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Abstract

Systems biologists use interaction graphs to model the behaviour of biolog-
ical systems at the molecular level. In an iterative process, such biologists
observe the reactions of living cells under various experimental conditions,
view the results in the context of the interaction graph, and then propose
changes to the graph model. These graphs represent dynamic knowledge of
the biological system being studied and evolve as new insight is gained from
the experimental data. While numerous graph layout and drawing packages
are available, these tools did not fully meet the needs of our immunologist
collaborators. In this thesis, we describe the data display needs of these
immunologists and translate these needs into visual encoding decisions.

These decisions led us to create Cerebral, a system that uses a biologi-
cally guided graph layout and incorporates experimental data directly into
the graph display. Our graph layout algorithm uses simulated annealing with
constraints, optimized with a uniform grid to have an expected runtime of
O(E
√

V ). Small multiple views of different experimental conditions and a
measurement-driven parallel coordinates view enable correlations between
experimental conditions to be analysed at the same time that the measure-
ments are viewed in the graph context. This combination of coordinated
views allows the biologist to view the data from many different perspectives
simultaneously. To illustrate the typical analysis tasks performed, we anal-
yse two datasets using Cerebral. Based on feedback from our collaborators,
we conclude that Cerebral is a valuable tool for analysing experimental data
in the context of an interaction graph model.
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Chapter 1

Introduction

Systems biology is a paradigm for biological experimentation in which re-
searchers model biological systems by looking at the behaviour of the thou-
sands of biological entities that influence each other, rather than single
biomolecules or reactions. These interactions are modelled as a graph G =
(V,E), where the nodes V represent biomolecules such as proteins and genes,
and the edges E join pairs of biomolecules that interact physically or chem-
ically. This interaction graph model is used to interpret the results of ex-
periments, and in turn experiments help biologists further refine the model.

Systems-level experimentation in cellular biology involves observing the
response of cells to events by making large numbers of quantitative mea-
surements. Examples of events are the introduction of a drug, the detection
of a chemical signal from other cells, a change in environmental tempera-
ture, or the simple progression of time. A common way to observe the cell
response is to measure the change in gene expression level, or abundance of
proteins, in the cell across thousands of genes under a specific experimental
condition. Interpreting these measurements in the context of an interaction
model can help a biologist generate hypotheses about how the parts of the
system influence each other.

We distinguish between two classes of interaction models available to
biologists. Pathway diagrams are small directed graphs containing between
ten and a few hundred nodes. These pathways show the interactions that
comprise a specific biological event, such as a signalling pathway or a meta-
bolic process. However, they provide a poor substrate for the hypothesis
discovery process that drives systems biology. By limiting their representa-
tion to a small set of canonical biomolecules and interactions, the possibility
of discovering new components of the process or interconnections with other
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Chapter 1. Introduction

processes is eliminated. Thus, systems biologists often prefer to work with
the second class of data: larger undirected graphs representing entire biolog-
ical systems, which typically contain 500 to 3000 nodes and edges. Graph
models such as these require more effort to interrogate, but ultimately yield
more novel biological insights. By combining quantitative data and these
large graph models, systems biologists have discovered new regulatory and
signalling proteins, similarly-behaving cliques that are predictive for the
metastasis of cancerous tumours, network modules that govern the aging
process, and many other biological activities.

Information visualization can play an important role in the iterative
model refinement process. In this domain, visualization is typically used
for hypothesis generation, not hypothesis verification. Visually displaying
the gathered quantitative measurements in the context of the graph model
supports the hypothesis discovery process by allowing researchers to spot
trends or subnetworks of interest. Testing a hypothesis about a biological
process then takes months or years of slow and expensive lab work.

We began a collaboration with a group of systems biologists exploring
the human immune response. The primary contribution of this thesis is the
design of Cerebral, a new visualization tool that supports faster and richer
hypothesis discovery for this group of immunologists. Further, Cerebral
supports the more general system biology task of viewing data from multiple
experimental conditions in the context of an interaction graph model. We
embarked on an iterative design process to understand the visualization
needs of these immunologists, which included interviews about their previous
workflow and feedback from them on successive interactive prototypes.

While there are many graph layout and display systems that ably rep-
resent generic graphs [15, 18, 50], and even several aimed at biologists [47],
none meet the targeted needs of our collaborators. We identified two vi-
sual requirements not met by existing exploration systems. First, the graph
layout must use biological metadata to position nodes in biologically mean-
ingful ways. A secondary contribution of this thesis is a new graph layout
algorithm that incorporates biological metadata. The second requirement
is that the system must be able to simultaneously represent data gathered

2



Chapter 1. Introduction

from multiple experiments, because the comparison between two or more
experiments overlaid on a graph is a common analytical step.

In Chapter 2, we will discuss the workflow of our biologist collaborators,
who used some existing visualization tools but undertook significant man-
ual intervention to create the visual representations required for their tasks.
Using these familiar data representations as a base, we describe our informa-
tion design decisions and contrast alternative visual encodings in Chapter
3. After reviewing the related work in Chapter 4, we present Cerebral, a
new system designed to meet our collaborators’ need to interactively explore
experimental data in the context of a graph model. Chapter 5 describes the
Cerebral graph layout algorithm in detail, while Chapter 6 describes the
interactive interface. In Chapter 7, we present the results of 2 sample anal-
ysis sessions with Cerebral. The first is an immunology-specific scenario to
investigate the protective effects of a new therapeutic molecule, contrasting
an earlier manual analysis of this data with the improved Cerebral analy-
sis. We conclude with a more general example in which Cerebral is used to
examine the passage of time in budding yeast, the first time that a visual
approach has been used to explore this dataset.
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Chapter 2

Immunology workflow

Our immunologist collaborators use a systems biology approach to investi-
gate human responses to bacterial infection, as well as the effects of novel
therapeutic compounds on these responses. Their ultimate goal is to under-
stand and be able to predict host responses, as well as identify therapeu-
tic compounds that modify the immune response. Therapeutic compounds
could help to resolve bacterial infections while minimizing potentially harm-
ful side effects of the immune response, such as inflammation and septic
shock.

In a typical experiment, cells are divided into a control and a treatment
group. The treatment group is given a candidate therapeutic compound and
then both cell populations are exposed to a simulated bacterial infection. To
see how each gene in the cell is responding to the infection, gene expression
levels are measured using microarrays or other measurement technologies.
Often a time series experiment is done, where an assay is performed at
several time points to investigate how the immune response progresses.

The collected data is overlaid onto an interaction graph that models
the immune response, derived from databases of known biomolecular inter-
actions. Although tens of thousands of genes are typically measured, the
immunologists do not usually work with an interaction graph model covering
that entire dataset because of its overwhelming complexity. They instead
consider simplified graphs of only the most interesting genes. The most sim-
plified graphs contain only a few dozen genes directly involved in a specific
biological process, while larger graphs show an entire biological system, such
as the few thousand genes involved in immunity.

Undirected edges represent interacting proteins which propagate a signal
from infection-detecting proteins at the surface to the nucleus of the cell. Di-
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Chapter 2. Immunology workflow

rected edges represent the binding of proteins to nuclear DNA, which either
activates or represses the expression of genes in response to the infection
signal. This ultimate response is of greatest interest to our collaborators,
as it is the nature of the genes responding at this stage that determines
whether the immune response will clear the infection without engaging any
harmful inflammatory mechanisms.

By examining expression data in the context of the interaction graph, the
immunologists can see how the immune system is responding to infection.
The immunologists may develop a hypothesis about how the treatment is
affecting the immune response by making comparisons between the control
and the treatment conditions, and also between various time points. If the
hypothesis is verified through more detailed lab work, the interaction graph
will be modified to include interactions with the therapeutic compound.

As an example, we consider the results of an experiment previously
published by our collaborators [37]. Human monocytes, a type of white
blood cell associated with immunity, were stimulated with lipopolysaccha-
ride (LPS), a molecule that can mimic the effect of bacterial infection. One
batch of cells was treated with the candidate therapeutic compound LL-37,
while one batch was left untreated. The gene expression level was measured
using microarrays at four time points for each of these two conditions.

The figure showing this data in the published paper [37] is reprinted
here as Figure 2.1. Although the biological graph viewer Cytoscape [45]
was used to make Figure 2.1, creating this figure took several hours because
significant manual intervention was required. Similar analyses using larger
process graphs have taken days to construct.

In Figure 2.1, the left hand graph depicts the signalling cascade that
begins with the detection of LPS by Toll-Like Receptor 4 (TLR4), proceeds
through a series of intermediates, and ultimately ends in the regulation of
several immune response genes. In order to create a layout reflecting the
location within the cell of these biomolecules, as found in many textbooks
and publications, the biologists positioned each node in the graph by hand.
They thus used a very simple TLR4 graph model with only 66 nodes.

