
Further Comparison of Algorithms for Geometric Intersection ProblemsD. S. Andrews J. Snoeyink J. Boritz T. ChanG. Denham J. Harrison C. ZhuDepartment of Computer ScienceUniversity of British Columbia201 { 2366 Main MallVancouver, BC V6T 1Z4 CanadaEmail contact: andrews@cs.ubc.caAbstractThe usual �rst step in computing an overlay of two vector maps is to determine which pairs ofsegments (one from each map) intersect so as to perform line-breaking. We identify two classesof algorithms for the segment intersection problem, spatial partitioning and spatial ordering,and we report on implementations of seven algorithms, some known and some new. Though thespatial ordering algorithms can be made output sensitive, our experiments show that the spatialpartitioning algorithms are better for segment intersection in a GIS context. We do identify anew Trapezoid Sweep algorithm that is competitive if the segments are stored in sorted order.1 IntroductionMap overlay processing is at the core of most vector-based Geographic Information Systems (GISs).One of the time-consuming steps of this processing is line-breaking, which we can abstract as thesegment intersection problem: Given a collection of n line segments in the plane, determine whichpairs intersect.For overlaying two maps, we can re�ne this to the red/blue segment intersection problem: Givena set R of red line segments in which no pair intersect except possibly at endpoints, and a set Bof blue line segments (again, having disjoint interiors), �nd the red/blue intersections|all pairs ofa red and a blue segment that intersect. This distinction between the general segment intersectionproblem and the red/blue segment intersection problem has been made in computational geometry,which is a branch of the theoretical analysis of algorithms that studies geometric computation. Ithas not been made in the more practically-oriented literature on map overlay in GIS. We undertookthis research to determine if this distinction could make a practical di�erence.We survey results on segment intersection that have been reported in the practical and theoret-ical literature in the next section. After discussing the basis for algorithm comparison in section 3,we divide the algorithms that we study into two groups and describe them in:Section 4 Spatial partition algorithms, which partition the plane and its line segments into regionsin which the problem is solved by exhaustive checking, and1



Section 5 Spatial ordering algorithms, which order the segments|often by a sweep|and use theproperties of the red/blue problem to determine intersections.Section 6 describes the test data sets, lists the results of runs, and interprets the results.Spatial ordering algorithms can be made output sensitive|that is, they can be implemented toperform work proportional to the number of segments plus the number of reported intersections,for any input data set. Such a property is appealing because in GIS data intersections are relativelyrare. Partitioning (also called bucketing or tiling) algorithms, however, work especially well in GISbecause segments tend to be short, sparse, and evenly distributed in the plane.2 Algorithm comparisons in the literatureThree authors have argued eloquently for spatial partitioning approaches. Franklin [6, 7, 8] advo-cates the Uniform Grid. At the fourth spatial data handling conference, Pullar showed that a tilingapproach could be far superior to a theoretically e�cient sweep [13]. Samet [14, 15] advocatesquadtree partitioning. Because our initial emphasis was on novel algorithms speci�cally for thered/blue intersection problem, we have not explored all known variants of these algorithms. Wecan, however, partially rehabilitate theoretically e�cient algorithms from the unattering compar-isons that Pullar gave. The Trapezoid Sweep algorithm described in section 5.2 is a new algorithmby Timothy Chan [2] that is holds its own against our partitioning algorithms.The computational geometry literature has studied output-sensitive algorithms for the generaland red/blue segment intersection problems. Theoretical (mathematical) analysis of algorithmsoften studies the worst-case performance of algorithms. (One would like to study the average case,but mathematically de�ning an \average" instance of, say, map overlay is impossible. We believethat a combination of mathematical analysis and execution on sample data sets is the best wayto understand the performance of an algorithm.) For a segment intersection problem instanceinvolving n segments, r red and b blue, there can be r � b pairs of intersecting segments; therefore,in the worst-case, no algorithm can signi�cantly outperform the trivial algorithm that tests eachred segment against each blue. If the number of intersections is represented by a parameter K,however, then one can represent the running time of an algorithm as an overhead term plus anoutput-sensitive term that depends on K. For example, the red/blue intersection algorithms ofsections 5.2 and 5.3 are optimal|they run in �(n logn +K) time and use O(n) space.1Bently and Ottmann [1] developed the plane-sweep algorithm described in section 5.1 to solvethe general segment intersection problem in O((n+K) logn) time and linear space. Mairson andStol� [10] extended a sweep to incorporate properties of the red/blue intersection problems andobtained O(n logn + K) time. Chazelle and Edelsbrunner [3] gave an intricate output-sensitivealgorithm for the general intersection problem that achieves this time, but may require �(n +K)space. Others [4, 11] have determined how to count the intersections without computing all ofthem|the algorithm of section 5.3 does this.1The big-O notation is often used to hide implementation-dependent constants in the running time. A functionf(n) = O(g(n)) if there are constants N and c such that f(n) < cg(n) for all n > N . Big-� notation means thatthere is both an upper and a lower bound of the given form.2



