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Abstract

A graph consists of a set and a binary relation on that set. Each element
of the set is a node of the graph, while each element of the binary relation
is an edge of the graph that encodes a relationship between two nodes.
Graph are pervasive in many areas of science, engineering, and the social
sciences: servers on the Internet are connected, proteins interact in large
biological systems, social networks encode the relationships between people,
and functions call each other in a program. In these domains, the graphs
can become very large, consisting of hundreds of thousands of nodes and
millions of edges.

Graph drawing approaches endeavour to place these nodes in two or
three-dimensional space with the intention of fostering an understanding
of the binary relation by a human being examining the image. However,
many of these approaches to drawing do not exploit higher-level structures
in the graph beyond the nodes and edges. Frequently, these structures can
be exploited for drawing. As an example, consider a large computer network
where nodes are servers and edges are connections between those servers.
If a user would like understand how servers at UBC connect to the rest of
the network, a drawing that accentuates the set of nodes representing those
servers may be more helpful than an approach where all nodes are drawn in
the same way. In a feature-based approach, features are subgraphs exploited
for the purposes of drawing. We endeavour to depict not only the binary
relation, but the high-level relationships between features.

This thesis extensively explores a feature-based approach to graph vi-
sualization and demonstrates the viability of tools that aid in the visual-
ization of large graphs. Our contributions lie in presenting and evaluating
novel techniques and algorithms for graph visualization. We implement five
systems in order to empirically evaluate these techniques and algorithms,
comparing them to previous approaches.
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Chapter 1

Introduction

Graphs, namely sets and the relationships between their elements, can be
a useful model for data in many fields [47] including science, engineering,
and the social sciences. For example, servers exchange packets and are
linked by these connections, proteins interact in large biological systems,
social networks depict the relationships between people, and functions call
each other in a program. People frequently draw a picture of a graph by
hand when thinking about a problem in these domains or to communicate
findings [56]. For example, when discussing a large software project, people
draw class diagrams to help them understand and design the system. Thus,
the visual representation of a graph seems to play an important role in
understanding the relationships between elements it encodes.

A graph consists of a set where each element is a node, and a binary re-
lation on that set where each element of the binary relation is an edge. The
field of graph drawing endeavours to automatically assign positions to the
nodes in space to illustrate the binary relation. Nodes are typically placed
in two or three-dimensional space because people cannot directly perceive
drawings in four or more dimensions. Moreover, the information visualiza-
tion literature documents the difficulties that people have in comprehending
three-dimensional drawings of graphs [77]. Therefore, in this thesis, we only
study two-dimensional placements of the nodes.

Much of graph drawing has concentrated on the drawing of graphs in
two-dimensions based on graph connectivity. Graph connectivity is how the
nodes are joined by the edges of the graph. Frequently, the heuristic used
in graph drawing algorithms tries to map nodes that are close to each other
in the binary relation close to each other in terms of Euclidean distance.
Figure 1.1(a) shows an algorithm that is designed on this principle. The
approach does well in keeping elements that are close in the graph close
to each other spacially. However, elements of the graph not close to each
other often interfere with this structure. Purchase [63] and Ware et al. [78]
both determined and studied aesthetic criteria that have strong effects on
drawing readability in these situations. Through formal user experiments,
they determined and confirmed many different factors that help people read
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and understand graphs, including edge bends, number of crossings, and
drawing uniformity. These algorithms work well for viewing graphs when
nodes of the graph are not classified explicitly into categories. However, in
some tasks, users may want to impose categories on the nodes.

In Figure 1.1(b), we show the same part of a larger network, but the
graph has been segmented into components that have few connections to
other components in the graph. By using this clustering, we are better able
to clarify the local structure of the network and how this local structure is
connected to other elements of the graph. The field of graph clustering [47]
existed for years before the innovation of graph drawing. Clusters are com-
puted from the connectivity of the graph or an extrinsic classification of
the nodes supplied with the graph. Many graph clustering algorithms have
been applied in the fields of information visualization and graph drawing
when a categorization of the nodes is available. Spacial position, one of the
strongest perceptual cues, can be used to accentuate this categorization of
the nodes. In these cases, uniform edge lengths in a graph drawing may not
be ideal [59]. Algorithms in clustered graph drawing use spacial position ex-
plicitly, making tradeoffs to preserve the classification while trying to follow
the criteria specified by Purchase and Ware.

In many domains, a clustered graph drawing approach may be more in-
tuitive for users. In computer networks, a user may want to investigate how
the primary servers of UBC interact with the entire Internet. This domain
requires a classification of servers: clusters of connected servers that are part
of UBC and clusters of connected servers that are not. In bioinformatics,
users may want to explore chemical pathways in a graph representing a bi-
ological system. Nodes in this application may be classified by biological
system, helping users understand how these systems interact. A representa-
tion of the graph using clusters may help users generate theories about how
clusters are related. This thesis explores techniques for the investigation of
this type of data.

This thesis explores feature-based approaches to graph visualization.
A feature is a cluster we automatically detect in a larger graph. Features
are used as a basis for hierarchy creation and graph layout. Unlike a cluster,
a features has properties a specific graph drawing algorithm can exploit,
whereas a cluster does not guarantee any such properties. If we consider
a computer network, where nodes are servers and edges are connections
between those servers, a feature can be a subgraph of connected servers
that are part of UBC. This type of feature would be based on attributes,
or data associated with the nodes of the graph. In this computer network, we
could also group servers into subgraphs with many redundant connections.
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(a) (b)

Figure 1.1: An example of how local network structure can be clarified in
a feature-based approach. (a) The network, drawn with an approach that
does not use clustering, draws UBC in a large computer network. Many
nodes and edges interfere with the feature. (b) Feature-based drawing of
the network. Fewer unrelated edges cross over the UBC portion because the
feature is segmented out and drawn with suitable drawing algorithms.

This type of feature would be based on connectivity, or how the nodes are
intrinsically linked by the edges of the graph.

We extensively explore areas of feature-based graph visualization and
demonstrate the viability of tools that aid in the visualization of large
graphs. Our contributions lie in presenting and evaluating novel techniques
and algorithms for graph visualization. We implement systems in order to
empirically evaluate these techniques and algorithms, comparing them to
previous approaches.

1.1 Background

This section defines some key terms used in this thesis. Except for Sec-
tion 1.5, the Introduction does not present any novel contributions of the
work. This chapter simply provides necessary information for future chap-
ters.

Section 1.1.1 presents definitions of standard graph and graph drawing
terminology. Section 1.1.2 presents definitions for connectivity features while
Section 1.1.3 defines attribute features. The difference between steerable and
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interactive systems is discussed in Section 1.1.4. Section 1.1.5 defines graph
hierarchy concepts that are central to many areas of this thesis. Finally,
Section 1.1.6 describes general components of a feature-based graph drawing
system.

1.1.1 Graph Definitions

A graph G = (N,E) is defined by a set of N nodes and E edges. The
nodes are a set of elements and the set of edges is a binary relation on N ,
as described by Equation (1.1):

E ⊆ N ×N (1.1)

Asymptotic complexity numbers in this thesis are reported in terms of
the number of nodes or edges in the graph. As such, they are reported using
cardinalities of these sets where |N | denotes the number of nodes in the
graph and |E| denotes the number of edges.

Using Equation (1.1), an edge set is represented using a collection of
pairs (u, v). The techniques in this thesis are geared towards undirected
graphs where E is a symmetric relation or (u, v) ∈ E implies (v, u) ∈ E.
Although the techniques would work on directed graphs, in situations where
the pairs are ordered, specialized techniques exist for this specific type of
data. These techniques are not the focus of this thesis. The graphs in this
thesis are also simple, meaning that there are no multiedges or loops in the
graph. A multiedge is a pair in E that has multiplicity greater than one.
A loop is an edge (u, v) where u = v. Thus, a simple graph must satisfy
the following two properties:

1. E is not a multiset.

2. For all u ∈ N then (u, u) /∈ E

Two nodes, u and v, in the graph are adjacent if (u, v) ∈ E. A node
w is incident to (u, v) if u = w or v = w. The degree of a node is the
number of incident edges.

A path between nodes x and y is a sequence of nodes in G such that
the sequence begins with x and ends with y where there is an edge between
adjacent elements of the sequence. A simple path is a path where the
multiplicity of any node in the sequence is at most one. A cycle is a simple
path where x = y. The graph-theoretic distance between two nodes x
and y is defined as the length of the shortest sequence of nodes along a path
between x and y.



Chapter 1. Introduction 5

A subgraph G is a subset V ′ of V and a subset of all edges incident to
two elements of V ′. More formally, a subgraph G′ = (N ′, E′) has node set
N ′ defined by Equation (1.2) and edge set E′ defined by Equation (1.3).

N ′ ⊆ N (1.2)

E′ ⊆ {(u, v)|(u, v) ∈ E, u ∈ N ′, v ∈ N ′} (1.3)

An induced subgraph is a subgraph where subset or equal to is replaced
by equality in Equation (1.3). Informally, E′ contains all edges incident to
two elements of N ′.

In order to define a cluster and metanode, we require several inter-
mediate concepts. We define this terminology as done in Drawing Graphs:
Methods and Models [47].

A k-way partition of a set C is a family of subsets {C1, ..., Ck} with:

1.
⋃k

i=1 Ci = C

2. Ci

⋂

Cj is empty for i 6= j

A clustered graph is a graph with a partition {C1, ..., Ck} on its node
set. Each Ci is called a cluster.

Given a k-way partition {C1, ..., Ck} on the node set of a graph G =
(N,E), the quotient graph Gq = (Nq, Eq) is defined by shrinking each
partition into a single node where:

1. Nq = {C1, ..., Ck}

2. (Ci, Cj) ∈ Eq if and only if i 6= j and there exists v ∈ Ci and a w ∈ Cj

such that (v,w) ∈ E

Metanodes are the elements of Nq and metaedges are the elements of
Eq. In our work, a metanode Ci is associated with the induced subgraph of
Ci. This induced subgraph is known as the metagraph of Ci. Frequently,
we will say that a metanode contains a metagraph when we mean is asso-
ciated with a metagraph. This phrase stems from the fact that in graph
hierarchies, as will be explained in Section 1.1.5, a metanode contains its
children in the hierarchy.

A layout or drawing is an assignment of coordinates to the nodes of
a graph in some space. In this thesis, layouts are two-dimensional where
edges are drawn between the nodes using straight lines. Thus, layout and
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drawing will be used instead of two-dimensional layout and two-dimensional
drawing. A particular graph G = (N,E) is independent of its drawing or
layout.

1.1.2 Connectivity Features

A connectivity feature is a subgraph G′ = (N ′, E′) present within a graph
G = (N,E) where N ′ and E′ are connected in a certain way defined by the
connectivity feature type. The order in which the connectivity features are
detected can influence the features that are detected. Further discussion
about order of detection is presented in Chapter 3. This section introduces
the types of connectivity features that algorithms exploit in our work. All
the connectivity features described below, except for cluster, are described
in standard algorithms textbooks [12].

A connected component is a graph where there exists a path between
every pair of nodes. A disconnected graph G has multiple connected
components. A connected graph G has exactly one connected component.
Multiple connected components are shown in Figure 1.2(a).

A tree is a connected graph where there does not exist a cycle in G.
Trees have exactly one path between any pair of nodes in the graph. The
dark purple part of Figure 1.2(b) is a tree even though the entire graph
is not a tree. In this thesis, the set of trees T in a graph H is the set of
connected subgraphs induced by all edges in H that do not participate in a
cycle and that do not lie on a path between two biconnected components of
size greater than one.

A biconnected component is a connected subgraph where the removal
of any edge or any node and all incident edges to that node from the sub-
graph does not disconnect the graph. If the graph is not biconnected, it
is divisible into multiple biconnected components. The research presented
here uses some non-standard terms to describe nodes and edges that sep-
arate biconnected components because these terms are more evocative of
how the nodes and edges appear in the visualization. A node whose re-
moval disconnects the graph is referred to as a bridge node. A bridge
node is an articulation vertex elsewhere in the literature. Bridge nodes
are duplicated and placed in all the biconnected components adjacent to the
bridge node. Each duplicated node is connected by an edge to the original
bridge node. An edge whose removal disconnects the graph is referred to
as a bridge edge. Bridge edges correspond to an edge incident to two ar-
ticulation vertices. If a graph G∗ is constructed where every biconnected
component in G is replaced by a metanode, the connectivity of this graph



Chapter 1. Introduction 7

(a) Connected Components (b) Tree

1

2

3

4

(c) Biconnected Component

(d) Complete Graph (e) Clusters

Figure 1.2: Diagram showing connectivity features. (a) Two connected
components with no edges between them. (b) A tree, shown in dark pur-
ple, in context of a light blue graph. (c) Three biconnected components
divided by bridge nodes and bridge edges in dark purple. Left is the original
graph with bridge nodes. Center shows how the bridge nodes are duplicated.
Right is the biconnected component tree or the G∗ in the text. Numbering
shows metanode to biconnected component correspondence. (d) A complete
graph. (e) Two clusters, one dark purple and one blue, connected by a few
edges.
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(a) Input Graph

a.net

b.net

c.net
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e.org

f.com
g.com

h.com

k.net

(b) Attribute Features

Figure 1.3: Diagram showing attribute features. Attribute features are de-
termined from extrinsic data associated with the nodes of the graph. (a)
Input graph with with an attribute. (b) Decomposition of the input graph
into five attribute features. Nodes are coloured by attribute value. Attribute
features are constrained to be connected.

is always a tree. The graph G∗ is called a biconnected component tree.
Bridge nodes and edges are shown in dark purple in Figure 1.2(c). The
biconnected component tree is shown in the right half of the figure. In all
the chapters of this dissertation, the duplicated bridge nodes are used for
drawing each biconnected component, but they do not appear in the final
image presented by the system.

A complete graph, shown in Figure 1.2(d), is a graph where there
exists an edge between every pair of nodes in the node set.

When we speak of a cluster as a connectivity feature, we mean a con-
nected subgraph with small cycles connecting its nodes. There are multiple
definitions for a cluster in the graph drawing literature depending on the
type of algorithm used for the graph clustering. In this thesis, clusters are
computed using the strength metric approach of Auber et al. [10]. Two
clusters, one in light blue and the other in dark purple, are shown in Fig-
ure 1.2(e).

1.1.3 Attribute Features

Unlike connectivity features, attribute features are based on attributes or
data associated with the nodes of the graph. Figure 1.3 shows a decom-
position via attribute. In Figure 1.3(a), all nodes are labeled with a string
that looks like an Internet address. A decomposition by attribute, shown
in Figure 1.3(b), divides the *.net, *.org, and *.com nodes into connected
components where all the nodes in each connected component have the same
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three-letter endings to their address.
In this thesis, an attribute feature must be a connected subgraph. We

could therefore view attribute features as a form of connectivity feature.
However, as the decomposition via attribute is driven by an extrinsic label-
ing, we would like to make this distinction explicit.

1.1.4 Steerable and Interactive Systems

A steerable system allows for the user to direct the progression of a com-
putationally expensive process. Steerable systems have existed for years in
supercomputing [38]. Steerable techniques have been used to modify the
progression of physical simulations [60] or visual representations of large
information spaces where full representations are computationally expen-
sive [2, 80]. A steerable technique allows a user to direct power to areas of
the simulation being explored rather than applying it uniformly to a pro-
hibitively large dataset.

An interactive system is one that allows user input over the course
of its computation. In this thesis, steerable systems are not synonymous
with interactive systems. It is true that all steerable systems allow for user
interaction, but interactive systems are not necessarily steerable, as the input
does not have to be used to direct computation to areas of the data being
explored.

1.1.5 Graph Hierarchies

A graph hierarchy or multilevel hierarchy is created by recursively
placing subgraphs into metanodes. Figure 1.4 illustrates a graph hierarchy.
The original graph or input graph is presented in Figure 1.4(a). The nodes
of this graph are referred to as the leaves of the hierarchy. A metanode
contains a subgraph of leaves and other metanodes. In a graph hierarchy, a
metanode is a parent of all the nodes of its metagraph or an interior node
of the hierarchy. The root of the hierarchy behaves like an interior node for
the purposes of this thesis. The hierarchy is illustrated in Figure 1.4(b) and
this hierarchy is superimposed on top of the input graph in Figure 1.4(c). In
the techniques presented in this thesis, graph hierarchies can be constructed
by recursively detecting connectivity features in the graph or features based
on attributes associated with the nodes of the graph.

If the input graph is large, a graph hierarchy is especially useful for ab-
stracting away unnecessary details. These abstractions are defined using
antichains of the hierarchy. An antichain A is a set of nodes in a graph
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(a) Original Graph (b) Graph Hierarchy (c) Graph Layout

Figure 1.4: Illustration of a graph hierarchy. (a) Original input graph with-
out any hierarchy. (b) Graph hierarchy and (c) graph hierarchy superim-
posed on top of a graph. Colours in both views show correspondences. The
leaves are the small saturated blue dots. Metanodes are interior nodes of
the hierarchy and appear as coloured circles that contain leaves and other
metanodes. A subgraph is the subset of leaves and metanodes contained
inside a metanode. The grouping of the nodes in this hierarchy is arbitrary
for illustration purposes.

hierarchy such that no two nodes in A form an ancestor-descendent pair. A
maximal antichain is an antichain where every path through the graph hi-
erarchy is intersected by A exactly once. Many graph visualization systems
based on graph hierarchies have used antichains for the purposes of visu-
alization. In order to discuss these systems in an information visualization
setting, we define more evocative terminology.

A hierarchy cut is a maximal antichain through a graph hierarchy. Oc-
casionally, we will use cut as a short form of hierarchy cut. Open metan-
odes are all nodes and metanodes in the graph hierarchy above the selected
antichain. These metanodes display their metagraphs in full detail. Cut
metanodes are the elements of A in the antichain. They appear as nodes
in the overview and an edge exists between them if, and only if, an edge
existed in the original graph between their children. Hidden nodes are
leaves and metanodes that are descendents of A. They are abstracted away
inside the cut metanodes. A hierarchy cut is shown in Figure 1.5.

1.1.6 Feature-Based Graph Drawing

A feature is an subgraph we automatically detect in a larger graph that
is used as a basis for hierarchy creation and graph layout. Features cannot
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(a) Graph Hierarchy (b) Graph Layout

Figure 1.5: A hierarchy cut illustrated in Figure 1.4. (a) Graph hierarchy
with hierarchy cut shown as grey curve and (b) graph hierarchy cut super-
imposed on top of a graph. Metanodes that appear on the cut are drawn
opaque, hiding the subgraphs below them.

overlap. They must contain a disjoint set of nodes and edges from all other
features. The features detected in a graph depend on the order of their de-
tection. In this thesis, we only consider features based on graph connectivity
or attributes. Feature-based algorithms detect features in the input graph
and place them into metanodes, forming a graph hierarchy.

Low-level structures are features in G = (N,E) consisting entirely of
leaf nodes in a graph hierarchy context. For example, in a dataset of the
primary routers on the Internet, low-level structure would be represented
by the servers associated with UBC. One or several levels higher in the
hierarchy is mid-level structure. Mid-level structure describes how low-
level structure is connected. It is also the many levels of structure that
may exist between this first level and high-level structure. In our computer
network example, mid-level structure would describe how all the university
computer networks connect in British Columbia. One more level of mid-level
structure would describe how the universities in each province connect to
each other. Finally, high-level structure is the greatest level of abstraction
in the graph hierarchy. It is the subgraph contained at the root of the
hierarchy. In our example, high-level structure would be the most abstract
representation of the Internet available in the graph hierarchy, indicating
the connectivity of computer networks all over the world.

A feature-based approach to graph drawing detects levels of structure
in a input graph. As such, every feature-based graph drawing algorithm has
two phases. The decomposition phase detects these levels of structure in
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the input graph forming the graph hierarchy. The results of the decompo-
sition phase can be supplied as input to the system or it can be computed
by the system. Once the graph hierarchy has been created, the drawing
phase draws the levels of structure. Either of these steps may be steerable
through an interface where the user has control over how decomposition or
drawing of the graph takes place.

1.2 Methodology and Empirical Evaluation

In this thesis, we are interested in demonstrating the viability of tools for
the visualization of graphs acquired from real data sources. A central part
of the validation of the thesis, therefore, is through the implementation of
systems for graph visualization, and the comparison of those systems to the
best-of-breed systems in existence on real data.

In order to evaluate the algorithms in this thesis, we employ empirical
evaluation techniques on their implementations. Empirical evaluation tech-
niques are frequently used to evaluate the implementation of graph drawing
systems [41]. In such an evaluation, benchmark datasets [16, 28, 41, 52]
used to evaluate previous work are rerun, limiting the experimenter’s ability
to choose the data that produces the best results. An empirical evaluation
consists of the asymptotic complexity of the algorithm, quantitative timing
measurements of the implementation, and qualitative discussion of images
created by the system. Quantitative metrics of visual quality are also appro-
priate [57]. This approach is a standard one in information visualization that
is used to evaluate the implementation of algorithms on real data sources.
However, an empirical evaluation does not prove for a general class of graphs
that the technique or algorithm is necessarily effective. Rather, an empirical
evaluation provides evidence that the technique or algorithm is effective on
a sample of possible input data. For all of the algorithms presented in this
thesis, we present the three major components of an empirical evaluation
to compare our results with existing, best-of-breed algorithms. In TopoLay-
out and SPF, these results are supplemented by applying some quantitative
metrics.

We will frequently refer to the qualitative discussion of result images
as a discussion of visual quality. In a discussion of visual quality, we
compare and discuss the differences between generated images and the levels
of structure that can be seen or cannot be seen in the results. We will also
discuss information density in the same way. Information density refers to
the area used to depict the structures in the graph compared to the amount
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of free space in the drawing. A drawing with poor information density has
too much or too little space between graph elements, while a drawing with
good information density is compact with respect to the size of the graph.
When we refer to improved visual quality, we mean an improvement in this
qualitative sense.

In addition to asymptotic complexity numbers, quantitative timing mea-
surements are used to demonstrate how the implementation runs on data
intended for the system. These times are usually given in number of seconds,
unless otherwise specified. The runs are performed on the same machine on
the same data. When we refer to faster in the thesis, we mean faster in
terms of quantitative timing numbers recorded on a test machine.

We have extended some of the quantitative metrics from a traditional
single-level graph drawing to evaluate SPF as a multilevel algorithm. Specif-
ically, we have extended edge length variance and node and metanode over-
laps. These quantitative metrics are used to support the more qualitative
visual structure and density arguments presented in this thesis. These two
metrics are a first step towards a complete set of quantitative metrics for
the evaluation of multilevel graph drawing algorithms, which remains future
work. Once such metrics have been proposed, perceptual studies would need
to be undertaken in order to determine the factors that most influence the
readability of low-, mid-, and high-level graph structure.

In this thesis, we are interested in developing general graph drawing
tools that are not tied to any specific application. In several places in this
thesis, we cite possible application areas for our graph drawing approaches.
We do not claim to solve these domain problems or that domain experts
are interested in the problems cited. Most of the time, these scenarios are
written for expository purposes to help show possible applications of the
work. However, when we have confirmed a possible application area from
either previous work or through conversation with a domain expert, we note
this explicitly in the text.

The final goal of a visualization technique is to provide insight into the
data that the user is trying to understand. We do not evaluate whether
or not the technique is able to generate insight, but opt instead for the
empirical evaluation of techniques and algorithms for the purpose of graph
visualization. We consider this problem to be beyond the scope of this thesis
as the work would require extensive ethnographic evaluation and formal
user experimentation in order to validate these hypotheses. However, we
do hypothesize as to the value added to graph visualization when these
techniques are considered.

In the TopoLayout and SPF chapters, we hypothesize that making the
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Figure 1.6: An example of how low-level structure in a graph is conveyed
using insets in this thesis. The inset, present in the lower left corner, shows
a close-up of the graph structure being discussed. Two lines are drawn
back to a smaller box, indicating the size of the zoom area in the original
drawing. These insets are never part of the drawing presented to the user
of the system and are for illustration purposes in this thesis document only.

levels of connectivity structure visually apparent in the drawing will provide
insight to the user about the structure of the graph. In the Grouse, Grouse-
Flocks, and TugGraph chapters, we hypothesize that providing steerable
overviews through a graph hierarchy on top of a graph will provide insight
into its structure. With GrouseFlocks, we hypothesize that viewing the raw
graph from multiple perspectives provides insight into its structure. With
TugGraph, we hypothesize that using hierarchy structure to model is effec-
tive in providing insight into the structure proximal to a feature.

We do not validate any of these hypotheses. As future work, we hope to
apply recently developed experimental techniques [64] in order to formally
evaluate whether or not these techniques provide insight for a user engaged
in a particular task.

1.3 Zoomed Insets in the Thesis

In this thesis, not all elements of the graph low-, high-, and mid-level struc-
ture that we would like to discuss can be made visible in a single image. In
all the systems presented in this thesis, the user has the ability to magnify
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portions of the graph to see details. As it is difficult to convey zooming in a
text document, insets are used to show how how certain areas of the graph
appear under these levels of magnification.

Figure 1.6 gives an example of such an inset. The inset, present in the
lower right corner of the figure, shows a close-up of the graph structure being
discussed. Two lines are drawn back to a smaller box, indicating the size of
the zoom area in the original drawing. It is important to note that these
insets are never part of the image presented by the system. The insets are
added to the images in this document solely for the purposes of illustration.

When movies are available, links are provided so that an interested reader
can see the system browsing a few sample datasets. It should also be noted
that as the chapters of this thesis progress, these insets become less prevalent
in the presented figures. This indicates an improvement in our work over
the years to depict many levels of structure in a single image.

1.4 Techniques and Algorithms

In order to clarify the contributions of this thesis, we need to define what is
meant by technique and algorithm.

A technique is a class of methods for detection of, or interaction with,
data. In our case, this data is a graph. Different techniques yield differ-
ent visual representation or interaction methods. For example, matrix and
node-link representations of graphs are different techniques, because their
visual representations are different. Likewise, techniques based on graph
hierarchies are different than graph drawing techniques, because they pro-
vide a different form of interaction with the graph through the opening and
closing of metanodes, rather than presenting a final drawing.

An algorithm is a way of implementing a technique. A given technique
can be implemented by many possible algorithms. For example, in graph
drawing systems, there are many multilevel algorithms [34, 40, 44, 49, 76]
described in Chapter 2. These algorithms are different implementations of
a multilevel technique where a graph is drawn through a hierarchy of coarse
graphs.

1.5 Thesis Overview and Contributions

The following section provides an outline of the remainder of this thesis.
Chapter 2 presents a summary of related work in graph drawing and

information visualization pertaining to a feature-base approach to graph



Chapter 1. Introduction 16

drawing. Several sections of discussion present areas where feature-based
approaches can improve on previous results.

Chapter 3 presents TopoLayout. TopoLayout is a multilevel, feature-
based graph drawing algorithm that recursively detects the connectivity
features described in the introduction, forming a graph hierarchy. Neither
its decomposition nor its layout phase are steerable.