Figure 2.2 shows the same data displayed in our exploration tool Cere-
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Chapter 2. Immunology workflow

Figure 2.1: Original Cytoscape analysis with manually laid out graph and
manually created small multiple views, from [37].

bral. Using a completely automatic algorithm, a larger TLR4 network model
with 91 nodes is laid out in only a few seconds. Cerebral positions nodes in
layers according to existing knowledge of where the biomolecules are found
in a cell. The target nodes of directed protein-DNA edges are placed at the
bottom of the diagram, in a layer representing immune response outcomes.
The Cerebral layout groups these outcome nodes according to known bio-
logical function, enabling the biologists to easily categorize the nature of the
immune response to the bacterial stimulus in the presence or absence of the
therapeutic LL-37 compound.

Figure 2.1 also features small multiple [49] views, with each mini-graph
coloured according to the expression level of a gene at a specific time point.
According to biological tradition, genes whose expression was significantly
increased are coloured red, while decreased expression levels are coloured
green. As Cytoscape only loads a single experimental condition at a time, the
multiple views were created one at a time by colouring the graph according
to each of the eight experiments, taking a screenshot of each, and then
assembling the results into a composite figure. In contrast, the small multiple
views of Cerebral shown in Figure 2.2 fully support interactive exploration,
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Chapter 2. Immunology workflow

with linked navigation and brushing across all windows. The colouring in
the main window was chosen by clicking in two of the small multiple windows
to show a computed difference between those conditions.
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Chapter 3

Design decisions

When designing an automated system to display multiple experimental con-
ditions in the context of an interaction model, we considered several alter-
nate visual encodings. We now examine our design choices.

3.1 Graph layout with biological context

Graph layout quality has historically been evaluated with a number of
heuristics such as edge length, crossings between nodes and edges, and uni-
formity of node distribution [40]. While many graph viewers [3, 7, 45] im-
plement several layout algorithms that are favourably evaluated using these
heuristics, none of these layout algorithms were acceptable to our immu-
nologist collaborators when applied to their biological interaction graphs,
as generic graph layout algorithms do not use biological metadata to guide
the placement of nodes. Without biological metadata, layout algorithms
often place connected nodes side-by-side in the layout, even though the cor-
responding proteins are physically distant in the cell. These layouts do not
match the biology tradition of positioning proteins according to subcellular
localization.

The nodes in biological graphs represent physical compounds in a cell
that are separated by physical membranes, creating compartments defining
their subcellular localization. Biologists typically depict biological processes
with a stylised cross-sectional view of the cell according to this subcellular
localization: nodes corresponding to the outermost membrane layer of a cell
are placed at the top of the graph, nodes that are found in the innermost
nucleus are placed at the bottom, and the remaining nodes are placed in
the centre of the graph arranged neatly to show the step-wise series of in-
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Chapter 3. Design decisions

teractions that occur as a signal moves from membrane to nucleus. Layout
algorithms that only use graph topology to position nodes would place some
nodes near each other that are always positioned in separate compartments
in hand drawn immunology diagrams, causing confusion and extra interpre-
tation effort for the biologist. Cerebral restricts the placement of nodes to
these subcellular localization layers, with each layer representing a distinct
membrane-bound biological compartment in the cell. Subcellular localiza-
tion is gathered from databases of protein properties and is usually known
for the majority of nodes in a graph. Nodes with unknown localization are
either placed in a separate layer, or are allowed to be placed in any layer,
depending upon the preference of the user.

Furthermore, the biologists’ assessment of what constitutes a good layout
varies depending on the nature of the biomolecules involved. In the undi-
rected portion of the graph, which comprises protein-protein interactions
that propagates a signal from membrane to nucleus, they wish to see the
network structure so that they can follow the signalling cascade. Thus for
this section of the graph, it is important to minimize edge crossings, even if
it places interacting nodes somewhat far apart. In contrast, for the directed
portion of the graph, representing the genes whose expression was altered
in response to the signalling cascade, the biologists want to see the nodes
grouped tightly by function, even at the expense of not being able to clearly
see the interactions between them. Translating these desires into automated
graph layout requires an algorithm that uses metadata associated with the
nodes, in addition to the direct graph structure, for node placement. We
wrote a simple simulated annealing-based graph layout algorithm that uses
node metadata to guide node placement.

3.2 Small multiple views for multiple conditions

Cerebral uses small multiples [49] to simultaneously display multiple ex-
perimental datasets. Each small multiple contains a complete copy of the
interaction graph with the same spatial layout, but with different colouring
according to the experimental data it is displaying. As each small multiple
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Chapter 3. Design decisions

view encodes a single experimental condition, interesting data can pop out
using preattentive processing [25]. Preattentive processing allows the visual
system to find and estimate the count of nodes with the same colour without
engaging focussed mental attention. Our design target was to handle from
two to a few dozen experimental conditions, and from 50 to 3000 nodes in
the interaction graph.

One obvious alternative to multiple small views would be a single change-
able or animated view, where the colour coding changes over time rather
than being distributed over space [42, 45]. Comparing something visible
with memories of what was seen before is more difficult than comparing
things simultaneously visible side by side [39]. Thus, the limitations of hu-
man memory make our goal of comparing a few dozen conditions through
animation quite difficult [51]. Although small multiples would not scale to
hundreds of conditions, they handle the current usage of 8-10 easily and will
certainly accommodate the projected usage of few dozen conditions.

A second alternative is to embed a glyph, such as a line graph or heat
map, near or within the node itself [42, 52]. While embedded glyphs provide
good detail when zoomed in for a local view, the glyphs become indistin-
guishable when zoomed out for a global view for graphs larger than a few
dozen nodes, as shown in Figure 3.1. The biologists often need to see such
a global view, as it more readily allows for the identification of interacting
genes/proteins whose expression behaves similarly across several conditions,
thus glyphs would not be appropriate in this domain.

3.3 Parallel coordinates and clusters for

measurement-driven exploration

Cerebral’s main views focus on the interaction graph model of the biological
system or process of interest. We also provide a measurement-driven view
and tools to help suggest areas for exploration. Each experimental condition
corresponds to an axis in a parallel coordinates view. Each biomolecule, or
node, in the graph is represented as a line that crosses each of these axes
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Chapter 3. Design decisions

Figure 3.1: Though the glyphs in GENeVis [52] provide good detail when
zoomed in for a local view (left), they quickly become indistinguishable when
viewing a larger portion of the graph (right).

at point corresponding to that gene/protein’s expression level under that
condition, resulting in what the biologists refer to as an expression profile.

A frequent analysis of expression profile data involves clustering the pro-
files to identify genes/proteins that behave similarly across conditions, im-
plying that they have related functions or are regulated by the same set
of proteins. New and enhanced clustering algorithms are developed each
year [53], but provide notably different results. Many of these methods are
sensitive to noise, and the measurement technologies employed in systems
biology often produce highly noisy results. Furthermore, the complex inter-
nals of a clustering algorithm – most often based on statistical rather than
analytical decisions – make it hard for a biologist to understand and trust
the clusters.

Despite these weaknesses, automatically detected clusters can comple-
ment the visualization of the interaction graph to direct the biologist towards
interesting groups of proteins to explore. The potential for uncovering re-
lated or novel functions and regulatory mechanisms is valuable, as is the
increased confidence in the statistically-generated cluster assignments if the
clustered genes are found to biologically interact with each other.

Because our immunologist collaborators do not consider any current clus-
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Chapter 3. Design decisions

tering algorithm to be a clear winner, we implemented simple k-means clus-
tering as a proof of concept. It would be straightforward to substitute a
more sophisticated clustering algorithm into Cerebral. The focus in this
thesis is on the design choices for the multiple coordinated views [4], and
the layout algorithm in the graph view.
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Chapter 4

Related work

We will review related work in the area of graph layout, followed by work
that influenced our data interface, and finally compare against some other
complete systems designed for the task of analysing expression data.

4.1 Graph layout

The general layout problem of assigning graph nodes to positions in a two
dimensional plane has been addressed by many researchers [31]. We will
restrict our discussion to force-directed layout, layout with constraints, and
simulated annealing layout. We will discuss systems that have previously
used the uniform grid to optimize layout. Finally we will review edge
bundling, an alternative to drawing edges as straight lines.

4.1.1 Force-directed layout

Force-directed algorithms use a physical simulation model to lay out the
graph, with edges modelled as springs and nodes as repulsive electric charges.
Force-directed algorithms remain highly popular due to their simplicity and
success at producing aesthetically pleasing layouts, and are implemented
in several biological graph visualization packages [7] [13] [28] [45]. While
unconstrained force-directed layouts cannot produce a layered subcellular
localization view of the cell, we introduce them for comparison purposes.

We chose the GEM system [18] as an exemplar for force-directed al-
gorithms. GEM builds on the original spring-embedder model proposed
by Eades [17] and the improvments suggested by Fruchterman and Rein-
gold [19], to produce a system that is fast, has good convergence, and detects
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Chapter 4. Related work

oscillations and rotations. While GEM can reveal the inherent complexity
of a graph, we will see that relevant biological information can be obscured
without a subcellular localization-based view of the cell. We compare Cere-
bral to GEM layouts in Section 5.5.

