 0 (4)

has to be performed.
To map these computations to graphics hardware, we represent

the six degrees of freedom for the ellipses as 2 RGB textures. Then
the required operations to implement Equations 2 through 4 are
simple dot products as well as additions and multiplications. Both
Westermann et al. [30] and Heidrich and Seidel [10] have shown
how such operations can be implemented on graphics hardware.
This is possible using the OpenGL imaging subset [24], available

on most contemporary workstations, but also using some vendor
specific extensions, such as the register combiner extension from
NVIDIA [22]. Depending on the exact graphics hardware avail-
able, the implementation details will have to vary slightly. Thus,
they are omitted from this paper, and we refer the interested reader
to our technical report [14].

5 Varying the Base Geometry

So far we have only considered the case where the height field is
attached to a base geometry of a fixed, previously known curvature,
typically a planar object. However, if we plan to use the same height
field for different geometric objects, the valleys in a height field
widen up or narrow down depending on the local curvature of the
object, and the height field can be locally stretched in a non-uniform
fashion. This affects both the casting of shadows and the scattering
of indirect light. For the shadows, it is obvious that narrower valleys
will cause more regions to be shadowed, while in wider valleys
more regions are lit.

For the scattering part, the opposite is true. For a point on the
bottom of a narrow valley, a large proportion of the solid angle is
covered by other portions of the height field, and therefore the im-
pact of indirect light is strong. On the other hand, in a wide valley,
most of the light will be reflected back into the environment rather
than remaining inside the height field.

In this section we discuss adaptations of the previously described
algorithms and data structures to the case where the base geometry
changes. To this end, we will assume that the curvature of this base
geometry is small compared to the features in the height field. It
is then a reasonable assumption that the visibility does not change
as the surface is bent. This means that two points in the height
field that are mutually visible for a planar base geometry, are also
mutually visible in the curved case. Obviously, this assumption
breaks down for extreme curvatures, but it generally holds for small
ones.

First let us consider the data structures and algorithms for com-
puting scattered, indirect light. Since we have assumed that no
extreme changes in visibility occur, the precomputed visibility
data i.e. the textures Si are still valid as the underlying geometry
changes. However, as depicted in Figure 7, some parameters of the
illumination change. Firstly, there is no longer a fixed global di-
rection ~di corresponding to each texture Si. Rather, the direction
changes as a parameter of the curvature and of the distance between
two mutually visible points, and becomes different for every point
on the surface. Secondly, the normal (and therefore the angles be-
tween the normal and other vectors) changes as a function of the
same parameters.

p

q

p q

Figure 7: The directions ~di change on a per-pixel basis if the height
field is applied to a curved base geometry. The rate of change de-
pends on the distance of two points from each other.

These changes remove the coherence that we used to map the
algorithm to graphics hardware, since now all directions need to be
computed for each individual height field point.This requires opera-
tions that are currently not possible with graphics hardware. On the
other hand, the abovementioned changes are quite easy to account
for in a software renderer.

However, there is a third change due to the curvature, which af-
fects all our Monte Carlo algorithms. The set of directions D used
to be a uniform sampling of the directional sphere for the case of a
given, fixed base geometry. Now, when the height field is applied
to a geometry with slightly changed curvature or a non-uniformly
scaled one, the directions change as mentioned above. The rate of
change depends on the distance of the two mutually visible points.
Therefore, the directions do not change uniformly, and, as a conse-
quence, the sampling of directions is no longer uniform. In Monte
Carlo terms, this means that the importance of the individual di-
rections has changed, and that this importance has to be taken into
account for the Monte Carlo integration. Different light paths can
no longer be summed up with equal weight, but have to be weighted
by the importance of the respective path. This importance has to be
computed for every individual point in the height field.

This requires us to develop an estimate for the importance of a
given sample direction, which is explained in the following. We
start by interpreting the unit directions di ∈ D for the original
geometry as points on the unit sphere, and generate a triangulation
of these. Since the sampling of directions is uniform in this planar
case, the areas of the triangle fans surrounding any direction di will
be approximately the same for all di, see Figure 8.

�����
�����
����������
�����

���
���
���

�����
�����
��������
���

�����
�����
�����

�����
���
���
���
������
���
������

Figure 8: When a height field is applied to a different base geom-
etry, the importance of the individual directions changes, which is
indicated by a change of area of the triangulated unit directions on
the sphere.

