Further Comparison of Algorithms for Geometric Intersection Problems

D. S. Andrews J. Snoeyink J. Boritz T. Chan
G. Denham J. Harrison C. Zhu
Department of Computer Science
University of British Columbia
201 — 2366 Main Mall
Vancouver, BC V6T 174 Canada

Email contact: andrews@cs.ubc.ca

Abstract

The usual first step in computing an overlay of two vector maps is to determine which pairs of
segments (one from each map) intersect so as to perform line-breaking. We identify two classes
of algorithms for the segment intersection problem, spatial partitioning and spatial ordering,
and we report on implementations of seven algorithms, some known and some new. Though the
spatial ordering algorithms can be made oulput sensitive, our experiments show that the spatial
partitioning algorithms are better for segment intersection in a GIS context. We do identify a
new Trapezoid Sweep algorithm that is competitive if the segments are stored in sorted order.

1 Introduction

Map overlay processing is at the core of most vector-based Geographic Information Systems (GISs).
One of the time-consuming steps of this processing is line-breaking, which we can abstract as the
segment intersection problem: Given a collection of n line segments in the plane, determine which
pairs intersect.

For overlaying two maps, we can refine this to the red/blue segment intersection problem: Given
a set R of red line segments in which no pair intersect except possibly at endpoints, and a set B
of blue line segments (again, having disjoint interiors), find the red/blue intersections—all pairs of
a red and a blue segment that intersect. This distinction between the general segment intersection
problem and the red/blue segment intersection problem has been made in computational geometry,
which is a branch of the theoretical analysis of algorithms that studies geometric computation. It
has not been made in the more practically-oriented literature on map overlay in GIS. We undertook
this research to determine if this distinction could make a practical difference.

We survey results on segment intersection that have been reported in the practical and theoret-
ical literature in the next section. After discussing the basis for algorithm comparison in section 3,

we divide the algorithms that we study into two groups and describe them in:

Section 4 Spatial partition algorithms, which partition the plane and its line segments into regions

in which the problem is solved by exhaustive checking, and

Section 5 Spatial ordering algorithms, which order the segments—often by a sweep—and use the
properties of the red/blue problem to determine intersections.

Section 6 describes the test data sets, lists the results of runs, and interprets the results.

Spatial ordering algorithms can be made output sensitive—that is, they can be implemented to
perform work proportional to the number of segments plus the number of reported intersections,
for any input data set. Such a property is appealing because in GIS data intersections are relatively
rare. Partitioning (also called bucketing or tiling) algorithms, however, work especially well in GIS
because segments tend to be short, sparse, and evenly distributed in the plane.

2 Algorithm comparisons in the literature

Three authors have argued eloquently for spatial partitioning approaches. Franklin [6, 7, 8] advo-
cates the Uniform Grid. At the fourth spatial data handling conference, Pullar showed that a tiling
approach could be far superior to a theoretically efficient sweep [13]. Samet [14, 15] advocates
quadtree partitioning. Because our initial emphasis was on novel algorithms specifically for the
red /blue intersection problem, we have not explored all known variants of these algorithms. We
can, however, partially rehabilitate theoretically efficient algorithms from the unflattering compar-
isons that Pullar gave. The Trapezoid Sweep algorithm described in section 5.2 is a new algorithm
by Timothy Chan [2] that is holds its own against our partitioning algorithms.

The computational geometry literature has studied output-sensitive algorithms for the general
and red/blue segment intersection problems. Theoretical (mathematical) analysis of algorithms
often studies the worst-case performance of algorithms. (One would like to study the average case,
but mathematically defining an “average” instance of, say, map overlay is impossible. We believe
that a combination of mathematical analysis and execution on sample data sets is the best way
to understand the performance of an algorithm.) For a segment intersection problem instance
involving n segments, r red and b blue, there can be r - b pairs of intersecting segments; therefore,
in the worst-case, no algorithm can significantly outperform the trivial algorithm that tests each
red segment against each blue. If the number of intersections is represented by a parameter K,
however, then one can represent the running time of an algorithm as an overhead term plus an
output-sensitive term that depends on K. For example, the red/blue intersection algorithms of
sections 5.2 and 5.3 are optimal-—they run in @(nlogn + K) time and use O(n) space.!