3 Comparing algorithmsThe task of comparing algorithms is a di�cult one. Running two algorithms on particular in-stances of a problem gives little information unless one can extrapolate to predict behavior onother instances. A further complication is the fact that data sets for red/blue segment intersectionproblems vary widely; they can contain long or short segments that are clustered or spread overthe plane and have many or few intersections.In the next sections we give the worst-case asymptotic times of algorithms running on r redand b blue segments, for a total of n = r+b line segments. Times for spatial ordering algorithms insection 5 also depend on the number of intersection points, K. As is common, these running timesare expressed asymptotically using big-O notation. The values of hidden constants are crucial forthe practical application of an algorithm; thus, the analysis of running time is most useful as a wayto extrapolate and explain the performance results listed in section 6.We also comment on other factors:� Memory requirements and locality of reference. The amount of storage needed per segmentvaries slightly from algorithm to algorithm. For example, some partitioning algorithms in-crease the number of segments by storing segments with each region that they intersect. Ouralgorithms have been implemented and tested on workstations with large virtual memory.Even here the amount and access patterns for memory are important because an algorithm'sinteraction with caching and paging schemes depends on its locality of reference.� Dependence on the data sets. Some algorithms (e.g., the standard uniform grid) do not adaptto the data set, but assume certain statistical behavior (perhaps uniformly-distributed shortsegments) in order to deliver good performance. Others (e.g. quadtree and BSP tree) adapttheir data structures to handle long segments or clusters. Still others use the individualsegments of the data to determine the tests to perform.� Ease of correct implementation. Some algorithms are easier than others to implement sothat they correctly handle special cases and are not prone to errors due to the inaccuraciesof oating point computations. The speci�cation of correct behavior in special cases maynot be even be clear. For example, if a red segment is a subset of a blue segment, shouldthey be reported as intersecting zero, one, or in�nitely many times, or be agged for specialtreatment? (Algorithms that duplicate segments are apt to �nd these segments intersectingmultiple times.) Since our algorithms were implemented by di�erent programmers, we foundthat this case in particular was treated in di�erent ways.� Preprocessing. Several of the algorithms begin by sorting the endpoints of each color byx-coordinate or putting red or blue segments into appropriate data structures. These stepscan be treated as preprocessing|they can be performed once and the results can be storedwith the data so that any future overlays involving the same map layer can be performedmore e�ciently.We can use the brute force algorithm as an example of how we list an algorithm's characteristicsand describe its operation. 3