The contribution of TopoLayout is a multilevel graph drawing algorithm
based on connectivity features. It also introduces a pass for reducing edge
crossings in the final drawing.

Chapter 4 presents a second feature-based graph drawing algorithm,
Smashing Peacocks Further or SPF. SPF is a feature-based graph drawing
algorithm that is based on TopoLayout. The algorithm is tuned for graphs
with tree-like structure. Neither its decomposition nor its layout phase are
steerable.

The contribution of SPF is an algorithm that tunes the TopoLayout
pipeline for drawing quasi-trees. Additionally, the approach extends the
previous RINGS algorithm in order to make it area-aware. In the empirical
evaluation of SPF, we extended some traditional graph drawing metrics to a
multilevel graph drawing context in order to evaluate the high-level structure
in the drawings.

Chapter 5 presents Grouse, a steerable graph hierarchy exploration sys-
tem. Grouse realizes an algorithm to explore a previously constructed hi-
erarchy of connectivity features. Grouse takes this previously constructed
graph hierarchy as input, but its drawing phase is steerable.

The contribution of Grouse is an algorithm for the steerable exploration
of a graph and an associated graph hierarchy of connectivity features. Ad-
ditionally, a re-layout algorithm is presented that keeps nodes in the final
drawing closer to their input size.

Chapter 6 presents GrouseFlocks, a system for the exploration of the
space of graph hierarchies that can be constructed on top of a graph using
attributes associated with the nodes of the graph. In this system, both the
layout and decomposition phases are steerable.

The contribution of GrouseFlocks is a path-preserving technique for the
steerable creation and exploration of graph hierarchy space based on at-
tribute data associated with the nodes of the graph. The approach also
introduces a coarsening algorithm that preserves large metanodes in the
created hierarchy.

Chapter 7 presents TugGraph, a system that assists users in exploring
areas of a graph adjacent to a feature. Using an initial decomposition, the
systems allows users to interactively modify the graph hierarchy based on
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information directly adjacent to nodes and metanodes. In this system, both
layout and decomposition phases are steerable.

TugGraph contributes a technique, and algorithms implementing the
technique, for exploring a region of the graph located near a feature.

Chapter 8 discusses open problems in the area of feature-based graph
drawing that stem from this thesis. Finally, Chapter 9 concludes by sum-
marizing the work and its contributions.

In this thesis, we extensively explore the area of feature-based graph vi-
sualization by developing and evaluating novel techniques and algorithms.
We provide support for our claims of improved visual quality and running
times of these systems through empirical evaluations against previous ap-
proaches.
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Chapter 2

Previous and Related Work

In graph drawing and areas of information visualization that develop or use
graph drawing research, the literature is divided into techniques that focus
on finding good embeddings of the graph in two or three-dimensions and
those that rely heavily on user interaction to promote understanding of the
data. The former are termed graph drawing techniques while the latter
are termed interactive graph exploration techniques.

Section 2.1 presents graph drawing algorithms, and Section 2.2 presents
interactive graph exploration systems. Graph drawing can be viewed as a
prerequisite for interactive exploration that allows graph drawing algorithms
to scale to larger datasets. As such, the structure of previous work mirrors
the structure of this thesis whereby graph drawing techniques are developed
first followed by interactive systems that use them as a basis.

2.1 Graph Drawing

The problem of drawing general, undirected graphs is one of the oldest
problems in information visualization. Force-directed approaches work on
spring-electrical models [3, 16, 25, 30, 33], energy-based models [18, 46],
or a combination of both [43] dominated most of graph drawing for the
purposes of information visualization in the early nineties. These meth-
ods model physical systems where equilibria of those systems satisfy the
aesthetic criteria of Purchase [63] and Ware et al. [78]. Although these
approaches produced excellent results for many types of graphs, they suf-
fer from quadratic asymptotic complexity with respect to the number of the
nodes in the graph, resulting in slow performance on large graphs. Addition-
ally, these graph drawing methods are prone to local minima, or equilibria
far from satisfying the desired aesthetic criteria, when modeled as a physical
system.

Several algebraic approaches, or spectral approaches, have been stud-
ied [49, 50, 73]. These approaches represent the graph as a matrix and
use the eigenvectors of the matrix to produce drawings. These eigenvectors
typically satisfy a placement of nodes that minimizes a particular energy
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function or maximizes variance in path length. These drawing algorithms
typically run many orders of magnitude faster than previous graph drawing
approaches. However, a recent empirical study [41] suggests such that tech-
niques require a mesh-like connectivity in order to produce good results.
Although these algorithms have the same underpinnings as energy-based
techniques, they are segmented out for expository purposes.

In order to scale force-directed approaches to larger graph sizes, multi-
level techniques have been proposed. Multilevel graph drawing approaches [34,
40, 44, 49, 76] recursively apply a coarsening operator to the input graph,
generating a graph hierarchy. The large input graph is at the leaf level while
the coarsest approximation of the input graph is at the root. Force-directed
algorithms are applied to the levels of the graph from coarsest to finest, ex-
ploiting the fact that the coarse graphs are representative of the finer ones,
but cheaper to lay out. The approaches produce nice drawings of graphs
larger than those of force-directed approaches, but, in general, require coars-
ening operators that exploit features to create the feature-based algorithms
discussed in this thesis.

In addition to these approaches, some algorithms have also exploited
connectivity features in the graph [58, 67] to produce drawings.

This section presents previous work in each of these areas, leading into
a feature-based approach to graph visualization. Force-directed approaches
are described in Section 2.1.1, matrix approaches in Section 2.1.3, multilevel
approaches in Section 2.1.2, and algorithms that have exploited connectivity
features in Section 2.1.4.

2.1.1 Force-Directed Approaches

Force-directed approaches rely on physical analogies in order to produce a
drawing of a graph in two-dimensions. Spring-electrical techniques treat
nodes as charges and edges as springs. The system is released and ter-
minates when it reaches an equilibrium. Energy-based techniques drive
the initial layout using an objective function toward drawing satisfying cer-
tain aesthetic criteria. Spring-electrical techniques are methods that rely
mostly on local graph connectivity where only a node and the nodes im-
mediately adjacent to it are considered when computing the layout. In
contrast, energy-based methods endeavour to find a more global minimum,
optimizing over aesthetic criteria or more complex graph connectivity such
as paths. Hybrid techniques have the added advantage that they can take
varying node size into account when drawing the graph.
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Spring-Electrical

In spring-electrical approaches, nodes are are like-charged particles and the
edges act as springs, holding the drawing together. The repulsive force
pushes every pair of nodes in the graph apart, and the attractive force
exerted by the edges pulls adjacent nodes together. These forces are ex-
pressed as functions f(u, v) where the force f is applied by node u to node
v. The system is released and the forces are applied iteratively until enough
iterations have passed or the system reaches an equilibrium. Equilibrium is
usually said to occur when nodes move little between one iteration and the
next.

Eades [25] was the first to design a graph layout algorithm of this type.
His method is a direct implementation of the concept described above, with
his forces designed as follows:

frep(u, v) = (
c̺

||pu − pv||2
)−−→pupv (2.1)

fattr(u, v) = cσ log(
||pv − pu||

l
)−−→pvpu (2.2)

where c̺ is a repulsive force constant and cσ is an attractive force constant.
These constants can be thought of as scaling factors and are determined
empirically. The ideal edge length between the two nodes is l. The positions
of the nodes u and v in two-dimensions are pu and pv with −−→pupv being the
vector from pu to pv. In this force model, fattr can act as a repulsive force
when the ratio of the distance to the ideal spring length is less than one and
the logarithm becomes negative. This property is not true for subsequent
spring-electrical techniques described.

In each iteration, the algorithm evaluates Equation (2.1) for every pair
of nodes in the graph except those directly adjacent across an edge. It then
evaluates Equation (2.2) for every pair of nodes directly adjacent across
an edge. The result is stored inside an array of force vectors Fv(t). Each
node of N is then moved a small distance δ along the direction of the force
vector. Starting from a random configuration, the process is repeated iter-
atively until equilibrium is reached. In Eades, adjacent nodes are excluded
from repulsive force calculations to avoid oscillations about the ideal edge
length. These oscillations would occur when fattr in Equation (2.1) fre-
quently changes sign. Since repulsive force calculations are required for
every pair of nodes for each iteration, the algorithm has a worst-case com-
plexity of at least O(|N |2).
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Fruchterman and Reingold [33] improve on the forces of the spring-
electrical model to make both forces linear in magnitude, leading to faster
convergence of the system. Reusing the notation described above, the
repulsive forces of Fruchterman and Reingold are described using Equa-
tions (2.3) and (2.4).

frep(u, v) =
l2

||pv − pu||
−−→pupv (2.3)

fattr(u, v) =
||pu − pv||2

l
−−→pvpu (2.4)

These forces are evaluated using a similar algorithm to that of Eades,
but with some changes. First of all, the repulsive force do not exclude
directly adjacent nodes. Secondly, sufficiently distant pairs of nodes are not
considered in repulsive force calculations. These calculations can be omitted
by embedding the graph in a grid, as shown in Figure 2.1(a), and considering
only adjacent cells. The authors also present a way to constrain the drawing
to a fixed drawing area using a physically based analogy. When a node
encounters the boundary of the drawing area, it moves along the component
of the force parallel to the boundary as shown in Figure 2.1(b). Finally, the
distance a node is displaced in a given iteration is made iteration-dependent
so that more drastic movements are allowed in early stages of the algorithm
and are tapered in later stages.

The GEM algorithm [30] further improves the evaluation speed of the
repulsive and attractive forces by allowing them to be computed using only
integer arithmetic. Additionally, the forces are quadratic, providing even
faster convergence, as shown in Equations (2.5) and (2.6).

frep(u, v) =
l2

||pv − pu||2
−−→pupv (2.5)

fattr(u, v) =
||pu − pv||2
l2 · Φ(v)

−−→pvpu (2.6)

fgrav(u, v) = Φ(v) · γ · (
∑

w∈N pw

|N | − pv) (2.7)

The value of Φ(v) for the node v is 1 + deg(v)
2 and essentially slows the

motion of high degree nodes in the plane and draws them toward their
barycentre. The new gravitational force, shown in Equation (2.7), pulls
high degree nodes towards their barycentre with γ as a force constant. This
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v

(a) (b)

Figure 2.1: Fruchterman and Reingold [33] optimizations. The grid embed-
ding is shown in (a). The repulsive force calculations that involve the node
v are only computed for nodes present in the shaded box. The drawing
boundary is shown in figure (b). When a node hits the boundary, it travels
along the parallel component of the force as shown.

gravitational force works because the gravitational force is multiplied by
Φ(v), resulting in a higher gravitational force with increasing degree of the
vertex. The gravitational force serves a similar purpose as the bounding
area of Fruchterman and Reingold.

Unlike all previous spring-electrical algorithms, the initialization step of
GEM is not random. In Frick’s implementation, nodes are introduced into
the layout in breadth-first search order originating from a node near a graph
center estimation. The node is placed close to its parent in the breadth-first
search tree and a single iteration of the force-directed approach is applied
to find the initial position of the node.

GEM improves on previous oscillation and rotation control systems for
convergence. In many graphs, convergence is delayed by nodes oscillating
about their optimal position or rotating in the plane around equally optimal
ones. To increase the speed of convergence, the force at the current iteration
is compared to the force in the previous iteration. If the forces are in opposite
directions, as shown in Figure 2.2(a), oscillation is occurring and if they are
perpendicular, as shown in Figure 2.2(b), rotation is occurring. In both
cases, this motion does not improve the final drawing, and the force applied
to the node is diminished.

In the computer networking and bioinformatics domains, domain scien-
tists have adapted spring-electrical approaches to suit their more specific
tasks and data. Usually, these graphs are very tree-like in structure with



Chapter 2. Previous and Related Work 23

(a) (b)

Figure 2.2: GEM oscillation and rotation control. Oscillations are dampened
when forces in opposite directions as shown in (a). Rotations are dampened
when forces are nearly orthogonal as shown in (b). The force vector F (t) is
the force on the node at time t.

only a small proportion of non-tree links. As such, the approaches use a
spanning tree in conjunction with spring-electrical techniques to compute a
final layout.

Cheswick et al. [16] presented a method for drawing substantial portions
of the Internet router backbone. The input for the algorithm is acquired us-
ing traceroute packets from a source machine. Outgoing paths were tracked
to determine the connectivity between servers.

As the focus of the paper was not on graph drawing techniques, few
algorithmic details are given, but an overview of the approach is clear. To
draw the graph, the authors use a modified force-directed approach with two
optimizations. The first optimization eliminates sufficiently distant nodes
from the repulsive force calculations. The second optimization is to use a
spanning tree as a skeleton for the force-directed layout. The nodes of the
test servers are laid out in the centre of the drawing. Iterations of force-
directed layout are applied until this graph reaches equilibrium. Nodes are
added to the layout in breadth-first order using a spanning tree centred
at the traceroute packet source. The edges that connect these nodes to
previously placed nodes are added. The result has been described as a
“smashed peacock on a windshield” by Dave Presotto [16]. A picture of the
system output supplied by the authors is shown in Figure 2.3(a).

When drawing protein homology maps, Adai et al. [3] use the approach
of Cheswick et al. [16] with a few changes to adapt the approach to protein
homology maps. In their system, Large Graph Layout or LGL, the spanning
tree used as a skeleton is a spanning tree of minimum cost computed on an
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(a) Cheswick et al. [16] (b) Adai et al. [3]

Figure 2.3: Drawings of two domain-inspired, force-directed approaches.
Printed in this thesis with permission of the authors.

edge-weighted graph by a protein similarity score. The e-values measure the
similarity of proteins. If two proteins are similar enough, the edge between
them is included in the graph.

To draw the graph, the root vertex can be chosen arbitrarily, be user
specified, or be chosen based on graph centrality. As in Cheswick et al.
nodes are introduced into the layout in breadth-first order. LGL culls the
repulsive forces of sufficiently distant nodes by embedding the graph in a
grid. Two nodes share a repulsive force if they are present in the same
or adjacent cells. This optimization is essentially that of Fruchterman and
Reingold [33]. LGL was tested on several protein homology maps and the
layouts grouped proteins into families of related function. A picture of the
system output provided by the authors is shown in Figure 2.3(b).

Energy-Based

Energy-based techniques explicitly define an objective function. This
objective function formalizes the characteristics of a good layout. The draw-
ing algorithm drives positions of the nodes toward a local minimum or max-
imum of this objective function and terminates when the net energy changes
little between iterations. An objective function U(u, v) defines the optimal
placement of the node u with respect to the node v.

Kamada and Kawai [46] is the first of these techniques and probably
the most commonly in use. Their objective function drives all shortest path
distances between pairs of nodes in the graph to straight lines. Let dG(u, v)
be the graph-theoretic distance between nodes u and v and let l be some
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ideal Euclidean length for the edge in the two-dimensional plane. Let c be a
scaling factor applied to the final layout. The objective function for Kamada
and Kawai is given by Equation (2.8).

U(u, v) =
∑

u∈N

∑

v∈N

c

dG(u, v)
(||pu − pv|| − ldG(u, v))2 (2.8)

Kamada and Kawai has the disadvantage that it consistently requires
O(|N |3) time to compute the matrix containing all dG(u, v) values. In addi-
tion, this matrix requires O(|N |2) space as the shortest path distance matrix
must be stored during layout to avoid O(|N |4) running time complexity. Al-
though Kamada and Kawai has this limitation, heuristics can improve the
running time of this approach so that it does not have to compute the full
adjacency matrix.

Davidson and Harel [18] apply the process of simulated annealing to yield
a nice drawing of a graph. Simulated annealing is an optimization method
where an energy function is minimized using local improvements. Solutions
of higher energy are accepted with higher probability in early iterations and
with decreasing probability in later iterations to avoid local minima. In their
work, this optimization function has terms to drive the drawing toward a
uniform distribution of nodes, short edges, bounded layout size, and a low
number of edge crossings. Weights on each of these terms are set to increase
or decrease the importance of each property.

Noack [59] introduced an energy-based model for graph layout that au-
tomatically reveals cluster structure within a graph. In this approach, the
LinLog energy function is minimized:

U(u, v) =
∑

(u,v)∈E

||pu − pv|| −
∑

u∈N

∑

v∈N

ln ||pu − pv|| (2.9)

The node positions computed using the LinLog function reflect the cut
ratio of the graph. This ratio is proportional to the number of edges that
would be broken by separating the two disjoint subsets of nodes from each
other. Thus, nodes participating in highly connected clusters are placed
closer together, while nodes that are loosely connected are placed farther
apart.

Noack further generalizes the LinLog energy model to what he calls the
r-PolyLog energy models. The LinLog energy model is the 1-PolyLog
model. Taking an energy-based view of Fruchterman and Reingold [33], it
can be shown equivalent to the 3-PolyLog model. The objective function
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for a general r-PolyLog model is defined as:

U(u, v) =
∑

(u,v)∈E

1

r
||pu − pv||r −

∑

(u,v)∈N×N

ln ||pu − pv|| (2.10)

As the value of r → ∞, the distribution of edge lengths becomes more
uniform. The author suggests that some of the r-PolyLog energy models
could be applied to display different types of clusterings.

Constraint-Based Graph Drawing

The primary limitation of force-directed graph drawing approaches is that
there are no guarantees of node position or separation. Constraint based
approaches add hard constraints in addition to the soft constraints of en-
ergy based techniques, ensuring certain criteria are met. When these con-
straints are fully imposed, the graph drawing process is only limited to
states where no constraints are violated. Constraint-based graph drawing
techniques use quadratic programming, a numerical technique employed by
constraint solvers in other areas of computer science. These relatively new
techniques are based on the stress majorization [35] approach.

Dwyer et al. [21] present the first of these techniques. In their system,
the energy-based stress majorization process is used to drive the layout of
a directed graph to a good solution. A directed graph can be interpreted
as a hierarchy, where levels are defined by ensuring the majority of directed
edges point downwards. Constraints, in this case, are the horizontal bands
imposed by the levels of the directed graph. Quadratic programming is used
to ensure that nodes in the graph are constrained to the bands as defined
by the hierarchy.

In further work Dwyer et al. [22] generalize the process of constraint-
based graph drawing. In the work, they define ways to constrain nodes in
graphs to fix node positions, ensure nodes are contained within a given area
as in Figure 2.4, ensure orthogonal ordering, and ensure no node or cluster
overlap. The algorithm is implemented in a dynamic system where these
constraints can be imposed interactively at runtime as the user explores the
graph. Constraints can then be imposed gradually, allowing the graph to
pass through local minima energy states at the beginning, but still ensure
that the hard constraints are satisfied at the end of the layout process.
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Figure 2.4: Drawing produced by IPSep-CoLa of Dwyer et al. [22]. Blue
boxes require contained nodes to be within the specified area. Image used
with permission of the author.

Area-Aware Variants

The above-described, physically-inspired algorithms assume point nodes and
often perform poorly on nodes with significant area. Harel and Koren [43]
introduce several ways to adapt the spring-electrical and energy-based tech-
niques to deal with nodes of significant area or to make them area-aware.

In this work, the authors propose two variants of the Fruchterman and
Reingold [33] algorithm to draw the graph. Their first modification em-
ploys bounding ellipses instead of bounding circles to better approximate
the shape of nodes. In their second approach, they only consider the dis-
tance between the boundaries of the nodes u and v rather than the distance
between the node centres. Both modifications of the Fruchterman and Rein-
gold spring embedder have slow convergence rates to a nice drawing. The
authors attribute this problem to the lack of maneuverability of nodes as
they take significant area. To alleviate this problem, they suggest running
regular Fruchterman and Reingold and gradually introducing the area con-
straints as the algorithm progresses.

The authors also propose an area-aware variant of the Kamada and
Kawai [46] algorithm. To make Kamada and Kawai area-aware, they ex-
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press the graph as a weighted graph where the weight on an edge is equal
to the sum of an ideal edge length l and the sum of the radii of the inci-
dent nodes. Area-aware Kamada and Kawai has a faster convergence rate
than area-aware Fruchterman and Reingold, but empirically, the algorithm
is prone to more node-node overlaps.

In order to achieve a good layout, the authors then suggest a combined
method that uses area-aware Kamada and Kawai to achieve an initial layout
and then area-aware Fruchterman and Reingold to refine the drawing.

Discussion

Force-directed graph drawing approaches produce layouts of high quality on
graphs of hundreds of nodes. The main disadvantage to all of the above-
described methods is that they require, in worst case, O(|N |2) time per
iteration to compute the repulsive forces.

Noack [59] was one of the first to suggest that uniform edge lengths for
edges in a graph layout may not be ideal for understanding cluster structure
in the graph. In fact, the LinLog energy function strives for non-uniform
edge lengths in order to make the cluster structure in the graph more preva-
lent. This argument is more in line with a feature-based approach: an
approach we continue to explore and expand in this thesis.

2.1.2 Multilevel Algorithms

A multilevel graph drawing algorithm circumvents the quadratic worst case
complexity of force-directed graph drawing algorithms by considering a hi-
erarchy of coarse approximations of the input graph that is used for layout.
These techniques consist of two phases: a coarsening phase where a coars-
ening operator is applied recursively to the graph to construct the hierarchy
of coarse graphs and a layout phase where the computed hierarchy is used
to draw the original graph. The coarsening operator replaces subgraphs in
the graph by a single metanode n. The recursive application of this opera-
tor defines a hierarchy of coarse graphs specified by metanode containment
relationships. The node n is the parent node of all nodes in the subgraph
it contains. Conversely, the nodes of the subgraph are the children of n.
This section discusses several of examples of multilevel algorithms with their
coarsening and layout phases. A drawing produced by a recent approach of
this class is presented in Figure 2.5.

In Walshaw [76], the coarsening operator is an estimate of the solution
to the maximal matching problem. The maximal matching problem selects
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the largest independent set of edges in the graph such that no two edges
are incident to the same node. The approach uses a heuristic that is not
guaranteed to return the maximal set, but returns sets of edges close to
the maximum. They lay out each level of the hierarchy, using the spring
embedder of Fruchterman and Reingold [33], proceeding from the coarsest
level of the hierarchy to finest. The location of a node at a coarser level
defines the location of a subgraph at a finer level. The authors set longer
edge lengths at coarser levels of the hierarchy to reduce the likelihood of
subgraph overlap at finer levels.

Harel and Koren [44] recursively apply an approximate solution to the
k-centres problem as a coarsening operator. The k-centres problem groups
a set of points into k clusters where the distance between any pair of points
in the cluster is minimized. Their algorithm relies on the fact that the
Euclidean distance in the layout between two nodes should be proportional
to graph-theoretic distance. The algorithm draws each level of the hierarchy
using Kamada and Kawai [46] and lengthens edges at higher levels of the
hierarchy to deter overlapping subgraphs.

Gajer, Goodrich, and Kobourov [34] coarsen the input graph by apply-
ing a filtration to the node set. The filtration operator constructs maximal
independent sets of nodes at each level i such that the graph theoretic dis-
tance between any two nodes of the subset is at least 2i−1 − 1. They also
draw the graph by laying out the levels of the hierarchy from coarsest to
finest using the Kamada and Kawai [46] algorithm. Nodes at coarser levels
define the locations of subgraphs at finer levels in the plane.

The Fast Multipole Multilevel Method, or FM3, algorithm [40] is the
first multilevel algorithm for general graphs with a provable worst case
asymptotic runtime of O(|N | log |N | + |E|). In this approach, the graph
is partitioned into subgraphs called solar systems. These solar systems are
contracted down to single nodes and the process is repeated to create a hi-
erarchy. Fruchterman and Reingold [33] is used to lay out the graph from
coarse to fine levels. The authors show that a fixed fraction of nodes and
edges are present in each solar system, proving the hierarchy is balanced.
Using this fact, they are able to prove that the final graph layout can be
obtained in O(|N | log |N |+ |E|) time. A subsequent empirical evaluation of
FM3 demonstrates that FM3 yields higher visual quality results than pre-
vious work [41]. A result of FM3 on a social network dataset is shown in
Figure 2.5.
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Figure 2.5: Drawing produced by the FM3 [40] multilevel algorithm. The
drawing is of a social network. Multilevel graph drawing techniques produce
a final image of a large graph with all nodes and edges visible. Images
reproduced with permission of the author.

Discussion

Multilevel algorithms drastically reduce the running time from hours to
a matter of minutes when compared to pure force-directed techniques on
graphs of thousands of nodes. In addition, the algorithms improve the qual-
ity of the final drawing as they help avoid local minima encountered in
force-directed approaches. Evidence for both of these improvements is given
in Hachul and Jünger’s empirical study [41], where several multilevel al-
gorithms are compared to the force-directed approach of Fruchterman and
Reingold [33].

However, these heuristics treat all nodes and edges in each subgraph
with the same graph drawing algorithm and, thus cannot take advantage
of connectivity features found in the graph. Harel and Koren [44] assume
that graph-theoretic distance should be proportional to Euclidean distance
in the plane. This assumption is safe in many circumstances. However,
in many tree drawings, some leaves are placed close together even though
these nodes are far apart in terms of graph-theoretic distance in order to
create a compact spacial layout. Similarly, for a complete graph, some nodes
connected by a single edge need to be on the other side of the drawing. Gajer,
Goodrich, and Kobourov [34] have a similar drawback. In their approach,
the filtration does not perform well on graphs of high connectivity. Several
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of the approaches presented in this thesis explicitly detect some of these
cases to improve the visual quality and speed of the drawing.

A second disadvantage of these approaches is they typically use only
force-directed approaches at each level of the hierarchy. Force-directed ap-
proaches can be slow in the worst case with a O(|N |3) running time. With
extra information about the type of subgraph present at each level, hierarchy
levels can be drawn more quickly in specific cases.

2.1.3 Matrix Approaches

There has been some work on expressing graphs as matrices and using linear
algebra techniques to compute drawings. These methods produce layouts of
high visual quality, but, from a recent empirical evaluation [41], it appears
that these methods only work on graphs with certain a connectivity. In
these matrix approaches, either the Laplacian matrix or the shortest path
distance matrix representation of the graph is used to compute drawings.

Laplacian Approaches

The Laplacian matrix L of a graph is defined as:

L = D −A (2.11)

The matrix D is the degree matrix of the graph where each entry dii

is the degree of node i. The matrix is zero everywhere else. The matrix A
is the adjacency matrix of the graph where an entry aij is one if and only
if there exists an edge between nodes i and j. Otherwise, the entry is zero.