Bently and Ottmann [1] developed the plane-sweep algorithm described in section 5.1 to solve
the general segment intersection problem in O((n + K')logn) time and linear space. Mairson and
Stolfi [10] extended a sweep to incorporate properties of the red/blue intersection problems and
obtained O(nlogn + K) time. Chazelle and Edelsbrunner [3] gave an intricate output-sensitive
algorithm for the general intersection problem that achieves this time, but may require ©(n + K)
space. Others [4, 11] have determined how to count the intersections without computing all of
them—the algorithm of section 5.3 does this.

!The big-O notation is often used to hide implementation-dependent constants in the running time. A function
f(n) = O(g(n)) if there are constants N and ¢ such that f(n) < cg(n) for all n > N. Big-© notation means that
there is both an upper and a lower bound of the given form.

3 Comparing algorithms

The task of comparing algorithms is a difficult one. Running two algorithms on particular in-
stances of a problem gives little information unless one can extrapolate to predict behavior on
other instances. A further complication is the fact that data sets for red/blue segment intersection
problems vary widely; they can contain long or short segments that are clustered or spread over
the plane and have many or few intersections.

In the next sections we give the worst-case asymptotic times of algorithms running on r red
and b blue segments, for a total of n = r 4 b line segments. Times for spatial ordering algorithms in
section 5 also depend on the number of intersection points, K. Asis common, these running times
are expressed asymptotically using big-O notation. The values of hidden constants are crucial for
the practical application of an algorithm; thus, the analysis of running time is most useful as a way
to extrapolate and explain the performance results listed in section 6.

We also comment on other factors:

¢ Memory requirements and locality of reference. The amount of storage needed per segment
varies slightly from algorithm to algorithm. For example, some partitioning algorithms in-
crease the number of segments by storing segments with each region that they intersect. Our
algorithms have been implemented and tested on workstations with large virtual memory.
Even here the amount and access patterns for memory are important because an algorithm’s
interaction with caching and paging schemes depends on its locality of reference.

¢ Dependence on the data sets. Some algorithms (e.g., the standard uniform grid) do not adapt
to the data set, but assume certain statistical behavior (perhaps uniformly-distributed short
segments) in order to deliver good performance. Others (e.g. quadtree and BSP tree) adapt
their data structures to handle long segments or clusters. Still others use the individual
segments of the data to determine the tests to perform.

o Ease of correct implementation. Some algorithms are easier than others to implement so
that they correctly handle special cases and are not prone to errors due to the inaccuracies
of floating point computations. The specification of correct behavior in special cases may
not be even be clear. For example, if a red segment is a subset of a blue segment, should
they be reported as intersecting zero, one, or infinitely many times, or be flagged for special
treatment? (Algorithms that duplicate segments are apt to find these segments intersecting
multiple times.) Since our algorithms were implemented by different programmers, we found
that this case in particular was treated in different ways.

o Preprocessing. Several of the algorithms begin by sorting the endpoints of each color by
xz-coordinate or putting red or blue segments into appropriate data structures. These steps
can be treated as preprocessing—they can be performed once and the results can be stored
with the data so that any future overlays involving the same map layer can be performed
more efficiently.

We can use the brute force algorithm as an example of how we list an algorithm’s characteristics

and describe its operation.

3.1 Brute Force

Characteristics: ©(n?) best, worst, and average-case time. O(n) space, can have good
/; «\ locality. Small constant factors. Ignores data characteristics. No preprocessing.

The brute force approach to the line segment intersection problem simply tests

all pairs of segments for intersection. For the red/blue problem, one tests only pairs

consisting of a red and a blue segment—we implemented this algorithm for comparison purposes.
When all intersections actually occur, or when the number of segments of one of the colors is
small, the brute force solution can be effective because of its low overhead. For most GIS data sets,
however, it is better to spend some effort reducing the number of segments to be tested against a

given segment.