4.1.2 Force-directed layout with constraints

Several attempts have been made to extend force-directed placement to ac-
commodate grouping. For example, Fruchterman and Reingold [19] use
repulsive walls to contain nodes within an external boundary and Genc and
Dogrusoz [20] use mobile internal walls to separate the graph into compart-
ments. However, these methods suffer from fragility, requiring parameter
adjustments to work across a range of datasets. As the graphs scale up in
size, it becomes a problem to balance forces. If the repulsive forces of the
walls are too large, the nodes are pushed strongly away from the walls and
cluster in the middle. If the wall forces are too low, all of the nodes cluster
against the walls. Moreover, they have only been shown to work on small
datasets of less than 100 nodes.

4.1.3 Quadratic programming with constraints

He and Mariott [24] formulated graph layout with constraints as a quadratic
programming problem. Their constraints enforced a minimum distance be-
tween nodes. Dwyer and Marriott [15] extended the class of constraints to
linear separation constraints and created a specialised solver to quickly lay
out large graphs in the IPSep-CoLa system. After satisfying the constraints,
both of these techniques optimize the Kruskal [33] measure for graph lay-
out. The Kruskal measure tries to match graph theoretic distance to layout
distance between pairs of nodes. We wanted a more flexible measure that
could evaluate other layout criteria, including intrinsic constraints such as
edge crossings, and constraints based on extrinsic node attributes such as
the biological function of nodes. Moreover, IPSep-CoLa also requires con-
siderable parameter tweaking to work well in this application domain. Even
after multiple rounds of personal communication with the authors, we did
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not obtain competitive results. We compare Cerebral to IPSep-CoLa in
Section 5.5.

4.1.4 Simulated annealing

Davidson and Harel [11] introduced simulated annealing to graph draw-
ing. Although their framework was simple, flexible, and produced visually
appealing results, their algorithm had cubic complexity and high constant
factors, making it impractical for graphs larger than 50 nodes.

Li and Kurata [34] used simulated annealing to lay out biomolecular
interaction graphs. Although they restricted node positions to an integer
grid, their algorithm still ran in O(V 3) time. Kato and Nagasaki [30] built
on their work by introducing soft constraints to simulated annealing, adding
edge crossings and node-edge crossings to the evaluation function. Their al-
gorithm also had cubic complexity, and the largest graph shown in the paper
contained 125 nodes. Further work [32] decreased layout time by a constant
factor and changed the scoring function to align biologically related nodes.
In contrast, we provide an O(E

√
V ) algorithm for constrained graph layout

with simulated annealing, and demonstrate it on much larger datasets.

4.1.5 Uniform grid

Akman et al.[2] introduced uniform grids as a data structure to optimize
counting intersections of a large number of short line segments. The uniform
grid partitions space by separating the plane into equally sized square cells.
Unlike an adaptive grid, e.g. a quadtree, each cell in a uniform grid is
the same size regardless of the number of objects in that region of space.
Each cell stores a list of lines that pass through it. To count crossings, the
algorithm follows a line through the grid, accumulating a set of possible
intersecting lines, which are tested with the line intersection equation. A
rasterization algorithm quickly identifies which cells a line passes through.
Uniform grids are very efficient when there are numerous short edges, but
the efficiency decreases as edges get longer and the number of expected
intersections, I, increases. As an edge will intersect many grid cells, it
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becomes more efficient with long edges to use a sweep line algorithm [6]
that finds all intersections on a plane in O(n log n + I) time.

Tunkelang [50] presented an optimization-based approach to drawing
undirected graphs that used a uniform grid to accelerate the evaluation of
edge crossings. To keep edges short, the algorithm starts with an initial
layout based on node centrality, then evaluates new configurations created
by local adjustments to node positions. This local optimization method can
get stuck in local minima. In our approach, we use a modified version of
the uniform grid that remains efficient even as edge length and expected
number of crossings increases, thereby allowing a more global search of the
configuration space.

4.1.6 Edge bundling

Edges in graph layouts are typically displayed as straight lines connecting
pairs of nodes. Edge bundling draws edges as curved lines grouped together
into bundles around routing points. Holten [27] created bundles to reveal the
structure of an associated tree hierarchy associated with the graph. We use
Holten’s edge bundling idea and his system of rendering bundles as splines
with a parameter β that affects how tightly the edges are bundled, however
we position our spline control points not from an associated hierarchy, but
by the layout location of the nodes.

Deussen and Balzer [5] also bundle edges using the node layout loca-
tion. Their system bundles edges between meta-nodes which contain sets
of nodes grouped by a clustering function. As the bundled edges connect a
set of nodes to another set of nodes, their edges establish a many-to-many
relationship between the nodes. When looking at an edge bundle in the
graph, the viewer only knows that the meta-nodes are connected, but has
no knowledge of what individual nodes are connected. In contrast, our edge
bundling algorithm forms a one-to-many relationship between nodes. The
thick end of the bundle links to a single node. When looking at the branched
end of the bundle the viewer can easily recall what node lies at the other
end. When a node connects to many different bundles, the bundles are
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merged together, like streams joining into a river, similar to the display of
flow maps [38].

4.2 Data interface

Coordinated multiple view systems [41] have multiple windows showing dif-
ferent views of the data. Relationships between the multiple views are re-
vealed to the user through interactive brushing and selection. Cerebral uses
coordinated multiple views to examine expression data.

Dynamic query sliders [1] are graphical widgets used for querying a
dataset. The user moves a slider to alter a parameter and the program
interactively adjusts the displayed data to reflect the new setting. Dynamic
sliders are used throughout Cerebral.

Saraiya et al. [42] evaluated four visualization approaches to integrating
graph and time series data. They compared an animated series of graphs
with the nodes coloured according to the time point against a static graph
with embedded chart glyphs showing the node values across all time points.
They also compared a graph view alone against a multiple view interface
with the graph view linked to a parallel coordinates view. In almost all
tasks they found single node colourings to be faster and more accurate than
embedded charts, and that multiple views increased accuracy at the expense
of slower task times. The one exceptional task was outlier detection for which
embedded charts was found to be superior. We use single coloured nodes
throughout our visualization, and attempt to improve the user interface
further by using small multiples instead of animation to view multiple time
points. We employ multiple views of the data as we deemed accuracy to be
more important than task time. Finally, outlier detection is easily handled
by a direct computational approach. We offer filters and clustering to find
outliers, rather than relying on the biologist to visually search the dataset.
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4.3 Biological expression analysis systems

Many visualization systems aimed at biological problems follow the well-
established practice of using multiple linked coordinated views. For ex-
ample, analysis tools such as SpotFire and HCE [44] provide a rich set of
statistical tools including scatterplots, parallel coordinate views, and heat
maps. However, they do not contain a biomolecular interaction graph view.

Several previous tools do allow visualization of gene expression data from
a single experimental condition on a biomolecular interaction graph, in-
cluding Cytoscape [45], Visant [28], GeneSpring [21], and GenMapp [10].
However, they are limited to visualizing data from a single experimental
condition at a time and do not support automatically positioning nodes
according to biological metadata. Although Cytoscape does have a graph
layout algorithm that incorporates biological context, it requires manual
intervention.
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Graph layout

We use simulated annealing to lay out the graph using biological anno-
tations to guide the placement of the nodes. We begin with a review of
using simulated annealing for graph drawing, and then describe how we add
constraints to this approach. We present a discretization framework which
speeds computation times and enhances the appearance of our layout. We
analyse the complexity of the algorithm, revealing that the algorithm runs
in expected time O(E

√
V ) while using O(V ) memory. Finally we present

examples of our layout and compare with other algorithms, and investigate
the consequences of using approximations and randomisation.

5.1 Graph drawing with simulated annealing

Simulated annealing is an optimisation technique that has been applied to
many NP-hard problems. The algorithm combines the simplicity of a greedy
algorithm with the power of randomisation. Simulated annealing tries to
minimize the total energy of a system by perturbing the state over a cooling
period. At the start, when the system is hot, new configurations are freely
accepted allowing escapes from local minima. As the system cools, the
configuration becomes more stable. For graph layout, the energy function
implements soft constraints, which are often aesthetic qualities such as edge
length and overlaps. New configurations are generated by moving a single,
randomly chosen node to a new location.

Figure 5.1 shows the pseudocode for simulated annealing. We start with
an initial random layout, and set the temperature to the average energy over
all the nodes in that layout. The initial temperature measure is the only time
we compute the total energy over all nodes, after which we only compute the
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SA-Graph-Layout(node[1 . . V ])
1 coolingSteps← 30
2 searchSteps← 50
3 coolingFactor← 0.6
4 for i← 1 to V
5 MoveNode(node[i])
6 temperature ← 0
7 for i← 1 to V
8 temperature += Energy(node[i])/V
9

10 for i← 1 to V
11 if !node[i].pinned
12 mobileNodes.add(node[i])
13
14 for i← 1 to coolingSteps
15 for j ← 1 to searchSteps× V
16 n ← mobileNodes[Random(1, |mobileNodes|)]
17 oldEnergy ← Energy(n)
18 MoveNode(n)
19 improvement ← oldEnergy −Energy(n)
20 if improvement > 0
21 then Accept change

22 else Accept with probability 1 - e
improvement
temperature

23 temperature ← temperature ×coolingFactor

MoveNode(node)
1 uniformGrid.remove(node)
2 (ymin, ymax) = LayerConstraint(node.type)
3 repeat
4 newPos ← (Random(1, uniformGrid.width), Random(ymin, ymax))
5 until !grid.cellOccupied(newpos)
6 node.pos ← newPos
7 uniformGrid.add(node)

Figure 5.1: Pseudocode for simulated annealing.
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energy change caused by a moved node. We perturb the state of the system
by randomly picking a new position for a single node. The energy change
is computed by subtracting the energy contribution of the node in its new
position from its original position. We always keep the change if the energy
is reduced, and also probabilistically accept changes that worsen our layout,
allowing the algorithm to escape from local minima. Every O(V ) iterations
of the search we decrease the probability that a worsening change will be
accepted. The parameters of 30 cooling steps, 50 × V search steps, and a
geometric temperature decrease of 0.6 were chosen empirically to produce
good layouts, based on typical values from previous simulated annealing
algorithms [11].