Although typically characterized as a energy-based method, the Tutte [73]
algorithm was the first algorithm to exploit the Laplacian matrix for graph
layout. Graphs drawn with Tutte must be planar, meaning they can be
embedded in the plane without edge crossings. They also need to be 3-
connected, meaning the removal of any two nodes does not disconnect the
graph. These restrictions ensure that there exists a boundary polygon of a
set of nodes M , where M ⊆ N . The coordinates of the nodes in M can be
fixed on a polygon of |M | nodes. The positions of the remaining nodes lie
inside that polygon and their coordinates are determined by computing the
global minimum of a system of equations defined by L. Let the remaining
nodes be labeled |M |+1, . . . , |N |. Let x and y be vectors where xi and yi for
i = 1, 2, . . . |N | are the x and y coordinates of node i in the embedding plane.
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The positions of the remaining nodes, i = |M |+ 1, . . . , |N |, are obtained by
solving the two systems of equations:

Lx = 0 (2.12)

Ly = 0 (2.13)

The imposed restrictions ensure that there is a unique solution for all xi

and yi with i = 1, 2, . . . |N |. This solution is determined by deleting the rows
i = 1, 2, . . . , |M | of L in Equations (2.12) and (2.13) as their coordinates are
specified by the embedding polygon. These terms are solved, summed, and
subtracted from both sides of the system of equations as the values of xi

and yi are known.
The ACE algorithm [49], shown in Figure 2.6, solves for the eigenvec-

tors of L associated with the smallest eigenvalues to determine a suitable
projection of the graph into two, three, or any dimension less than or equal
to the number of eigenvectors of the matrix. The eigenvectors are com-
puted by constructing a hierarchy of coarse matrices via algebraic multigrid
techniques and computing the eigenvectors of the coarsest matrix. The fi-
nal layout is recursively computed by using the eigenvectors obtained at a
coarser level of the matrix hierarchy as an estimate for the eigenvectors one
level down. In this way, ACE could be considered multilevel. The computed
eigenvectors are mapped to the x and y positions of the nodes to produce
the final drawing. The ACE algorithm has a strong connection to the Hall
energy [42] where these eigenvectors are used to lay out a set of points.

Shortest Path Distance Matrix Approaches

Instead of considering the Laplacian, the High Dimensional Embedder al-
gorithm or HDE [50] considers part of the pairwise, shortest path matrix
between nodes in the graph. The algorithm is related to a rich family of
mathematical approaches that have been explored as solutions to problems
ranging from flattening curved surfaces [65] to texture mapping in computer
graphics [82]. These algorithms select a subset of d points called pivots
and compute the pairwise geodesic or graph-theoretic distance between the
pivots and all other points on the surface. Each pivot corresponds to a di-
mension, and the graph theoretic distance between the pivots and all other
points defines a position for each point in a d-dimensional space. The point
set is centred, and principal component analysis (PCA) or multi-dimensional
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Figure 2.6: Two graphs drawn with the ACE algorithm [49]. The approach
uses a hierarchy of coarse Laplacian matrices to speed up the computation
of a final layout. Images reproduced with permission of the author.

scaling (MDS) maps the d-dimensional embedding down to a two or three-
dimensions. Figure 2.7 shows a result of the algorithm.

In HDE, the first pivot of the graph is selected randomly. The graph
theoretic distance between the first pivot and all other nodes in the graph
is computed using breadth-first search for unweighted graphs or Dijkstra’s
algorithm for weighted graphs. For the remaining d − 1 pivots, the node
with furthest graph-theoretic distance from the pivot is selected in order
to maximize variance on each axis. The layout of the graph in the d-
dimensional space is encoded in a n by d matrix (Harel and Koren used
d = 50). PCA maps the drawing into two-dimensions by computing the
eigenvectors of the matrix and selecting the two of largest eigenvalue. These
principal components correspond to the directions of maximal variance in
the high-dimensional space. The eigenvectors are mapped to the x and y po-
sitions of the nodes to produce the final layout. HDE has a running time of
O(d(|N | log |N |+ |E|)) or O(d(|N |+ |E|)) depending on whether Dijkstra’s
algorithm or breadth-first search is used.

Discussion

ACE and HDE are many orders of magnitude faster than the multilevel
techniques presented in Section 2.1.2. On graphs of thousands of nodes,
frequently they take less than one second. As Tutte needs only to solve a
system of linear equations and compute a boundary polygon for the graph,
it is also extremely fast.

However, these matrix-based approaches only work well on graphs with a
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Figure 2.7: A graph drawn with the HDE algorithm [50]. The approach
computes the dominant eigenvectors of the shortest path matrix and uses
them for node positions. Images reproduced with permission of the author.

certain connectivity. For Tutte, this is the set of 3-connected, planar graphs.
Linear time algorithms exist to transform a planar graph into a 3-connected
planar graph, but additional dummy nodes need to be added. For ACE
and HDE, the set of graphs is not known, but there is some evidence that
suggests these approaches are also restricted to a subset of general directed
graphs. A recent empirical study [41] suggests that these graphs need to have
mesh-like properties. Also, Stefan Hachul, in his PhD thesis [39], presents
an argument as to why HDE will not perform well on graphs with many
biconnected components.

2.1.4 Connectivity Feature Approaches

Connectivity features have been exploited previously in graph drawing. Two
previous approaches search for specific connectivity features in the graph at
a single level, and both of these approaches use different layout algorithms
depending on the type of connectivity feature detected.

One of the older approaches along these lines is the work of Sugiyama
and Misue [70]. The algorithm takes as input a directed graph and a graph
hierarchy on top of that directed graph. The approach draws the levels of
the hierarchy in several passes, optimizing the layout using accepted directed
graph drawing aethetics in the following priority order: vertex closeness,
edge crossings, edge-node crossings, and edge straightness. The resulting
drawing of the hierarchy is a compromise between these possibly conflicting
criteria.
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Six and Tollis [67] decompose the graph into biconnected components
and lay out each component using a radial tree layout algorithm that is
area-aware. Bridge edges appear as edges in the tree. Bridge nodes are
either drawn with a component or are drawn between components. Each
biconnected component is drawn with a circular layout algorithm that places
all the nodes on the circumference of a circle.

Niggemann and Stein [58] describe an algorithm based on regression
learning. The algorithm recursively clusters an input graph. For each sub-
graph in the recursive clustering, the algorithm constructs a feature vector
containing statistics about the subgraph, including the number of connected
components, biconnected components, and clusters found. A mapping for a
query feature vector is found through a machine learning algorithm applied
to a large database of graphs. The machine learning algorithm draws all
example graphs with several layout algorithms and evaluates each drawing
using traditional graph drawing aesthetic criteria to select the best draw-
ing method. Although the work produces some visually convincing results,
the largest graph drawn was one thousand nodes. No explicit performance
numbers were given. However, drawing a full database of example graphs,
evaluating each layout according to graph drawing aesthetics, and applying
regression learning to the results is most likely a computationally expensive
process, suggesting that this preprocessing step is a limitation.

Discussion

Some work has been completed on drawing graphs by exploiting the con-
nectivity features they contain. Sugiyama and Misue do process a hierarchy
of connectivity features for directed graphs. However, the approach lacks
a decomposition phase as it requires a hierarchy of connectivity features as
input. Also, the approach applies the same drawing algorithm at each level
of the hierarchy. One of the primary differences between the features pre-
sented in their work and the features presented in this thesis is that different
drawing algorithms are used depending on the type of connectivity feature
detected.

Six and Tollis are able to exploit biconnectivity to draw large graphs
and clearly display areas that are not biconnected. However, they only use
circular layout when drawing each individual biconnected components and
do not test for other types of connectivity features.

Although Niggemann and Stein do produce some visually convincing
results, regression learning is slower when compared to efficient connectivity
feature detection algorithms because connectivity feature algorithms do not
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need to apply machine learning techniques to a database of example graphs.
In this thesis, we expand to a larger set of connectivity features detected

and use a wider range of drawing algorithms tuned for the type of connec-
tivity feature detected.

2.1.5 Discussion

Graph drawing is a very active area of research, and this section has covered
only the algorithms most relevant to this thesis. An interested reader can
find more information on this subject in the many surveys and textbooks
written about the subject [19, 45, 47].

Few of the algorithms described above adhere to a feature-based ap-
proach to graph visualization, especially in multilevel graph drawing. This
thesis presents two multilevel, feature-based algorithms, TopoLayout and
SPF, that are presented in Chapters 3 and 4 respectively. These algorithms
are graph drawing algorithms in the sense defined above: they compute a
layout for the input graph and display the drawing in its entirety.

The process of graph visualization does not end with the area of graph
drawing. Even if graph drawing algorithms use two-dimensions, where oc-
clusion is less of a problem, the fact remains that as the size of the graph
increases, visual quality degrades due to the number of items on the screen.
Larger dataset sizes increase the difficulty of conveying full graph structure
all at once. Thus, interactive techniques have been created to allow graph
drawing algorithms to scale to larger dataset sizes.

In this thesis, we also explore several steerable, feature-based approaches
in addition to the TopoLayout and SPF graph drawing algorithms. Foun-
dations for these steerable techniques have been previously explored in the
information visualization and graph drawing literature and are discussed in
the next section.

2.2 Interactive Exploration of Graphs and Graph

Hierarchies

This section discusses various interactive techniques that can be used to ex-
plore graphs. By allowing enabling user interaction, it is possible to present
overviews of the data that are easier to understand and present details on
demand as the user requests them. Most of these algorithms use established
graph drawing techniques discussed in Section 2.1 or the many surveys pre-
sented in the discussion section.
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Many interactive techniques for graph drawing exist, but this thesis is
primarily focused on feature-based visualization in a multilevel context.
Thus, we focus our discussion of interactive techniques around multilevel
approaches. The section begins by presenting spanning tree methods, in
Section 2.2.1, where the visualization uses a carefully selected spanning tree
to drive the visualization process. Section 2.2.2 presents interactive visu-
alization techniques that use attribute data to construct overviews of the
data. Techniques that use multilevel hierarchies as a visualization technique
are presented in Section 2.2.3. Finally, Section 2.3 discusses the limitations
of previous work.

2.2.1 Spanning Tree Methods

Spanning tree methods have appeared previously in the graph drawing and
information visualization literature. They draw a carefully-selected span-
ning tree and use it as an overview for visualization purposes. If the span-
ning tree is selected in a way that is familiar to the user, it can be useful for
the purposes of visualization.

The H3 system [55], shown in Figure 2.8, relies on preprocessing with
domain-specific knowledge to find an appropriate spanning tree for the
graph. Node positions depend only on the chosen spanning tree, and the
drawing of non-tree edge subsets is toggled based on user selection.

Boutin and Hascoët [14] characterize tree-like graphs as having non-tree
links only below a threshold graph-theoretic distance. They impose this
definition by filtering a potentially dense general graph by removing edges
that do not fit their constraint. An interactively chosen focus node is used
as the spanning tree root.

Discussion

All the above methods use filtering of graph edges to highlight structure and
reduce visual clutter. However, the greatest strength of these techniques is
their greatest weakness: much of the high-level structure is not shown. As a
result, it is difficult to understand structures such as shortest paths because
critical links completing a path may be filtered out. In some visualization
tasks, a high-level overview of the entire graph is critical to understanding
the data. For example, in a large computer network, users may want to
highlight how subnetworks are interconnected. In systems biology, users
may want to understand the connectivity between processes in the body.
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Figure 2.8: Visualization of a Fortran call graph using the H3 system [55].
H3 is a spanning tree method for graph visualization. It uses a carefully
selected spanning tree and filtering on the edges of the graph in order to
facilitate understanding. Image reproduced with permission of the author.

This thesis aims to provide systems that are able to highlight these high-
level interactions between subgraphs.

2.2.2 Interactive Exploration Using Attribute Data

A variety of interactive graph drawing techniques have encoded spacial po-
sition using attribute data associated with the graph. These techniques do
not consider graph connectivity for the purposes of accentuating the clas-
sification of nodes or edges by attribute. An exemplar system is shown in
Figure 2.9.

Kosak, Marks, and Shieber [51] describe a predicate logic and a genetic
algorithm approach for graph layout by attribute data. In the first ap-
proach, a set of predicate logic rules is written for the nodes in the graph,
specifying clusters of nodes by label, relative positions of nodes relative to
each other, and the importance of various aesthetic criteria for their place-
ment. A Prolog interpreter applies these rules to determine a layout that is
a compromise between these conflicting criteria. Their second approach is a



Chapter 2. Previous and Related Work 39

genetic algorithm where the fitness function encodes these predicates. The
genetic algorithm is run on a massively parallel machine.

Pretorius and van Wijk [62] describe a system to map multidimensional
attribute data associated with the nodes and edges of a graph to the spacial
position of the nodes. In their approach, nodes are placed in the high-
dimensional space defined by their attribute data. This high-dimensional
drawing is mapped down to two-dimensions using principal component anal-
ysis or PCA. The resultant positions of the nodes in these drawings accentu-
ate directions of maximal variance in the attribute being investigated, rather
than the connectivity of the graph.

The PivotGraph system of Wattenberg [79] determines the spacial posi-
tion of nodes using using high-dimensional attribute data. They employ a
dimensionality reduction technique whereby nodes are divided into equiva-
lence classes. Nodes are placed in the same equivalence class if and only if
they have the same value for the dimension being examined. These equiva-
lence classes can be used to influence spacial position or simplify the graph
structure. When the dimensionality of the graph has been reduced to two-
dimensions, the final positions of the nodes are encoded using the values of
those dimensions on the x and y axis.

Semantic substrates for graph layout, introduced by Shneiderman and
Aris [66], shown in Figure 2.9, allows nodes to be placed based purely on
attribute data. In this approach, only categorical data is used to place
nodes in regions the user specifies. Nodes are placed along horizontal and
vertical axis based on attributes. Attributes can also be used to divide the
nodes into separate areas of the screen. Intelligent edge filtration techniques
display underlying graph connectivity to encourage understanding of the
graph with the attribute as the driving feature of the visualization.

Discussion

The primary advantage of these approaches is that they elucidate structures
in the attributes associated with the nodes and edges of the graph that
approaches based purely on graph connectivity would miss. However, one
could argue that these techniques place too little emphasis on graph connec-
tivity for some tasks. For example, if a user wanted to see a path through
a large computer network, the connectivity of the network is important and
should have some influence on the spacial positioning of the nodes. Many
of the chapters of this thesis demonstrate a compromise between attribute
data and graph connectivity over the course of the visualization process.
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Figure 2.9: Visualization of citations in court cases using Semantic Sub-
strates [66]. This technique is indicative of attribute-based drawings of
graphs. Node positions are determined by date and interaction is used to
clarify graph structure. Image reproduced with permission of the authors.

2.2.3 Graph Hierarchy Based Exploration

This section of previous work is further subdivided into three categories.
Systems in the first category require existing layouts of the entire underlying
graph before visualization can begin. Systems in the second category are
steerable systems, or systems that lay out the graph on the fly over the course
of the visualization. Systems in the third category allow some modification
of the graph hierarchy in addition to steerable exploration.

Existing Layout Required

These systems are some of the oldest graph hierarchy exploration techniques
in existence. All of these techniques assume a complete layout of the input
graph, the leaves of the hierarchy, before visualization of the data can begin.
The output of two of the more recent systems of this class are presented in
Figure 2.10.

Eades and Feng [26] introduced one of the first techniques for visualizing
graph hierarchies. In their approach, all levels of the graph hierarchy are
extruded out onto separate planes in a three-dimensional space. Edges of
the hierarchy tree are then drawn between the planes in three-dimensional
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space. The user is able to interactively rotate the graph and hierarchy in
order to see an interesting view. The authors provide an example of their
approach with a hierarchically clustered graph where each level is drawn
with the Tutte [73] algorithm.

Gansner, Koren, and North [36] introduce the concept of a topologi-
cal fisheye view to a graph hierarchy. The topological fisheye displays a
hybrid graph of several hierarchy levels with progressively coarser graphs
displayed at increasing Euclidean distance from a focus centre. The algo-
rithm constructs a hierarchy of coarse graphs recursively using an approx-
imate solution to the maximal matching problem, similar to that of Wal-
shaw [76], but also exploiting the Euclidean positions of the nodes in the
layout. These node positions are exploited through a Delaunay triangula-
tion or relative neighbourhood graph. The edges that connect two nodes of
a graph-theoretic distance of two or less are considered along with the edges
of the input graph. After specifying the focus centre, nodes are assigned a
desired coarsening level in the hierarchy based on Euclidean distances. In-
consistencies between nodes at different levels are resolved by selecting the
finer level in the hierarchy.

Abello, Kobourov, and Yusufov [1] also define a compound fisheye view
for large graphs. The compound fisheye is essentially the same idea as
the topological fisheye. Their approach defines a focus centre and displays
fine levels of the graph hierarchy near the focus centre and coarse levels
with increasing distance. Like Gansner et al. [36], their method assumes
an initial drawing of the graph is given. The graph hierarchy is computed
using graph-theoretic or Euclidean distance information. In their system, if
a Euclidean distance clustering is requested they use a binary space partition
of the drawing. If graph-theoretic clustering is requested they use Markov
clustering [74]. Their work differs from Gansner et al. [36] by providing a
tree map view of the cluster hierarchy next to the fisheye view. A linked
view shows the level of the hierarchy that is currently being expanded by
the compound fisheye view in the tree map. Through linked highlighting,
the method provides a way to visualize open metanodes.

The work of van Ham and van Wijk [75] describes a way to visualize a
small world graph hierarchy. In their approach, they improve the clustering
spring embedder of Noack [59] to draw a clustered graph. In their variant,
they perform simulated annealing on the r-PolyLog force model, choosing a
more uniform force model at early stages and decreasing r in later stages
to encourage clustering. The visually clustered drawing is then used to
construct a hierarchy. The original nodes of the graph are the leaves and
each original node is considered its own cluster initially. Recursive pairwise
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(a) Gansner et al. [36] (b) van Ham et al. [75]

Figure 2.10: Two large graph visualizations that use graph hierarchies to
simplify the input graph. Both of these techniques require a layout of the
entire graph before visualization can begin. In (a), a Topological Fisheye
view of an Internet graph is presented. Red areas are shown in fine levels
of detail, closer to the leaves of the hierarchy, where green areas are coarse
levels of the hierarchy. In (b), size encodes how coarse the metanode is. The
focus centre of the visualization is the translucent bubble near the centre of
the figure. Coarser levels are drawn with increasing distance from this focus
centre. Images reproduced with permission of the authors.

merging of clusters is performed by considering the average Euclidean or
graph-theoretic distance between elements in each pair of clusters. The
hierarchy is a binary tree. It is visualized using hierarchy cuts, providing
several focus areas.

Balzer and Deussen [13] apply these techniques to the domain of software
engineering. Their system takes a graph and an assignment of coordinates
to the nodes of the graph in three-dimensions as input. It constructs a
graph hierarchy top down using spacial positions of the nodes and clustering
algorithms. Level-of-detail techniques smoothly transition the views of the
graph between the various levels of the graph hierarchy.

Discussion

All of these techniques have the advantage that the layout of the under-
lying graph is computed once, before the visualization begins. However,
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this preprocessing step can be very expensive and can delay the exploration
process as most graph drawing algorithms are computationally expensive.
Another approach would be to draw the graph on the fly using the graph
hierarchy as the user explores the data. This way, computational power
is directed towards areas of the data that are of interest to the user with
areas of non-interest receiving minimal computational effort. This is the ap-
proach presented in both the Grouse and GrouseFlocks systems described
in chapters 5 and 6 respectively.

Steerable Exploration

In steerable systems, the layout of the graph is computed on the fly, as users
explore their data. Steerable systems do not require a pre-existing layout
of their graphs, allowing exploration to begin immediately. Rather, they
compute layouts of subgraphs on the fly when cut metanodes are opened
and become open metanodes above the hierarchy cut. By computing the
layout on the fly, exploration can begin immediately without a costly layout
preprocessing step. A drawing produced by a recent steerable system is
presented in Figure 2.11.

Di Giacomo [20] et al. present a system for visualizing a graph and an
associated hierarchy both created by a search engine query. In their system,
a search query produces a graph: a set of documents, the nodes of the graph,
and an edge exists if documents are sufficiently semantically related. The
strength of the relationship is encoded with an edge weight and a clustering
algorithm is recursively applied to the graph, forming a graph hierarchy.
Hierarchy cuts are visualized through orthogonal graph drawing algorithms
as the user explores the hierarchy.

ASK-GraphView [2], shown in Figure 2.11, is a powerful steerable system
with multiple linked views. It computes hierarchies using a feature-based
decomposition, detecting trees, biconnected components, and clusters. The
system uses force-directed placement for all metanodes. After the base de-
composition, it automatically modifies the hierarchy by imposing thresholds
on hierarchy depth and the number of children in each metanode to ensure
interactive visualization.

Discussion

Steerable systems allow for the visualization of a fixed graph and a fixed
associated hierarchy. These systems allow hierarchy based visualization to
scale to larger datasets by eliminating the expensive preprocessing layout
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Figure 2.11: Steerable hierarchy visualization using ASK-GraphView [2].
Unlike previous visualization systems, ASK-GraphView draws the contents
of metanodes as the user opens them in the visualization. Views of the
graph hierarchy are visible on the top and left part of the screen. A matrix
view is visible in the top left corner. Image reproduced with permission of
the authors.



Chapter 2. Previous and Related Work 45

step. However, there is still a cost for hierarchy generation that must be paid
before exploration can begin. Also, only one hierarchy that is generated by
detection of connectivity features, is visualized on top of the input graph.

Current steerable graph exploration systems have a number of limita-
tions that are addressed in this thesis. DA-TU and ASK-GraphView em-
ploy force directed algorithms that are computationally expensive on large
subgraphs, limiting scalability or causing the system to resort to coarsen-
ing when it may not be necessary. Di Giacomo must generate a new input
graph for each query. Generating a new input graph does not allow for the
visualization of graphs where connections are given like in many software
systems, computer networks, and biological systems. Grouse, in Chapter 5,
partially addresses the concerns by using appropriate algorithms dependent
on the connectivity of the metagraph associated with each metanode, and
by allowing the visualization of a hierarchy of connectivity features on top
of a static input graph.

In the next section, steerable systems are used in order to allow users to
explore both a graph hierarchy and the set of graph hierarchies that can be
created on top of an input graph.

User-Specified Hierarchy Editing

Three systems in the literature allow users to manually modify graph hi-
erarchies in a limited way, mostly by manual selection. Only one of them
handles the visualization of the currently created graph hierarchy in con-
junction with graph hierarchy modification utilities.

The DA-TU system [27] of Huang and Eades provides an interface for the
interactive visualization of graph hierarchies in two-dimensions. Metanodes
can be created and destroyed, but the user must navigate to the appropri-
ate hierarchy cut and manually select all nodes to change the hierarchy. To
visualize the current graph hierarchy, the system uses a modified version of
a force-directed approach that biases the hierarchy cut towards its hierarchy
structure. However, the force-directed algorithm must be applied to the en-
tire cut, rather than to only the sections of the hierarchy that have changed.
This approach does not scale to large graph sizes.

The work of Auber and Jourdan [11] supports interactive hierarchy edit-
ing. The paper’s primary focus is on fast algorithms for replacing subgraphs
with metanodes. The algorithm executes in linear time with respect to the
number of nodes and edges in the graph with constant memory requirements.
Metanodes can be formed by manual selection by the user. The system does
not provide steerable hierarchy exploration by progressively adjusting the
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layout after the graph hierarchy has been modified, so navigation to under-
stand the new hierarchy is not supported. We use the work of Auber and
Jourdan in GrouseFlocks presented in Chapter 6.

The Clovis system [61] supports interactive clustering of an input graph
based on querying the attribute values associated with the nodes and edges
of the input graph. The graph hierarchy is superimposed on the input graph
using containment. Attribute based queries can also affect any aspect of the
appearance of a node or edge except position. The entire graph is shown at
all times and clusters of nodes are shown using overlays. The user controls
when clusters are redrawn manually by selecting the appropriate cluster.

Discussion

These tools provide good ways of modifying or creating an existing hierarchy
by either manual selection or attributes on the nodes and edges of the graph.
However, these systems do not integrate graph hierarchy exploration in a
scalable manner into their approaches. This is a limitation since the user has
little assistance in understanding the hierarchy they have created, making
subsequent modification steps difficult. This limitation is addressed in the
GrouseFlocks system presented in Chapter 6.

2.3 Discussion

Through user interaction, interactive graph exploration systems allow graph
drawing algorithms to scale to larger datasets. The approaches dynamically
filter the input dataset, whether it be based on a carefully selected spanning
tree, attribute data associated with the graph, or through a multilevel hi-
erarchy imposed on the data. By filtering, areas of high-level and mid-level
structure are visible while low-level structure can be acquired on demand.

The steerable, feature-based approaches presented in this thesis exploit
graph hierarchies and attribute data for visualization. In Section 2.2.2,
none of the techniques presented are based on graph hierarchies. It would
be advantageous for us to consider graph hierarchies for the purposes of
visualizing attributes in a feature-based context, especially when elucidating
high and mid-level structure. Conversely, in Section 2.2.3, these approaches
primarily focus on graph connectivity and consider attribute data in a very
limited way. An explicit focus on attribute data may lead to more insightful
methods for visualizing an input graph.

Additionally, it should be noted that all of the approaches that exploit
graph hierarchies for visualization, except ASK-GraphView [2], require ei-
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ther a layout or hierarchy precomputation or both before visualization can
begin. Steerable exploration of a graph hierarchy has been done with ASK-
GraphView and DA-TU, but the technique of steerable hierarchy creation in
conjunction with steerable hierarchy exploration has not been explored. It
would be advantageous to allow the user to steerably explore a graph hierar-
chy and even the space of graph hierarchies with minimal precomputation.
Chapter 5 describes a method for steerable exploration of a graph hierarchy
of connectivity features. Chapter 6 explores the possibility of steerably ex-
ploring the many possible graph hierarchies that can be constructed on top
of a graph where nodes have attributes associated with them.



48

Chapter 3

TopoLayout: Multilevel

Graph Layout by

Connectivity Features

TopoLayout is a multilevel, feature-based algorithm. The features it detects
are the connectivity features as defined in Section 1.1.2. Previous multilevel
algorithms exploit force-directed approaches almost exclusively and exploit
few types of connectivity features. In many situations, once a connectiv-
ity feature has been identified, an algorithm that can produce drawings of
a higher visual quality with lower asymptotic complexity may be used to
draw the feature. Our motivation was to capitalize on these situations in a
multilevel context.

We implemented a system that realizes the TopoLayout algorithm. Its
decomposition phase is is a set of connectivity feature detection algorithms.
The phase is computed offline and the connectivity feature detection algo-
rithms are applied in a fixed order recursively. The drawing of the graph
is also computed offline. It computes a final layout for the graph through
one pass of the hierarchy as the multilevel algorithms do in Section 2.1.2.
Previous multilevel algorithms [34, 40, 44, 49, 76] used edge contraction
based on collections of nodes of distance one or two from each other. The
TopoLayout approach detects connectivity features that can be drawn with
specific graph drawing algorithms.

The contribution of TopoLayout is a multilevel graph drawing algorithm
based on connectivity features. It also introduces a pass for reducing edge
crossings in the final drawing. We implemented TopoLayout and compared
it empirically to previous systems. TopoLayout was published in an Info-
Vis 2005 poster [4] and in a Transactions on Visualization and Computer
Graphics article [7]. An implementation of the algorithm is available online1.