4 Spatial Partitioning Algorithms

Spatial partitioning algorithms divide the plane into disjoint, non-overlapping regions, distribute
the segments among the regions that they intersect, and then determine the intersections that lie
in each region—often by a brute force algorithm. Partitioning algorithms based on a uniform grid,
on a quadtree, and on a binary space partitions have been implemented and tested.

There are some caveats for implementing partitioning algorithms. To correctly count intersec-
tions on the boundaries of partition regions, these boundaries must be defined so that the regions
cover the plane but do not overlap. It is tempting to clip line segments to the regions that contain
them, but for computational accuracy one should always compute locations of intersection points
using original data points. One would therefore like to keep the region descriptions simple so that
one can determine whether an intersection point lies in the region or not.

4.1 Uniform Grid/Tiling

Characteristics: With a g x g grid, O(n?) worst and about O(nlog g+(n/g?)?) best-case time.
O(ng) worst and O(n) best-case space. Small constant factors. Will be closer to best cases except

for long and unevenly distributed segments. Typically no preprocessing, although one can assign

segments to grid cells. (We did so in our implementation.)
The simplest way to do spatial partitioning is to distribute segments to cells in a uniform grid
as advocated by Franklin [6, 8, 7]. When the segments are short and sparse in the plane, this
approach can lead to significant savings.

4.2 Quadtree

Characteristics: O(n?) worst-case time, and grid-like performance in the best case. O(n)

:t'j: space. Fairly small constant factors. Long segments are stored once (in our implementation),

il— but still increase computational complexity. Memory and, to a lesser extent, time adapt to data

distribution. Typically no preprocessing, but segments of each color could be stored in a quadtree.

A quadtree is a hierarchical decomposition of the plane into rectangles. In our application, we
took the bounding box of the red line segments and cut it into four equal-sized rectangles using
two lines. These were made children of the original rectangle. Red segments completely contained
in one of the four rectangles were stored in quadtrees defined recursively for the children. Those
segments that overlapped two or more rectangles were stored in the original. If there are few

segments or the depth of a rectangle is large, then the rectangle is not subdivided further. There
are other ways to store segments in a quadtree [14, 15, 16]; we chose this one because it saves
memory by storing each segment only once.

To compute intersections of a blue segment b with the red segments stored in a quadtree, one
simply starts from the root of the tree, determines all rectangles that intersect b, and intersects b
with all red segments stored in these rectangles.

Long segments that cross rectangle boundaries do not increase the memory requirements under
this type of quadtree storage, whereas they do in the uniform grid. Long segments do, however,
increase the computation time. If they are red, then they are stored near the root of the tree and
many blue segments are compared against them; if they are blue, then they cross many rectangles
and are compared against many segments. The short segments of in most GIS applications, however,
can be handled well and the partitioning done by the data structure adapts to clustering of the
data.

4.3 Binary Space Partition

Characteristics: Time and space depend on exact partitioning strategy. O(n?) worst case
time and space, but expect better. Reasonable constant factors. Long segments increase storage.
Adapts to data clustering. No preprocessing.

Binary space partition (BSP) trees were developed in computer graphics [9, 17] and
have been applied in GIS by van Oosterom [18]. A BSP tree represents a partition of a region of
the plane by storing a line in a root node and having two children that recursively store partitions
of the regions to the right and left of the line. A leaf of the BSP tree, therefore, represent convex
regions that are the intersections of halfplanes bounded by lines stored in the ancestors of the leaf.

Red and blue line segments are stored at the leaves of a BSP tree. Segments are initially
compared against the line that is stored at the root node. Segments that lie strictly to the right or
left of this line are stored in the right or left subtree; segments that intersect the line are stored in
both.

Our goal is to partition the lines until one color has few segments and we can efficiently run the
brute force algorithm. To achieve this, we can choose the partitioning lines in the BSP based on
the data sets: one method that we used successfully was to compute the centroids of the red and
the blue segments at a tree node and then take the bisector of the centroids as our partitioning
line. This partitioning strategy works especially well when red segments and blue segments form
disjoint clusters; it tends to separate these clusters and avoid testing many possible pairs.