Now, if we gradually bend the underlying surface, the points cor-
responding to the directions will slowly move either towards the
horizon or towards the zenith, depending on the sign of the curva-
ture we apply. Note that a change in visibility means that during
this movement the triangle mesh folds over at a given point. As
mentioned above, we are going to ignore this situation, and restrict
ourselves to small curvatures which do not cause such visibility
changes.

In this case, the sole effect of the moving points on the unit
sphere is that the areas of the triangle fans surrounding each di-
rection change (see Figure 8). This change of area is an estimate
for the change in sampling rate, and therefore an estimate for the
importance of a particular direction in the curved case. Thus, if we
apply a height field to a curved surface, we weight all light paths
by the relative area of the triangle fan surrounding the chosen di-
rection.

Now that we have dealt with the adaptation of the scattering data
structures, we also have to take care of the shadowing. If we com-
pute the shadows directly from the Si, as described at the beginning
of Section 4, then no changes are required. However, if we are us-
ing the 2D ellipses introduced at the end of Section 4, then these
ellipses have to be adapted to the local surface curvature.

Starting from the updated scattering directions di, we can fit a
different ellipse for each point and each surface curvature. How-
ever, precomputing and storing this information for a lot of differ-
ent curvatures is both memory and time consuming. We therefore
only precompute a total of five different ellipses: the original one
for zero curvature, one each for a slight positive and a slight nega-
tive curvature in each of the parametric directions. From this data
we can then generate a linear approximation of the changes of el-
lipse parameters under any given curvature. Again, this only works

reasonably as long as the radii of curvature are large compared to
the height field features (i.e. as long as the curvatures are small),
but for large curvatures we will run into visibility changes anyway.

6 Results

We have implemented the approaches described in this paper both
in software, and for two different kinds of graphics hardware.
Firstly, we use the SGI Octane, which provides support for pixel
textures, but does not have advanced features like multi-texturing,
which would help us to reduce the number of rendering passes.
On this platform we have implemented the Phong reflection model
using the normal map approach described by Heidrich and Sei-
del [10]. Heidrich and Seidel also describe ways of incorporating
other reflection models as well as environment maps through the
use of pixel textures. We have not made use of these results.

Secondly, we have used an NVIDIA GeForce 256 with DDR
RAM. This graphics board supports multi-texturing with very flex-
ible ways of combining the resulting colors for each fragment (via
NVIDIA’s register combiner extension [22]). This allows us to per-
form bump mapping with local illumination and the Phong model
in one pass, and helps us to efficiently implement the shadow test.
However, the GeForce does not support dependent texture lookups,
so that the scattering had to be implemented essentially using a soft-
ware version of the pixel texture extension.

The first tests we have performed are designed to show whether
we can use precomputed visibility to consistently illuminate geom-
etry and bump maps, and also to simulate BRDFs. Figure 9 shows
some curved geometry to which the triangular height field from Fig-
ure 2 has been applied. In this height field, the faces pointing in
one direction are red, and the faces pointing in the other are white.
The top row of Figure 9 shows the results of applying the geometry
as a displacement map. On the left side, which does not include
scattering but shadowing and masking, the separation of the colors
becomes apparent, since the top of the geometry is more reddish,
while the bottom is white. Due to color bleeding, the image in-
cluding the scattering term on the right is more homogeneous. The
bottom row of the figure shows the geometry with a BRDF that has
been computed from the same height field using graphics hardware.
Both the version with and the one without scattering show the same
kind of behavior as the geometry-based rendering, which illustrates
that our technique can be used for smooth transitions between levels
of detail.

Both for the rendering of the geometry-based image and for the
generation of the BRDF, we first had to generate the visibility data,
namely the textures Si and the ellipse data structures for the shad-
ows. The two leftmost columns of Table 1 show the timings for this
precomputation phase and a number of different height fields. The
memory requirements for the data structures are quite low: for the
scattering in a 32 × 32 height field with 100 sample directions we
generate 100 two-component textures with a size of 32 × 32 × 2
Bytes, which amounts to less than 2 MB of data for the whole scat-
tering information. The shadowing data structure simply consists
of two three-component textures, yielding 32 × 32 × 6 = 6144
Bytes.