This chapter is structured as follows. Section 3.1 describes an overview of
TopoLayout and how the four phases described above interact. Section 3.1.1

1
http://www.cs.ubc.ca/labs/imager/tr/2006/Archambault_TopoLayout_TVCG/
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describes the decomposition phase of the algorithm and how it is recursively
applied to produce a graph hierarchy of connectivity features. The pass
that determines a final position for the nodes in the graph is described
in Section 3.1.2. Algorithmic complexity numbers for all algorithm phases
are given in Section 3.2. An empirical evaluation of TopoLayout against
other graph drawing algorithms is given in Section 3.3 and the results of the
evaluation are discussed in Section 3.4 and 3.5. A discussion of algorithm
robustness is presented in Section 3.6. Finally, Section 3.7 discusses the
contributions of TopoLayout and its future directions.

3.1 Algorithm Overview

The TopoLayout framework consists of four main phases as shown in Fig-
ure 3.1. The decomposition phase is the same as the coarsening operator
of multilevel techniques. It recursively creates our feature hierarchy and
identifies the feature type of each subgraph. The feature layout phase
draws each subgraph in the graph hierarchy using an appropriate algorithm
for the feature type. The crossing reduction phase reduces, but does
not completely eliminate, the number of node-edge and edge-edge crossings
in the subgraph by rotating nodes in each subgraph. Finally, the overlap
elimination phase ensures that no two nodes overlap in the final drawing.
The latter three phases are executed in that order during a single postorder
traversal of the graph hierarchy.

Many of the algorithms used in these phases are directly drawn from pre-
vious work, but two are novel. In the feature layout phase, a new weighting
scheme for HDE [50] is devised. The crossing reduction phase is new to
multilevel algorithms and is a novel algorithm. All other algorithms are
straightforward applications of the literature.

3.1.1 Decomposition

The decomposition phase consists of a series of connectivity feature detec-
tion algorithms that are applied to the input graph. Upon detection of a
connectivity feature, the feature is collapsed into a single node. The process
is applied recursively to the graph, constructing the feature hierarchy.
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Figure 3.1: TopoLayout algorithm phases. Decomposition is applied first,
recursively generating a graph hierarchy. Feature layout draws each each
subgraph in the graph hierarchy and crossing reduction and overlap elimina-
tion improve drawing quality. The latter three phases are applied recursively
in one postorder traversal of the graph hierarchy.
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Figure 3.2: Feature hierarchy after decomposition, with connectivity feature
type encoded by colour. The graph is constructed by hand to show all types
of connectivity features exploited by the algorithm. Top: Layout annotated
with bounding boxes to show hierarchy structure: metanodes encompass
the subgraphs of their children. Bottom: Diagram of feature hierarchy,
with levels enumerated and nodes labeled by feature type. Large sets of
hierarchy leaves are replaced with triangles labeled by the number of leaves
they represent.
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Figure 3.3: Decomposition phase for TopoLayout. Detection algorithms in boxes coloured by feature type as in
Figure 3.2. If a clause on a horizontal is true, the algorithm transitions along the horizontal arrow. Otherwise,
the algorithm follows the vertical arrow to save some subgraphs and recursively decompose others. Bold arrows
indicate the recursive cases.
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Decomposition Algorithm

The decomposition phase recursively constructs the feature hierarchy. An
example feature hierarchy is shown in Figure 3.2. Figure 3.3 describes the
decomposition algorithm as a box diagram along with a colour scheme. For
each box in the diagram, the algorithm is presented with a subgraph of the
original input graph that is decomposed into one or more metanodes.

The first step of the decomposition phase replaces each connected com-
ponent with a metanode. The decomposition operator is recursively applied
to each connected component detected. Connected component decompo-
sition is never executed again, as subsequent detection algorithms do not
disconnect the graph. In the box diagram, connected component detection
is dark blue.

To detect connected components, the decomposition phase uses a stan-
dard algorithm in the literature that executes a series of depth-first searches
to compute spanning trees for each component [12]. The approach traverses
the list of nodes in the graph and performs depth-first search whenever an
unmarked node is encountered. The depth-first search marks nodes as they
are visited. As each node is visited at most twice and each edge at most
once, the algorithm works in O(|N |+ |E|) time.

Next, the algorithm segments out the trees present in each connected
component, using a special case of graph peeling [2]. Each tree is saved as
a subgraph and replaced by a single metanode. Tree detection is red in the
box diagram. The graph with all trees removed and replaced by metanodes
is passed to biconnected component detection.

To detect trees, the algorithm begins by finding the first cycle in the
graph and selecting a node n on that cycle. If a cycle is not found, the
entire graph is a tree. Otherwise, starting at n, the algorithm performs
a depth-first search. When the algorithm visits a node of degree one, it
is removed and the depth-first search continues. The algorithm removes
all nodes of degree one it encounters until there are no more, or when a
maximal tree is detected. The time required for tree detection is therefore
O(|N |+ |E|) time.

The next phase of decomposition detects biconnected components. If
more than one biconnected component is detected, the decomposition phase
is recursively applied to each of them. The tree with all biconnected com-
ponents removed and replaced by metanodes is saved as a subgraph. Bicon-
nected component detection is tan in the box diagram. This subgraph must
be a tree as explained in Section 3.1.2. If only one biconnected component
is present, it is passed to HDE detection.
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A good description of a standard biconnected component detection algo-
rithm is also given by Baase and Van Gelder [12]. Biconnected components
are detected in the graph by performing a depth-first search. Edges that
point back to higher levels of the depth-first search are called back edges.
When a subtree s of the depth-first search tree has no back edges to any
ancestor of s, it is a separate biconnected component. The algorithm takes
O(|N |+ |E|) time.

If a layout of the subgraph with HDE has the properties described in the
next paragraph, it is saved and area-aware HDE is used for the subgraph in
the final layout. HDE component detection is purple in the box diagram. If
the layout does not have these properties, the graph is passed to complete
detection.

To determine if HDE is a suitable layout, an algorithm analyzes the
eigenvalues produced by an HDE layout of the graph. In PCA, the amount
of variance in the data captured by an eigenvector is its eigenvalue [53]. The
algorithm determines if there is enough variance in the data, or if its largest
eigenvalue is above a minimum threshold value. In the TopoLayout system, a
value of 100 was determined empirically. This minimum variance is required
as some projections of low variance place many of the nodes on top of each
other. Next, the algorithm compares the percentage of variance accounted
by the top two eigenvectors. This percentage is computed and compared to
the sum of all eigenvalues. In good two-dimensional layouts, the percentage
of variance of the largest two eigenvalues is nearly the same. If the variance
is not symmetric along these two directions, HDE is used when the top
three eigenvalues hold all of the variance, no eigenvalue holds too much of
the variance, and variance in the third dimension is small. Threshold values
of 60% and 15% respectively were determined empirically. Since the edges
of the graph are unweighted, the HDE detector uses a breadth-first search
and runs in O(d(|N |+ |E|)) time.

If a subgraph is complete, it is saved. This phase is not a clique detector,
but simply checks to see that all N2 edges are present in the subgraph. It
does so by computing the square of the number of nodes and comparing
it to the number of edges. This phase is cyan in the box diagram. If the
subgraph is not a clique, it is passed to cluster detection.

Complete graphs are detected by taking the ratio of the number of edges
in the graph to the number of possible edges given the number of nodes.
This method could easily be adapted to detect near-complete graphs by
considering a threshold below 100%. If the number of nodes and edges is
known, the ratio is computed in O(1) time.

The next phase of decomposition detects clusters in the graph. If more
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than one cluster is found by the clustering algorithm, the decomposition
operator is recursively applied to every cluster, and also to the graph that
results from replacing each cluster with a metanode. The cluster detection
phase is silver in the box diagram. If there is only one cluster, the subgraph
is labeled unknown.

Clusters are detected using an approach based on the strength metric
described by Auber et al. [10]. This approach partitions the graph into
subgraphs by the number of 3- and 4-cycles shared by the nodes of the
subgraph. For each edge connecting nodes u and v, the algorithm partitions
nodes adjacent to u and v into three sets: M(u), those adjacent to u; M(v),
those adjacent to v; and W (u, v), those adjacent to both u and v. The total
number of 3-cycles involving (u, v) is the number of elements in W (u, v). The
algorithm determines the number of 4-cycles by checking for the existence of
an edge between elements in any pair of these three sets or two elements in
W (u, v). These edges can be computed in O(r) time where r is the maximum
degree of a node in the graph. Thus, the algorithm detects clusters in
O(r|E|). For near-complete graphs, the performance of the algorithm would
degrade to O(|N |3), but, in practice, the algorithm can be run on large
graphs.

If the unknown subgraph has any collapsed features resulting from this
pass of the decomposition operator, the decomposition operator is recur-
sively applied to the subgraph. Otherwise, the unknown subgraph is saved
and the decomposition phase terminates. Unknown components are green
in the box diagram.

We experimented with several orderings of the decomposition algorithms.
Our rationale for applying the detection algorithms in the order presented
in Figure 3.3 is as follows. Connected components of the graph should be
detected first, since if there are multiple components, they can be laid out
independently. Trees need to be detected before biconnected components
because the removal of any edge or node from a tree would disconnect the
tree into two components. Before further decomposition of the graph using
strength clustering, HDE is checked for an appropriate algorithm for layout.
As cluster detection is the most expensive part of the decomposition phase
and the HDE check is quick, it makes sense to check if HDE would work
well on this subgraph. Finally, cluster detection provides a partition of the
graph into highly connected subgraphs when more meaningful connectivity
features cannot be found.
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layout (subgraph s)

for all metanodes c ∈ s
c.size ←boundingBox (layout (c.subgraph));

end for
layOutFeature (s);
reduceCrossings (s);
eliminateOverlaps (s);

Algorithm 3.1: Pseudocode for the feature layout phase.

3.1.2 Layout

During the feature layout phase of level i of a hierarchy, the features at
level i + 1 contained by all the metanodes at level i must be drawn first to
determine the screen-space bounds of the metanode. The required screen
space of the leaves at level i is already known; that is, the original size of
the node. The layout stage, shown in Algorithm 3.1, draws the connectivity
feature at level i using an appropriate layout algorithm, rotates metanodes
of the hierarchy to reduce crossings, and eliminates all node-node overlaps
in the subgraph.

The initial layout of the features in the graph depends on the detected
feature type. The layout phase uses four types of layout algorithms: tree,
circular, HDE, and force-directed. This section also describes passes to
reduce the number of node-edge and edge-edge crossings and to eliminate
all node-node overlaps.

Area-Aware Tree Layout

In TopoLayout, area-aware tree drawing algorithms are used to draw both
trees and biconnected component trees. The algorithm draws biconnected
component trees in a way to highlight bridge nodes and edges in the graph.
Bridge edges appear as edges in the tree between two components. Bridge
nodes are drawn with one of the methods suggested by Six and Tollis [67].
The algorithm places the bridge node directly between the two components.

TopoLayout can use any tree layout algorithm that is area-aware for
drawing. The algorithm uses the bubble tree algorithm [37] for trees of
low depth and high branching factor and an area-aware version of the
Walker algorithm [15] for all other trees. The bubble tree algorithm re-
quires O(|N | log |N |) time while the version of the Walker algorithm runs in
O(|N |) time.
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Area-Aware Circular Layout

Circular layout is used to highlight complete graphs by simply placing the
nodes of the graph around a circle. Although circular layouts yield low visual
quality drawings for general graphs because they have many crossings, they
are a good choice for complete graphs because they provide visual pop-out
for cliques. The algorithm runs in O(|N |) time.

Area-Aware HDE

The area-aware HDE algorithm is used to lay out subgraphs found by the
HDE detector. Area-aware HDE is the standard HDE approach [50] with
weighted edges where the eigenvectors of the shortest path matrix are com-
puted over d iterations. The weight of each edge is the maximum radius
of the adjacent nodes, with a minimum weight of one. Since the graph
edges are weighted, area-aware HDE uses Dijkstra’s algorithm and runs in
O(d(|N | log |N |+ |E|)) time.

Area-Aware GEM

When no other algorithm is applicable, area-aware GEM is used. This al-
gorithm is similar to the algorithms developed by Harel and Koren [43] who
adapted Fruchterman-Reingold [33], Kamada-Kawai [46], and combinations
of these algorithms. Area-aware GEM is a modified version of the GEM
algorithm [30] where nodes are considered charges and the edges are consid-
ered springs. The system is placed in an initial configuration and is released
until it reaches an equilibrium. Oscillations and rotations about equally
optimal positions are dampened.

The forces for area-aware GEM can be defined for a pair of nodes ni

and nj. Let ri and rj be the radii of the bounding circles of these nodes
respectively. Let pi and pj be their positions, and let l be some ideal spring
length for the distance between the boundaries of the two nodes. The GEM
forces that a node nj exerts on a node ni are:

frepulsive(ni, nj) =
l + ⌈ri + rj⌉
‖pi − pj‖2

(pi − pj) (3.1)

fattractive(ni, nj) =
‖pi − pj‖2

l + ⌈ri + rj⌉
(pj − pi) (3.2)

The bold terms in (3.1) and (3.2) are terms added to make GEM area-
aware. The ceiling of the sum of the radii is taken so that the forces are still
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Figure 3.4: Reducing crossings with torque. (a) Computing the torsional
force τ on c exerted by the edge (no, nc). (b) Applying τ results to rotate
c. Dashed nodes and edges are metanodes and metaedges. Solid nodes are
leaves in the hierarchy. The square box is the centre of node c.

computed purely with integer arithmetic. Oscillation and rotation control
in the algorithm is the same. The algorithm stops after the nodes in the
graph do not move much in the plane or |N | iterations have been completed.
Thus, in the worst case, the complexity of the algorithm remains O(|N |3).

Crossing Reduction

Our crossing reduction phase is a heuristic that rotates metanodes in the
hierarchy, reducing crossings of edges in the original graph connecting nodes
in different subgraphs as shown in Figure 3.4. The heuristic does not guar-
antee a drawing free of node-edge or edge-edge crossings, but it reduces their
number and also shortens edge length between subgraphs. The approach is
similar to that of Symeonidis and Tollis [71] who provide a solution to this
problem by minimizing what they call inter-group crossings. In their ap-
proach, an energy function is minimized to apply a good rotation to their
circular drawings to reduce the number of crossings. This approach is anal-
ogous to Kamada-Kawai [46] in graph layout. In contrast, the approach
presented in this chapter is similar to GEM [30] and includes oscillation
control.

Let o and c be metanodes in a subgraph at level i of the graph hierarchy.
Let no and nc be leaves in the graph hierarchy. The algorithm uses the
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positions of no and nc in the coordinate frame in the subgraph at level i to
compute the torque τ . The nodes of no and nc are not necessarily at level
i + 1 and can be nested in several levels of metanodes, each with their own
relative coordinate frames. For the moment, assume the locations of the
nodes no and nc are known in the coordinate frame of the subgraph at level
i. We show later how these positions can be computed efficiently.

The torque computed is physically inspired, but is not physically realis-
tic. Let the force vector ~f be a unit force along the edge (no, nc). Let ~r be
the radius vector from the centre of node c to the node nc. The function
sg(~x) returns the sign of the normal perpendicular to the embedding plane.
The torque exerted by (no, nc) on c is given by Equation (3.3).

τ =
π

2
sg(~r × ~f)(~r · ~f) (3.3)

Analogous to that of force-directed graph drawing techniques, the solu-
tion presented here is an incremental approach. The average value of τ is
computed for all edges in the list of edges contained in the metaedge (o, c).
The process is repeated, computing an average τ for each metanode in the
subgraph containing o and c, using their incident metaedges. Once the av-
erage τ is computed for all metanodes in the subgraph, it is applied to the
cumulative rotation of each metanode.

The approach presented here for damping oscillations around equally
good orientations is analogous to the approach of GEM [30] for damping
oscillations around equally good positions in graph layout. The algorithm
stores the torque for each metanode applied during the previous iteration
and compare it with the torque computed during the current iteration. If the
signs of the torque in the two iterations are opposite, the algorithm is causing
nodes to oscillate around an optimal orientation, and a damping factor is
applied. Currently, this factor is the fraction of completed iterations to the
Ni iterations that will be executed, where Ni is the number of metanodes
in the subgraph at level i.

Computing the positions of the no and nc nodes in the coordinate frame
of the subgraph at level i is relatively straightforward if every node in the
graph hierarchy has a pointer to the metanode that contains it. This infor-
mation can be saved in the decomposition phase with no asymptotic runtime
penalty when the algorithm constructs metanodes. Each metaedge has a list
of edges it represents, so each no and nc involved in a torque computation
can be determined in constant time. The algorithm traverses the hierarchy
up to the subgraph at level i composing translations and rotations to de-
termine the positions of no and nc in the subgraph at level i. If no or nc
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is at a depth of i + L, this traversal takes O(L) time. Since each edge is
involved in at most one torque computation and Ni iterations of torque are
executed, the overall asymptotic complexity of the crossing reduction phase
is O(LNi|E|).

Overlap Elimination

In TopoLayout, although the area-aware tree and circular layout algorithms
guarantee no node-node overlaps, neither area-aware GEM nor area-aware
HDE does. To ensure that pairs of nodes do not overlap in the final layout,
the algorithm performs a pass to eliminate these overlaps.

Several algorithms were experimented with to reduce or eliminate node
overlaps in the drawing. In all cases, overlap reduction was tried two ways:
separately for each subgraph of the hierarchy, or a single pass on the entire
final drawing after TopoLayout had executed all other phases. The former
approach was chosen, because a single pass on the final drawing causes
overlap between connectivity features.

First, the naive approach of considering every pair of nodes was tested
to determine the set of overlaps. If two nodes overlapped, they were shrunk
down in size until no overlap was present. Although this O(|N |2) method was
slow, it does guarantee a drawing free of node-node overlaps and produced
drawings of high visual quality for many types of graphs.

The Cluster Buster algorithm of Lyons et al. [54] was implemented. This
algorithm computes the Voronoi diagram of the nodes in the graph and
iteratively pulls the nodes towards the centroid of each Voronoi cell. For
a constant number of iterations, the algorithm runs in O(|N | log |N |) time.
Unfortunately, this method does not guarantee no node overlaps in the final
drawing, and the results were usually of low visual quality.

The best results were obtained from implementing the fast node overlap
removal algorithm without Lagrange multipliers [23, 24]. In this work, two
separate passes along the x-axis and the y-axis eliminate all node overlaps in
the graph. The algorithm constructs a weighted, directed constraint graph
along each dimension and uses quadratic programming to minimize node dis-
placement. Assuming that each node in the graph overlaps with a constant
number of nodes, the algorithm is O(|N | log |N |). This method guarantees
no overlaps in the final drawing and was applied to every subgraph of the
hierarchy.

The overlap elimination phase is always executed on graphs drawn with
HDE and area-aware GEM, since these algorithms do not guarantee the
absence of overlaps. As the fast overlap removal algorithm only considers
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Algorithm Complexity

Detection

Tree O(Ni + Ei)
Biconnected Component O(Ni + Ei)
Connected Component O(Ni + Ei)
HDE O(d(Ni + Ei))
Complete O(1)
Cluster O(riEi)

Initial Layout

Bubble Tree O(Ni log Ni)
Walker Tree O(Ni)
Area-Aware Circular O(Ni)
Area-Aware GEM O(N3

i )
Area-Aware HDE O(d(Ni log Ni + Ei))

Refinement

Crossing Reduction O(LNiE)
Overlap Elimination O(Ni log Ni)

Figure 3.5: Time complexity of TopoLayout framework components, for
each hierarchical level.

axis aligned nodes, the axis aligned bounding box of the rotated metanode
is computed.

3.2 Algorithm Complexity

The worst-case complexity of TopoLayout is O(|N |3) if no connectivity fea-
tures are found and area-aware GEM is used. However, in practice, the
algorithm typically performs better than this worst case.

Figure 3.5 shows the time complexity of the algorithms in TopoLayout.
The number of operations performed on each subgraph of the hierarchy is
described in the following way: Ni is the number of nodes in a subgraph, and
Ei is the number of edges in a subgraph at level i. The maximum degree of
a node in the subgraph at level i is ri. The value of d is the dimensionality
of the high-dimensional space of the HDE algorithm. The value of d is fifty
in this work. The value of L is the number of levels the algorithm must
traverse up the hierarchy to compute the level i positions of no and nc when
computing torques.
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3.3 Empirical Evaluation

The TopoLayout framework was implemented using the Tulip [9] graph vi-
sualization system, and we have tested it against other multilevel algorithms
on datasets with a range of connectivities and sizes. All benchmarks were
run on a 3.0GHz Pentium IV with 3.0GB of memory running SuSE Linux
with a 2.6.5-7.151 kernel.

Four multilevel algorithms were tested against TopoLayout. The code
for GRIP2, ACE3, and HDE4 was available online and was incorporated
into the Tulip framework. Stefan Hachul kindly supplied the FM3 code.
The code was also incorporated into Tulip for testing. Harel and Koren’s
multilevel approach [44] was not tested. The source code for this imple-
mentation was unavailable. The observed running times and visual quality
results were the same as those presented in Hachul and Jünger empirical
study [41]. The benchmark datasets used in this empirical evaluation have
been subsequently used in other empirical evaluations of graph drawing sys-
tems in the literature [31].

TopoLayout automatically colours connectivity features in the graph,
using the scheme defined in Section 3.1.1. Since the other graph draw-
ing algorithms do not detect connectivity features automatically, colouring
sections of the graph using connectivity features is a fair comparison and
demonstrates another advantage of our approach.

Our experiment was divided into two phases. Synthetic Data primarily
consisted of benchmark datasets taken from the graph drawing literature.
These preliminary tests provided a baseline for the comparison of multilevel
algorithms. Real World Data mostly consisted of datasets deemed real world
in previous empirical evaluations. The empirical evaluation also considers
two additional datasets that came from real world data sources.

3.3.1 Synthetic Data

All but one of the synthetic graphs came from the Hachul and Jünger em-
pirical evaluation [41] of multilevel algorithms. All types of graphs in the
evaluation were used at the middle size of the three sizes tested. Crack is
a standard graph drawing dataset, part of the Walshaw Graph Partition
Archive5. It was categorized as a real world graph in their study. The

2
www.cs.arizona.edu/~kobourov/GRIP

3
research.att.com/~yehuda/programs/ace.zip

4
research.att.com/~yehuda/programs/embedder.zip

5
staffweb.cms.gre.ac.uk/~c.walshaw/partition
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6-ary, Snowflake, Spider, and Flower datasets are each of the medium
sized challenging artificial graphs of their study. The 6-ary dataset is sim-
ply a 6-ary tree of depth five. Snowflake is a tree of very high variance in
degree. Spider has a subset of nodes S that consists of 25% of the nodes in
the graph. The elements of S are each connected to twelve unique members
of S. The remaining nodes are rooted at a single node along eight paths of
equal length. Flower has a relatively high edge density. It consists of joining
six circular chains of the graph K30, a complete graph of thirty nodes, at a
single instance of K30. The last graph tested, bi walsh, did not appear in
the Hachul and Jünger empirical evaluation. It is thirteen datasets from the
Walshaw Graph Partition Archive connected by twelve single edges into one
component. The purpose of this dataset is to provide some evidence that
TopoLayout is able to segment out the mesh-like components and draw each
of them with HDE. Also, it provides some evidence that other multilevel al-
gorithms, including HDE and ACE, have difficulty drawing this dataset.
The results of this part of the empirical evaluation are shown in Figures 3.6
through 3.11. Several zoomed insets are included with each drawing until
nodes are visible at a given size.

3.3.2 Real World Data

In addition to synthetic data, data considered real world in other empirical
evaluations was tested. The first three datasets are challenging real world
graphs in Hachul and Jünger’s empirical evaluation [41]. The ug 380 and
dg 1087 graphs are from the AT&T Graph Library6. The Add32 dataset is
from the Walshaw Graph Partition Archive. The graph is representative of
the underlying hardware structure of a thirty-two bit adder. In addition
to these datasets, two more were added. UBC is the hyperlink structure of
the department of computer science at the University of British Columbia’s
web site acquired using a breadth-first search cut off at about 40,000 nodes.
IMDB 1999 is a subset of the Internet Movie Database7. It shows all actors
in movies and television shows released in 1999 who are three or fewer hops
from Jake Gyllenhaal in the movie October Sky. This actor was chosen
because he has a relatively low branching factor in that year. The results
of this part of the empirical evaluation are shown in Figures 3.12 through
3.16. Several zoomed insets are included with each drawing until nodes are
visible at a given size.

6
www.graphdrawing.org

7
www.imdb.com
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3.4 Discussion of Empirical Evaluation Results

Since most of the data for these tests came from the Hachul and Jünger
empirical evaluation [41], the results of this evaluation were compared with
their findings. The evaluation reproduced their results except for the few
differences indicated. For some of the images produced by GRIP in the
study of Hachul and Jünger, it seems that a three-dimensional layout had
been selected. In this empirical evaluation, only two-dimensional layouts are
used. Places where this fact makes a major difference between the results
of the two studies when the drawings of each of the datasets are discussed.

In general, three of the drawing algorithms performed well on all of the
datasets: GRIP, FM3, and TopoLayout. The ACE and HDE algorithms did
not perform well on any of the datasets in this evaluation with the exception
of Crack. ACE and HDE appear to only work well on graphs that are mesh-
like in structure. As a result of this finding, the remainder of the evaluation
focuses on GRIP, FM3, and TopoLayout and will only show the results for
these three algorithms on the real world data.

3.4.1 Synthetic Data

In summary, TopoLayout was consistently faster than FM3 on this data and
had similar running times to that of GRIP. The only two exceptions are
Spider graphs and Flower graphs where TopoLayout was on the order of
a few minutes while FM3 and GRIP were on the order of seconds. This
time delay was due to GEM and the cluster detection algorithm, the slowest
parts of TopoLayout. TopoLayout produced drawings of equal or improved
visual quality on all datasets in these tests. The visual quality is assessed
by presenting side-by-side comparisons of drawings produced by TopoLayout
and its competitors.

Crack

All three algorithms produced drawings of similar visual quality for this
mesh dataset as shown in Figure 3.6. This result differs from the Hachul
and Jünger empirical evaluation in that GRIP does not have any folds in
the layout.

6-ary

The results on 6-ary are shown in Figure 3.7. On this 6-ary tree of depth
five, TopoLayout produced the drawing that clarified the most symmetry,
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followed by FM3, and GRIP. In the TopoLayout drawing, both high-level and
low-level structure of the tree are depicted as the tree is detected and drawn
using bubble tree. For FM3, the high-level structure of the tree is apparent,
but the low-level structure is obscured by many node-node overlaps and edge
crossings. With GRIP, part of the high-level structure is obscured because
a few of the main branches of the tree overlap. Low-level structure is not
apparent due to many node-node overlaps.