5 Spatial Ordering Algorithms

Because partitioning algorithms partition with more or less disregard for the data, one can devise
data sets for which partitioning algorithms take quadratic time even when there are no intersections.
Long segments and/or uneven clustering are frequently the source of the problem.

As an alternative, one can consider spatial ordering algorithms that use an aboveness ordering
to reduce the number of segment comparisons that need to be made: segment A is above B if some
vertical line intersects A at a greater y coordinate than B. For disjoint line segments in the plane
this is a partial order.

Our spatial ordering algorithms use aboveness in different ways. The Bentley-Ottmann algo-
rithm (section 5.1) uses direct comparisons by aboveness and maintains an ordered list of segments
that intersects a vertical sweepline. The Trapezoid Sweep algorithm (section 5.2) disguises its use
of aboveness; it forms a trapezoidation that guides the search for intersections. The Hereditary
Segment Tree algorithm (section 5.3) extends the aboveness relation to a total order and handles
segments in that order.

5.1 The Bentley-Ottmann Sweep

Characteristics: O(nlogn + K logn) worst, and average-case time. O(n) space. Moderately
large constant factors. No data dependence. Adapts somewhat if few segments intersect the same
>< vertical line. Can sort endpoints by z-coordinate in preprocessing.

A conceptually simple example of the use of an aboveness order is Bentley and
Ottmann’s plane-sweep algorithm for line segment intersections [1]. This algorithm moves a
sweepline ¢ from left to right across the plane, maintaining a list of the segments that cross £
in aboveness order. When the leftmost or rightmost endpoint of a new segment is encountered,
that segment is inserted into or deleted from the list, respectively. Intersections are found when two
adjacent segments swap order. The next intersection the sweepline is to encounter always occurs
between adjacent segments in the list.

By using balanced search trees, one can keep track of the list as it changes. Thus, the plane-
sweep changes a static two-dimensional problem to a dynamic one-dimensional problem. The
endpoints of the segments need to be sorted so that they can be processed in z-coordinate order by
the sweep. Unfortunately, the intersections are also reported in z-sorted order. Thus, this algorithm
takes O((n+ K)logn) time to report all K intersections. The overhead associated with maintaining
balanced binary search trees means that the hidden constant is not negligible in practice.

Mairson and Stolfi [10] were the first to use the aboveness properties of the red /blue intersection
problem to avoid sorting all the intersections by z-coordinate. They use a recursive “cone-breaking”
technique to obtain an algorithm that runs in O(nlogn + K') time. Because our Trapezoid Sweep
has the same running time with smaller constants, we describe it instead.

5.2 The Trapezoid Sweep

‘ Characteristics: O(nlogn+K) worst and average-case time. O(n) space. Fairly small constant
.E factors. No data dependence. Adapts somewhat if few segments intersect the same vertical line.
Can sort endpoints or even cut plane into trapezoids in preprocessing.

Because the Bentley-Ottmann algorithm sorts all intersections by z-coordinates, is
pays a logarithmic overhead for each intersection that it finds. The trapezoid sweep finds intersec-
tions that occur left of a zig-zag sweep front and, therefore, does not sort all intersections.

Imagine a blue trapezoidation—a decomposition of the plane into trapezoids that are bounded
by the blue line segments—by cutting vertically from the endpoints of both red and blue segments
to the blue segments above and below. We then sweep the blue trapezoids with a vertical line and
insert the red segments as follows. We maintain a list 7 of trapezoids that the sweepline intersects.
The sweep front consists of the left boundary of the union of trapezoids in 7. We separately
maintain the list of red segments that the sweep intersects.

For each red segment r, we maintain the invariant that the intersection points on r that are
left of points where r intersects the sweep front have been reported. If we begin the sweep with
a vertical line to the left of all of the segments, then this invariant is trivially true. When we
encounter the end of a blue trapezoid we advance the sweep front, then report the red intersections
by a walk in the red tree until the invariant is re-established. Details are omitted due to space
constraints, see [2].