After the data structures are precomputed, we can efficiently
compute images with scattering (100 samples) and shadow-
ing/masking from them using either a software or a hardware ren-
derer. The times for computing the scattering terms in the height
field are listed in the third and fourth column of Table 1.

Note that the timings for hardware rendering of small (32 × 32)
height fields including a one-time scattering are well below one sec-
ond. Thus, we can generate images of scattered height fields at in-
teractive frame rates, although not quite fast enough for applications
like games.

Figure 9: A comparison of geometry (top) and BRDF (bottom).
Left side: without indirect light, right side: with indirect light.

Height Field Si Shadows SW HW
Triangles (32× 32) 27 32 10 0.48
Bricks (128 × 128) 1029 194 12 2.10
Bumps (32 × 32) 109 65 8 0.48

Table 1: Timings for precomputation and rendering of different
height fields in seconds.

However, we can use the hardware algorithm to compute higher-
dimensional data structures, such as light fields [8, 18] and both
space variant and space invariant BRDFs. For example, we can
generate a light field consisting of 32 × 32 images of a height field
including scattering terms in just about 6-8 minutes.

As we move to BRDFs, a single BRDF sample is the average
radiance from a whole image of the height field. Thus, if we would
like to compute a dense, regular mesh of samples for a BRDF, we
have to compute a 4-dimensional array of images, and then average
the radiance of each image. The BTF [5], on the other hand, is
a 6-dimensional data structure obtained by omitting the averaging
step, and storing the images directly. These operations can become
prohibitively expensive: even for relatively small BRDF resolutions
such as 164, this would take about 7-8 hours. However, as other
researchers have pointed out before [3, 31], it is not necessary to

compute this large number of independent samples. Since BRDFs
are typically smooth functions, it is sufficient to compute several
hundred random samples, and project those into a hierarchical basis
such as spherical harmonics.

Using our approach, this small number of samples can be gen-
erated within several minutes. To further improve the performance
slightly, we can completely get rid of geometry for the computation
of BRDF samples, and work in texture space. As described in Sec-
tions 3.2 and 3.3, the Method of Dependent Tests already operates
in texture space. Only in the last step, when we want to display
the result, we normally have to apply this texture to geometry. For
the BRDF computation, however, we are only interested in the av-
erage of the radiances for the visible surface points. Therefore, if
we manage to solve the masking problem by some other means,
we do not have to use geometry at all. The masking problem can be
solved by using the same data structures as used for the shadow test,
only with the viewing direction instead of the light direction. This
technique was first proposed by Cabral et al. [3] for their method of
shadowing bump maps.

Figure 10: Three bump-mapped spheres. Bottom left: with shad-
ows only. Top: with shadows and indirect light bouncing off other
parts of the bump map. Bottom right: with additional indirect light
looked up from an environment map.

Figure 10 shows some more examples for our technique. The
bottom left sphere is rendered with a bump map using only direct
light and our shadow test. The top sphere uses the same bump map,
but also includes indirect light reflected from other portions of the
bump map up to a path length of 4. Finally, in the bottom right
sphere, we also include indirect illumination from other parts of the
scene, which, in this case, is represented as an environment map,
similarly to the method described by Debevec [6]. This is imple-
mented by querying the environment map every time the visibility
textures Si indicate that no intersection occurs with the height field
for the given direction.

Figure 11 demonstrates the effect of different curvatures of the
underlying geometry, that other researchers have neglected so far.
Note that the red faces receive only indirect illumination through
scattering from the white faces. We can clearly see the reduced
scattering in the case where the curved base geometry causes the
valleys to widen up, and at the same time we can see that more
regions are shadowed for this case.

Finally, Figures 12 and 13 show some more complicated exam-
ples. Figure 12 depicts a backyard scene in which every object
except for the floor and the bin has been bump-mapped. This im-
age took 16.2 minutes to render in a resolution of 640×400 pixels.

Figure 11: Changes of indirect light and shadows as the curvature of
the base geometry changes. Note that the red faces are exclusively
illuminated indirectly via the light scattered from the white faces.

The scene has been rendered in software with our methods for shad-
owing and scattering. Figure 13 shows an image of a terrain model
rendered with hardware acceleration and bump shadows in real time
(≈ 20 fps. on a GeForce 256).