Snowflake

The Snowflake graph is a tree. It has a high-level deep tree structure with a
low level core of many single nodes connected to the tree root. The results
on Snowflake are shown in Figure 3.8. TopoLayout detects this tree and
uses bubble tree to draw it without node-node or node-edge overlaps. It also
shows the core with a clearly visible fan-out of the single nodes connected
to the root on the lower left of the drawing. FM3 was also able to draw
the high-level structure and low-level structure in the tree to some degree.
However, it is very difficult to understand how the single nodes clumped
around the root are connected and it is very hard to see this feature at a
high level. GRIP was able to draw only part of the high-level structure and
part of the low-level structure around the root of the tree. There are many
overlaps, making the drawing difficult to understand.

Spider

All three algorithms drew this dataset with a similar level of visual quality
as shown in Figure 3.9, but this level of visual quality was not very high
for any result. The high-level structures of the well-connected head and
the eight long paths or legs are visible in two of the three drawings. In
TopoLayout, at a high level, it is hard to see the legs as they have been
detected as two deep trees. The low-level structures in this graph are drawn
with a similar level of visual quality. The drawing produced by GRIP of
this dataset differs from the Hachul and Jünger empirical evaluation in that
the legs do not cross.

The ACE layout has such significant overlap of nodes that they are
difficult to distinguish from each other in the insets of Figure 3.9(a). In the
cores of Figures 3.9(c) and 3.9(e) the nodes are placed side by side, leading
to long red and green boxes respectively.
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(a) ACE, 0.35s (b) HDE, 0.14s

(c) GRIP, 2.43s (d) FM3, 21.99s

(e) TopoLayout, 3.35s

Figure 3.6: Layouts of the Crack dataset, with 10, 240 nodes and 30, 380
edges, using ACE, HDE, GRIP, FM3, and TopoLayout. Times in seconds
to lay out each graph indicated below each drawing.
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(a) ACE, 0.72s (b) HDE, 0.08s

(c) GRIP, 1.02s (d) FM3, 17.09s

(e) TopoLayout, 0.97s

Figure 3.7: Layouts of the 6-ary dataset, with 9, 331 nodes and 9, 330 edges,
using ACE, HDE, GRIP, FM3, and TopoLayout. Times in seconds to lay
out each graph indicated below each drawing.
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(a) HDE, 0.09s (b) GRIP, 2.16s

(c) FM3, 17.46s (d) TopoLayout, 1.02s

Figure 3.8: Layouts of the Snowflake dataset, with 9, 701 nodes and 9, 700
edges, using HDE, GRIP, FM3, and TopoLayout. ACE was not able to
generate a drawing of this dataset in four hours of execution time. Times
in seconds to lay out each graph indicated below each drawing.
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(a) ACE, 8.2s (b) HDE, 0.10s

(c) GRIP, 2.96s (d) FM3, 16.41s

(e) TopoLayout, 403.88s

Figure 3.9: Layouts of the Spider dataset, with 10, 000 nodes and 20, 000
edges, using ACE, HDE, GRIP, FM3, and TopoLayout. Times in seconds
to lay out each graph indicated below each drawing.
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Flower

Figure 3.10 shows the results for Flower. TopoLayout and FM3 are able
to draw most of the high-level and low-level structures in this dataset while
GRIP is only able to draw parts of both. TopoLayout draws each of the
K30 cliques with circular layout, for a visual indication that the graphs are
complete. Using HDE, TopoLayout draws each of the six symmetric loops.
The K30 at the centre of the drawing, when removed, separates the graph
into six connected components. Thus, the highest level structure is a set of
six biconnected components drawn with the bubble tree drawing algorithm.
This dataset shows that a feature-based approach has promise, where several
different algorithms can be integrated smoothly into one drawing. FM3 does
well on the high-level structure of Flower, but two of the loops cross. In
terms of low-level structure, it is difficult to tell if the K30 subgraphs are
actually complete as there are many node overlaps in the drawing. GRIP is
unable to draw five of the loops of the high-level structure. As with the FM3

drawing, it is also very difficult to tell if the K30 subgraphs are complete.

bi walsh

The results on bi walsh are shown in Figure 3.11. TopoLayout and FM3

draw the high-level biconnected structure of this dataset well. TopoLayout
detects the high-level biconnected structure present in this graph and draws
it using bubble tree. It uses HDE to draw each of the thirteen mesh-like
datasets present in the graph. FM3 is able to draw the high-level biconnected
structure well. However, it is difficult to see the mesh-like graphs in each of
the individual components. GRIP was unable to produce a drawing for this
dataset due to an internal error.

3.4.2 Real World Data

On the real world datasets, the TopoLayout running times were usually of
a similar order of magnitude as FM3. The only exception was IMDB 1999

where TopoLayout took just over a minute and FM3 took two seconds.
GRIP was faster than all algorithms, but it frequently yielded results of
lower visual quality. Overall, TopoLayout either improved or had similar
visual quality results on all of the graphs in the evaluation.
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(a) ACE, 0.15s (b) HDE, 0.15s

(c) GRIP, 4.40s (d) FM3, 11.37s

(e) TopoLayout, 70.00s

Figure 3.10: Layouts of the Flower dataset, with 9, 030 nodes and 131, 241
edges, using ACE, HDE, GRIP, FM3, and TopoLayout. Times in seconds
to lay out each graph indicated below each drawing.
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(a) ACE, 46.83s (b) HDE, 0.79s

(c) FM3, 134.28s (d) TopoLayout, 25.73s

Figure 3.11: Layouts of the Bi Walsh dataset, with 77, 251 nodes and
183, 945 edges, using ACE, HDE, FM3, and TopoLayout. Times in sec-
onds to lay out each graph indicated below each drawing. GRIP did not
produce a drawing because of an execution-time error.
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ug 380

This dataset contains a single node of very high degree with some inter-
esting structure at some graph-theoretic distance from this central node.
Figure 3.12 shows the results for this dataset. The high-level structure
could be improved in all three drawings. However, TopoLayout is able to
depict some interesting high-level structure of this dataset at the central
core. It is able to segment out the high degree node at the centre of the
drawing and suggests that the connectivity of the central core is actually
two components rather than one. TopoLayout is also able to draw some of
the low-level structure present in the dataset. The FM3 drawing is unable
to segment out the core into these two components. It is very difficult to
determine the high degree node in the drawing. The connectivity of the core
is unclear as the majority of the nodes and edges are placed at the centre
of the drawing. It is also very hard to make out the low-level structure that
exists in the graph, but the drawing is more uniform and compact. The
drawing produced by GRIP is of similar visual quality to that of FM3.

dg 1087

This dataset is a tree with a very high degree node at the root. Figure 3.13
shows the results for this dataset. TopoLayout detects this tree and draws
it with bubble tree, producing a drawing free of node-edge and node-node
overlaps. It is very difficult to tell in the FM3 drawing if this graph is indeed
a tree. Many of the nodes are clumped into the central area of the drawing
and it is difficult to see how they interconnect. Thus, the high-level structure
of the tree is drawn well whereas the algorithm has difficulty clarifying the
low-level structure in the dataset. FM3 does, however, have the advantage
of a more compact drawing. GRIP is able to draw some of the high-level
structure, as much of it is hidden by many overlaps. It is very hard to see
the low-level structure of this dataset using GRIP.

Add32

In this TopoLayout drawing, a feature-based approach on real world data
shows promise. Figure 3.14 shows the results. The high-level biconnected
structure of the adder is clearly visible in tan and is drawn with bubble
tree. The low-level structure of the adder is integrated smoothly into the
drawing using tree drawing and force-directed algorithms locally. Thus, the
drawing depicts most of the low-level structure and high-level structure in
the dataset. The FM3 drawing does reveal some of the high-level structure in
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(a) GRIP, 0.22s (b) FM3, 2.12s

(c) TopoLayout, 10.23s

Figure 3.12: Layouts of the ug 380 dataset, with 1, 104 nodes and 3, 231
edges, using GRIP, FM3, and TopoLayout. Times in seconds to lay out
each graph indicated below each drawing.
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(a) GRIP, 3.29s (b) FM3, 17.48s

(c) TopoLayout, 0.78s

Figure 3.13: Layouts of the dg 1087 dataset, with 7, 602 nodes and 7, 601
edges, using GRIP, FM3, and TopoLayout. Times in seconds to lay out each
graph indicated below each drawing.
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the dataset, but some of it is obscured by edge and node occlusion. It is quite
difficult to see low-level structure in the dataset. With the GRIP drawing,
some of the high-level tree structure is visible, but it is less apparent.

UBC

Figure 3.15 shows the results for FM3 and TopoLayout on this dataset.
TopoLayout is able to draw the high-level tree structure of this dataset seen
in the red and tan components of the drawing. As the dataset was acquired
using a breadth first search of weblinks, this high-level tree backbone of the
dataset is expected. In addition to the high-level structure, the algorithm
is able to visualize some of the low-level structure in the more strongly
connected left part of the drawing. FM3 is also able to draw the high-
level tree structure in the dataset, but it has difficulty drawing the low-level
structure present in the upper left corner. GRIP was unable to produce a
drawing of this dataset due to an internal error.

IMDB 1999

This IMDB subset is a very hard dataset to draw because of its high connec-
tivity. None of the algorithms produce convincing results in revealing the
high-level structure in the dataset as shown in Figure 3.16. TopoLayout is
unable to reveal high-level structure, because much of it is obscured by large
swathes of edges. The algorithm is, however, able to segment out and draw
the complete cliques of actors in this dataset. These cliques correspond to
movies: any actor in a movie acts with all other actors in that movie. The
strength metric was able to clearly segment these movies out and TopoLay-
out was able to draw them with circular layout. The circular placement of
the nodes highlights these subgraphs as complete. In the FM3 and GRIP
drawings of this dataset, it is hard to see either the high-level or low-level
structure in the drawing as many of the nodes and edges are placed in the
same area.

3.5 Edge Crossing Reduction Evaluation

We provide some support for the claim that the crossing reduction phase
reduces the number of edge crossings in the final layout by counting the
number of crossings in the entire drawing before and after this phase has
executed. The effectiveness of the crossing reduction phase on eleven exam-
ples ranges from 0.47% more crossings to to 32% less crossings in the final
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(a) GRIP, 0.91s (b) FM3, 11.99s

(c) TopoLayout, 14.02s

Figure 3.14: Layouts of the Add32 dataset, with 4, 960 nodes and 9, 462
edges, using GRIP, FM3, and TopoLayout. Times in seconds to lay out
each graph indicated below each drawing.
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(a) FM3, 84.56s (b) TopoLayout, 220.79s

Figure 3.15: Layouts of the UBC dataset, with 40, 011 nodes and 191, 659
edges, using FM3 and TopoLayout. Times in seconds to lay out each graph
indicated below each drawing. GRIP did not produce a drawing due to an
execution-time error.

drawing. The results of the tests are shown in Figure 3.17. We categorize
our results into four types: no change, minor increase, minor decrease, and
significant reduction.

To compute these numbers, exactly one run of TopoLayout was exe-
cuted. The before column lists the number of edge crossings in the final
layout when the execution of the crossing reduction phase is disabled. The
after column lists the number of edge crossings in the final layout when
the crossing reduction is applied. The far right column is the percentage
increase or decrease in the total number of crossings after the crossing phase
was applied with negative percentages indicating a decrease in the number
of crossings. The layout of the metagraphs in all metanodes of the hierarchy
is the same for both the before and after trials. Therefore, only the crossing
reduction phase can influence the number of crossings presented in the table.

Crack, 6-ary, Snowflake, and dg 1087 saw no change in the number
of crossings. Crack is a HDE component and the remaining three datasets
are trees. In these cases, TopoLayout places the entire graph inside a single
metanode and draws it with an appropriate algorithm. No torsional forces
are executed between metanodes because only a single metanode exists.

Three of the datasets saw very little change in the number of crossings.
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(a) GRIP, 0.78s (b) FM3, 2.64s

(c) TopoLayout, 75.62s

Figure 3.16: Layouts of the IMDB 1999 dataset, with 1, 181 nodes and 31, 527
edges, using GRIP, FM3, and TopoLayout. Times in seconds to lay out each
graph indicated below each drawing.
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Add32 and Spider saw a small increase while Flower saw a small decrease
in the number of crossings. On Add32 and Spider, we conjecture the reason
for a small increase in the number of crossings is due to the fact that both
datasets have a large number of trees in them. The root node of a tree is
usually placed close to the centre of the metagraph layout. Therefore, any
edge connected to this root node intersects the metanode for approximately
the same amount of distance independent of orientation. As a result, it is
more difficult to reduce edge crossings by changing the orientation of the
metanode. Therefore, a small increase in the number of crossings can and
does occur.

On Flower, a small decrease in the number of edge crossings is realized.
In this dataset, six chains consisting of the complete graph K30 are joined at
a single instance of K30. A change in orientation of a complete graph does
not resolve any of the crossings in its circular drawing, and the majority
of the crossings in this graph exist in the circular drawings of the complete
graphs. Therefore, any change in the crossings that can be resolved is sub-
sumed in this statistic. We conjecture this reason is the cause for a small
decrease in the number of crossings on Flower.

For all remaining drawings, the number of crossings in the final drawing
was reduced by the crossing reduction phase. The reduction ranges from
4% to 32%.

The crossing reduction phase only has rotation at its disposal to reduce
crossings between metanodes in the graph hierarchy once the layouts of the
metagraphs have been fixed. We hope to reduce the number of crossings in
the drawing by using this heuristic, but in some cases it can increase the
total number of crossings as we have seen from the results. In future work, it
may be possible to reduce crossings further by changing the layout slightly.
Also, it would be interesting to determine if some edge crossings at higher
levels of the graph hierarchy are more important perceptually than others.
For example, it seems reasonable that a single crossing between two of the
loops in Flower, Figure 3.10 in the results section, is much worse than a
single crossing between two edges of one of the complete graphs. In future
work, perceptual experiments with users would be required to determine
metrics more in line with quantifying high-, mid-, and low-level structure in
terms of the number of edge crossings.
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Dataset Before After +/-%

Crack 11,730 11,730 0.0

6-ary 0 0 0.0

Snowflake 0 0 0.0

Spider 3,144,468 3,145,008 +0.017

Flower 8,293,970 8,265,540 -0.34

bi walsh 44,613 42,779 -4.1

ug 380 135,237 91,144 -32.0

dg 1087 0 0 0.0

Add32 342,856 344,483 +0.47

UBC 17,521,900 16,277,740 -7.1

IMDB 1999 21,351,255 18,504,048 -13.0

Figure 3.17: Table of edge crossing numbers before and after the crossing
reduction phase. The left column is the dataset name. Before and after
are the number of edge crossings with and without crossing reduction on a
single layout of the graph. The far right column is the percentage increase
or decrease in the number of crossings after the crossing reduction phase has
occurred.

3.6 Robustness

We now discuss how the order of the nodes in the input affects the final
drawing. In the decomposition phase of TopoLayout, both tree and bicon-
nected component decompositions are unique and therefore are unaffected
by node order. The clustering algorithm used can be affected if two edges
have the same number of cycles pass through them and HDE detection can
be affected as detection begins from a random node in the graph. In the
drawing phase, the only randomly seeded layout algorithm is area-aware
GEM. The remaining algorithms in the drawing phase can also be affected
by node order. In this section, we supply a pair of examples to show that
on two random orders of nodes and edges the effect is small.

Figure 3.18 supports the idea that the levels of structure depicted and
symmetries in the drawings are not greatly affected by the supplied input
order of the nodes. Both datasets used HDE detection and clustering as
well as other algorithms in TopoLayout. The running times to produce
these drawings were roughly the same as reported in the results section of
this chapter. The input presented to TopoLayout was the same dataset,
but with the order of the nodes and edges scrambled randomly. Although
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the coordinates of a given node in the drawing may be very different, Topo-
Layout produces drawings where the visual quality of the two drawings is
similar.

3.7 Discussion

TopoLayout realizes a feature-based approach to graph visualization by pro-
viding a decomposition phase that divides the input graph recursively by
connectivity features. An empirical evaluation of TopoLayout on eleven
datasets shows the circumstances where it is better able to present connec-
tivity features in the graph at various levels of structure. In terms of running
time, the approach is competitive with multilevel approaches on these eleven
datasets. However, in nearly every dataset, TopoLayout is unable to depict
mid-level structure in the final drawings. In future chapters of this thesis,
we will partly address this issue.

We have provided some evidence through the eleven datasets used in the
empirical evaluation of Hachul and Jünger that the connectivity features
detected by TopoLayout appear in graphs other authors have found inter-
esting. However, a fundamental limitation of the TopoLayout decomposition
phase is that if the connectivity features being sought by the algorithm are
not present, the running time and visual quality of the algorithm deterio-
rates. This limitation is a limitation of any feature-based approach to graph
visualization: if the feature being sought is not found, the algorithm must
resort to default graph drawing behaviour.

The TopoLayout framework is used as a basis for the remaining chap-
ters of this thesis. These systems improve upon this primary limitation of
TopoLayout by developing an algorithm tuned to a specific type of graph in
chapter 4 and by allowing for steerable graph layout in chapters 5, 6, and 7.
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(a) Flower Run 1 (b) Flower Run 2

(c) Add 32 Run 1 (d) Add 32 Run 2

Figure 3.18: We show two different runs of TopoLayout on Flower and
Add32, each with a randomized input order for nodes in the graph. Although
the random reordering of the nodes can significantly affect the absolute
spacial coordinates of a given node, it has very little effect on the levels of
structure depicted in the drawing.
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Chapter 4

Smashing Peacocks Further:

Drawing Quasi-Trees from

Biconnected Components

The TopoLayout multilevel algorithm is a general approach for drawing
undirected graphs. However, if more information about the graph is avail-
able beforehand, we can create a more specific pipeline for the type of data
presented to the algorithm. In Smashing Peacocks Further, or SPF, we mod-
ify the TopoLayout decomposition and drawing pipeline to better handle
quasi-trees, defined as graphs with many biconnected components. This
work was specifically motivated by the problems of visualizing protein ho-
mology maps [3] in bioinformatics and Internet tomography maps [16] in
computer networks. In these two domains, similar algorithms have been
developed that use trees as a basis for graph layout. These approaches
use a specified spanning tree as scaffolding for a force-directed layout. The
purpose behind using SPF is to decompose into biconnected components
in order to depict the high-level tree structure using a tree drawing algo-
rithm and the force-directed approach of previous work on the individual
biconnected components.

The approach uses a single biconnected component decomposition to
divide a large graph into biconnected components that are of a more man-
ageable size. These components are drawn with LGL [3], using the part of
the predefined spanning tree that the component contains. Once the extent
of each biconnected component is determined, the biconnected component
tree is drawn using the area-aware RINGS algorithm.

The decomposition phase of SPF detects biconnected components of
the graph as described in Section 1.1.2. This phase is computed offline
and biconnected component decomposition is applied only once to the large
graph, creating a hierarchy of two levels. The drawing of the graph is also
computed offline. It computes a layout of the final graph once, using a single
postorder traversal of the graph hierarchy.
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The contribution of SPF is an algorithm that tunes the TopoLayout
pipeline for drawing quasi-trees. Additionally, the approach extends the
previous RINGS algorithm in order to make it area-aware. We implemented
SPF and compared it empirically to previous systems. Additionally, we ex-
tended some traditional graph drawing metrics to a multilevel graph drawing
context in order to evaluate the high-level tree structure in the drawings.
SPF was published at InfoVis 2006 and appeared in a special issue of IEEE
Transactions on Visualization and Computer Graphics [5]. A video8 com-
pares drawings produced by SPF to drawings produced by three competitive
algorithms on two large datasets. An implementation of the algorithm is
available online9.

This chapter is structured as follows. Section 4.1 presents an overview
of the SPF algorithm and its components. The decomposition phase, bi-
connected component drawing phase, and high-level tree drawing phase are
discussed in Sections 4.1.1, 4.1.2, and 4.1.3 respectively. Empirical testing of
SPF on data from two application domains that have quasi-tree structure is
presented in Section 4.2. A discussion of algorithm robustness is presented
in Section 4.3. Finally, a discussion of the contributions of SPF is presented
in Section 4.4.

4.1 Algorithm Overview

The inputs to SPF are a graph and an unrooted, minimum spanning tree.
The graph can be weighted or unweighted. For weighted graphs, Kruskal’s
algorithm [68] is used to compute the spanning tree, and for unweighted
graphs, breadth-first search [12] is used. For unweighted graphs, all spanning
trees are of equal cost. Spanning trees computed from a breadth-first search
are a logical choice as they tend to be representative of the shortest path
distance between a pair of nodes in the graph [68], keeping areas of the graph
close in terms of graph theoretic distance also close in terms of Euclidean
distance in the drawing. The algorithm roots the input spanning tree at its
tree centre, namely the node at the midpoint of the tree’s diameter.

The drawing algorithm runs in three phases:

1. Decompose the graph into biconnected components.

2. Draw each component using an improved version of LGL.

8
www.cs.ubc.ca/labs/imager/video/2006/spf

9
www.cs.ubc.ca/labs/imager/tr/2006/Archambault_SPF_InfoVis2006/
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3. Draw the biconnected component tree using an area-aware version of
the RINGS [72] algorithm.

The first phase decomposes the input graph into biconnected compo-
nents. In the second phase, the algorithm draws each biconnected compo-
nent with an improved version of LGL and sets the sizes of the nodes in the
biconnected component tree to the extents of the biconnected components.
The third phase draws the biconnected component tree using an area-aware
version of the RINGS [72].

4.1.1 Decomposition into Biconnected Components

In SPF, the graph is decomposed into biconnected components using a stan-
dard algorithm from the literature [12]. The biconnected component tree is
constructed as shown in Figure 4.1. Bridge edges, such as the edge between
components C3 and C4, are edges in this tree. Bridge nodes appear as nodes
in the tree. If a bridge node shares two or more edges with a component,
the bridge node is duplicated and placed into those adjacent components as
shown with C1 and C2. This duplication keeps nodes directly adjacent to
the bridge node together during layout of the biconnected component, but
the duplicated bridge nodes do not appear in the output drawing.

4.1.2 Biconnected Component Drawing with Optimized

LGL

Once the graph is divided into biconnected components, the algorithm uses
the improved version of LGL, optimized LGL, to draw each biconnected
component. The roots are computed from the spanning tree as shown in
Figures 4.1(b) and 4.1(c). If the root of the input spanning tree is present in
a biconnected component, the root is chosen as the root of the biconnected
component. Otherwise, the node from which the spanning tree entered the
component is used. The edges of the input spanning tree present in the
biconnected component are used as the spanning tree for the biconnected
component.

The first optimization to LGL improves running time in some cases and
leaves visual quality unchanged. Recall that LGL uses a grid to cull repulsive
forces of sufficiently distant nodes. To compute the repulsive forces, LGL
marches through each cell of the grid. Computing repulsive forces in this
manner can be costly in the early stages of the algorithm when many cells
are empty. Instead, the algorithm keeps a list of nodes already placed by the
spanning tree, determines the position of the node in the grid, and computes
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C1

C2

C3

C4

(a)

C1

C2

C3

C4

(b) (c)

Figure 4.1: Decomposition of the graph into biconnected components pre-
serves the input spanning tree. Spanning tree edges are shown with directed
red edges, and the roots are shown in white. (a) Identify the bridge nodes
and edges, shown in blue, in the decomposition phase. (b) Bridge nodes are
duplicated and placed into adjacent components. (c) Break spanning tree
up into individual biconnected components, and find the root for each new
component.

the repulsive forces directly. The algorithm marks the cell to ensure that
the repulsive forces between nodes in a cell are computed only once. The
drawing remains unchanged, because exactly the same set of repulsive forces
are computed as when marching through the grid.

The second optimization improves the visual quality of the final drawing
of the graph, as shown in Figure 4.2. This optimization consists of two
parts that influence initial placement of the nodes in the layout. In LGL,
nodes are placed into the layout using the input spanning tree as a skeleton
according to ~S:

~S = c(M̂ + P̂ ) + xparent (4.1)

where c is a scaling factor proportional to the number of nodes in the graph,
M̂ is the centre of mass, and P̂ is the vector between the parent and the
grandparent of the placed node in the input spanning tree. Both M̂ and
P̂ are normalized. The value of xparent is the position of the parent in the
spanning tree.

The first part improves placement by reducing the scaling factor c to the
sum of the size of the parent node, the size of child node, and the average
size of the nodes in the graph. Reducing c yields more compact drawings. In
Figure 4.2(a) the nodes are spread far apart and can hardly be seen while in
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(a) LGL (b) optimized LGL

Figure 4.2: Comparison of the final layout of a ten-ary tree of depth three
between (a) LGL and (b) optimized LGL. Repulsive forces are diminished
in optimized LGL to roughly the size of a node.

Figure 4.2(b) they are easily visible along with the connectivity. The second
part places nodes on small directed fans in the direction of the vector ~S as
shown in Figure 4.3(b) instead of circles as shown in Figure 4.3(a). Placing
the nodes on fans inhibits them from being directed back inwards, preserving
low-level structure. This problem is shown qualitatively in Figure 4.2(a).
In contrast, the problem is less prevalent in optimized LGL as shown in
Figure 4.2(b).

4.1.3 Biconnected Component Tree Drawing with

Area-Aware RINGS

Once each biconnected component has been laid out, the algorithm has
computed the screen-space extents required by each of these metanodes. In
order to draw the biconnected component tree, the algorithm needs a tree
drawing algorithm that is area-aware.

This section begins by motivating the need for area-aware RINGS. Next,
it describes the original RINGS algorithm as presented by Teoh and Ma [72].
Then, it describes the area-aware adaptation of RINGS and discusses how
to use the algorithm to draw the biconnected component trees.

For large quasi-trees, the degree of nodes inside the biconnected com-
ponent tree can be very high. Figure 4.4 shows the few previously existing
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(a) LGL (b) optimized LGL

Figure 4.3: Comparison of the initial placement of nodes between (a) LGL
and (b) optimized LGL, on a ten-ary graph of depth tree. Fan placement
also places nodes closer to each other at the beginning.

tree layout approaches suitable for this data. The area-aware version of
the Walker [15] layout, shown in Figure 4.4(a), lays out the children of the
high-degree node on a horizontal line, and the details of their structure are
too small to be seen without zooming. Similarly, Figure 4.4(b) shows that
bubble tree [37] lays out the high-degree node in the centre of a circle so
large that the children are too small to be seen individually on the circum-
ference. In contrast, we argue qualitatively that the RINGS algorithm [72]
provides a much more compact drawing and a better result at the price of
introducing node-edge overlaps and edge crossings. By adapting it to be
area-aware, the result shown in Figure 4.4(c) is achieved. In this approach,
the node-edge overlaps of area-aware RINGS results in metanode-edge over-
laps between the metanodes of the biconnected component tree and the
edges of the graph in the final drawing.