5.3 Hereditary Segment Tree

Characteristics: O(nlogn) worst and average-case time because intersections can be reported
Mg in batches. O(n) space. Somewhat large constant factors. Adapts somewhat if few segments

intersect the same vertical line. Can sort segments by aboveness in preprocessing.

Chazelle et al. [4] suggested and Palazzi and Snoeyink [11] simplified a red/blue inter-
section algorithm based on the hereditary segment tree data structure that uses the spatial ordering
directly.

This algorithm begins by sorting the red segments and the blue segments by aboveness. Since
the colors are independent, the files of segments need be sorted only once as preprocessing. Next,
the hereditary segment tree, a modification of the segment tree [12], is used to find 2n slabs and
special segments that intersect them. (The tree can act as a a guide and need not actually be
constructed [11].) Each slab has a group of red (or blue) long segments that cut completely through
the slab and a group of blue (or red) short segments that are clipped to the slab and may end inside
the slab. These slabs and segments have the property that every red/blue intersection can be found
in exactly one slab as the intersection of a long segment and a short segment that are grouped with
the slab.

To find the intersections in the slabs is now an easy task. If the long segments are listed
by aboveness, then one can locate the endpoints of each short segment s in the list and report
intersections of s with every long segment that lies between the endpoints of s. O(nlogn + K)
time is required to find the K red/blue intersections of n segments; O(n) space is used for data
structures.

This algorithm has one novel feature. It can count intersections in O(nlogn) time—that is,
without looking at all of them. The number of intersections for a short segment s in a slab is simply
the difference in the numbers of long segments above the two endpoints of s.

6 Data Sets

To test the algorithms when many intersections occurred we generated long near-horizontal and
near-vertical algorithms that form a grid pattern. To give more realistic tests of overlay, we used
1:24,000 Digital Line Graph (DLG) data on Littleton, CO, obtainable by anonymous ftp from
xerox.spectrum.com and data on the Malcolm Knapp Research Forest from Jerry Maedel in the
UBC Department of Forestry. See table 1.

The algorithms are denoted by abbreviations. bforce: brute force (3.1), quad: quad tree par-
titioning (4.2), bsp: binary space partition tree (4.3), BO: Bentley-Ottmann sweep (5.1), trap:
trapezoid sweep (5.2), and segT: hereditary segment tree (5.3). A plus sign (4) after trap or segT

Data Set # Segs Description

Hn n Long, near-horizontal segments to create n? intersections

Vn n Long, near-vertical segments to create n? intersections

surv 239 Survey grid for Littleton, CO 1:24K DLG from spectrum.xerox.com

rail 447 Railroads for Littleton. N to S in W half of map.

feat 564 Geographical features. A small number of small clusters.

bound 1176 Boundaries. Follows roads in town and meanders outside.

vegit 5562 Vegitation. Small clusters away from town.

roads 11074 Roads and trails. Mostly in town (NW corner) and suburbs (N of center).
hydro 13972 Hydrography. Evenly distributed.

comp 8053 Research compartments in Malcolm Knapp Forest, B.C.. Clustered in center.
froads 19532 Forest roads. Somewhat evenly distributed.

fecover 116359 Forest cover. Evenly distributed.

biogeo 235635 Biological and geographic features. Evenly distributed.

Table 1: Characteristics of test data sets

indicates that preprocessing is included in the time. If the plus is omitted, then the algorithm
assumes that the segments are stored in a sorted order that the algorithm can use.

Running times on the artificial and Littleton data were measured on a Silicon Graphics Personal
Iris with a 12 Mhz processor and 16M of memory. The Research Forest data sets were run on a
SGI Indigo Elan with a 33 Mhz processor and 32M of memory. The average times for 10 runs are
given in seconds.

We should emphasize that the algorithms were implemented by different programmers and that
factors such as programming skill, attention paid to correctness and accuracy, and engineering
decisions made by the programmer have a significant affect on running times and memory usage.