5.2 Adding constraints

Hard constraints are realised in the SA-Graph-Layout function by as-
suring that the node position picked at random in MoveNode satisfies all
the hard constraints. In Cerebral, our explicit hard constraint is to confine
nodes to horizontal bands. Before the main loop begins, we divide the space
on the y axis into regions sized proportionally to the number of nodes in each
layer. We can look up the minimum and maximum allowable y values for
the layer in constant time, and generate a position within this range. This
framework could accommodate any other constraints that can be computed
in constant time, for example bounding nodes in both the horizontal and
vertical dimensions. In Section 5.3 we discuss the additional, implicit hard
constraint that node-node overlaps are not allowed.

Soft constraints are handled though the Energy function, such that
nodes violating the constraints have higher scores. In Cerebral, edge-edge
and node-edge crossings are always penalised. To group nodes according to
their biological function, the BioFunctionGrouping function sums the
layout distance from a node to each functionally related node. The soft
constraint scoring functions are shown in Figure 5.2.

We weight our constraints as follows: our unit weight is a separation
distance of one grid cell. An edge-edge crossing has weight 3, a node-edge
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Energy(node)
1 energy ← uniformGrid.countCrossings(node)
2 energy += ManhattanEdgeLength (node.edges)
3 energy += BioFunctionGrouping(node)

BioFunctionGrouping(node)
1 energy ← 0
2 group ← NodesWithFunction(node.role)
3 for each node g in group
4 energy += ManhattanDistance(node.XY, g.XY)

ManhattanEdgeLength(edges[1 . .])
1 for i← 1 to |edges|
2 ManhattanDistance(edges[i].source.XY, edges[i].dest.XY)

ManhattanDistance(a, b)
1 return abs(a.x - b.x) + abs(a.y-b.y)

Figure 5.2: Pseudocode for energy computations that handle soft constraints
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crossing has weight 9. Biological function grouping has a weight of 90,
which encourages grouping even at the expense of node and edge overlaps.
These settings were chosen by visually inspecting several graphs and choos-
ing parameters that produced nice layouts. Though the specific choice of
parameters is somewhat arbitrary, they provide good visual results for a
wide range of interaction graphs containing 50 to 10,000 nodes. Further,
the algorithm is robust to these parameters, continuing to give good results
when they are modified by 50% to 200%. They are thus fixed in Cerebral,
and do not require user tweaking.

5.3 Discretization

The energy function is the heart of our algorithm, scoring the soft constraint
violations of a single node and its incident edges. It is evaluated each time
a node is considered at a new position: 1500 ×V times in total. Profiling a
simple implementation showed that over 98% of the algorithm running time
was spent testing for edge intersections. To evaluate our energy function
efficiently, we partition our layout space using a uniform grid, and restrict
node placement to the centres of unit length cells. We set the size of the
grid to 3.2

√
V by 2.5

√
V , which gives a 4:3 aspect ratio for the layout and

provides 8V unit length cells in the grid leaving 7V empty cells for rearrang-
ing the nodes while keeping a compact layout. The seemingly simple idea
of using a uniform grid has far-reaching consequences. First, it implicitly
eliminates the possibility of node-node overlap. We can easily support the
hard constraint that only one node can be located in a cell, and we draw
nodes at a size smaller than the lattice cell size. Second, enforcing a limit
on the lattice size also implicitly supports a compact layout as a hard con-
straint. Third, placing nodes at integer lattice points tends to increase the
angular resolution at which edges cross, as shown in Figure 5.3. This aes-
thetic measure [40] is a soft constraint provided without any computational
cost by our discretization approach.

Fourth, with a uniform grid, we can compute node distances cheaply.
Instead of using Euclidean distance, we use Manhattan distance in all com-
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Figure 5.3: Edge crossings are unavoidable in non-planar graphs. When
edges cross, it is easier to follow lines when they cross at high angular reso-
lution (bottom), than when they intersect at glancing angles (top).

putations. We compute the L1 distance measure using only integer arith-
metic, as d(a, b) = |ax− bx|+ |ay− by|. We use this fast distance calculation
in two of the soft constraints, edge length minimization and node proximity
according to biological function.

Fifth, and most importantly, we use the grid to quickly compute approx-
imate counts of edge-edge crossings and node-edge overlaps. Our approx-
imation relies on storing the number of edges crossing each cell, updating
the grid every time a node is moved.

We follow an edge through the grid using a variant of Bresenham’s [8] line
rasterization algorithm as shown in Figures 5.4 and 5.7. As the rasterizer
visits each cell it can perform a vacate, occupy, or count operation on
each cell, described in Figure 5.5. As we move candidate nodes during
simulated annealing, we maintain the grid state with functions shown in
Figure 5.6.

The standard usage of a uniform grid [2] is to keep a list of edges that
cross each cell, and then do an exact intersection test with each distinct
edge during the traversal. We instead accumulate only the count of edges
crossing each cell in a constant time lookup operation. Counting the edges
is equivalent to checking for intersections at the granularity of the grid. The
cost of scoring an edge is thus proportional to the number of cells it crosses;
that is, the discretized edge length. Figure 5.8 gives an example of our
scoring method.

Finally, the grid also allows us to compute node-edge overlaps quickly,
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modBresenhamVisit(x0, y0, x1, y1, operation)
1 steep = abs(y1-y0) > abs(x1-x0)
2 if steep
3 swap (x0,y0), swap (x1,y1)
4 if x0 > x1
5 swap (x0, x1), swap (y0, y1)
6 deltax ← x1 - x0, deltay ← abs(y1-y0)
7 deltaerror ← deltay/deltax
8 y ← y0
9 ystep ← (y0 < y1) ? 1 : -1

10 for x← x0 to x1
11 steep ? operation(y,x, error) : operation(x,y, error)
12 error ← error + deltaerror
13 if error ← 0.5 � Standard Bresnham’s until here.
14 � Now the modifications. Also visit the cell we pass
15 � through as we change y coordinate
16 if x < x1
17 if error = 1.0
18 � Exiting at the exact corner
19 y ← y + ystep;
20 elseif (error > 1.0)
21 � Above the true line.
22 y ← y + ystep;
23 steep ? operation(y,x, error) : operation(x,y, error)
24 else
25 � Below the true line
26 steep ? operation(y,x+1, error) :
27 operation(x+1,y, error)
28 y ← y + ystep;
29 error ← error - 1.0;

Figure 5.4: Modified Bresenham’s algorithm visits all cells a line passes
through. See also Figure 5.7. The possible operation functions are shown in
Figure 5.5.
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vacate(x, y, centerOffset)
1 if centerOffset < nodeWidth
2 edgesThroughCenterCount[x][y]–
3 edgesInCellCount[x][y] –

occupy(x, y, centerOffset)
1 if centerOffset < nodeWidth
2 edgesThroughCenterCount[x][y]++
3 edgesInCellCount[x][y] ++

count (x, y, centerOffset)
1 if centerOffset < nodeWidth
2 if cellOccupied[x][y]
3 energy += nodeEdgePenalty
4 energy += edgesInGridCount[x][y] * edgeEdgePenalty
5 return energy

Figure 5.5: The operators occupy, vacate, and count can be executed
on each cell visited by modBresenhamVisit
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uniformGrid.remove(node)
1 for each edge e adjacent to node
2 modBresenhamVisit(e.source.XY, e.dest.XY,vacate)
3 uniformGrid.cellOccupied(node.x, node.y) ← false

uniformGrid.add(node)
1 for each edge e adjacent to node
2 modBresenhamVisit(e.source.XY, e.dest.XY,occupy)
3 uniformGrid.cellOccupied(node.x, node.y) ← true

uniformGrid.countCrossings(node)
1 � Count the ways this node’s edges cross other edges and nodes
2 for each edge e adjacent to node
3 energy ←modBresenhamVisit(e.source.XY, e.dest.XY, count)
4 � Then check how placing a node in this cell causes intersections
5 � with the edges already passing through this cell
6 energy ← edgesThroughCenterCount[n.x][n.y] *nodeEdgePenalty

Figure 5.6: Code for maintaining the uniform grid as we remove, add, and
count crossings in the grid.