In RINGS [72], each child of a root is placed in a circle enclosing its
entire subtree as shown in Figure 4.5(a). The blue node at the centre of
the drawing is the root while the grey circles are the children of the root
and their subtrees. The root is placed at the centre of the drawing, and the
algorithm sorts its children by their number of children; that is, by their
number of grandchildren with respect to the root. The subtrees are placed
onto concentric rings inward towards the root in order from the child with
the most to least children. Each of the subtrees on a ring is given an equal-
sized enclosing circle of radius r. The radii R1 and R2 are as shown in
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(a)

(b) (c)

Figure 4.4: Layouts of the Net05 dataset biconnected component tree us-
ing: (a) area-aware Walker’s algorithm [15], (b) bubble tree [37], and (c)
area-aware RINGS. With area-aware RINGS, a significantly more compact
drawing is obtained at the price of introducing edge-node overlaps.
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Figure 4.5(a). Let NGrandPlaced be the number of grandchildren placed in
the current ring. Let NGrandTotal be the total number of grandchildren to
place with respect to the root. A new ring is started on the inner, yellow
circle when:

NGrandPlaced

NGrandTotal
>

R2
2

R1
2 =

(1− sin(π
n
))2

(1 + sin(π
n
))2

(4.2)

Given n children and their subtrees, the right hand side of Equation (4.2)
is the ratio of the circle areas with radii R1 and R2 respectively. This ratio
does not depend on r and only requires that R1 = 2r + R2. The process is
repeated for the remaining subtrees.

The left hand side of Equation (4.2) demonstrates that the size of the
nodes in the tree is not considered, only the number of children. Therefore,
RINGS assumes a uniform node size. Moreover, the node size should be
much smaller than r to ensure that the entire subtree is fully contained by
the enclosing circle, since only grandchildren, and not the entire subtree,
are considered in this ratio. In this work, the subtree could contain a large
number of nodes of substantial size. Therefore, the algorithm cannot choose
such an r.

In the area-aware variant of RINGS, instead of counting the number of
grandchildren, the algorithm determines the area needed to lay out each
subtree by drawing the tree bottom-up. At a leaf node, the algorithm uses
the bounding circle of the node. At an interior node, the algorithm uses
the bounding circle of its subtree. The subtrees are placed into concentric
rings outward from the root in order from the subtree that requires the least
area, to the subtree that requires the most area, as shown in Figure 4.5(b).
The algorithm keeps track of the largest enclosing circle radius in rmax. The
radii R1 and R2 are as shown in Figure 4.5(b) with R1 = 2rmax + R2. A
new ring is started on the outer, yellow circle when:

AR2

AR1

<
R2

2

R1
2 =

(1− sin(π
n
))2

(1 + sin(π
n
))2

(4.3)

where AR1
and AR2

are the areas of the circles with radii R1 and R2. Since
the algorithm has drawn the tree from the bottom up, the algorithm has
computed the actual areas of these circles and can compute the ratio directly.
Where Equation (4.2) compares ratios of grandchildren, Equation (4.3) com-
pares ratios of the areas needed to draw the nodes and subtrees.

Another optimization of area-aware RINGS comes into effect when the
number of subtrees to be placed on a ring is two or fewer as shown in
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R1
R2

r

θ

(a) RINGS

R1
R2

θ

r

rmax

(b) Area-Aware RINGS

Figure 4.5: Comparison of subtree placement between (a) the RINGS algo-
rithm and (b) Area-Aware RINGS. The blue node is the root of the current
subtree. The grey circles are subtrees that have filled the white ring. The
yellow circle indicates where the next ring is started.

Figure 4.6. The root node of a subtree is usually placed at the centre of its
bounding circle. Drawing the subtree in this way leads to wasted space as
shown in Figure 4.6(a) and 4.6(c). In the case of a root node with a single
child subtree, the algorithm places the root and its child subtree tangent
to each other as shown in Figure 4.6(b). In the two-child subtree case, the
algorithm places the root and its two subtrees tangent to each other in a
triangle as shown in Figure 4.6(d). When the triangle connecting the three
centres is acute, the smallest bounding circle is the outer circle tangent to all
three enclosing circles. This circle is known as the outer Soddy circle [17, 48].
When the triangle is obtuse, the bounding circle is the circle enclosing two
largest circles as shown in Figure 4.6(e).

Additionally, we argue qualitatively from Figure 4.6 that area-aware
RINGS improves on how chains are handled by increasing information den-
sity. A chain is defined as a linear sequence of nodes each having exactly one
child. Without this improvement, each node of the chain is the case shown
in Figure 4.6(b), resulting in the long lines of nodes as seen Figure 4.7(a). In
this optimization, each node of the chain is treated as though it was a direct
child of the node that began the chain. The chain spirals around the node
that began it, as shown in Figure 4.7(b). Unlike other cases in area-aware
RINGS, the nodes of a chain are not sorted by size.

The algorithm uses a subtle three-dimensional depth effect to create
perceptual layering when drawing edges. Edges are placed below the nodes,
with edges to the outer rings placed more deeply than edges to the inner ones.
When browsing the layout in Tulip [9], edges can be raised if a path between
two nodes needs to be visible. Edge colour for edges between biconnected
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(a) (b) (c) (d) (e)

Figure 4.6: Comparison of special cases for small subtree layout. (a) One
subtree in RINGS. (b) One subtree in area-aware RINGS. (c) Two sub-
trees in RINGS. (d) Two subtrees in area-aware RINGS. When the triangle
connecting the three centres of the root and subtrees is obtuse, the centre
of the bounding circle is placed at the centre of the sum of the two largest
diameters as shown in (e).

components is lightened.
The algorithm also chooses an ordering for the metanodes in a ring to

reduce edge occlusion, since all metanodes in the same ring have an enclosing
circle of at most rmax. The chosen ordering of the metanodes in a ring is
based on the positions of the nodes inside the metanode at the root. The
vector between every node inside the root that attaches the metanode on
the ring and the centre of the drawing at the root is computed. The average
vector is taken as the vector of ideal placement. Metanodes in a ring are
sorted based on the direction of their ideal placement vector. The metanode
with the most edges in the original graph to the root is placed in its ideal
location on the ring. All other biconnected components are placed in their
sorted order. This ordering tries to minimize the amount of area an edge
passing between two metanodes intersects a metanode, obscuring part of its
structure.

4.2 Empirical Evaluation

SPF was implemented using the Tulip [9] framework, and this section now
compares it to three other algorithms in terms of performance, qualitative
visual results, and quantitative statistics on two large datasets. Protein, the
graph shown in Figures 4.8 through 4.11 with 30,727 nodes and 1,206,654
edges, is the unweighted version of the protein homology graph presented in
the LGL paper [3]. Net05, the graph shown in Figures 4.12 through 4.15
with 190,384 nodes and 228,354 edges, is an Internet tomography dataset
similar to those presented in Cheswick et al. [16], but generated in 2005
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(a)

(b)

Figure 4.7: Demonstration of the chain optimization, with nodes set to
random sizes between one and ten units. (a) Node drawn in linear chains.
(b) More compact drawing of chain nodes in a spiral.

by Cheswick’s Internet Mapping Project10. All benchmarks were run on
a 3.0GHz Pentium IV with 3.0GB of memory running SuSE Linux with a
2.6.5-7.252 kernel.

SPF is compared to its most competitive algorithms. FM3 [40] is a state
of the art multilevel graph drawing algorithm. Other previous algorithms,
including ACE [49], GRIP [34], and HDE [50], were shown to be less com-
petitive than FM3 in previous work [41]. LGL is an algorithm developed in
the bioinformatics domain for visualizing quasi-trees and optimized LGL is
a modified form of LGL developed in this work. TopoLayout [7] was not
competitive. After twelve hours, the algorithm was still trying to decompose
Protein because it used a clustering algorithm whose performance deteri-
orates as the number of edges becomes large. The TopoLayout drawing of
Net05 was not compact, because it drew most of the biconnected component
tree using bubble tree. Its drawing is similar to Figure 4.4(b).

4.2.1 Performance

The FM3 algorithm was the fastest algorithm on both datasets. On Protein,
it was an order of magnitude faster than all the drawing algorithms, and
it was three times faster than SPF for Net05. LGL and optimized LGL
were the slowest algorithms on both datasets: two times slower than SPF

10
www.cheswick.com/ches/map
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on Protein, and an order of magnitude slower than the other algorithms for
Net05. SPF was two times faster than LGL and optimized LGL on Protein

and an order of magnitude faster than them on Net05.

4.2.2 Qualitative Drawing Comparison

FM3 has difficulty depicting both the high-level and low-level structure in
both datasets, as shown in Figures 4.8 and 4.12. The high-level, tree-like
structure is unclear in Protein. On Net05, the high-level tree structure is
somewhat visible, but details of it are difficult to see, because it draws the
branches along thin lines. It is nearly impossible to see low-level structure
in either dataset.

With the slower LGL and optimized LGL, the drawings are improved.
The high-level, tree-like structure is apparent in Protein throughout the
dataset as shown in Figures 4.9 and 4.10. High-level branches are visible
without zooming in, as well as more of the tree structure in the insets.
However, the drawing of Net05, shown in Figures 4.13 and 4.14, only displays
the high-level tree structure well at the periphery. Most of the drawing is
a featureless core where the tree-like structure is hidden. In terms of low-
level structure, protein families are drawn in clusters and fusion proteins
between families in Protein. In Net05, the subnetwork structure is only
clear when the nodes lie on the fringes of the drawing as shown in the insets
of Figures 4.13 and 4.14.

SPF improves upon the running time of LGL and optimized LGL and
retains or improves much of the high-level and low-level structure. Much
of the high-level tree structure is retained with SPF. The spanning tree
skeleton is made visually apparent with area-aware RINGS, but at a cost of
spacial locality and edge crossings in the drawings.

The principal advantage of SPF over previous work is the improved vi-
sualization of low-level structure in the graph, because it is not as occluded
by the higher-level components. In Protein, protein families are clustered
together and the fusion proteins are drawn between them as shown in the
insets of Figure 4.11. The core of Protein is thinned, revealing more in-
ternal structure than with previous algorithms. Protein families and fusion
proteins are clearly seen in the rings of the drawing. The core of Net05 is
far smaller than with LGL; however, it still contains about 37,000 nodes
and suffers from a great deal of node and edge occlusion. Nevertheless,
many local network features are resolvable in the context of the entire In-
ternet. Subnetwork structure is illustrated around servers at the University
of British Columbia and the City of Baltimore as shown in the insets of
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Figure 4.15.
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Figure 4.8: Drawing of Protein, a protein homology map obtained from the LGL project. Graph contains 30,727
nodes and 1,206,654 edges. Drawing produced by FM3 in 1.7 minutes. A video that shows more detail in several
areas of this layout is available at www.cs.ubc.ca/labs/imager/video/2006/spf.
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Figure 4.9: Drawing of Protein, a protein homology map obtained from the LGL project. Graph contains 30,727
nodes and 1,206,654 edges. Drawing produced by LGL in 1.4 hours. A video that shows more detail in several
areas of this layout is available at www.cs.ubc.ca/labs/imager/video/2006/spf.
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Figure 4.10: Drawing of Protein, a protein homology map obtained from the LGL project. Graph contains 30,727
nodes and 1,206,654 edges. Drawing produced by optimized LGL in 1.8 hours. A video that shows more detail in
several areas of this layout is available at www.cs.ubc.ca/labs/imager/video/2006/spf.
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Figure 4.11: Drawing of Protein, a protein homology map obtained from the LGL project. Graph contains 30,727
nodes and 1,206,654 edges. Drawing produced by SPF in 43 minutes. A video that shows more detail in several
areas of this layout is available at www.cs.ubc.ca/labs/imager/video/2006/spf.
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Figure 4.12: Drawing of Net05, obtained from the Internet Mapping project. Graph contains 190,384 nodes and
228,354 edges. Drawing produced by FM3 in 11 minutes. A video that shows more detail in several areas of this
layout is available at www.cs.ubc.ca/labs/imager/video/2006/spf.
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Figure 4.13: Drawing of Net05, obtained from the Internet Mapping project. Graph contains 190,384 nodes and
228,354 edges. Drawing produced by LGL in 12 hours. A video that shows more detail in several areas of this
layout is available at www.cs.ubc.ca/labs/imager/video/2006/spf.
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Figure 4.14: Drawing of Net05, obtained from the Internet Mapping project. Graph contains 190,384 nodes and
228,354 edges. Drawing produced by optimized LGL in 10 hours. A video that shows more detail in several areas
of this layout is available at www.cs.ubc.ca/labs/imager/video/2006/spf.
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Figure 4.15: Drawing of Net05, obtained from the Internet Mapping project. Graph contains 190,384 nodes and
228,354 edges. Drawing produced by SPF in 30 minutes. A video that shows more detail in several areas of this
layout is available at www.cs.ubc.ca/labs/imager/video/2006/spf.
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Algorithm Total Major Total Major

Protein Net05

Nodes

FM3 95 95 381 381
LGL 920 809 6,761 5,746
LGL Opt. 54,255 13,021 60,218 1,204
SPF 71,574 12,167 4,185 42

Metanodes

FM3 2,400 2,376 162,620 160,993
LGL 2,657 2,603 170,073 3,401
LGL Opt. 2,955 2,629 93,570 1,871
SPF 0 0 8 1

Figure 4.16: Node-node overlaps. The table gives the total number of node-
node overlaps, then only the number of major overlaps; that is, those where
the overlap covers more than half of the node area. Protein has 30,727 nodes
and 2,427 metanodes. Net05 has 190,384 nodes and 167,460 metanodes.

4.2.3 Statistical Analysis

This section provides quantitative statistics for each of the four layouts. The
number of node-node overlaps and uniformity of edge lengths are computed,
both for the low-level structure of individual nodes and edges, and for the
high-level structure of the metanodes containing biconnected components.

Node-Node Overlaps

A node-node overlap is simply the intersection of two nodes in a drawing.
For the metanodes, a node-node overlap occurs when the two convex hulls
of the biconnected components intersect. A smaller number of node-node
overlaps in the metanodes more clearly displays high-level structure because
the biconnected components do not overlap.

The node-node overlap statistics are presented in the top of Figure 4.16.
The total number of overlaps is shown, and the number of major overlaps
where more than half the area of the smallest node is covered. Major overlaps
are more interesting than total overlaps as they affect the readability of the
drawing more severely.

FM3 has few node-node overlaps on either dataset. However, in this
approach, the nodes are spread very far from each other with respect to the
standard node size, leading to poor information density. This problem with
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poor information density is that it is difficult to resolve low-level structure in
the graph. LGL and optimized LGL incur more overlaps, but have the ben-
efit of better information density. Optimized LGL incurs many more total
node-node overlaps as the algorithm reduced the magnitude of the repulsive
force constant. However, only a small percentage of them are major. With
SPF, although Protein has a large total number of overlaps, the number of
major overlaps is less than that for optimized LGL. A significant reduction
in the number of node-node overlaps is realized on Net05. The use of area-
aware RINGS to draw the very large number of biconnected components
reduces the possibility of low-level node-node overlaps.

In the bottom of Figure 4.16, overlap statistics for the metanodes are
presented. Metanode overlaps are more severe because features present in
the graph, in this case biconnected component structure, are made difficult
to read. FM3, LGL, and optimized LGL have thousands of major overlaps.
These major overlaps make it difficult to see the structure of the biconnected
components in their higher level context. In these drawings, many but not
all, of the large overlaps of metanodes are with the large, biconnected core
that is spread through the drawing. It is important to note that optimized
LGL is better able to separate the metanodes than the original LGL. This
result supports the optimization of placing nodes on directed fans and re-
ducing the repulsive force constant, keeping the nodes inside each metanode
closer together. In contrast to these three methods, SPF succeeds in making
these metanodes more evident. It incurs no overlaps at all for the smaller
Protein dataset, and only one major overlap for the larger Net05. This
statistic demonstrates an improvement in visualizing higher level structure
in the graph.

Uniformity of Edge Lengths

Uniform edge lengths keep all elements of the graph drawing at a similar
scale. For each drawing, the standard deviation of the edge lengths for each
drawing is presented. The raw edge length values are normalized by the
average edge length on each dataset. This normalization sets the mean edge
length in each drawing to one, so that the standard deviations can be directly
compared. Standard deviations are all positive and numbers closer to zero
correspond to more uniform edge lengths. When the graph is considered as
a whole, SPF has highly nonuniform edge lengths. However, considering the
uniformity with a particular level of structure shows its benefits.

The results are presented in Figure 4.17. The overall standard deviation
is presented the left hand column. FM3, LGL, and optimized LGL perform
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Algorithm Overall Within Between

Protein

FM3 1.02 0.61 0.94
LGL 0.57 0.32 0.88
LGL Opt. 0.72 0.33 0.78
SPF 2.74 0.32 0.74

Net05

FM3 0.62 0.17 0.48
LGL 1.21 0.19 0.93
LGL Opt. 1.26 0.18 0.98
SPF 1.96 0.24 5.03

Figure 4.17: Standard deviation of normalized edge lengths, where lower
numbers mean more uniformity. Overall is the standard deviation over all
edges. Within is the average standard deviation of the edges within each
metanode, and Between is the standard deviation of edges that connect the
components in the biconnected component tree.

well on this metric where SPF does not. From visual inspection of the
SPF drawings, this additional variance is probably due to the long edges
introduced by the area-aware RINGS algorithm. However, uniform edge
lengths across the entire drawing may not be appropriate for displaying the
biconnected structure of quasi-trees. In the drawings produced by LGL and
optimized LGL, this property is illustrated through a uniform but featureless
core. Noack [59] stated that long edges between the computed clusters of
a graph may be required to display cluster structures. This thesis proposes
that a more suitable metric for quasi-trees is to consider uniformity within
a meaningful group; that is, the edges within a particular metanode, and
the edges of the quasi-tree that connect between biconnected components.

Figure 4.17 shows these separate standard deviations in the centre and
right columns. Optimized LGL is commensurate with LGL on nearly all
numbers. SPF is commensurate with all algorithms in terms of the average
standard deviation of edge lengths within each metanode on both datasets.
SPF has a slight improvement for the between edges in Protein, but a very
high standard deviation for Net05. This situation follows directly from the
size of their biconnected component trees: small for the former, and large
for the latter. The many concentric rings used by area-aware RINGS for
large biconnected component trees contribute to this increased variance.
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4.3 Robustness

We now discuss the robustness of SPF under slight changes to its input. As
SPF only decomposes the graph into biconnected components, the decom-
position phase is unique, regardless of node input order. However, LGL is
a force-directed approach and therefore the positions of the nodes within a
biconnected component can vary. Even though the nodes of the biconnected
component tree are sorted by size, the size of each of these nodes can vary
as well from the computed LGL layouts.

As the decomposition phase is unique, the features detected for a par-
ticular graph will be the same, regardless of node order. Although the
coordinates of a given node may be very different from one drawing to the
next, the levels of structure depicted is the same.

However, SPF uses a biconnected component decomposition. As a re-
sult, the addition of a single edge can drastically change the final drawing
produced by SPF because the structure of the high-level tree changes as
well. The argument can be made that such a change drastically affects
the high-level tree structure and should be made apparent, but the chosen
decomposition does negatively influence the robustness of SPF.

4.4 Discussion

SPF is a variant of the TopoLayout feature-based graph drawing algorithm
tailored for the problem of drawing quasi-trees. According to the empirical
evaluation on two real datasets, the algorithm improves on previous sys-
tems written in the computer networking and bioinformatics domains, more
clearly illustrating the biconnected component structure of the quasi-tree
and how those components are interconnected. These arguments are also
supported using graph drawing aesthetics metrics on the final drawing and
the multilevel structure. The system also improves upon the running time
performance of previous approaches.

This work illustrates that a feature-based algorithm can be fruitful on
domain specific data. SPF can resolve these features, especially in the Inter-
net tomography dataset, because it relaxes the edge length uniformity and
node uniformity constraints imposed by previous graph drawing approaches
at high levels of structure.

The principal advantage of SPF is that the decomposition of the graph
into biconnected components clarifies low-level structure. The algorithm
clarifies this structure by ensuring biconnected component overlap is min-
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imized. The principal disadvantage of SPF is that the area-aware RINGS
algorithm can place elements of the graph that are close together in terms of
graph-theoretic distance far apart in terms of Euclidean distance. In future
work, additional area-aware tree drawing algorithms should be investigated
so that biconnected components with directly adjacent nodes are placed as
close together as possible.

However, the drawings still contain large amounts of node and edge oc-
clusion. Also, it requires minutes of drawing time before exploration can
begin. This is primarily due to the fact that simply displaying all the nodes
and edges of a graph of hundreds of thousands of nodes may be too complex
to draw quickly and intelligibly. In the next chapter, we begin to explore
steerable graph visualization systems in order to address some of these lim-
itations. Presented next is Grouse: the first of the steerable algorithms
discussed in this thesis.
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Chapter 5

Grouse: Steerable

Exploration of a

Feature-Based Graph

Hierarchy

In both the TopoLayout and SPF algorithms, large graphs on the order of
thousands of nodes take several minutes to draw. In order to circumvent
this limitation, steerable techniques have been invented that allow for the
progressive exploration of large graphs with an associated hierarchy [2, 20,
27]. None of these previous approaches, however, exploit specific algorithms
tailored to the connectivity feature being drawn. With Grouse, we extend
steerable graph exploration techniques in order to work with a hierarchy of
connectivity features. This extension provides improved running time and
visual quality in many circumstances.

In Grouse, we realize the above algorithm. Steerable exploration systems
for a graph and associated hierarchy exist, such as ASK-GraphView [2] and
DA-TU [27], but only force-directed algorithms are used. These systems
must resort to automatic coarsening in order to reduce the size of a meta-
graph. In Grouse, the algorithm draws parts of the hierarchy of connectivity
features with the algorithms of TopoLayout in order to improve the speed
and visual quality of the exploration.

The decomposition phase of Grouse is exactly the same as that of Topo-
Layout as described in Chapter 3, but it is computed beforehand and is
supplied as input to the system. However, the drawing of the graph is steer-
able and directed by the user. Steerability is accomplished by modifying the
hierarchy cut as described in Section 1.1.5.

The contribution of Grouse is an algorithm for the steerable exploration
of a graph and an associated graph hierarchy of connectivity features. Ad-
ditionally, a re-layout algorithm is presented that ensures nodes in the final
drawing closer to their input size. We implemented Grouse and compared
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it empirically to previous systems. Grouse was published in The Proceed-
ings of the 2007 Eurographics/IEEE-VGTC Symposium on Visualization [6].
A video11 shows the exploration of two datasets using this algorithm. An
implementation of the algorithm is available online12.

This chapter is structured as follows. Section 5.1 describes Grouse sys-
tem architecture at a high level. Section 5.2 presents details of each of the
system architecture components. Results of the system working on subsets
of the Internet Movie Database (IMDB) are presented in Section 5.3. A
discussion of algorithm robustness is presented in Section 5.4. Finally, a dis-
cussion of the contributions of the Grouse system is presented in Section 5.5.

5.1 Algorithm Overview

The Grouse interface consists of two linked views, as shown in Figure 5.1.
On the left is the tree view window showing all open, hidden, and cut
metanodes and leaves in the graph hierarchy. as a list view widget. It sup-
ports tree browsing with the standard interaction of expanding or collapsing
items and vertical scrolling. On the right is the graph view window, show-
ing the current cut to the graph hierarchy with a node-link diagram. It
supports standard pan and zoom through the two-dimensional view. The
graph hierarchy used for the visualization is supplied with the input graph.
In Grouse, this hierarchy is generated by the decomposition phase of Topo-
Layout described in Chapter 3.

The system has visual encodings for open and cut metanodes. Hidden
metanodes are not visible in the graph view. As the detail of these nodes
is not visible, the algorithm does not need to draw their subgraphs. Open
metanodes show the subgraph beneath the metanode in the hierarchy con-
tained within its enclosing circle. Cut metanodes are drawn as an opaque
hexagon without further detail. Containment is used to show the structure
of the graph hierarchy. The algorithm shows graph relationships by drawing
edges from leaf nodes in the usual way and by drawing metaedges between
two cut metanodes or a cut metanode and a leaf node, if there is an edge
between any leaves beneath the metanodes in the graph hierarchy. Leaf
nodes are drawn as grey boxes in the graph view.

The algorithm colours metanodes by the feature type they contain, in-
spired by Stone’s Tableau Software colour scheme [69]. Nodes that contain
biconnected component trees are brown, trees are blue, sets of clusters are

11
http://www.cs.ubc.ca/labs/imager/video/2007/Grouse/GrouseVid260070p.mov.gz

12
www.cs.ubc.ca/labs/imager/tr/2007/Archambault_Grouse_EuroVis
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yellow, cliques are cyan, meshes are purple, and all other components are
green. The saturation of the base colour represents depth in the hierarchy,
so that the large disks are less saturated and the smaller ones are more
brightly coloured. Grouse supports linked highlighting between views. In
the tree view, the current hierarchy cut is shown within the context of the
entire hierarchy through colouring the label backgrounds of open metanodes
according to their feature type. Nodes are selectable in either view. The
nodes are highlighted with a red perimeter in the graph view and a red
background label in the tree view.

The main interaction is the opening of a metanode. The subgraph be-
neath it is inserted into the graph at the location of the metanode, and the
newly inserted nodes move in a smooth transition to their locations in the
new layout. Their enclosing metanode appears at a depth proportional to
its depth in the hierarchy. A cut metanode can be opened by clicking within
its hexagon in the graph view or by clicking on its name in the tree view.
A hidden metanode can be opened by clicking in the tree view. This action
triggers a multi-stage animation, showing the successive opening up of all
enclosing metanodes on the path from its ancestor in the cut down to the
desired node. All the metanodes present in a subtree below a metanode in
the graph view can be opened by holding down the shift key and clicking a
closed metanode.

5.2 Algorithms

Grouse is built on the Tulip framework libraries [9]. The approach uses many
of its data structures, graph drawing algorithms, and rendering capabilities.
In the first section, feature-based layout is described along with how we
generalize the crossing minimization phase to work in this steerable system.
The second section presents the core algorithm used to support the animated
metanode opening operation. Two other algorithmic issues are discussed:
minimizing change during a re-layout and morphing node locations and sizes
during animated transitions.

5.2.1 Layout and Crossing Reduction

Grouse adapts the feature-based layout of TopoLayout described in Chap-
ter 3 for steerability. As discussed in that chapter, it is a challenge to provide
good drawing density that allows structure at many levels to be seen simul-
taneously. To obtain high visual quality, the algorithm must estimate the
size of the graph layout at each level and set a corresponding size for each
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Figure 5.1: The Grouse interface has two linked views, both showing the
selected node in red. On the left, all metanodes and leaves in the graph
hierarchy in the tree view are seen. On the right, the graph view repre-
sents closed metanodes on the hierarchy cut with hexagons, and the open
metanodes above them in the hierarchy as circles. The hierarchy structure is
shown in the graph view by containment within nested circles, while graph
structure is shown with connecting edges and metaedges. Metanodes are
coloured according to the feature they contain with leaves shown as grey
boxes.
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metanode in the hierarchy. Thus, the best results come from generalizing
algorithms to be area-aware. After this initial layout step, the algorithm
executes overlap elimination and crossing reduction passes.