7 Conclusion

In this paper, we have described an efficient method for illumi-
nating height fields and bump maps based on precomputed visi-
bility information. The algorithm simulates both self shadowing
of the height field, as well as indirect illumination bouncing off
height field facets. This allows us to use geometry, bump maps, and
BRDFs as different levels of detail for a surface structure, and to
consistently illuminate these three representations.

Using the Method of Dependent Tests, which is a generalization
of Monte Carlo techniques, it is possible to map these methods onto
graphics hardware. These techniques exploit the new bump map-
ping features of recent graphics boards, as well as dependent tex-
ture mapping, which is currently available only on some high-end
systems, but will be a standard feature of the commodity hardware
shipping at the end of the year.

Both the software and the hardware implementation of our algo-
rithms can be used to efficiently precompute BRDFs and higher di-
mensional data structures such as BTFs or shift-variant BRDFs. Fi-
nally, we are also able to approximate the effects of different curva-
tures of the underlying base geometry, which to some extent change
shadowing and light scattering in a height field, and therefore also
affects representations like the BRDF. This is the first time in the
literature that these effects are simulated.

There is a potential for extending the techniques described in
this paper in several ways. First of all, we would like to be able
to deal with other geometry than height fields, since materials such
as cloth and porous materials cannot be represented in this form.
In principle it should be easy to extend our algorithms to arbitrary
geometry, however. In order to utilize graphics hardware, we have
to find an appropriate 2D parameterization for the object so that all
surface points can be represented in a texture. The next step could
then be to extend the method to participating media, for example to
simulate sub-surface scattering. It would also be interesting to ex-
plore whether it is useful to apply the developed methods to com-
pute global illumination in macroscopic scenes along the lines of
the transillumination method [29].

Finally, a hierarchical version of the Method of Dependent Tests
has recently been introduced by Heinrich [11] and Keller [17].
Heinrich proved that this method is optimal for a certain class of
functions fulfilling some smoothness criteria, and Keller extended
this work to other classes of functions. It would be interesting to see
if these results can be utilized to further improve the performance
of our algorithm.

8 Acknowledgments

We would like to thank Alexander Keller for pointing out the re-
lationship between our algorithms and the Method of Dependent
Tests. Furthermore, we would like to thank him, Michael McCool,
and the anonymous reviewers for their valuable comments.

References

[1] B. Becker and N. Max. Smooth transitions between bump ren-
dering algorithms. In Computer Graphics (SIGGRAPH ’93
Proceedings), pages 183–190, August 1993.

[2] J. Blinn. Simulation of wrinkled surfaces. In Computer
Graphics (SIGGRAPH ’78 Proceedings), pages 286–292, Au-
gust 1978.

[3] B. Cabral, N. Max, and R. Springmeyer. Bidirectional reflec-
tion functions from surface bump maps. In Computer Graph-
ics (SIGGRAPH ’87 Proceedings), pages 273–281, July 1987.

[4] R. Cook, T. Porter, and L. Carpenter. Distributed ray tracing.
In Computer Graphics (SIGGRAPH ’84 Proceedings), pages
137–45, July 1984.

[5] K. Dana, B. van Ginneken, S. Nayar, and J. Koenderink. Re-
flectance and texture of real world surfaces. ACM Transac-
tions on Graphics, 18(1):1–34, January 1999.

[6] P. Debevec. Rendering synthetic objects into real scenes:
Bridging traditional and image-based graphics with global il-
lumination and high dynamic range photography. In Com-
puter Graphics (SIGGRAPH ’98 Proceedings), pages 189–
198, July 1998.

[7] A. Frolov and N. Chentsov. On the calculation of certain in-
tegrals dependent on a parameter by the Monte Carlo method.
Zh. Vychisl. Mat. Fiz., 2(4):714 – 717, 1962. (in Russian).

[8] S. Gortler, R. Grzeszczuk, R. Szelinski, and M. Cohen. The
Lumigraph. In Computer Graphics (SIGGRAPH ’96 Proceed-
ings), pages 43–54, August 1996.

[9] P. Haeberli and K. Akeley. The accumulation buffer: Hard-
ware support for high-quality rendering. In Computer Graph-
ics (SIGGRAPH ’90 Proceedings), pages 309–318, August
1990.

[10] W. Heidrich and H.-P. Seidel. Realistic, hardware-accelerated
shading and lighting. In Computer Graphics (SIGGRAPH ’99
Proceedings), August 1999.