Figure 5.7: The cells of a uniform grid that a line crosses are found with a
modified form of Bresenham’s algorithm. The green cells are the standard
pixels visited by Bresenham’s algorithm. The purple cells are the additional
corners visited in the modified form.
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as an explicit constraint that is also handled during the traversal to check
for edge-edge overlaps. We keep track of which grid cells are occupied by a
node, and we maintain an error term during our line rasterization traversal
indicating the current distance from the centre of the cell. If this error term
is less than the radius of a node, we count a node-edge overlap in the cell.

Figure 5.8: Scoring a node. We count crossings for the blue node. The blue
line accumulates 4 + 2 + 3 + 3 + 3 + 6 = 21. We also score the two red edges
for a total of 21 + 24 + 20 = 65.

5.4 Asymptotic analysis

We now analyse the computational complexity of our algorithm. Let V be
the number of nodes in the graph, E be the number of edges in the graph,
and d(v) be the degree of node v, that is the number of edges adjacent
to node v. We will also make the conservative assumption that biological
functional groups that are to appear as a cluster contains no more than√

V members. This assumption was true for all of the biological graphs we
encountered in this project.

The major work of SA-Graph-Layout happens within the two main
for loops, lines 14 and 15. These loops combine to execute the loop body
coolingSteps ∗ searchSteps ∗ V = 30 ∗ 50 ∗ V = 1500V = O(V ) times.
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Within the loop, Energy is evaluated twice, MoveNode is evaluated once,
and all other lines execute in constant time. Before evaluating the cost of
Energy and MoveNode let us first assess the cost of using the uniform
grid.

modBresenhamVisit performs an operation, vacate, occupy, or
count, on each cell that an edge intersects in the uniform grid. The longest
possible edge is the long diagonal of the grid, which has length

l =
√

(3.2
√

V )2 + (2.5
√

V )2 = O(
√

V )

so modBresenhamVisit performs an operation at most O(
√

V ) times. The
operations vacate, occupy, and count all do a constant amount of work,
so modBresenhamVisit takes at most O(

√
V ) time.

uniformGrid.remove executes modBresenhamVisit d(v) times for
a total cost of O(

√
V d(v)). The same is true for uniformGrid.add and

uniformGrid.countCrossings.
We return now to the cost of evaluating Energy. uniformGrid.-

countCrossings costs O(
√

V d(v)). ManhattanEdgeLength

costs O(d(v)). BioFunctionGrouping costs O(
√

V ) under our assump-
tion that a biological group contains no more than

√
V members. So the

total cost of Energy is O(
√

V d(v) + d(v) +
√

V ) = O(
√

V d(v)).
For the function MoveNode, lines 1 and 7 each take O(

√
V d(v)) time.

Line 2 executes in constant time as it is a simple matter to associate the
layer constraint boundaries with each node. As the grid contains 8V cells
by construction and there are V nodes in the grid, there will always be 7

8 of
the cells empty. Thus lines 3-5 will require an average of 8

7 random trials to
find an unoccupied grid cell. The total cost of MoveNode is O(

√
V d(v)).

As the cost of both Energy and MoveNode is O(
√

V d(v)) and the SA-

Graph-Layout loops execute O(V ) times, the total cost of SA-Graph-

Layout is O(V
√

V d(v)). As we are equally likely to pick any node in
line 16, we take d(V ) to be the average degree of a node = E

V . This gives a
total expected cost of O(V

√
V E

V ) = O(E
√

V ).
In terms of memory, each cell stores a constant amount of information;
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the count of edges crossing it and whether the cell is occupied by a node.
As there are 8V cells in the grid, we use O(V ) memory.

This analysis applies for graphs up to 10,000 nodes and edges. While we
anticipate continuing good results as the graph sizes grow, it is possible that
larger graphs would benefit from an increase in coolingSteps or a larger
grid.

5.5 Graph results

We now present the results of running Cerebral on two sample graphs. We
compare the layouts to competitive previous work in two categories: GEM
[18] for force-directed placement, and IPSep-CoLa [15] for constraint-based
layout. Our graphs, TLR4 and MAPK, are networks involved in mammalian
innate immunity. TLR4 has 57 nodes and 74 edges, while MAPK has 760
nodes and 1263 edges. Cerebral supports the mechanism from Cytoscape
for flexible assignment of visual cues such as colour and shape to nodes.
Here we colour-code the nodes according to their subcellular location: pink
for extracellular, blue for cell membrane, green for cytoplasm, orange for
nucleus, and grey for unknown. All layouts are rendered with the Cerebral
renderer for a consistent visual appearance, and all algorithms were run on
a 3GHz Pentium running Linux with 2GB of RAM.

The Cerebral layout in Figure 5.9 has the standard layered arrangement
used in cellular biology diagrams. Although we use the same colour coding
as the other figures for reference, we note that because the layers are clearly
shown with spatial position we could instead use colour for some other vari-
able, for example protein abundance within the cell. We see that many of
the cytokines are downstream from REL, RELA, and NFKB1 suggesting that
these three proteins might form a complex to activate cytokines.

Figure 5.10 shows the TLR4 signalling pathway arranged using the GEM
force-directed layout algorithm. The nodes are well placed and the topo-
logical structure of the network is very clear, yet it presents little in the
way of biological context. Nodes are freely mixed throughout the layout,
ignoring their subcellular location. The functional grouping is nowhere to
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Figure 5.9: The TLR4 pathway using the Cerebral layout algorithm. Size:
N=57, E=74. Time: 2.9 seconds. We can see how various proteins in the
nucleus join together in pairs and triples to activate downstream genes. The
long edge between TNFAIP2 and TNF is an interesting feature that raises
biological questions.
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Figure 5.10: The TLR4 pathway using the GEM layout algorithm. Size:
N=57, V=74. Time: < 1 second. The graph topology is clear, but the
biological context is hidden.

Figure 5.11: The TLR4 pathway using the IPSep-CoLa layout algorithm.
Size: N=57, E=74. Time: 1.3 seconds. Using constraints we have been
able to layer the graph and contain the downstream genes into functional
groups. IPSep-CoLa does not attempt to optimize edge-edge crossings and
node-edge crossings. There are numerous crossings in this diagram, hiding
much of the topological structure.
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be seen. The layout is unfamiliar to biologists as it bears no resemblance to
the standard biology diagram style.

Most graph layout algorithms strive to avoid long edges. In Cerebral,
the edge from the extracellular protein TNFAIP2 to the downstream gene
TNF in Figure 5.9 must be long because it spans many cell layers. This
long edge, which is unremarkable in the other layouts, is an interesting
feature rather than an indicator of a poor layout. It raises questions for our
biologist target users. Is there an unusual interaction between the protein
that resides outside the cell and its interacting neighbour generated within
the cell? Does the long edge indicate an error in our data? Perhaps TNFAIP2
is also a product of the TLR4 pathway? Further investigations showed that
despite being annotated as extracellular in several public databases, there
was no literature support for this claim and the annotation was likely an
input error.

Figure 5.11 shows the TLR4 graph laid out with IPSep-CoLa. Using
separation constraints between invisible boundary nodes and rectangular
grouping for the downstream genes, we achieve a layered biological layout.
IPSep-CoLa only optimises the Kruskal distance. It does not attempt to
optimize edge-edge crossings or node-edge crossings. Figure 5.11 shows the
disadvantage of this approach, because much of the topological structure is
hidden under crossings.

We now consider the larger MAPK graph. We see from the unconstrained
GEM layout in Figure 5.5 that this graph is inherently more complex than
TLR4. Any unconstrained layout will necessarily have more crossings and
longer edges. The Cerebral layout is shown in Figure 5.12. Though com-
plex, in most regions of the graph we can follow links between edges. In
particularly dense areas of the graph, mouseover highlighting helps to show
connections. The Cerebral time of 62 seconds is slightly faster than the
66 seconds of GEM and considerably faster than the 296 seconds of IPSep-
CoLa, shown in Figure 5.5.
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Figure 5.14: The MAPK pathway using the GEM layout algorithm. Size:
N=760, E=1263. Time: 64 seconds. This force-directed rendering is uncon-
strained and shows the inherent complexity of the graph.

As expected, having no restrictions means that the GEM layouts better
optimize aesthetic criteria such as short edges and crossings, but display less
biological information to the user. Though IPSep-CoLa adds constraints to
restrict the placement of nodes during layout according to biological func-
tion, the layouts contain many overlaps and crossings which hide much of
the topological structure. Cerebral effectively arranges nodes in the style of
classic biological diagrams while remaining competitive in optimizing clas-
sical graph layout criteria.
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5.5.1 Effects of randomisation and approximation

Our grid-resolution approximation is always an overestimation of the number
of crossings, and is bounded below by the true count. Figures 5.15 and 5.16
compare the layouts produced by approximate versus exact edge intersection
calculations, using a simple energy function where edge crossings are the
only explicit constraint. In the smaller graph of 57 nodes and 74 edges, the
approximate layout is more readable than the exact one, thanks in part to
the improved angular resolution of the discretization approach. In the larger
graph of 769 nodes and 1269 edges, it is no worse.