In TopoLayout, the final crossing reduction pass reduces, but does not
completely eliminate, edge-edge and edge-metanode crossings by rotating
metanodes according to a computed torque value. The generalization of
this approach to steerable exploration is straightforward: the algorithm de-
termines the forces using the cut metanodes, rather than the leaves of the
hierarchy. The complexity of the generalized crossing reduction is O(|N |Ev),
where Ev is the number of visible edges in the current hierarchy cut.

Grouse also introduces a small improvement in the torque computation
to better avoid the local minimum where equal and opposite torques aver-
age out to zero torsional force. The algorithm also computes the average
absolute value of the torque. If this average is larger than 90◦, the algorithm
checks to see if rotating the node by 180◦ improves the drawing. If the av-
erage torque decreases, the algorithm keeps the node flipped; otherwise the
algorithm leaves it unchanged.

5.2.2 Changing the Hierarchy Cut

In Grouse, when the user opens a metanode, the hierarchy cut changes and
the system needs to update the graph view. The selected node changes type,
moving above the hierarchy cut to become an open metanode. All formerly
hidden nodes in the subgraph of the metanode are added to the hierarchy
cut. Duplicated nodes that may have been added to a metanode during a
biconnected component decomposition are not added to the cut. However,
they are considered when the subgraph contained by a metanode is drawn.
Figure 5.2 shows how metanodes are updated with a change in the hierarchy
cut. Pseudocode for the algorithm is provided in Figure 5.3.

In this incremental layout approach, the size of all the metanodes in the
graph hierarchy starts with a diameter of

√
Nm, where Nm is the number

of leaves in the subtree beneath the metanode m. This default value causes
the area of the metanode be roughly proportional to its number of leaves.
When the user opens a metanode for the first time, the subgraph contained
within it is laid out, leading to a change in the size of its open metanode.
The algorithm has more information about the space requirements at each
level because this size estimate is further refined as metanodes inside are
opened. At a leaf node, the algorithm has perfect information about the
size required.

After a layout event, the size of a metanode is changed, and the layout of
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Figure 5.2: Example of the computations made when changing the hierarchy
cut by opening a metanode. Open nodes are white, cut nodes are grey, and
hidden nodes are black. (a) The initial hierarchy cut shown in the context
of the whole hierarchy. It has open metanodes A, C, and F. Metanodes B
and G are in the hierarchy cut, as are the leaves below F. The metanodes
D and E are hidden, as are their leaves. (b) The initial hierarchy cut as
shown in the graph view. (c) After the selection, metanode B changes from
cut to open and the two formerly hidden metanodes D and E become cut
metanodes. The subgraph containing D and E is laid out and the size of
B is updated. (d) The subgraph inside A is laid out, and the size of A
is updated. (e) The metaedge to B is deleted and two edges to D and E
are added. (f) The final hierarchy cut, as a tree. The animated transition
seen by the user is a linear interpolation between views (b) and (e). The
intermediate stages of computation are not visible to the user.
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proc ChangeCut (openedMetaNode)

metanode = openedMetaNode
while metanode != NULL

InitialLayout(metanode)
RemoveOverlaps(metanode)
MinimizeCrossings(metanode)
RecalcBoundingCircle(metanode)
metanode ← metanode.parent

end while
RecomputeMetaEdges()

Figure 5.3: Pseudocode for the ChangeCut algorithm.

each subgraph along the path between the metanode and the root is updated.
This cascading re-layout does not require or recompute the layouts for any
of the other nodes in the cut. The worst-case number of re-layouts is thus
O(d), where d is the maximum depth of the cut. When the hierarchy is close
to balanced, this depth is logarithmic in the number of nodes. Moreover, the
cut depth is small when exploration begins. The complexity of the entire
re-layout cascade depends on the features present in the metanodes on the
path, since the layout complexity for each metanode ranges from linear to
cubic.

After all nodes on the path up to the root are re-laid out, the algorithm
must delete the metaedges incident to the parent metanode that is removed
from the hierarchy cut. The algorithm must then add new metaedges for
the newly laid out nodes in the child subgraph that have been added to
the hierarchy cut. A metaedge exists between cut metanodes if there is an
edge between leaves that the cut metanodes contain. The algorithm uses an
interactive refinement approach [11] to compute these metaedges on the fly
in linear time.

5.2.3 Minimizing Change in the Layout

The re-layout phase discussed above is one example of the dynamic or in-
cremental layout problem, where the algorithm would like a new layout of
a graph to be as close as possible to the old layout of a similar graph, with
node size and connectivity changes. For most of the algorithms, the re-
layout phase can eliminate unnecessary change by preserving the order that
the nodes and edges are processed when a metanode is re-laid out.

However, simply preserving order does not solve this problem with GEM
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force-directed placement. The algorithm uses the old layout as an initial
guess for the new one. This approach works well when the size change of
the opened metanode is small. The new layout might be quite different
from the old when the sizes of the nodes in the subgraph change drasti-
cally. A node that has a large change in size requires more space in the
layout, pushing nearby structure further away. Situations where node size
changes substantially is currently a limitation of the system presented here,
but it could potentially be overcome using other information visualization
techniques.

5.2.4 Animating Transitions

Opening a metanode can lead to size and position changes in any metanode
along the path from the node being opened to the root of the hierarchy. It
would be difficult to understand those changes if they were made abruptly.
Grouse linearly interpolates between the old and new coordinates of the
nodes while preserving containment relationships. The change in position is
presented as an animation over time that moves the node along its linearly
interpolated path from its old position to its new position. During this tran-
sition, the sizes of the open metanodes are morphed as well. In Figure 5.2,
the old positions of the nodes are the positions presented in Figure 5.2(b)
while the new positions for the nodes are the positions presented in Fig-
ure 5.2(e). The change in position between the old and the new positions of
the nodes in the hierarchy cut is not shown in the figure.

5.3 Results

This section presents several layouts showing stages in the steerable explo-
ration process. The datasets are subsets of the Internet Movie Database
(IMDB) and are presented in Figures 5.4, 5.5, 5.6, and 5.7. This section dis-
cusses the benefits of preserving the input hierarchy. The Grouse algorithm
is supported qualitatively by comparing the information density of the re-
sulting layouts, comparing the scaling method to the re-layout method, and
force-directed layout to feature-based layout.

5.3.1 Steerable Exploration

The input graph for both Figures 5.4 and 5.5 is the connected component
containing Sharon Stone movies made in 1999. The nodes in this graph
are actors and two nodes share an edge if the actors have acted in a movie
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(a) (b)

(c) (d)

Figure 5.4: Exploring an IMDB dataset of Sharon Stone movies from 1999,
where the full input graph is 7,640 nodes and 277,029 edges. These four
snapshots of the graph view show user exploration of the hierarchy.



Chapter 5. Grouse 119

Figure 5.5: Exploring an IMDB dataset of Sharon Stone movies from 1999,
where the full input graph is 7,640 nodes and 277,029 edges. The figure
shows the final step of exploration. The cyan clique of actors in the movie
Anywhere but Here is shown in the inset. Labels have been turned on in the
inset view, showing actor names.

together. The graph has 7,640 nodes and 277,029 edges. Figures 5.4(a)
through 5.4(d) show a sequence of snapshots of the graph view as metanodes
are opened. In the final image on the right, the hierarchy cut includes a large
high-level tree, containing a clique representing a movie (in cyan) near the
bottom. The inset shows a close-up view of the clique with node labels.

5.3.2 Preserving Hierarchy Features

In the IMDB datasets shown in Figures 5.5 and 5.6, cliques represent movies.
A movie is a clique because there exists an edge between every pair of actors
in a cast. Actors that have acted in multiple movies appear between the
cliques, as a biconnected component decomposition or clustering algorithm
would segment them out. Algorithms that use hierarchy modifications in
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the style of ASK-GraphView [2] would split up these cliques into multiple
metanodes, thus making them difficult to recognize. In Grouse, these fea-
tures are preserved and drawn using a glyph. The algorithm can do this
efficiently because appropriate layout algorithms are used depending on the
connectivity feature present in the subgraph. The system shows the hier-
archical structure above the hierarchy cut explicitly through containment.
The bounding circles drawn below open metanodes depict in a single view
the hierarchical structure above the hierarchy cut.

5.3.3 Scaling vs. the Re-Layout Algorithm Along a Path

In Grouse, the algorithm recomputes part of the layout during exploration,
at most d metanodes where d is the depth of the graph hierarchy. As the
user steers the layout, the metanode size estimates improve and the cas-
cading re-layout propagates this information up toward the hierarchy root.
This approach represents a quality-for-time trade off compared to the ASK-
GraphView method, where layout of any subgraph only occurs once and is
scaled so that it fits into the open metanode on the previous level. Although
the scaling approach is fast, major features can be difficult to perceive. Fig-
ure 5.6 compares these two approaches on one example. In the scaling
example of Figure 5.6(a), the cyan clique is much smaller than in the re-
layout example of Figure 5.6(b). Additionally, more levels are visible at a
single scale in the drawing using the re-layout technique.

5.3.4 Force-Directed vs. Feature-Based Layout

Figure 5.7(a) shows a layout using only force-directed placement, as in previ-
ous steerable systems. This layout is compared qualitatively to Figure 5.7(b)
that shows the feature-based layout of Grouse where appropriate algorithms
are chosen for the type of connectivity feature present in the subgraph. With
Grouse, it is easier to see the tree at the center of the drawing because of
its shape. The circular drawings and glyphs inform the user that the cliques
are actually complete. As movies are cliques, this indicates where movies
are in the graph. In the force-directed drawing, the spacial layout does not
provide such explicit cues. Thus, it is more difficult to really know if the
metanodes contain movies.
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5.4 Robustness

As Grouse uses TopoLayout hierarchies as input, the robustness constraints
for the graph hierarchy are identical to those present in TopoLayout. The
reader can refer to to Chapter 3 for further information.

The force-directed graph drawing algorithm used in our steerable graph
drawing approach does not guarantee the same drawing on the same input.
This limitation is problematic during a re-layout step. We are able to reduce,
but not completely eliminate, changes to the drawing of the feature through
a force-directed approach. This reduction is accomplished by initializing
the node positions to the previous layout before executing a re-layout. More
advanced techniques to ensure the stability of force-directed layouts exist [32]
but have not been integrated into Grouse.
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(a) scale (b) re-layout

Figure 5.6: Number of levels of the hierarchy that can be seen simultaneously in a comparison between scaling and
re-layout techniques. With scaling (a), it is difficult to see deep into the hierarchy. Using the re-layout algorithm
(b), more levels are distinguishable. Having more levels of the hierarchy visible at once facilitates analysis of the
hierarchy across many levels of structure. The dataset presented is a subset of IMDB with 1,181 nodes and 31,527
edges centered around Jake Gyllenhaal.
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(a) (b)

Figure 5.7: A comparison of information density using force-directed layout with feature-based layout. (a) In the
force-directed case, the leaf nodes in the cyan clique are so spread apart that they are tiny. (b) With feature-based
layout, the clique leaves are far larger, as are the blue cut metanodes representing trees in the open metanode at
the center.



Chapter 5. Grouse 124

5.5 Discussion

Grouse uses graph hierarchy cuts to present simpler views of TopoLayout
hierarchies. It does so in a steerable way where users do not need to wait for
periods of time ranging from minutes to hours before exploration can begin.
If the purpose of the investigation is to understand the types of connectivity
features present in the data, Grouse provides a good solution. In the case
of the IMDB examples presented in this work, Grouse better depicts areas
of the graph that contain the cast of a movie.

One of the limitations of Grouse is that the force-directed algorithm
used during the re-layout step may produce large changes in the positions of
nodes. Instability in the positions of the nodes makes it difficult to under-
stand how the hierarchy cut is changing during exploration of the data. To
minimize this layout instability, the system could use the constraint-based
graph drawing techniques of Dwyer et al. [22]. Also, the system could use
an adaptation of dynamic graph drawing approaches such as Frishman and
Tal [32].

However, more importantly, Grouse is limited to a single hierarchy of
connectivity features during the exploration phase. Using Grouse, users
cannot tailor the graph hierarchy. As such, if the high or mid-level struc-
ture they wish to investigate is not based on connectivity features, then
Grouse cannot depict it. In the next chapter, GrouseFlocks begins to ad-
dress this limitation by proposing a steerable technique for exploring the
many hierarchies that can be created using attribute data associated with
the nodes of the graph.
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Chapter 6

GrouseFlocks: Steerable

Exploration of Graph

Hierarchy Space

In Grouse, a single hierarchy of connectivity features is used to explore the
input graph. However, in most circumstances, attributes are associated with
the nodes of the graph. These attributes can be used to construct a variety
of hierarchies on top of the graph, providing different views of the underlying
graph. For example, consider computer networking where nodes are servers
and edges are connections between those servers. Attributes associated with
the nodes of the graph group these servers into subnetworks. By grouping
subnetworks together, we can reveal high-level structure associated with the
graph. This structure would not generally be revealed by the single hierarchy
of connectivity features supplied as input to Grouse. GrouseFlocks extends
Grouse to allow for the steerable exploration of the space of graph hierarchies
that can be constructed on top of a graph using attribute data.

In GrouseFlocks, we realize a steerable system for the space of graph
hierarchies that can be created using a graph with attribute data. Both the
decomposition and drawing phases of this algorithm are steerable. The ma-
jority of previous steerable systems do not support hierarchy creation [2, 20].
The few systems that do support hierarchy creation only do so through
manual selection [11, 27] and the remainder do not support steerable explo-
ration of the resultant hierarchy [61]. GrouseFlocks supports the steerable
creation of graph hierarchies through attribute data present on the nodes of
the graph. Different hierarchies provide different views of the graph. These
different views allow the user to reason about its structure. This explo-
ration of graph hierarchy space is constrained to be path-preserving. The
constraint ensures that if a path appears in a cut, it also appears in the un-
derlying graph. GrouseFlocks also introduces a coarsening algorithm that
preserves large metanodes in the created hierarchy.

The contribution of GrouseFlocks is a path-preserving technique for the
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steerable creation and exploration of graph hierarchy space based on at-
tribute data associated with the nodes of the graph. The approach also
introduces a coarsening algorithm that preserves large metanodes in the
created hierarchy. We implemented GrouseFlocks and compared it empir-
ically to previous systems. GrouseFlocks will appear as a Transactions on
Visualization and Computer Graphics [8] article. An implementation of
GrouseFlocks is available online13.

This chapter is structured as follows. Section 6.1 introduces the concept
of a path-preserving hierarchy. This concept is critical for depicting paths
in a cut if at least one path exists in the underlying graph. In Section 6.2,
the GrouseFlocks user interface is presented along with the operations the
user performs to explore graph hierarchy space. In Section 6.3, the algo-
rithmic details behind steerable hierarchy modification and coarsening are
presented. Several graph hierarchies are constructed and contrasted in Sec-
tion 6.4. A discussion of algorithm robustness is presented in Section 6.5.
Finally, Section 6.6 discusses the contributions of GrouseFlocks and possible
future directions.

6.1 Path-Preserving Hierarchies

A path-preserving graph hierarchy is one where a path in the hierarchy
cut, consisting of a specific sequence of metanodes, exists if and only if there
exists a path in the input graph, consisting of a specific sequence of leaves,
such that the leaves are descendents of the metanodes. Path-preserving
hierarchies are needed to ensure that all paths viewed in a cut actually exist
in the underlying graph. They have been used previously in graph drawing
systems [29], but we are unaware of their use in steerable hierarchy creation
and exploration. Path-preserving hierarchies must respect two properties:

Definition 1. Edge Conservation: An edge exists between two metanodes
m1 and m2 if and only if there exists an edge between two leaves in the input
graph l1 and l2 such that l1 is a descendant of m1 and l2 is a descendant of
m2.

This property is illustrated in Figure 6.2. In Figure 6.2(a), an edge exists
in some upper level of the hierarchy between two metanodes. Figure 6.2(b)
is valid since edges, drawn in red, exist between nodes in the input graph.
Figure 6.2(c) is not valid because no such edge exists in the input graph.

13
www.cs.ubc.ca/labs/imager/tr/2008/Archambault_GrouseFlocks_TVCG/
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Intuitively, any edge that exists in a cut is an abstraction of one or more
edges that existed in the input graph.

Definition 2. Connectivity Conservation: Any subgraph contained in-
side a metanode must be connected.

This second property ensures that a path through a subgraph always
exists. If the user were allowed to place disconnected subgraphs inside a
metanode, as shown in Figure 6.3(c), the metanode would imply that a path
exists between the subgraphs. This placement implies the existence of a cycle
that does not exist in the input graph. If we respect this restriction, as in
Figure 6.3(b), these problems do not occur, as there is only one connected
component in the subgraph.

By respecting these two properties, a path-preserving graph hierarchy is
guaranteed. Edge conservation ensures that any hierarchy edge is witnessed
by some edge in the input graph, while connectivity conservation ensures
that any path in the cut can pass through any metanode. Therefore, any
path that exists in a cut can be mapped to a sequence of leaves that exist
in the input graph.

Even with the path-preserving restriction, there can still exist an expo-
nential number of hierarchies for a single input graph. Figure 6.1(a) presents
a possible input graph, and Figure 6.1(b) gives three examples of possible
hierarchies that can be superimposed on this input graph. In the first row
of the table are depictions of hierarchy trees. In the second row of the
figure, hierarchy trees are superimposed on top of the input graph using
containment, where a circular metanode contains all its children. This sim-
ple example demonstrates that the metanode structure imposed on the same
graph can differ wildly from hierarchy to hierarchy. Since the hierarchy de-
fines the cuts that can be visualized, many interesting cuts may be missed
if the user is not given a reasonable way to adjust the hierarchy structure
during the investigation of their data. We define hierarchy space as the
space of all possible path-preserving hierarchies given an underlying graph
with attributes.

6.2 Interface

The interface for GrouseFlocks is shown in Figure 6.4, with operations to
facilitate hierarchy manipulation and exploration. Section 6.2.1 briefly re-
views the steerable graph interface previously described in Grouse, Chap-
ter 5. Then, Section 6.2.2 introduces the hierarchy creation and modification
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(a) Original Graph

Graph Hierarchy 1 Graph Hierarchy 2 Graph Hierarchy 3

(b) Graph Hierarchies

Figure 6.1: Multiple graph hierarchies superimposed on the same graph. (a)
The original graph without any hierarchies superimposed on top of it. (b) A
table of three of the many possible hierarchies that can be superimposed on
the graph in (a). The first row of the table shows the three graph hierarchies.
The second row of the table shows these graph hierarchies superimposed on
the same base graph. As a graph hierarchy defines the types of abstractions
that can be visualized by hierarchy cuts, a single graph hierarchy is not
suitable for all interesting views of the graph data.
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(a) Hierarchy Cut (b) Edge Exists (c) Edge Does Not Exist

Figure 6.2: Edge conservation. In (a) a metaedge exists between two metan-
odes at some level of the hierarchy. A valid input graph is shown in (b) where
there exist edges connecting descendants of both metanodes. An invalid in-
put graph is shown in (c) where edges do not connect descendants of the
two metanodes.

(a) Hierarchy Cut (b) Metanode Connected (c) Metanode Not
Connected

Figure 6.3: Connectivity conservation. In (a), there is a cycle between
three metanodes at some level of the hierarchy. A valid input graph for this
hierarchy is shown in (b) as there exists a cycle in the underlying graph.
An invalid input graph is shown in (c) where there is not a cycle in the
underlying graph. Thus, subgraphs must be connected for our hierarchies
to be path-preserving.
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methods. The section describes how the user interacts with the Grouse-
Flocks interface. Algorithmic details of these operations are presented in
Section 6.3.

6.2.1 Hierarchy Navigation

The navigation capabilities of GrouseFlocks, which were previously described
in Chapter 5, consist of a tree view and a graph view. These views allow
users to modify the hierarchy cut that is used to define the hierarchy edit-
ing operations. The tree view (3) appears directly below the progress bar
on the left hand side of Figure 6.4. It shows all metanodes and leaves in
the current graph hierarchy and supports standard interaction of expanding
or collapsing items and vertical scrolling. The graph view (1) shows the
current hierarchy cut with a node-link diagram. The graph hierarchy is su-
perimposed on the hierarchy cut using containment: a metanode contains
its subgraph or all its children. The graph view supports pan and zoom
through its two-dimensional view.

GrouseFlocks supports linked highlighting between the tree and graph
views. Nodes in the graph and tree views are selectable. Metanodes can be
opened and closed using either the graph view or the tree view representation
of the hierarchy. The labels of the leaves can be set to any combination of
attributes by using the checkboxes in the attribute table (4).

6.2.2 Hierarchy Creation and Modification

Users modify hierarchies by carrying out high-level operations that act on
the selected set of nodes and metanodes. This section first describes what
kinds of selection are supported, and then it describes the two hierarchy
modification operators.

Selection

GrouseFlocks, like previous hierarchy editing systems, supports basic man-
ual selection. Users can add or remove metanodes and nodes from the
selection set by clicking on them in either the graph view or the tree view.
In addition, GrouseFlocks supports selection operations based on regular-
expression searching for strings on a chosen node attribute. When users
enter a regular expression in the search box (5) GrouseFlocks searches all
leaves below the cut metanodes in the graph view with respect to the at-
tribute selected in the list box (6). With pattern match selection, the
nodes are divided into two sets, matched and non-matched. With category
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Figure 6.4: The GrouseFlocks user interface. The graph view (1) illus-
trates cuts to the hierarchy. On the left (2) are the searching capabilities
of GrouseFlocks to select portions of the underlying graph. The tree view
(3) shows the current graph hierarchy being navigated. The information
that appears in the labels can be selected in table (4) where checkboxes
indicate which attributes are present in the node labels. Regular expression
can be entered in the textbox (5) to compute selections on the highlighted
attribute in (6). The buttons (7) provide operations to modify the current
hierarchy and clear computed selections.
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selection, the nodes are divided into many sets, one for each unique string
that occurs in the attribute data.

For instance, a movie dataset might have many attributes, including
genre and director. A pattern match search for the string action against
the genre attribute would separate the nodes into the matched set of action
movies, and the non-matched set all other movies. A category search against
genre would return several sets: action, scifi, documentary, and others. Users
can use the standard syntax of parentheses in the regular expression to
denote a substring of interest, rather than categorizing against the entire
attribute string.

With both forms of selection, matched leaves are highlighted with red
label backgrounds in the tree view and red circles in the graph view. If any
leaf below a cut metanode matches the search string, that metanode is also
highlighted.

Hierarchy Modification

Both of the high-level hierarchy modification operators in GrouseFlocks
carry out actions based on the current selection sets and the current hierar-
chy cut. They are invoked using the buttons (7). The Reform-Below-Cut
operation destroys the structure of the old hierarchy that is hidden below the
hierarchy cut, and creates new metanodes based on the selection sets. The
Merge-At-Cut operation preserves the hidden structure of the old hierar-
chy and merges the selected sets within each open metanode. After either of
these two operations, GrouseFlocks always produces a new path-preserving
hierarchy.

6.3 Algorithms

Section 6.2 describes all the algorithms used to implement selection and
metanode creation in the system. The navigation system of GrouseFlocks
is the same as that of Grouse discussed in Chapter 5.

6.3.1 Selection

A selection is formed based on the leaves of the graph. Once the user
has entered either a pattern match or category expression as described in
Section 6.2.2, the algorithm recursively searches the current graph hierarchy
from the root downwards until it reaches a leaf. Then, the given leaf for the
selected attribute is compared with the regular expression for classification.
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Leaf selections are propagated up to the hierarchy cut, so the user is able
to determine which metanodes contain selected leaves.

Pattern Match

In the case of a pattern match search, the leaf is either matched or un-
matched. The leaf is marked true or false accordingly, and the search con-
tinues down to lower levels of the hierarchy. Matched leaves are selected and
those selections are propagated to the hierarchy cut.

Category

A category selection divides subgraphs into multiple metanodes, depending
on the number of unique strings found. As in pattern match, the hierarchy is
recursively searched, and the substring of interest for each node is recorded
based on the regular expression. If more than one category is seen below a
particular cut metanode, a selection is propagated to the hierarchy cut.

6.3.2 Hierarchy Modification

The hierarchy modification operators described in Section 6.2.2 use two low-
level metanode operations as building blocks: merge and delete. These two
low-level operations were supported in the previous DA-TU [27] system and
in Auber and Jourdan [11].

The Merge operation, illustrated in Figure 6.5, takes a connected sub-
graph contained within a single open metanode A and replaces the subgraph
with a single metanode at A. Metaedges connect the new metanode to adja-
cent nodes to the subgraph. For each connected component in the selection,
a single metanode is created.

The Delete operation, illustrated in Figure 6.6, takes a single metanode
and destroys it, so that its children are placed inside its parent. In Grouse-
Flocks, the delete operation is often called recursively, destroying the entire
hierarchy that exists below a metanode.

The next section describes the new high-level operators introduced by
GrouseFlocks that use these low-level metanode operations to carry out
hierarchy modification using the selection sets, while traversing the hierarchy
at or below the current hierarchy cut.
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(a) Before Merge

(b) After Merge

Figure 6.5: A merge operation example. Selected nodes in (a) are grouped
into a single metanode at the current level of the hierarchy as shown in (b).
For a merge operation, the selection cannot cross open metanode boundaries.
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(a) Before Delete

(b) After Delete

Figure 6.6: A delete operation example. The hierarchy structure below the
red metanode in (a) is deleted, bringing all metanodes below the red metan-
ode up one level as shown in (b). In GrouseFlocks, the delete operation is
only applied recursively to repartition nodes in a graph hierarchy.
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Reform-Below-Cut

The Reform-Below-Cut operation consists of a recursive delete from each
metanode in the cut all the way down to the leaves of the hierarchy, followed
by a merge. Figure 6.7 shows an example.

The Reform-Below-Cut operation considers the selected set and the cut
metanodes in the graph hierarchy. For each cut metanode, the operation be-
gins by recursively deleting all hidden metanodes using the metanode Delete
operation, as shown in Figure 6.7(b). Once complete, only leaves are present
in the subgraphs below cut metanodes. The resultant leaf set is partitioned
into metanodes based on the unmatched and matched sets or categories
found by the selection. These components are merged with the metanode
Merge operation respecting both edge and connectivity conservation. The
cut metanodes are opened automatically to reveal the new hierarchy level
directly underneath them. It is important to note that leaves may appear
on the cut. As leaves do not contain subgraphs, they are not considered in
a Reform-Below-Cut operation and are not modified.

Since Reform-Below-Cut operates on the leaf set below cut metanodes it
works well semantically with both pattern match and category operations.
In pattern match, it divides the leaf set into matched and unmatched below
a given cut metanode. In category, it divides the leaf set into multiple
categories dependent on the substring of interest.