3.1 Brute ForceCharacteristics: �(n2) best, worst, and average-case time. O(n) space, can have goodlocality. Small constant factors. Ignores data characteristics. No preprocessing.The brute force approach to the line segment intersection problem simply testsall pairs of segments for intersection. For the red/blue problem, one tests only pairsconsisting of a red and a blue segment|we implemented this algorithm for comparison purposes.When all intersections actually occur, or when the number of segments of one of the colors issmall, the brute force solution can be e�ective because of its low overhead. For most GIS data sets,however, it is better to spend some e�ort reducing the number of segments to be tested against agiven segment.4 Spatial Partitioning AlgorithmsSpatial partitioning algorithms divide the plane into disjoint, non-overlapping regions, distributethe segments among the regions that they intersect, and then determine the intersections that liein each region|often by a brute force algorithm. Partitioning algorithms based on a uniform grid,on a quadtree, and on a binary space partitions have been implemented and tested.There are some caveats for implementing partitioning algorithms. To correctly count intersec-tions on the boundaries of partition regions, these boundaries must be de�ned so that the regionscover the plane but do not overlap. It is tempting to clip line segments to the regions that containthem, but for computational accuracy one should always compute locations of intersection pointsusing original data points. One would therefore like to keep the region descriptions simple so thatone can determine whether an intersection point lies in the region or not.4.1 Uniform Grid/TilingCharacteristics: With a g�g grid, O(n2) worst and about O(n log g+(n=g2)2) best-case time.O(ng) worst and O(n) best-case space. Small constant factors. Will be closer to best cases exceptfor long and unevenly distributed segments. Typically no preprocessing, although one can assignsegments to grid cells. (We did so in our implementation.)The simplest way to do spatial partitioning is to distribute segments to cells in a uniform gridas advocated by Franklin [6, 8, 7]. When the segments are short and sparse in the plane, thisapproach can lead to signi�cant savings.4.2 QuadtreeCharacteristics: O(n2) worst-case time, and grid-like performance in the best case. O(n)space. Fairly small constant factors. Long segments are stored once (in our implementation),but still increase computational complexity. Memory and, to a lesser extent, time adapt to datadistribution. Typically no preprocessing, but segments of each color could be stored in a quadtree.A quadtree is a hierarchical decomposition of the plane into rectangles. In our application, wetook the bounding box of the red line segments and cut it into four equal-sized rectangles usingtwo lines. These were made children of the original rectangle. Red segments completely containedin one of the four rectangles were stored in quadtrees de�ned recursively for the children. Thosesegments that overlapped two or more rectangles were stored in the original. If there are few4



segments or the depth of a rectangle is large, then the rectangle is not subdivided further. Thereare other ways to store segments in a quadtree [14, 15, 16]; we chose this one because it savesmemory by storing each segment only once.To compute intersections of a blue segment b with the red segments stored in a quadtree, onesimply starts from the root of the tree, determines all rectangles that intersect b, and intersects bwith all red segments stored in these rectangles.Long segments that cross rectangle boundaries do not increase the memory requirements underthis type of quadtree storage, whereas they do in the uniform grid. Long segments do, however,increase the computation time. If they are red, then they are stored near the root of the tree andmany blue segments are compared against them; if they are blue, then they cross many rectanglesand are compared against many segments. The short segments of in most GIS applications, however,can be handled well and the partitioning done by the data structure adapts to clustering of thedata.4.3 Binary Space PartitionCharacteristics: Time and space depend on exact partitioning strategy. O(n2) worst casetime and space, but expect better. Reasonable constant factors. Long segments increase storage.Adapts to data clustering. No preprocessing.Binary space partition (BSP) trees were developed in computer graphics [9, 17] andhave been applied in GIS by van Oosterom [18]. A BSP tree represents a partition of a region ofthe plane by storing a line in a root node and having two children that recursively store partitionsof the regions to the right and left of the line. A leaf of the BSP tree, therefore, represent convexregions that are the intersections of halfplanes bounded by lines stored in the ancestors of the leaf.Red and blue line segments are stored at the leaves of a BSP tree. Segments are initiallycompared against the line that is stored at the root node. Segments that lie strictly to the right orleft of this line are stored in the right or left subtree; segments that intersect the line are stored inboth.Our goal is to partition the lines until one color has few segments and we can e�ciently run thebrute force algorithm. To achieve this, we can choose the partitioning lines in the BSP based onthe data sets: one method that we used successfully was to compute the centroids of the red andthe blue segments at a tree node and then take the bisector of the centroids as our partitioningline. This partitioning strategy works especially well when red segments and blue segments formdisjoint clusters; it tends to separate these clusters and avoid testing many possible pairs.5 Spatial Ordering AlgorithmsBecause partitioning algorithms partition with more or less disregard for the data, one can devisedata sets for which partitioning algorithms take quadratic time even when there are no intersections.Long segments and/or uneven clustering are frequently the source of the problem.As an alternative, one can consider spatial ordering algorithms that use an aboveness orderingto reduce the number of segment comparisons that need to be made: segment A is above B if somevertical line intersects A at a greater y coordinate than B. For disjoint line segments in the planethis is a partial order. 5