(a) (b)

Figure 5.15: Comparing approximate to exact edge crossings. In these lay-
outs, the only constraint is edge crossings. a) Finding the layout of a small
dataset (E=74, V=57) required 77 seconds when scoring edge crossings us-
ing an exact computation, and results in 3 crossings. b) The same dataset
was laid out in only 12 seconds when scoring crossings approximately using
our discretization framework. Although there are 12 rather than 3 crossings,
the angular resolution between edges is better.

As the layout algorithm involves an element of randomness, a Cerebral
layout will be different with each run. Figure 5.17 shows 6 consecutive
different runs of the layout algorithm on the TLR4 dataset. The layouts
finished with an average time of 4.0 seconds with a standard deviation of
0.0 seconds. Even though there is a large amount of variation between the
absolute spatial positions of individual nodes between layouts, all of the
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(a)

(b)

Figure 5.16: Comparing approximate to exact edge crossings. In these lay-
outs, the only constraint is edge crossings. a) In a larger dataset (E=1269,
V=769), the exact approach required 3100 seconds. b) The approximate
approach required only 64 seconds to lay out the graph, and the quality is
roughly equal to the exact case.
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layouts show good quality with few edge crossings.
Table 5.1 shows the results of 10 consecutive layout runs on 5 different

datasets. TLR4 is the original dataset discussed in Section 2, LL-37 Ex-
periment is discussed in Section 7.1, the Yeast Cell Cycle Data is discussed
in Section 7.2, IRAK4 contains the first and second degree neighbours of
Interleukin-1 Receptor Associated Kinase 4, shown in Figure 5.18, MAPK
is shown in Section 5.5, and finally Human Interactome shows a layout of
all known human proteins and their interactions in Figure 5.19.

Dataset Edges Nodes Avg. time(seconds) σ

TLR4 74 57 4.0 0.0
LL-37 Experiment 123 91 6.1 0.2
Yeast Cell Cycle Data 417 104 14.2 0.1
IRAK4 617 513 29.6 0.2
MAPK 1269 769 61.9 0.7
Human interactome 53526 10344 6199 121

Table 5.1: Timings of our layout algorithm on human innate immunity
graphs. We report the average and standard deviation (σ) of 10 consecutive
runs.

Examining the table, we see that the standard deviation (σ) is very low
in all cases, indicating that the randomness involved in the algorithm has a
very small effect on the total running time. The average time to complete
the graphs grows slowly as the edges increase as predicted by our theoretical
runtime of O(E

√
(V )).
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Figure 5.17: As our layout algorithm incorporate randomness, each run
produces a different layout of the graph. This figure shows 6 consecutive
layouts of the TLR4 (E=74, N=57) dataset. Though different, all runs
produced a good layout for the dataset. The average runtime was 4.0 seconds
with a standard deviation of 0.0 seconds.
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Chapter 6

Interactive interface

We will now describe the multiple coordinated views that make up the Cere-
bral system. We begin by describing the various panels that make up the
Cerebral interface. We then describe means by which the biologist can in-
teractively explore the datasets. A flexible colour scale system lets the user
highlight data points both during direct examination of experiment data
and in a calculated data comparison view. We describe the many means
to manage large datasets with interactive filtering. We describe the visual
simplification steps of edge bundling and intelligent labelling, which reduce
visual clutter allowing the user to examine more data points simultaneously.
Finally, we allow the biologist to manually position key nodes and let the
layout algorithm optimally arrange the remaining nodes.

Cerebral is a highly interactive system. A video demonstrating the in-
teractive features of Cerebral can be found online1.

6.1 Interface components

Cerebral has three panels that display multiple coordinated views of the
data and two panels which alter display attributes and filter data as shown
in Figure 6.1

6.1.1 Multiple coordinated views

The biological graph model is laid out according to the algorithm presented
in the previous chapter and displayed in the main view. The expression data
is shown as two different presentations in the small multiples and parallel

1http://www.cs.ubc.ca/labs/imager/video/2008/BarskyMscThesis/cerebral.html
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Figure 6.1: Cerebral has 3 coordinated data view panels (orange) and 2 data
display and filter panels (blue). The Main View shows a detailed graph view
with the nodes coloured by biological metadata, an experimental dataset,
or a comparison scale between datasets. The Small Multiples view shows a
graph in the same spatial arrangement as the Main view, with each graph
coloured according to an experimental dataset. The Parallel Coordinates
view shows one axis per dataset. Each line through the axes corresponds to
all the measured values for a single node in the graph. The Appearance and
Filter and Clustering panels have a variety of filters and controls that affect
the appearance of the data.
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coordinates views. Each experimental condition maps to a graph view in
the small multiples panel and an axis in the parallel coordinates panel.
Each node in the graph corresponds to a line in the parallel coordinates
view. A node will have an expression value for each experimental condition,
determining where the line will cross the axis in the parallel coordinates view,
or the colour of the node in the small multiples view. Edge information in
the graph is not shown in the parallel coordinates view.

The small multiple windows and parallel coordinate axes support linked
reordering through dragging. When a window is dragged to another location
the axes are reordered, and vice versa.

To maximize the ability to perceive colour, the nodes in the small mul-
tiples view are very large, but this leaves little room for edge information or
labels. The main view has a larger screen area to show a graph view in high
detail. Nodes are placed in the same relative positions in the main view and
all small multiple views.

The nodes in the main view can be coloured in many different ways. The
biologist can assign the colours of a small multiple view by clicking on the
title of the small multiple view. Alternately, the nodes of the main view
can be coloured to show the difference between two experimental conditions
as described in Section 6.2.2. Finally, the nodes of the main view can be
coloured according to non-numerical biological metadata such as protein
function or chromosome location.

The user can navigate across the graph by panning and zooming. All
graph views support linked navigation: panning and zooming in one also
moves the viewpoint in all of the others. To prevent the user from being
lost in the desert fog [29], Cerebral restricts the zoom depth and panning to
always keep at least one data point visible in the display window. Cerebral
also has shortcuts to frame the view window around selected items or all
items. The small multiples are fixed at the same aspect ratio as the main
view so that all graphs share the same viewing frame. A slider below the
small multiples scales the views to let the user choose the number of views
per row. Views that do not fit in the small multiple panel are accessible
through a scrollbar.
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Figure 6.2: The node under the cursor and the node’s edges are highlighted
in red. First degree neighbours are highlighted in orange.

All views, include the parallel coordinates view, support linked selection
and mouseover highlighting. When the user selects items, Cerebral dims the
nonselected items so that they are perceived as a background layer. With
mouseover highlighting, simply passing the mouse over an item highlights
the item in red and all of the graph-theoretic neighbours one hop away are
highlighted in orange as shown in Figure 6.2.

6.1.2 Appearance and filters

The control panels allow the user to alter the display of experimental data.
Colour scales change the encoding of expression data as described in Sec-
tions 6.2.1 and 6.2.2. Dynamic query sliders filter the data as described in
Section 6.2.3. Finally, the overall appearance of the graphs can be altered
with dynamic sliders as described in Section 6.3.
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6.2 Data investigation

Cerebral assists data investigation by visually mapping data values to node
colour, computing direct comparison views, filtering subsets of data, and
simplifying the display of large quantities of data.

6.2.1 Overlaying data with colour

We overlay expression data or other quantitative measurements on each node
of the graph by colouring the node. The appropriate colour scale depends
upon the reliability of the source data. Certain technologies provide accurate
measurements for which a continuous gradient colour scale is appropriate.
Other faster and cheaper technologies will have large error bars associated
with each measurement, for which a binning colour scale is more appropriate.
Other measurement processing pipelines will include a machine learning al-
gorithm that outputs a simple binary value indicating whether protein level
is significantly altered under the experimental condition, for which a sim-
ple two-colour scheme is appropriate. To allow maximum flexibility, our
colour scale editor shown in Figure 6.3 allows the user to assign measure-
ment value intervals to fixed or gradient colour mappings. To simplify colour
scale creation, the editor includes a gallery of useful colour scales chosen us-
ing ColorBrewer [22]. We provide a red-green colour scheme traditionally
used for gene expression data, a colour blind-friendly orange-purple colour
scale, as well as linear and categorical colour scales.

The colour scale is individually applied to each experimental condition
in the small multiple views. The user can interactively choose a single ex-
perimental condition to show in the larger main display.

6.2.2 Comparing conditions

A common task for biologists is to compare the data from two experimental
conditions. For example, the immunologists wanted to compare the response
of a cell to bacterial infection in the control case vs. a cell pretreated with
an experimental drug. Rather than make comparisons by visually scan-
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Figure 6.3: The colour scale editor allows the user to assign measurement
value intervals to fixed or gradient colour mappings. To simplify colour scale
creation, the editor includes a gallery of useful colour scales.

ning back and forth between two small multiple views, we provide a direct
computed difference view.

After the user selects two conditions, A and B, the computed difference
is shown in the main graph display. If the data measurements are ratio
values, then the difference is also shown as a ratio with condition A chosen
as the new baseline. The main view colours each node as the ratio of B
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versus A computed as Cx = (Bx−Ax)/|Ax|. In the case where the data are
absolute measurements, then the main view shows each node colour coded
by the simple computed difference Cx = Bx − Ax. A separate user-defined
colour scale is used for the comparison view.