Artificial Data Ms bforce grid quad bsp BO trap+ segT+ segT

H10/V10 100 0.008 0.008 0.005 0.0 0.041 0.009 0.008 0.002
H50/V50 2,500 0.130 0.132 0.110 0.3 1.517 0.103 0.040 0.012
H100/V100 10K 0.510 0.512 0.410 1.3 7.015 0.357 0.093 0.023
H500/V500 250K 12.833 12.560 10.438 36.7 8.454 0.587 0.128
H1000/V1000 1M 51.632 50.137 49.556 1454 34.167 1.283 0.278
H5000/V5000 26M 7.927 1.500
H10000/V10000 100M 17.252 3.098
H10/H10 0 0.005 0.006 0.003 0.000 0.016 0.006 0.017 0.012
H50/H50 0 0.103 0.063 0077 0.100 0.071 0.032 0.103 0.062
H100/H100 0 0408 0.232 0.288 0.300 0.1563 0.070 0.248 0.147
H500/H500 0 10.205 8305 7.363 9.800 0.939 0.440 1.815 1.070
H1000/H1000 0 40950 21.963 36.710 2,111 0.955 4.193 2.557

Table 2: Performance for long segments with many or no intersections

We begin with artificial data sets that show the output-
sensitive algorithms in the best light. These consist of long 15r

segments that either have a quadratic number of intersections 12}

(K and M denote thousands and millions) or no intersections.

As table 2 shows, the spatial partitioning algorithms run in 097

quadratic time whether or not there are many intersections. 0.6 bforce/grid
The spatial ordering algorithms, being output sensitive, are 0al ua:d

much faster when there are no intersections. The Bentley-

HV10 HV50 HV100 HV500 HV1000

Ottmann sweep (BO) is especially expensive when there are 0.0
many intersections because it performs balanced-tree opera-
tions for every intersection it finds. Figure 1: Cost (usec) per

Figure 1 displays the cost in milliseconds per intersection intersection: artificial data
for the grid of horizontal and vertical segments. The hereditary segment tree runs in subquadratic
time—even when there are a quadratic number of intersections—because reports intersections in
batches. It can report, for example, that a red segment r intersects blue segments in a list from
index ¢ to index j. It also appears to be taking advantage of the clustering of the segment endpoints
by z-coordinate, which is why it is faster for many intersections than for no intersections.

For a more realistic comparisons, we run the same algo-
rithms on the surv (survey grid) and one other GIS data set 16 seqT+
in table 3. Figure 2 graphs the time taken per line segment o
in milliseconds. 121,) BO”

Unlike the other algorithms, the performance of the 8l _] ./ quadl |
quad tree algorithm depends on the order in which the files : ° ’

° ; trap+
are presented. Column quadl shows the results for build- ar .,4.__/4&‘
ing the quadtree on the surv segments and quad2 shows the Mgrid

quad2
rail feat bound vegit roads hydro

other order. It is better to do the latter because a large
data set induces a finer partition and avoids more compar-
isons. The exploitation of clustering can be seen in the Figure 2: Cost per segment: (] with
times for rail vs. feat and bound vs. vegit. surv

Here the spatial partitioning algorithms are the best. They take advantage of the characteristics
of GIS data (short segments, evenly distributed) and the fact that the number of intersections per
segment is small. They also benefit most from the fact that the surv data set is small; the spatial
ordering algorithms have an overhead associated with looking at the structure of the larger data
set. The trapezoid sweep is somewhat competitive; it would be more so if we assumed that the
initial sorting had been done in preprocessing.

If we concentrate on the algorithms that have performed well above, we can attempt larger data
sets. In table 4 we report the times for trap and segT including and excluding preprocessing.