Our spatial ordering algorithms use aboveness in di�erent ways. The Bentley-Ottmann algo-rithm (section 5.1) uses direct comparisons by aboveness and maintains an ordered list of segmentsthat intersects a vertical sweepline. The Trapezoid Sweep algorithm (section 5.2) disguises its useof aboveness; it forms a trapezoidation that guides the search for intersections. The HereditarySegment Tree algorithm (section 5.3) extends the aboveness relation to a total order and handlessegments in that order.5.1 The Bentley-Ottmann SweepCharacteristics: O(n logn + K logn) worst, and average-case time. O(n) space. Moderatelylarge constant factors. No data dependence. Adapts somewhat if few segments intersect the samevertical line. Can sort endpoints by x-coordinate in preprocessing.A conceptually simple example of the use of an aboveness order is Bentley andOttmann's plane-sweep algorithm for line segment intersections [1]. This algorithm moves asweepline ` from left to right across the plane, maintaining a list of the segments that cross `in aboveness order. When the leftmost or rightmost endpoint of a new segment is encountered,that segment is inserted into or deleted from the list, respectively. Intersections are found when twoadjacent segments swap order. The next intersection the sweepline is to encounter always occursbetween adjacent segments in the list.By using balanced search trees, one can keep track of the list as it changes. Thus, the plane-sweep changes a static two-dimensional problem to a dynamic one-dimensional problem. Theendpoints of the segments need to be sorted so that they can be processed in x-coordinate order bythe sweep. Unfortunately, the intersections are also reported in x-sorted order. Thus, this algorithmtakes O((n+K) logn) time to report all K intersections. The overhead associated with maintainingbalanced binary search trees means that the hidden constant is not negligible in practice.Mairson and Stol� [10] were the �rst to use the aboveness properties of the red/blue intersectionproblem to avoid sorting all the intersections by x-coordinate. They use a recursive \cone-breaking"technique to obtain an algorithm that runs in O(n logn+K) time. Because our Trapezoid Sweephas the same running time with smaller constants, we describe it instead.5.2 The Trapezoid SweepCharacteristics: O(n logn+K) worst and average-case time. O(n) space. Fairly small constantfactors. No data dependence. Adapts somewhat if few segments intersect the same vertical line.Can sort endpoints or even cut plane into trapezoids in preprocessing.Because the Bentley-Ottmann algorithm sorts all intersections by x-coordinates, ispays a logarithmic overhead for each intersection that it �nds. The trapezoid sweep �nds intersec-tions that occur left of a zig-zag sweep front and, therefore, does not sort all intersections.Imagine a blue trapezoidation|a decomposition of the plane into trapezoids that are boundedby the blue line segments|by cutting vertically from the endpoints of both red and blue segmentsto the blue segments above and below. We then sweep the blue trapezoids with a vertical line andinsert the red segments as follows. We maintain a list T of trapezoids that the sweepline intersects.The sweep front consists of the left boundary of the union of trapezoids in T . We separatelymaintain the list of red segments that the sweep intersects.6