6.2.3 Data filters

Cerebral has multiple methods for selecting a subset of the data. Selected
items are brought visually to the foreground, by making all non-selected
items translucent. A study of biological insights gained through the use of
visualization tools [43] noted that selecting and grouping biomolecules into
semantic groups was the most common interaction performed by users. We
allow users to add selected biomolecules to user defined groups through a
right-click menu. Members of the group can later be selected by clicking the
group name in the Cerebral control panel.

Manual selection is the simplest selection mode. Shift-clicking individual
nodes (or their corresponding lines in the parallel coordinates view) adds the
items to the selection. Clicking the background blob of a biologically related
functional group selects all members.

The biologist can apply two broad filters across all experimental condi-
tions, the significance filter and the fold-change filter. The significance filter
associates a statistical significance score with each measurement in each
condition. The early stages of the data processing pipeline, where physical
measurements are made in a wet lab, often generate these associated signif-
icance scores. Secondly, many biologists believe there is a minimum amount
of chemical change that must occur inside a cell to have an observable effect.
The fold-change filter removes data points that do not have a minimum ex-
pression level. These two filters are implemented as dynamic query sliders,
immediately showing the results of setting the filter level. Other expression
analysis systems force the biologist to apply these broad filters early in the
analysis, removing all filtered nodes from further consideration. Common
by convention, but ultimately arbitrary, values of 0.05 for significance and
1.5 for fold-change are commonly used. Cerebral allows the biologist to
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interactively explore these values to quickly alter the balance between the
false-positive and false-negative data filtering rate.

The biologist can apply more fine-grained filters by dragging a filter bar
in the parallel coordinates display, defining ranges of values the data must
satisfy to pass the filter. Figure 6.4 shows a pair of filters that select genes
whose expression was highly upregulated in hour 2, but whose value returns
to normal in hour 4.

Finally, we provide k-means clustering to find clusters of similar expres-
sion values across conditions. The clustering dynamically creates a set of
buttons allowing the user to select or deselect all members of a cluster, each
with a thumbnail glyph showing the expression profile for that cluster. Our
k-clustering algorithm uses normalised expression values and Euclidean dis-
tance as the distance measure to find linearly correlated expression patterns.
The k value is user selected by a dynamic slider. A standard desktop ma-
chine was able to cluster at interactive speeds, allowing the user to easily
explore various values of k.

6.3 Visual simplification

Cerebral uses edge bundling and intelligent labelling to reduce the visual
complexity of the displayed data. Edge bundling reduces the density of line
drawings on the display without filtering, while intelligent labelling lets the
user display more nodes simultaneously while keeping legible labels. Finally,
we can ease the cognitive load by letting the biologist hand-position familiar
nodes in the layout.
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6.3.1 Edge bundling

Edge bundling can reduce the visual clutter in a graph by grouping together
multiple edges from a source node to many different destination nodes. We
were inspired by the work of Holten [27] on bundling edges using splines. In
his approach, edges were bundled according to an auxiliary tree hierarchy
accompanying the graph. We do not use bundling to reveal a secondary
hierarchy, but instead propose an algorithm that uses the geometric layout
of the graph itself to determine edge groupings and spline control point
placement. Our approach is analogous to cable routing, where cables going
to the same area are tied together into a single thick cable. All edges in a
bundle share a common endpoint, so that the user does not have to mentally
untangle the bundle. Our algorithm has two stages: first we form groups of
nodes based on proximity in the grid, then we form higher-level connections
between these groups based on the angle between them, creating branch-
points whose appearance is reminiscent of a dividing river [38]. Figure 6.5
gives the pseudocode for our bundling algorithm, and Figure 6.6 shows a
small example.

The first stage begins by sorting all the nodes by the number of incident
edges, and works from the highest degree node down to the lowest degree.
We attempt to assign all incident edges of a node to a bundle. After being
bundled, an edge is never examined again. We make three passes. In the
first, we merge into a group those nodes that are positioned directly next
to each other in the layout. Next, we merge those that are two grid cells
apart, and finally those three cells apart. After examining all nodes, each
unassigned edge is assigned to a degenerate bundle containing the single
edge.

In the second stage, we bundle groups whose edges travel in the same
direction; specifically, those whose incident angle to the node are within π

8

radians of each other.
The bundle of edges is drawn with piecewise cube B-splines. Each spline

has a control point at the start and end node of an edge. All edges within
a bundle share the same intermediate control points. The control points
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Bundle(nodes)
sortedNodes ← Sort nodes by degree
{completedEdges} ← ∅

� Stage 1
for maxSeparation ← 1 to 3

for each n ∈sortedNodes
{proximityGroup} = ∅
{edgesToExamine} = n.edges − {completedEdges}
for each pair of edges (A,B) ∈ {edgesToExamine}

if Separation(A.target, B.target) < maxSeparation
then {proximityGroup} ∩ = A ∩B

{completedEdges} ∩ = A ∩B
n.bundles.add (proximityGroup)

Assign each unbundled edge in allEdges - {completedEdges}
to its own group

� Stage 2
for each n ∈ sortedNodes

for each pair of groups (G, H) ∈ n.bundles
if Angle(G,H) < π

8
then MergeInteriorSplinePoints (G,H)

Figure 6.5: Pseudocode for edge bundling

are placed on a straight line between the high degree-node and the centre
of mass of the bundle, just outside the bundle and immediately outside the
high degree node. When spline control points are merged, the group that is
furthest from the high degree node gains all the intermediate control points
of the other group.

We note that the groups used behind the scenes for edge bundling are not
necessarily identical to the functional groups that provide soft constraints on
node proximity, visible in the display as coloured regions. However, they are
often very similar, because the constraints guide the nodes to be positioned
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Figure 6.6: Edge bundling changes the shape of edges travelling in the same
direction according to a spline. Here, the control points are shown explic-
itly as pink squares, although they are not visible in Cerebral itself. Edge
bundling has a first stage where groups of nodes that are graph-theoretic
neighbours are formed at successive grid distances from a high-degree base
node. Groups A,B, and C were all found in the 1-cell pass. Group D is
formed in the 2-cell distant pass. Groups A and B are bundled in the sec-
ond stage of the algorithm, so they share the spline control point labelled
E.

close enough together that their edges are bundled.

6.3.2 Intelligent labelling

Labelling is a problem in many biological graph exploration tools. Two
common approaches are to draw all labels, resulting in numerous overlapping
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Figure 6.7: Drawing all labels on a graph, as is done in the VisANT [28]
software, results in numerous overlapping illegible labels.

illegible labels, such as the VisANT [28] display shown in Figure 6.7, or to
draw the labels in world space resulting in labels that are too small to read
until the user zooms deeply into the graph, such as the default Cytoscape [45]
renderer shown in Figure 6.8.

We draw labels with an algorithm that guarantees that labels do not
overlap at any zoom level, and the density of labels is interactively control-
lable via a slider. Labels are always legible: they are drawn at a fixed size
in screen space, so their size varies in world space in accordance with the
zoom level. We use a greedy algorithm to draw labels, using a bitmap to
keep track of occupied screen space, and only draw a label if its bounding
box does not intersect any previously drawn one. We draw the label under
the cursor first, then its graph-theoretic neighbours, then any nodes selected
by the user, and then traverse the list of all nodes sorted by degree.

6.3.3 Pinning nodes

Our user interface allows users to interactively drag nodes to override the
automatic layout. Once the nodes are positioned, the user can pin selected
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Figure 6.8: Drawing in world space, as is done by the standard Cy-
toscape [45] renderer, results in labels that are too small to read except
at deep zooming levels.

nodes to their current location. Pinning allows the biologist to create a
hand-drawn skeleton of key nodes in a graph. Additionally, when more
nodes are added to the graph when the model is refined, the user can pin
the old nodes and apply the layout algorithm with only the new nodes
mobile. Pinned nodes are added to the uniform grid and considered during
the energy evaluation, but they are never selected as candidates to be moved
by the perturbation function. Figure 6.9 shows the process of pinning key
nodes and then using the layout algorithm to position the remaining free
nodes.

6.4 Implementation

Cerebral is an interactive system implemented in Java 1.4.2 as a plugin
for Cytoscape [45]. Cytoscape is a popular biomolecular graph editor in the
biology community, which loads graphs and metadata from several standard
biology file formats. The Cytoscape framework allows mapping node and
edge metadata to visual appearance rules such as shape, size, and colour.
We replaced the standard Cytoscape renderer with our own implemented
using the Prefuse toolkit [26]. Prefuse provides a framework for managing
nodes and edges, displaying nodes, and responding to user events. We use
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its convex hull outlining capability to surround the functional groups in the
bottom layer with coloured blobs. We wrote custom code for node layout,
edge bundling, edge rendering, and label positioning.

Integration with Cytoscape allows Cerebral users to take advantage of
the large community of Cytoscape plugin developers. For example, the
Enhanced Search plugin lets biologists select nodes with a simple query
language on node metadata, and BinGO [35] creates clusters of nodes by
testing for over represented gene ontology terms in the datasets.