[11] S. Heinrich. Monte Carlo Complexity of Global Solution of
Integral Equations. Journal of Complexity, 14:151–175, 1998.

[12] Silicon Graphics Inc. Pixel Texture Extension, De-
cember 1996. Specification document, available from
http://www.opengl.org.

[13] J. Kajiya. The rendering equation. In Computer Graphics
(SIGGRAPH ’86 Proceedings), pages 143–150, August 1986.

[14] J. Kautz, W. Heidrich, and K. Daubert. Bump map shadows
for OpenGL rendering. Technical Report MPI-I-2000-4-001,
Max-Planck-Institut für Informatik, Saarbrücken, Germany,
2000.

[15] J. Kautz and M. McCool. Interactive rendering with arbitrary
BRDFs using separable approximations. In Rendering Tech-
niques ’99 (Proc. of Eurographics Workshop on Rendering),
pages 247 – 260, June 1999.

[16] A. Keller. Instant radiosity. In Computer Graphics (SIG-
GRAPH ’97 Proceedings), pages 49–56, August 1997.

[17] A. Keller. Hierarchical monte carlo image synthesis. Mathe-
matics and Computers in Simulation, 2000. preprint available
from http://www.uni-kl.de/AG-Heinrich/Alex.html.

[18] M. Levoy and P. Hanrahan. Light field rendering. In Com-
puter Graphics (SIGGRAPH ’96 Proceedings), pages 31–42,
August 1996.

[19] N. Max. Horizon mapping: shadows for bump-mapped sur-
faces. The Visual Computer, 4(2):109–117, July 1988.

[20] L. Mostefaoui, J.-M. Dischler, and D. Ghazanfarpou. Ren-
dering inhomogeneous surfaces with radiosity. In Rendering
Techniques ’99 (Proc. of Eurographics Workshop on Render-
ing), pages 283–292, June 1999.

[21] F. Neyret. Modeling, animating, and rendering complex
scenes using volumetric textures. IEEE Transactions on Vi-
sualization and Computer Graphics, 4(1), January – March
1998.

[22] NVIDIA Corporation. NVIDIA OpenGL Extension Specifica-
tions, October 1999. Available from http://www.nvidia.com.

[23] M. Peercy, J. Airey, and B. Cabral. Efficient bump mapping
hardware. In Computer Graphics (SIGGRAPH ’97 Proceed-
ings), pages 303–306, August 1997.

[24] M. Segal and K. Akeley. The OpenGL Graphics System: A
Specification (Version 1.2), 1998.

[25] I. Sobol. The use of ω2-distribution for error estimation
in the calculation of integrals by the monte carlo method.
In U.S.S.R. Computational Mathematics and Mathematical
Physics, pages 717–723, 1962.

[26] J. Stewart. Hierarchical visibility in terrains. In Rendering
Techniques ’97 (Proc. of Eurographics Workshop on Render-
ing), pages 217–228, June 1997.

[27] J. Stewart. Fast horizon computation at all points of a terrain
with visibility and shading applications. IEEE Transactions
on Visualization and Computer Graphics, 4(1):82–93, March
1998.

[28] J. Stewart. Computing visibility from folded surfaces.
Computers and Graphics, 1999. preprint obtained from
http://www.dgp.toronto.edu/people/JamesStewart/.

[29] L. Szirmay-Kalos, T. Fóris, L. Neumann, and B. Csébfalvi.
An Analysis of Quasi-Monte Carlo Integration Applied to
the Transillumination Radiosity Method. Computer Graphics
Forum (Proc. of Eurographics ’97), 16(3):271–282, August
1997.

[30] R. Westermann and T. Ertl. Efficiently using graphics hard-
ware in volume rendering applications. In "Computer Graph-
ics (SIGGRAPH ’98 Proceedings)", pages 169–178, July
1998.

[31] S. Westin, J. Arvo, and K. Torrance. Predicting reflectance
functions from complex surfaces. In Computer Graphics
(SIGGRAPH ’92 Proceedings), pages 255–264, July 1992.

Figure 12: A more complex scene where all surfaces are bump mapped, including shadowing and indirect light.

Figure 13: A terrain model with bump map shadowing rendered in realtime with graphics hardware.