For each red segment r, we maintain the invariant that the intersection points on r that areleft of points where r intersects the sweep front have been reported. If we begin the sweep witha vertical line to the left of all of the segments, then this invariant is trivially true. When weencounter the end of a blue trapezoid we advance the sweep front, then report the red intersectionsby a walk in the red tree until the invariant is re-established. Details are omitted due to spaceconstraints, see [2].5.3 Hereditary Segment TreeCharacteristics: O(n logn) worst and average-case time because intersections can be reportedin batches. O(n) space. Somewhat large constant factors. Adapts somewhat if few segmentsintersect the same vertical line. Can sort segments by aboveness in preprocessing.Chazelle et al. [4] suggested and Palazzi and Snoeyink [11] simpli�ed a red/blue inter-section algorithm based on the hereditary segment tree data structure that uses the spatial orderingdirectly.This algorithm begins by sorting the red segments and the blue segments by aboveness. Sincethe colors are independent, the �les of segments need be sorted only once as preprocessing. Next,the hereditary segment tree, a modi�cation of the segment tree [12], is used to �nd 2n slabs andspecial segments that intersect them. (The tree can act as a a guide and need not actually beconstructed [11].) Each slab has a group of red (or blue) long segments that cut completely throughthe slab and a group of blue (or red) short segments that are clipped to the slab and may end insidethe slab. These slabs and segments have the property that every red/blue intersection can be foundin exactly one slab as the intersection of a long segment and a short segment that are grouped withthe slab.To �nd the intersections in the slabs is now an easy task. If the long segments are listedby aboveness, then one can locate the endpoints of each short segment s in the list and reportintersections of s with every long segment that lies between the endpoints of s. O(n logn + K)time is required to �nd the K red/blue intersections of n segments; O(n) space is used for datastructures.This algorithm has one novel feature. It can count intersections in O(n logn) time|that is,without looking at all of them. The number of intersections for a short segment s in a slab is simplythe di�erence in the numbers of long segments above the two endpoints of s.6 Data SetsTo test the algorithms when many intersections occurred we generated long near-horizontal andnear-vertical algorithms that form a grid pattern. To give more realistic tests of overlay, we used1:24,000 Digital Line Graph (DLG) data on Littleton, CO, obtainable by anonymous ftp fromxerox.spectrum.com and data on the Malcolm Knapp Research Forest from Jerry Maedel in theUBC Department of Forestry. See table 1.The algorithms are denoted by abbreviations. bforce: brute force (3.1), quad: quad tree par-titioning (4.2), bsp: binary space partition tree (4.3), BO: Bentley-Ottmann sweep (5.1), trap:trapezoid sweep (5.2), and segT: hereditary segment tree (5.3). A plus sign (+) after trap or segT7



Data Set # Segs DescriptionHn n Long, near-horizontal segments to create n2 intersectionsVn n Long, near-vertical segments to create n2 intersectionssurv 239 Survey grid for Littleton, CO 1:24K DLG from spectrum.xerox.comrail 447 Railroads for Littleton. N to S in W half of map.feat 564 Geographical features. A small number of small clusters.bound 1176 Boundaries. Follows roads in town and meanders outside.vegit 5562 Vegitation. Small clusters away from town.roads 11074 Roads and trails. Mostly in town (NW corner) and suburbs (N of center).hydro 13972 Hydrography. Evenly distributed.comp 8053 Research compartments in Malcolm Knapp Forest, B.C.. Clustered in center.froads 19532 Forest roads. Somewhat evenly distributed.fcover 116359 Forest cover. Evenly distributed.biogeo 235635 Biological and geographic features. Evenly distributed.Table 1: Characteristics of test data setsindicates that preprocessing is included in the time. If the plus is omitted, then the algorithmassumes that the segments are stored in a sorted order that the algorithm can use.Running times on the arti�cial and Littleton data were measured on a Silicon Graphics PersonalIris with a 12 Mhz processor and 16M of memory. The Research Forest data sets were run on aSGI Indigo Elan with a 33 Mhz processor and 32M of memory. The average times for 10 runs aregiven in seconds.We should emphasize that the algorithms were implemented by di�erent programmers and thatfactors such as programming skill, attention paid to correctness and accuracy, and engineeringdecisions made by the programmer have a signi�cant a�ect on running times and memory usage.Arti�cial Data Ts bforce grid quad bsp BO trap+ segT+ segTH10/V10 100 0.008 0.008 0.005 0.0 0.041 0.009 0.008 0.002H50/V50 2,500 0.130 0.132 0.110 0.3 1.517 0.103 0.040 0.012H100/V100 10K 0.510 0.512 0.410 1.3 7.015 0.357 0.093 0.023H500/V500 250K 12.833 12.560 10.438 36.7 8.454 0.587 0.128H1000/V1000 1M 51.632 50.137 49.556 145.4 34.167 1.283 0.278H5000/V5000 25M 7.927 1.500H10000/V10000 100M 17.252 3.098H10/H10 0 0.005 0.005 0.003 0.000 0.016 0.006 0.017 0.012H50/H50 0 0.103 0.063 0.077 0.100 0.071 0.032 0.103 0.062H100/H100 0 0.408 0.232 0.288 0.300 0.153 0.070 0.248 0.147H500/H500 0 10.205 8.305 7.363 9.800 0.939 0.440 1.815 1.070H1000/H1000 0 40.950 21.963 36.710 2.111 0.955 4.193 2.557Table 2: Performance for long segments with many or no intersections8