58



Chapter 6. Interactive interface

(a)

(b)

(c)

Figure 6.9: a) The original layout is shown in yellow. b) The biologist
hand-positions key molecules in the pathway (TLR4, TRAF6, NFKB1, and
the cytokines) and pins them in place. c) The layout algorithm is rerun to
optimize the remaining nodes, leaving the pinned red nodes in place.
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Sample sessions

We present two sample sessions using Cerebral to analyse microarray exper-
imental data in the context of a biomolecular interaction graph. We begin
with an immunology-specific dataset, and then move on to a more general
cellular time series dataset.

7.1 Immune response and LL-37

We now return to the LL-37/TLR4 dataset previously published by our im-
munologist collaborators. Figure 7.1 shows the data displayed with Cerebral,
which performs an automatic layout exploiting the cell localisation data, and
displays an overview of all the datasets in the small multiple views. The out-
comes of the cascade are shown at the bottom of the diagram grouped by
previously known function and visually distinguished with a light green out-
line. As the data was gathered with microarrays, which have high error
ranges associated with each measurement, a binned green-yellow-red colour
scale was used for the small multiples, and a binned orange-grey-purple
colour scale for the comparison view. The yellow and grey colours reduce
the visual impact of genes whose expression level has changed by less than
50 percent.
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The biologist reorders the small multiples to place each LL-37-treated
time point beside the untreated condition, allowing the user to quickly spot
how the peptide affects the cell’s response to bacterial infection. Scanning
these pairs, we see that the differences in the two conditions are most pro-
nounced in the third row at hour 4. We note there are many more nodes
coloured solid green in the LPSLL-37 4 condition than the untreated LPS 4
condition. Rather than scanning back and forth between the two conditions
to search for differences, we have Cerebral compute the direct difference
between the two hour-4 conditions.

Most of the nodes in the difference view are coloured orange, indicating
that the expression levels are reduced in the presence of LL-37. Furthermore,
it is easy to see that the response proteins that show such changes primar-
ily belong to the cytokine and chemokine functional categories. Many of
these are implicated in the harmful inflammatory side effects of the immune
response to bacterial infection, thus it appears that the protective LL-37
molecule is working to minimize these side effects.

Recreating the same data views as the original paper took seconds in
Cerebral, compared with many hours of manual manipulations. Moreover,
the automatic layout and interactive exploration capabilities of Cerebral
allows the immunologists to productively use more complex and complete
graph models. Figure 7.2 shows the same LPS gene expression experiment
data overlaid on the MAPK model graph, a superset of the TLR4 graph
containing 1269 edges and 760 nodes. While the overview of the complete
graph is quite complex, the interactive selection and navigation allow the
immunologists to easily explore across multiple time points.

7.2 Yeast cell cycle: time series analysis

This example uses publicly available gene expression data from a time se-
ries study of the cell cycle of yeast published by Spellman et al. [46]. This
expression data was combined with a yeast cell cycle protein interaction
graph constructed by de Lichtenberg et al. [12] and available from the Cell
Circuits database [36]. Cellular location information was obtained from the
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(a)

(b)

Figure 7.2: a) The experimental LPS data shown in the context of the
more complete and complex MAPK graph (V=760, E=1269). b) Interac-
tive selection, panning, and zooming shows the expression of cytokines and
chemokines across time points in the context of the larger MAPK graph.
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Yeast Protein Localization Server [14]. Data from these sources were then
combined to form an integrated dataset suitable for analysis by Cerebral.
Though the Spellman study investigated how gene expression varied ac-
cording to cell cycle phases, they did not examine the data in the context
of a biological network. This example illustrates that the network context
shown with Cerebral allows clear and fast detection of correlated expression
changes.

Figure 7.3 shows the initial Cerebral display generated when we first load
the data. We simultaneously view the entire set of expression data across
all time points using the parallel coordinate display as well as the small
multiples display. The automated Cerebral layout of protein interactions is
arranged by cellular location as well as by interactions. We have clicked in
the cdc050 small multiple window, so the main view shows the colouring
for that condition.

As we are not starting with a particular hypothesis, we begin exploration
by using the data-driven parallel coordinates view. We interactively adjust
the k-means slider until we see an interesting correlation pattern in the
cluster glyphs. We click a sinusoidal pattern in the lower-right thumbnail
cluster buttons, since this pattern is suggestive of cell cycle phases. In
Figure 7.4 the parallel coordinate display clearly shows the sinusoidal nature
of the selected cluster across the time series, indicative of its involvement in
the phases of the cell cycle.

In fact, we see that six of the molecules in this cluster correspond to
histone genes [48]. The graph view quickly and clearly conveys the fact
that these molecules interact with one another and are active in the nu-
cleus. Figure 7.5 shows the result of selecting this smaller subset for closer
inspection by dragging out a box in the main view. We now see even more
striking correlated behaviour in the parallel coordinates plot. Viewing the
small multiples, we can scan the time series in the graph context and see
how the cluster shifts as a unit from showing green under-expression to red
over-expression. A trained biologist will immediately recognize this pattern
as following the cell cycle phases. We note that while the parallel coordinate
view can represent this correlated behaviour, it cannot show the relationship
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Chapter 7. Sample sessions

between the proteins. The small multiple graph views show such correlation
qualitatively, but they do not present as precise an analytical display as the
parallel coordinate plot. By coordinating both views simultaneously, the
user can visualize and compare views for more complete analysis.

This analysis session shows how the simple interaction graph could be
extended to include temporal effects. We see how histone levels rise and fall
in time with the progression of the yeast cell cycle.
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Chapter 7. Sample sessions

7.3 User response

We gathered feedback from our immunologist collaborators on the design of
Cerebral as they used a succession of interactive prototypes. We began by
attacking the problem of biologically-guided layout, with a prototype that
had only a single interactive graph view. After a period of refinement, we
made this early single-view version of Cerebral publicly available in February
2007. The response from the bioinformatics community was very encourag-
ing: we have heard from many groups who have used it, and three published
biology papers include figures created with Cerebral. One is from our col-
laborators [9], and two are by other researchers [16, 23]. We note that one
of the latter [23] explicitly mentions Cerebral in the methods section of the
paper, showing that it was considered integral to their analysis methodology
as opposed to simply being used for presentation.

We then continued on to the problem of handling multiple experimental
conditions, again refining the design through feedback on prototypes. The
final version of Cerebral tool documented in this thesis has been enthusi-
astically embraced by our immunology collaborators. They have integrated
Cerebral as the visualization front end for InnateDB, their hand-curated
immunology interaction database. This version was made publicly available
as Cerebral v.2.0 in May 2008 at http://www.pathogenomics.ca/cerebral
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Conclusions and future work

We have shown that overlaying experimental data on an interaction graph
with Cerebral provides systems biologists an opportunity to evaluate the
current biological system model, generate hypotheses, and improve and re-
fine the model. Cerebral has data displays customised for systems biology
tasks, providing an environment where the data views are familiar and the
graph nodes appear in biologically sensible locations. By creating biolog-
ically meaningful graph layouts automatically, systems biologists are now
able to work with much larger and more complete graphs. Interactive si-
multaneous viewing of multiple experimental conditions allows for more in
depth analysis of gathered data.

Some cell compartments do not follow a linear hierarchy; for instance,
mitochondria and Golgi bodies are both found in the cytoplasm. Building
an input system that supports subregions within layers for organelles, and
circular regions for bacterial cells, should be a straightforward extension of
our underlying layout algorithm.

The scoring for the layout algorithm currently chooses between revealing
edge relations between nodes, which is done in most layers, or tightly group-
ing nodes related by biological function, as is done in the bottom layer. It
would be interesting to look for a set of constraints and weightings that al-
low enough space and freedom between nodes to reveal edge relations, while
keeping functionally related nodes within a convex hull.

While the expression data explored by the biologist is frequently cre-
ated within the lab, the underlying graph model is usually gathered from
databases summarizing many different experiments with varying levels of
trustworthiness. It would help the biologist to include hyperlinks from Cere-
bral back to the original sources of the biological models and metadata.
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Cerebral allows a biologist to search through experimental data overlaid
on current models in the hopes of producing a new hypothesis about how
biological systems function. As the biologist is examining the dataset with-
out a hypothesis, the data mining bias may cause random data to appear
interesting or significant. It may be helpful to provide a statistical test to
indicate whether a discovered relationship in the graph and experimental
data is statistically significant given the size of the graph and the number
of measured data points.

Our k-clustering algorithm has been effective at finding ad-hoc patterns
in suitable data sets such as time series experiments. However, this rela-
tively simple technique could be replaced with more modern clustering and
classification methods. Algorithms that incorporate biological information
to inform the ordering or partitioning of the experimental conditions would
a particularly interesting area to explore.

As high throughput biomolecule measurement technologies become more
scalable and cost effective, biologists will include increasing numbers of ex-
perimental conditions in their study design. The small multiple views inter-
actively display up to a few dozen conditions with a few thousand nodes. In
order to support these larger study designs, we would need to improve both
the visual scalability and the computational performance of the system.
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