Survey Data # Segs (s bforce grid quadl quad2 bsp BO trap+ segT+

surv/rail 239/ 447 82 4365 0.098 0.405 0.142 0.10 0.507 0.256 0.742

surv /feat 239/ 564 40 5547 0.128 0.483 0.091 0.20 0.575 0.313 0.833

surv/bound 239/ 1176 128 11.515 0.205 0.980 0.248 0.40 1.060 0.564 1.758

surv/vegit 239/ 5562 108 58.068 0.948 4.200 0.271 1.20 4.573 2502 7.703

surv /roads 239/11074 499 — 1.858 8.590 0.968 2.50 13.170 5.265 17.947

surv/hydro 239/13972 367 — 2237 10.778 0.723 3.10 15531 6.747 21.660

Table 3: Intersections with the survey grid

Large Sets # Segs Ms grid quadl quad2 bsp trap+ trap segT+ segT
feat /hydro 564/13972 100 4.507 3.663 1.342 2.20 6.607 2.970 22.905 10.320
bound/vegit 1176/ 5562 90 3.618 3.873 1.003 1.30 2903 1422 10.657 5.480
bound/roads 1176/11074 225 5.160 7.166 3.354 2.60 5.620 2.636 21.883 10.65b
bound/hydro 1176/13972 249 9.045 9.622 2.667 3.30 7.150 3.313 26.135 12.867
vegit /roads 5562/11074 85 20.022 6.839 13.648 3.40 7.919 3.607 32.320 17.543
vegit/hydro 5562/13972 251 39.208 10.281 11.570 4.50 9.517 4.287 37.935 21.045
roads/hydro 11074/13972 569 63.645 38.021 21.904 7.30 13.430 6.200 55.167 31.845
comp /froads 8053/19532 12670 52.02 6.04 9.96 — 2.49 12.40
comp /feover 8053/ 116K 5119 29598 53.45 23.68 — 11.94 57.11
comp/biogeo 8053/ 235K 4482 607.58 131.32 44.41 20.0 27.45 110.67
roads/fecover 19532/ 116K 861 702.12 76.16 53.21 12.0 12.75 71.35
roads/biogeo 19532/ 235K 1500 1369.87 126.08 100.80 22.0 27.74 133.13
fcover/biogeo 116K/ 235K 35537 — 6b2.81 71241 — 49.35 244.75

Table 4: Running times for larger data sets.

Again, the spatial partitioning algorithms perform the
best, but the trapezoid sweep is competitive—especially if
the segments are already stored in sorted order. The mem-
ory requirements of the quadtree algorithm and the bsp tree
algorithm did not allow us to run many tests on the research
forest data.

To produce instances with a single data distribution and
number of segments, we intersected two copies of a map—
one displaced slightly relative to the other. Table 5 shows
that here the trapezoid algorithm without counting prepro-
cessing is best, followed by the binary space partition, and
the trapezoid algorithm with preprocessing. Figure 4 again
shows running time in milliseconds per segment.

10

/\ Adz

“ trap+
bsp

trap

! ! ! !
feat/ bound/ bound/ bound/ vegit/ vegit/ roads/
hydro vegit roads hydro roads hydro hydro

Figure 3: Large data sets
(psecs/segment)

Bumped # Segs (s bforce grid quad bsp trap+ trap segT+ segT

surv 239 140 2397 0.077 0.283 0.20 0.181 0.107 0.560 0.300
rail 447 62 8.166 0.497 0.497 0.30 0.338 0.184 1.228 0.653
feat 564 56 13.115 1.968 0.521 0.30 0.452 0.247 1.527 0.748
bound 1176 220 97.137 1445 1.245 0.70 0.956 0.502 3.7256 2.037
vegit 59562 585 1362.072 43.788 7.370 3.50 5.118 2467 21.152 12.350
roads 11074 2871 — 76.752 36.986 8.30 11.680 5.5619 49.740 28.395
hydro 13972 1817 — 98.978 31.796 9.80 15.097 6.868 61.585 35.938

Table 5: Overlaying a map with a bumped version of itself.

16
7 Conclusions and Future Research

12 segT
We grouped seven algorithms for segment intersection into ’
two categories: spatial partitioning algorithms that divide gl g quad
space into regions and compute intersections among the seg- " trap+
ments that pass through each region, and spatial ordering 4r LMP
algorithms that use the structure given by a geometric order e tap
to reduce the number of pairs of segments that must be tested O s Tl feat bound vegit roads hydro

for intersection. Despite our hope to the contrary, our exper-

iments have shown that spatial partitioning algorithms give Figure 4: Bumped data

better performance on GIS data sets than spatial ordering (usecs/segment)
algorithms, corroborating Pullar’s work [13].