We begin with arti�cial data sets that show the output-
0.0

0.3

0.6

0.9

1.2

1.5

segT+

trap+

bsp

quad
bforce/grid

HV1000HV500HV100HV50HV10Figure 1: Cost (�sec) perintersection: arti�cial data
sensitive algorithms in the best light. These consist of longsegments that either have a quadratic number of intersections(K and M denote thousands and millions) or no intersections.As table 2 shows, the spatial partitioning algorithms run inquadratic time whether or not there are many intersections.The spatial ordering algorithms, being output sensitive, aremuch faster when there are no intersections. The Bentley-Ottmann sweep (BO) is especially expensive when there aremany intersections because it performs balanced-tree opera-tions for every intersection it �nds.Figure 1 displays the cost in milliseconds per intersectionfor the grid of horizontal and vertical segments. The hereditary segment tree runs in subquadratictime|even when there are a quadratic number of intersections|because reports intersections inbatches. It can report, for example, that a red segment r intersects blue segments in a list fromindex i to index j. It also appears to be taking advantage of the clustering of the segment endpointsby x-coordinate, which is why it is faster for many intersections than for no intersections.For a more realistic comparisons, we run the same algo-

hydroroadsvegitboundfeatrail
0

4

8

12

16
segT+

trap+

BO

bsp

quad2

quad1

gridFigure 2: Cost per segment: T withsurv
rithms on the surv (survey grid) and one other GIS data setin table 3. Figure 2 graphs the time taken per line segmentin milliseconds.Unlike the other algorithms, the performance of thequad tree algorithm depends on the order in which the �lesare presented. Column quad1 shows the results for build-ing the quadtree on the surv segments and quad2 shows theother order. It is better to do the latter because a largedata set induces a �ner partition and avoids more compar-isons. The exploitation of clustering can be seen in thetimes for rail vs. feat and bound vs. vegit.Here the spatial partitioning algorithms are the best. They take advantage of the characteristicsof GIS data (short segments, evenly distributed) and the fact that the number of intersections persegment is small. They also bene�t most from the fact that the surv data set is small; the spatialordering algorithms have an overhead associated with looking at the structure of the larger dataset. The trapezoid sweep is somewhat competitive; it would be more so if we assumed that theinitial sorting had been done in preprocessing.If we concentrate on the algorithms that have performed well above, we can attempt larger datasets. In table 4 we report the times for trap and segT including and excluding preprocessing.9



Survey Data # Segs Ts bforce grid quad1 quad2 bsp BO trap+ segT+surv/rail 239/ 447 82 4.365 0.098 0.405 0.142 0.10 0.507 0.256 0.742surv/feat 239/ 564 40 5.547 0.128 0.483 0.091 0.20 0.575 0.313 0.833surv/bound 239/ 1176 128 11.515 0.205 0.980 0.248 0.40 1.060 0.564 1.758surv/vegit 239/ 5562 108 58.068 0.948 4.200 0.271 1.20 4.573 2.502 7.703surv/roads 239/11074 499 | 1.858 8.590 0.968 2.50 13.170 5.265 17.947surv/hydro 239/13972 367 | 2.237 10.778 0.723 3.10 15.531 6.747 21.660Table 3: Intersections with the survey gridLarge Sets # Segs Ts grid quad1 quad2 bsp trap+ trap segT+ segTfeat/hydro 564/13972 100 4.507 3.663 1.342 2.20 6.607 2.970 22.905 10.320bound/vegit 1176/ 5562 90 3.618 3.873 1.003 1.30 2.903 1.422 10.657 5.480bound/roads 1176/11074 225 5.160 7.166 3.354 2.60 5.620 2.636 21.883 10.655bound/hydro 1176/13972 249 9.045 9.622 2.667 3.30 7.150 3.313 26.135 12.867vegit/roads 5562/11074 85 20.022 6.839 13.648 3.40 7.919 3.607 32.320 17.543vegit/hydro 5562/13972 251 39.208 10.281 11.570 4.50 9.517 4.287 37.935 21.045roads/hydro 11074/13972 569 63.645 38.021 21.904 7.30 13.430 6.200 55.167 31.845comp/froads 8053/19532 12670 52.02 6.04 9.96 | 2.49 12.40comp/fcover 8053/ 116K 5119 295.98 53.45 23.68 | 11.94 57.11comp/biogeo 8053/ 235K 4482 607.58 131.32 44.41 20.0 27.45 110.67roads/fcover 19532/ 116K 861 702.12 76.16 53.21 12.0 12.75 71.35roads/biogeo 19532/ 235K 1500 1369.87 126.08 100.80 22.0 27.74 133.13fcover/biogeo 116K/ 235K 35537 | 652.81 712.41 | 49.35 244.75Table 4: Running times for larger data sets.Again, the spatial partitioning algorithms perform the
0

2

4

6

8

10

trap

trap+

bsp

quad2

quad1
grid

roads/
hydro

vegit/
hydro

vegit/
roads

bound/
hydro

bound/
roads

bound/
vegit

feat/
hydroFigure 3: Large data sets(�secs/segment)

best, but the trapezoid sweep is competitive|especially ifthe segments are already stored in sorted order. The mem-ory requirements of the quadtree algorithm and the bsp treealgorithm did not allow us to run many tests on the researchforest data.To produce instances with a single data distribution andnumber of segments, we intersected two copies of a map|one displaced slightly relative to the other. Table 5 showsthat here the trapezoid algorithm without counting prepro-cessing is best, followed by the binary space partition, andthe trapezoid algorithm with preprocessing. Figure 4 againshows running time in milliseconds per segment.10



Bumped # Segs Ts bforce grid quad bsp trap+ trap segT+ segTsurv 239 140 2.397 0.077 0.283 0.20 0.181 0.107 0.560 0.300rail 447 62 8.165 0.497 0.497 0.30 0.338 0.184 1.228 0.653feat 564 56 13.115 1.968 0.521 0.30 0.452 0.247 1.527 0.748bound 1176 220 57.137 1.445 1.245 0.70 0.956 0.502 3.725 2.037vegit 5562 585 1362.072 43.788 7.370 3.50 5.118 2.467 21.152 12.350roads 11074 2871 | 76.752 36.986 8.30 11.680 5.519 49.740 28.395hydro 13972 1817 | 98.978 31.796 9.80 15.097 6.868 61.585 35.938Table 5: Overlaying a map with a bumped version of itself.
0