We have identified a new spatial ordering algorithm, the trapezoid sweep of section 5.2, that is
competitive with the partitioning algorithms—especially if the data is maintained in sorted order
by x-coordinate. The fact that this algorithm uses geometric structure to find intersections may
allow us to combine the line-breaking and topology-building phases of map overlay computation
and avoid the more global break-and-rebuild operation that is necessary after finding intersections

by brute force means. We plan to investigate this approach in future research.

Acknowledgements

This research was supported in part by Canada’s National Science and Engineering Research Coun-
cil and the B.C. Advanced Systems Institute. We thank Tom Poiker for encouragement to investi-

gate the GIS overlay problem and the referees for their encouraging and helpful comments.

References

[1] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric intersections. IEEE
Trans. Comput., C-28(9):643-647, 1979.

[2] T. M. Chan. A simple trapezoid sweep algorithm for reporting red/blue segment intersections. In
Submitted to Proc. 6th Can. Conf. Comp. Geom., Saskatoon, Saskatchewan, 1994.

[3] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane.

JACM, 39:1-54, 1992.

11

[4]

B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Algorithms for bichromatic line segment
problems and polyhedral terrains. Technical Report UIUC DCS-R-90-1578, Dept. Comp. Sci., Univ.
Ill. Urbana, 1990.

N. R. Chrisman, J. A. Dougenik, and D. White. Lessons for the design of polygon overlay processing
from the Odyssey WHIRLPOOL algorithm. In Proc. 5th Intl. Symp. Spatial Data Handling, pages
401-410. IGU Commission on GIS, 1992.

W. R. Franklin. Efficient intersection calculations in large databases. In International Cartographic

Association 14th World Conference, pages A62 — A63, Budapest, Aug. 1989.

W. R. Franklin, M. Kankanhalli, and C. Narayanaswami. Geometric computing and the uniform grid

data technique. Comput. Aided Design, 21(7):410-420, 1989.

W. R. Franklin, C. Narayanaswami, M. Kankanhalli, D. Sun, M.-C. Zhou, and P. Y. F. Wu. Uniform
grids: A technique for intersection detection on serial and parallel machines. In Proceedings of Auto
Carto 9: Ninth International Symposium on Computer-Assisted Cartography, pages 100-109, Baltimore,
Maryland, 2-7 April 1989.

H. Fuchs, Z. Kedem, and B. Naylor. On visible surface generation by a priori tree structures. In Proc.

SIGGRAPH 80, pages 124-133, 1980.

H. G. Mairson and J. Stolfi. Reporting line segment intersections. In R. Earnshaw, editor, Theoret-
teal Foundations of Computer Graphics and CAD, number F40 in NATO ASI Series, pages 307-326.
Springer-Verlag, 1988.

L. Palazzi and J. Snoeyink. Counting and reporting red/blue segment intersections. CVGIP: Graph.
Mod. Image Proc., 1994.

F. P. Preparata and M. I. Shamos. Computational Geometry—An Introduction. Springer-Verlag, New
York, 1985.

D. Pullar. Comparative study of algorithms for reporting geometrical intersections. In K. Brassel and
H. Kishimoto, editors, Proceedings of the 4th International Symposium on Spatial Data Handling, pages
66-76, 1990.

H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS.
Addison-Wesley, 1989.

H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1989.

C. A. Shaffer, H. Samet, and R. C. Nelson. QUILT: a geographic information system based on quadtrees.
Int. J. GIS, 4(2):103-131, 1990.

W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary space partitioning trees.
In Proc. SIGGRAPH’87, pages 153-162, 1987.

P. van Oosterom. A modified binary space partition for geographic information systems. Int. J. GIS,

4(2):133-146, 1990.

12