4

8

12

16

segT

trap

trap+

bsp

quad

hydroroadsvegitboundfeatrailsurvFigure 4: Bumped data(�secs/segment)
7 Conclusions and Future ResearchWe grouped seven algorithms for segment intersection intotwo categories: spatial partitioning algorithms that dividespace into regions and compute intersections among the seg-ments that pass through each region, and spatial orderingalgorithms that use the structure given by a geometric orderto reduce the number of pairs of segments that must be testedfor intersection. Despite our hope to the contrary, our exper-iments have shown that spatial partitioning algorithms givebetter performance on GIS data sets than spatial orderingalgorithms, corroborating Pullar's work [13].We have identi�ed a new spatial ordering algorithm, the trapezoid sweep of section 5.2, that iscompetitive with the partitioning algorithms|especially if the data is maintained in sorted orderby x-coordinate. The fact that this algorithm uses geometric structure to �nd intersections mayallow us to combine the line-breaking and topology-building phases of map overlay computationand avoid the more global break-and-rebuild operation that is necessary after �nding intersectionsby brute force means. We plan to investigate this approach in future research.AcknowledgementsThis research was supported in part by Canada's National Science and Engineering Research Coun-cil and the B.C. Advanced Systems Institute. We thank Tom Poiker for encouragement to investi-gate the GIS overlay problem and the referees for their encouraging and helpful comments.References[1] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEETrans. Comput., C{28(9):643{647, 1979.[2] T. M. Chan. A simple trapezoid sweep algorithm for reporting red/blue segment intersections. InSubmitted to Proc. 6th Can. Conf. Comp. Geom., Saskatoon, Saskatchewan, 1994.[3] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane.JACM, 39:1{54, 1992. 11



[4] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Algorithms for bichromatic line segmentproblems and polyhedral terrains. Technical Report UIUC DCS{R{90{1578, Dept. Comp. Sci., Univ.Ill. Urbana, 1990.[5] N. R. Chrisman, J. A. Dougenik, and D. White. Lessons for the design of polygon overlay processingfrom the Odyssey WHIRLPOOL algorithm. In Proc. 5th Intl. Symp. Spatial Data Handling, pages401{410. IGU Commission on GIS, 1992.[6] W. R. Franklin. E�cient intersection calculations in large databases. In International CartographicAssociation 14th World Conference, pages A62 { A63, Budapest, Aug. 1989.[7] W. R. Franklin, M. Kankanhalli, and C. Narayanaswami. Geometric computing and the uniform griddata technique. Comput. Aided Design, 21(7):410{420, 1989.[8] W. R. Franklin, C. Narayanaswami, M. Kankanhalli, D. Sun, M.-C. Zhou, and P. Y. F. Wu. Uniformgrids: A technique for intersection detection on serial and parallel machines. In Proceedings of AutoCarto 9: Ninth International Symposium on Computer-Assisted Cartography, pages 100{109, Baltimore,Maryland, 2-7 April 1989.[9] H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by a priori tree structures. In Proc.SIGGRAPH '80, pages 124{133, 1980.[10] H. G. Mairson and J. Stol�. Reporting line segment intersections. In R. Earnshaw, editor, Theoret-ical Foundations of Computer Graphics and CAD, number F40 in NATO ASI Series, pages 307{326.Springer-Verlag, 1988.[11] L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment intersections. CVGIP: Graph.Mod. Image Proc., 1994.[12] F. P. Preparata and M. I. Shamos. Computational Geometry|An Introduction. Springer-Verlag, NewYork, 1985.[13] D. Pullar. Comparative study of algorithms for reporting geometrical intersections. In K. Brassel andH. Kishimoto, editors, Proceedings of the 4th International Symposium on Spatial Data Handling, pages66{76, 1990.[14] H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS.Addison-Wesley, 1989.[15] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1989.[16] C. A. Sha�er, H. Samet, and R. C. Nelson. QUILT: a geographic information system based on quadtrees.Int. J. GIS, 4(2):103{131, 1990.[17] W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary space partitioning trees.In Proc. SIGGRAPH'87, pages 153{162, 1987.[18] P. van Oosterom. A modi�ed binary space partition for geographic information systems. Int. J. GIS,4(2):133{146, 1990.
12