Merge-At-Cut

The Merge-At-Cut operation modifies the current hierarchy by merging sets
of selected nodes on the hierarchy cut, respecting both metanode boundaries
and connectivity conservation. The operation is simply a metanode Merge
operation applied to the contents of each open metanode separately.

6.3.3 Coarsening

As the user navigates the current hierarchy, the user may open a metanode
that is too large to lay out interactively. One way to ensure that exploration
remains interactive in these cases is to coarsen the graph below the metanode
to a size specified by the user as acceptable for visualization purposes. The
algorithm should do this in such a way that large subgraphs contained in
the metanode being opened, or major features in the hierarchy, are kept
intact, and smaller features are merged together automatically using graph
connectivity. The algorithm performs some decomposition into connectivity
features, namely tree detection, but our coarsening algorithm is simply not
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(a) Reform-Below-Cut Initial State

(b) After Recursive Delete

(c) Reform-Below-Cut Complete

Figure 6.7: Example of the Reform-Below-Cut hierarchy modification oper-
ator. Actions taken on a single metanode, the yellow node, shown in (a). All
leaves and metanodes below the cut have dashed boundaries. The metan-
ode Delete operator is recursively called until only leaf nodes are present
in the yellow metanode, as shown in (b). The algorithm performs a single
merge on the leaf set according to the previous selection operation, either
match/non-match sets or multiple categories, as shown in (c).
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designed to recursively detect connectivity features. Rather, the approach
coarsens a subgraph based on the sizes of the subgraphs below metanodes
contained within the metanode being opened.

Our coarsening technique, outlined in Figure 6.8, preserves metanodes
containing large features and merges smaller features together into metan-
odes at the next level of the hierarchy cut. The procedure is based on a
modification of edge contraction, a method commonly used in graph draw-
ing to produce hierarchies of coarse graphs. In edge contraction, pairs of
nodes in the graph are recursively merged based on edge weights or cri-
teria of the directly adjacent nodes. During each recursive pass of edge
contraction, any given node can only be involved in a single pass of edge
contraction.

Let g be the graph contained inside the metanode that is being opened.
Assume the graph g is too large to lay out because the number of nodes
exceed some user-specified threshold. The algorithm is divided into two
stages: a first stage that performs tree detection and the second stage that
performs edge contraction.

The first stage of the algorithm detects trees in g and merges them into
single metanodes. The reason for this pass is to abstract away large trees
that coarsen very slowly using edge contraction.

The second stage performs a type of edge contraction on g that tends
not to coarsen large subgraphs, leaving them at the level directly below the
metanode being opened. First, all metanodes and leaves contained in the
opened graph are sorted according to the size of the subgraph they contain
directly below their metanode. For leaves, this size is set to zero. Next,
the list is processed from smallest node to greatest node. For a current
unmarked node in the list, the algorithm scans all adjacent nodes that are
also unmarked. The algorithm selects the edge with the smallest adjacent
unmarked node and flags that edge to be contracted. This pass halts either
when the entire node list has been processed, or when enough edges have
been flagged for contraction to bring the number of nodes below the thresh-
old. The edges are contracted and the process is repeated until the size of
g is below the specified threshold.

If g has |N | nodes and |E| edges, tree detection requires O(|N | + |E|)
time. In the edge contraction procedure, the time required to sort the list
of nodes is O(|N | log |N |) and the time to determine the edges to contract
is O(|N | + |E|). Thus, if each pass of edge contraction removes half of the
nodes of g, the algorithm has a complexity of O(|N | log2 |N |+ |E| log |N |).
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coarsen (Graph g, unsigned int thresh)

while (g.|N | > thresh)
detectTrees (g, thresh) {This halts if below threshold}
g.N ← sortNodesBySubgraphSize (g.N)
marked ← ∅
contracted ← ∅
for all (n ∈ g.N)

if (g.|N | − |contracted| > thresh)
break;

end if
if (n ∈ marked)

continue
end if
minEdge ← ∅
minWeight ←∞
for all (e ∈ adjacentTo (n))

opp ← opposite (e, n)
if (opp ∈ marked))

continue
end if
if (opp.|N | < minWeight)

minEdge ← e
minWeight ← opp.|N |

end if
end for
if (e != ∅)

contract
⋃{e}

marked
⋃{n}

marked
⋃{opposite (e, n)}

end if
end for
contractEdges (g, contract)

end while

Figure 6.8: Pseudocode for the coarsening algorithm. The set N represents
node sets of metanodes or graphs. As the number of passes is usually sublog-
arithmic, the complexity of this algorithm is O(|N | log2 |N |+ |E| log |N |).
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6.4 Comparison of Hierarchies

GrouseFlocks was implemented using the Tulip graph drawing libraries [9]
and Grouse [6]. This section compares the interactively created hierarchies
of GrouseFlocks to the static connectivity feature hierarchies of Grouse.
ASK-GraphView [2] produces similar hierarchies, as it detects the same set
of connectivity features as Grouse in the same order. These tools were se-
lected from the previous work because they present the only tools that allow
steerable exploration of a static input graph and an associated hierarchy. A
3.0GHz Pentium IV with 3.0GB of memory running SuSE Linux with a
2.6.5-7.151 kernel was used in the empirical evaluation.

The InfoVis 2004 dataset [28] consists of papers and author names along
with additional information such as keywords, abstract, title, and location
of publication. A subset of this dataset was generated consisting of 103
nodes and 588 edges centered around three key researchers in the field:
Jock D. Mackinlay, Stuart K. Card, and Ben Shneiderman. Nodes in this
graph represent papers, and there exists an edge between two papers if they
share at least one author in common. This graph is called Coauthor in the
analysis.

The InfoVis 2007 contest dataset [52] consists of movies and associated
information about them including: cinematographer, director, female actors,
male actors, genre, and Oscars awarded. From this data, two movie graphs
were generated. In a movie graph, each node is a movie and there exists an
edge between two nodes if the movies shared at least one actor in common.
The first dataset, Movie Small, consisted of all movies in the contest dataset
that had reviewer ratings. The graph contained 9,475 nodes and 140,721
edges. The second dataset consisted of the entire movie database, Movie
Large. The graph contained 17,192 nodes and 220,321 edges.

All hierarchy modification operations finished in less than one minute.
All metanode opening and closing operations on a specific hierarchy took
only a few seconds.

6.4.1 Coauthor

Figures 6.9, 6.10 and 6.11 show the Coauthor dataset. Figure 6.9(a) shows
a decomposition into connectivity features from Grouse; the results from
ASK-GraphView would be similar. After opening a few metanodes, a search
for Jock Mackinlay is performed on the dataset, and metanodes containing
nodes with this attribute are highlighted in red. These nodes are scattered
across many metanodes. This result is unsurprising because the author



Chapter 6. GrouseFlocks 141

attribute data was not taken into account during the decomposition into
connectivity features. The other attribute searches described below were
similarly scattered across many metanodes.

Figures 6.10(a), and 6.10(b) show hierarchies created by GrouseFlocks
after searching on the author attribute for Jock Mackinlay and Ben Shnei-
derman respectively. In the Coauthor dataset, the set of all papers written
by an author should be a complete subgraph, with edges between all the
nodes representing the fact that there is an author shared across all papers.
GrouseFlocks shows complete subgraphs distinctively, using a circular lay-
out. When the dataset was originally explored, a complete graph did not
exist for Mackinlay: his name included a middle initial on some papers, and
did not include a middle initial on others. Figure 6.9(b) shows a selection
for Jock.*Mackinlay that captures all Jock Mackinlay’s papers. A second
search is performed for Jock D. Mackinlay and those papers are highlighted
in red in the figure. A Merge-At-Cut operation is executed on the selection
to group all of these papers into a single metanode. The result is shown
in Figure 6.10(a). Figure 6.10(b) shows that the complete subgraph of Ben
Shneiderman was found after only one search.

Figure 6.11 shows a different hierarchy generated on top of the same
Coauthor graph. A Reform-Below-Cut operation is performed after search-
ing for interface in the keywords attribute. Matches are pink, and non-
matches are yellow. This operation is followed by a second Reform-Below-
Cut operation after searching for Mackinlay in the authors attribute, with
matches in green and non-matches in cyan. The majority of Jock Mackin-
lay’s papers do not contain interface as a keyword, appearing in the open
green metanode inside the large yellow metanode in the center. The pink
metanode next to it contains the two of his papers that do have that key-
word. One of them is The Document Lens.



C
h
a
p
ter

6
.

G
ro

u
seF

lo
ck

s
142

(a) Connectivity Featues (b) Jock.*Mackinlay

Figure 6.9: Comparison of two hierarchies with respect to the underlying Coauthor graph. The hierarchy of con-
nectivity features in (a) was created by TopoLayout, and is similar to those produced by ASK-GraphView. The red
highlight shows how this hierarchy spreads nodes with the author attribute Jock D. Mackinlay over many metan-
odes. Hierarchy (b) shows the result of a Reform-Below-Cut operation based on the selection Jock.*Mackinlay.
The graph is not complete, which is strange since every paper Jock Mackinlay has coauthored shares Jock Mackin-
lay as an author. The decomposition is followed by a search for Jock D. Mackinlay, showing that some papers
were missing the initial in the author name, which are the unselected ones in the figure.
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(a) Jock D. Mackinlay (b) Ben Shneiderman

Figure 6.10: Comparison of four hierarchies with respect to the underlying Coauthor graph. In hierarchy (a),
a Merge-At-Cut is performed on the selection of Jock D. Mackinlay papers shown in Figure 6.9(b). The green
metanode contains all Jock D. Mackinlay papers while the two leaves in the pink metanode are Jock Mackinlay
papers. Hierarchy (b) shows Ben Shneiderman papers, in pink, separated from the rest of the graph in yellow.
Refer to Figure 6.4 for a decomposition of the same dataset for papers coauthored by Stuart K. Card.
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6.4.2 Movie Small

Figure 6.13 shows the Movie Small dataset. Figure 6.4.2 shows a hierarchy
of connectivity features. This hierarchy illustrates the connectivity features
of the dataset, but it does not give information about the movies in which
an actor appears. This figure shows the results of performing a search for
all female actors containing the name Stone. Any cut metanode that con-
tains such an actor is highlighted red. As a decomposition into connectivity
features does not consider this attribute information, the data is scattered
all over the hierarchy. Exploring a single static hierarchy, such as supported
by ASK-GraphView and Grouse, does not provide a useful partition for this
task.

By using the GrouseFlocks and the attribute data of this dataset, it
is possible to divide the datasets into sets of movies in which an actor has
appeared. Figure 6.13(a) shows the dataset divided into sets of female actors
with the name Stone. Subsequently, second and third Reform-Below-Cut
operations are performed to reveal movies containing Sharon Stone in the
bottom inset of Figure 6.13(b) and Dee Wallace Stone in the top inset. By
giving users the ability to modify graph hierarchy space, they can refine their
investigation from general to more specific structures in the large graph.
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Figure 6.11: A fifth hierarchy on the Coauthor graph, decomposing it into
two levels. First, papers that contain interface in their keyword attribute,
in pink, are separated from and those that do not, in yellow. The second
level separates the eight such papers with Mackinlay as an author, in green,
from the two that do not, in cyan.



Chapter 6. GrouseFlocks 146

Figure 6.12: A hierarchy of connectivity features for the Movie Small

dataset. The red selection shows the location of female actors with Stone in
their name distributed all over the hierarchy.
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(a) Stone (b) Stone + Sharon + Dee Wallace

Figure 6.13: Comparison of multiple hierarchies produced by GrouseFlocks. Hierarchy (a) shows movies that
contain at least one female actor with the name Stone in pink metanodes and movies that do not in yellow. In
Hierarchy (b), the movies in which Sharon Stone acts are contained in a green open metanode while the movies
in which Dee Wallace Stone acts are shown in the orange open metanode.
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6.4.3 Movie Large

In Figure 6.14 and 6.15, the 17,192 movies and 220,321 edges between them
have been decomposed by using connectivity features and by using attribute
data. In Figure 6.14(a), a hierarchy of connectivity features like those used
in ASK-GraphView and Grouse is explored using the system. The remaining
figures depict the exploration of movie genres, directors and actors.

The decomposition of the graph into connectivity features, as presented
in Figure 6.14(a), demonstrates much of the clique structure in the dataset.
Cliques represent the set of movies for a single actor or a group of actors.
Beyond answering questions about the types of movies an actor or a group
of actors participates in, it is difficult to get any more information from
these drawings. The documentaries in this hierarchy are spread through
the hierarchy of connectivity features. Thus, this hierarchy of connectivity
features is not suitable for investigating movie genre.

In the remaining diagrams of Figure 6.14 and 6.15, the data is divided
into metanodes by genre through a category search on the genre attribute,
followed by a Reform-Below-Cut operation. The large components inside
the root metanode in these diagrams show an interesting trend: an actor
who appears in a single movie of a particular genre is likely to act in multiple
movies of that type. In Figure 6.14(b), the pink components are documen-
tary metanodes while the yellow components are metanodes that are not
documentaries. As connected components are respected in this graph, a
metaedge will only connect a pink node to a yellow node: otherwise the two
nodes would be in the same subgraph. In this decomposition, two large sub-
graphs are illustrated with few nodes being outside these metanodes. This
trend persists for action movies as seen in Figure 6.15(a), and science fic-
tion movies as seen in Figure 6.15(b). In the science fiction genre, subgraph
structure is more fragmented, and therefore, coarsening was required. The
coarsened metanode has been opened and is represented by the brown open
metanode.

Figure 6.16 shows a further refinement of the documentary hierarchy
of Figure 6.14(b) by performing two more Reform-Below-Cut operations.
First, the movies directed by Michael Moore are found by selecting from the
director attribute, with matches in green and non-matches in cyan. Then,
the hierarchy is further refined by separating out movies in which he acted
by selecting from the male actor attribute. Matches are shown in orange
and non-matches in blue. After creating this new hierarchy, the diagram
illustrates that Moore has appeared as an actor in several movies, most of
which are documentaries, but has only acted in one documentary that he
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directed, the orange leaf node Bowling for Columbine. The top inset shows
documentaries in which Michael Moore acted but did not direct, contained
in an orange metanode. In the inset on the left, the three movies in this
dataset in which he acted and that are not documentaries are illustrated:
The Private Public, Lucky Numbers, and The Fever.

GrouseFlocks was able to create a graph hierarchy that illustrated infor-
mation about Michael Moore and the movies in which he acts and directs.
This information is not visible in the hierarchy of connectivity features as
the relevant nodes are scattered across many metanodes, making it difficult
to see these relationships in the graph. Steerable creation and modification
of multiple hierarchies on top of the same base graph allowed us to itera-
tively refine hierarchies until a precise one is obtained. Users can use this
new hierarchy to develop questions about their data.
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(a) Connectivity Feature (b) Documentary

Figure 6.14: Large version of the InfoVis 2007 contest dataset, where the base graph has a node for each movie
and edges between all movies that share actors. In (a), a decomposition into connectivity features is used. The
decomposition illustrates some cliques of actors, but does not help the user understand the data with respect to its
attributes. In (b), the graph is split into metanodes by the movie genre documentary. By examining Figure 6.15,
the data shows a trend across genres: anybody who acts in one movie of a particular genre is likely to act in other
movies of the same genre.
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(a) Action (b) Science Fiction

Figure 6.15: Large version of the InfoVis 2007 contest dataset, where the base graph has a node for each movie
and edges between all movies that share actors. In (a) and (b), the graph is split into metanodes by movie genre:
action and science fiction. By examining Figure 6.14, the data shows a trend across these genres: anybody who
acts in one movie of a particular genre is likely to act in other movies of the same genre.
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6.5 Robustness

GrouseFlocks has the same robustness constraints as Grouse for its steerable
graph drawing phase because Grouse is used for this phase. We refer the
reader to Chapter 5 for a discussion of robustness with respect to drawing.

With respect to hierarchy creation, the addition of a few edges can change
the appearance of the high-level structure, as the connectivity feature can
also change. As we are exploring the space of hierarchies based on attribute
data, a subtle, but important change in high-level structure should perhaps
be emphasized via a sharp change in the drawing. However, further user
testing is required to validate such a claim.

Subtle changes with respect to the attribute data can also affect the high-
level structure of the graph by merging connected components or splitting
connected components into two. We do not view this situation as a lack
of robustness as these splits and merges provide an accurate reflection of
high-level graph connectivity respecting paths in the underlying graph.

6.6 Discussion

GrouseFlocks heavily exploits spacial cues in order to convey the parts of the
graph with similar attributes. As spacial proximity is the strongest visual
cue, it clearly conveys elements of the graph with the same or similar values
for an attribute. The primary disadvantage of this approach over other
potential approaches is that the layout of the graph is constantly changing
as the user explores cuts of the current hierarchy or the space of hierarchies
associated with an input graph. Ways to preserve spacial proximity and
minimize motion during operations on the graph and hierarchy would be of
benefit to the system.

Initial users working with GrouseFlocks in an informal setting said they
had trouble understanding how containment conveys information about the
dataset, especially when the nesting of containment is three or more deep.
The approach has the advantage of an arbitrary number of composition
relationships, but more system support for users is required to help them
remember those relationships.

The current coarsening technique attempts to preserve metanodes con-
taining large subgraphs at the current level in order to make them visually
salient. This technique is an important first step in helping preserve salient
features in the graph hierarchy while preserving some level of interactive per-
formance. Further investigation into coarsening techniques that take into
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Figure 6.16: Further refinement of the documentary genre hierarchy shown
in Figure 6.14(b).



Chapter 6. GrouseFlocks 154

account feature importance in a hierarchy should be investigated.
The primary advantage of GrouseFlocks is that many hierarchies can be

investigated within minutes. Previous approaches required the construction
of an entire graph hierarchy, an entire layout, or both before investigation of
graph hierarchy space on an input graph could begin. Entire initial hierarchy
computations may take minutes or hours before the investigation of the
data can begin. As neither a graph hierarchy nor a layout is required by
GrouseFlocks, the system is more scalable than previous approaches.
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Chapter 7

TugGraph: Path-Preserving

Hierarchies for Browsing

Proximity and Paths in

Graphs

During steerable exploration of graph hierarchy space with GrouseFlocks,
metanodes can often contain subgraphs of hundreds of thousands of nodes.
These metanodes are time-consuming to draw: even the fastest systems,
such as SPF, would require thirty minutes to lay them out. The user, how-
ever, is frequently interested in the structure located near a particular fea-
ture in the graph. Local exploration near a feature in a graph appears to
be a natural way to explore the graph. In fact, the technique was originally
motivated by a problem posed by a computer networking expert who was
interested in understanding the structure of a computer network a few hops
away from a particular subnetwork in a larger networking dataset. By see-
ing a graphical representation of this structure, he would be able to reason
about the connections between the subnetwork and the larger networking
dataset.

TugGraph is a system that realizes steerable exploration of areas located
near a feature. The majority of previous steerable systems [2, 11, 27] as
well as GrouseFlocks support hierarchy creation through global or manual
selection of features in the graph and must resort to coarsening in order to
draw subgraphs consisting of hundreds of thousands of nodes. In contrast,
TugGraph teases out areas of the graph adjacent to a feature, depicting how
they connect to the larger graph.

TugGraph contributes a technique, and algorithms implementing the
technique, for exploring a region of the graph located near a feature. We
implemented TugGraph and compared it empirically to previous systems.
The work is currently not published.

This chapter is structured as follows. Section 7.1 presents an overview of
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TugGraph and its various components. Section 7.2 describes the colouring
and node size scheme used in the system. Section 7.3 presents results of the
work on a few datasets. A discussion of algorithm robustness is presented
in Section 7.4. Finally, Section 7.5 presents a discussion of the TugGraph
technique.

7.1 Algorithm

The input to TugGraph is a graph, a source node, and a hierarchy associated
with it. The examples in this chapter use a graph hierarchy created by
GrouseFlocks set to a specific hierarchy cut. The source node is a node
of the input graph or a metanode of the hierarchy that is tugged to reveal
adjacent input graph components. Once the source is selected, the algorithm
operates in five stages:

1. Compute the set of nodes in the input graph, or leaf nodes in the
hierarchy, that are descendants of the source. This set of nodes is the
source set denoted S.

2. Discover the set of leaf nodes of graph-theoretic distance one from the
source set that are not elements of the source set themselves. This set
is the proximal set denoted P .

3. Determine the set of cut metanodes that contain elements of the prox-
imal set. This set is the proximal cut set denoted C.

4. For each element n of the proximal cut set, place nodes of the proximal
set inside their own metanodes respecting the constraints of a path-
preserving hierarchy directly below n.

5. Reconstruct the hierarchy for all other leaf nodes that are descendents
of metanodes of the proximal cut set but not elements of the proximal
set.

Figure 7.1 shows the result of the five stages on a metanode selected on
the graph hierarchy. When describing each step, the complexity of each step
is presented after the description. The execution of TugGraph produces a
modified graph hierarchy and cut. Elements of the proximal set, all of which
were below the cut supplied as input, appear in their containing proximal
cut metanodes that are moved above the hierarchy cut. One step produces
the set of nodes one hop away from the source set.



Chapter 7. TugGraph 157

(a) Input

(b) Output

Figure 7.1: Result of TugGraph operation. A cut node of the hierarchy is
selected, in this case, the highlighted node in light blue as shown in (a).
The result of the operation is shown in (b). All the nodes in red consist of
leaves exactly one hop away from descendent leaves of the light blue node.
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7.1.1 Computing the Source Set

The source set S is the set of nodes of the input graph that are descendants
of the selected node on the hierarchy cut. If the selected node is a leaf,
S contains one element: the selected node. If S is a metanode, as in Fig-
ure 7.2(a), the algorithm traverses the graph hierarchy top down from the
selected metanode to discover all leaf descendants as shown in Figure 7.2(b).
These leaves are the source set S, outlined in red in Figure 7.2(c).

To compute the source set, the algorithm traverses the hierarchy below
the selected metanode and extracts the set of leaf descendants. Let MS be
the set of metanodes below the selected hierarchy. Then, this traversal takes
|MS |+ |S| time as each leaf and metanode is scanned exactly once.

7.1.2 Computing the Proximal Set

Once the source set has been computed, the algorithm computes the proxi-
mal set. The proximal set is defined as the set of leaf nodes of graph-theoretic
distance one from the source set that are not elements of the source set them-
selves. It is computed on the input graph. More formally, for an edge of the
input graph (u, v) and the edges adjacent to node u in the set Eu, this set
is denoted P :

P = {v|(u, v) ∈ Eu, u ∈ S, v /∈ S} (7.1)

For each element of the source set, the algorithm scans the adjacent leaf
nodes in the input graph and determines if it satisfies the criteria in Equa-
tion (7.1). The result of this part of the algorithm is shown in Figure 7.3(b).

To compute the proximal set, the algorithm scans the set of nodes di-
rectly adjacent to all elements of the source set. Leaves that are not elements
of the source set are, by definition, elements of the proximal set. Let DS be
the sum of the degrees of the source set. This stage is then O(DS).

7.1.3 Computing the Proximal Cut Set

The algorithm derives the proximal cut set C from the proximal set. The
proximal cut set is the set of metanodes currently present on the hierarchy
cut that contain elements of the proximal set. This set is computed by
traversing the graph hierarchy bottom up from each proximal set element
up to the first cut metanode ancestor. Figure 7.4(b) shows how the proximal
cut set is computed. The proximal cut set links each element of the proximal
set to a cut metanode so that they can be placed into components one level
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(a) Selected Cut Node

(b) Selected Cut Node Full Hierarchy

(c) Computed Source Set

Figure 7.2: Computing the source set. Computing the source set starts
by considering the cut metanode that is selected as shown in (a) and in a
full hierarchy view (b). The set of leaf descendants of the cut metanode is
computed by traversing the hierarchy top down from the cut metanode. In
this case, the result is shown in (c). Dotted parts of the hierarchy in both
diagrams are below the hierarchy cut.
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(a) Computed Source Set

(b) Computed Proximal Set

Figure 7.3: Computing the proximal set. Given the source set S as input,
the algorithm scans for adjacent nodes in the input graph that satisfy Equa-
tion (7.1). In (a), the source set S is highlighted in red. This set is used
to compute the proximal set P highlighted in blue. Dotted parts of the
hierarchy in both diagrams are below the hierarchy cut.



Chapter 7. TugGraph 161

(a) Computed Proximal Set

(b) Computed Proximal Cut Set

Figure 7.4: Computing the proximal cut set. Given the proximal set P
as input, the algorithm traverses the hierarchy bottom until it reaches a
cut metanode. In (a), the proximal set is illustrated in blue. In (b), the
proximal set is propagated up to the hierarchy cut and the proximal cut set
is shown in green. Dotted parts of the hierarchy in both diagrams are below
the hierarchy cut.

below their containing cut metanode. This is why a traversal up to the
hierarchy cut is required for each proximal component.

To compute the proximal cut set, the algorithm performs a bottom up
traversal of the hierarchy above the proximal set. Whenever the algorithm
discovers the cut metanode that is the ancestor of the element of the prox-
imal set, it is stored in a hash table. Therefore each metanode in the hier-
archy above elements of the proximal set is visited twice. Let MP be the
metanodes above the proximal set P . Then, this stage is O(|P |+ |MP |).

7.1.4 Computing the Proximal Components

Once the algorithm has determined the proximal cut set and the proximal
set, it will proceed to reconstruct the hierarchies below the proximal cut set
such that the elements of the proximal set are in metanodes that respect
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the rules of a path-preserving hierarchy. These subgraphs are proximal
components as every element is an element of the proximal set, meaning
they are directly connected by an edge to an element of the source set.

Figure 7.4(b) shows the input to this stage of TugGraph. The proximal
set, P , is outlined in blue, while the proximal cut set, C, is outlined in
yellow. Before proceeding, a copy of the graph hierarchy is created so that
it can be reconstructed below the proximal cut nodes in the last phase of
this step.

In Figure 7.5(b), the hierarchy below every element of the proximal cut
set is destroyed. The resulting hierarchy below any proximal cut node is
always a set of leaves. If the cut proximal element is a leaf of the graph
hierarchy, it remains unaffected by this step as there is no hierarchy below it
to destroy. This step is identical to a recursive delete operation as described
in Chapter 6.

The algorithm then computes the proximal components as shown in
Figure 7.5(c). These components are the set of induced subgraphs by nodes
of the proximal set and each induced subgraph is placed inside its own
metanode. An induced subgraph is defined by a set of nodes, in this case
the nodes of P , and any edge that links a pair of nodes in P . The result is a
set of connected subgraphs. If each connected subgraph is placed in its own
metanode, it respects connectivity conservation. If every edge that connects
a node in the proximal component to a node not in that proximal component
n is replaced by an edge between the metanode and n, it respects edge
conservation. Thus, the result is a path-preserving hierarchy as it respects
both connectivity and edge conservation.

As any fixed fraction of nodes in the proximal set can create a component,
at most |P | proximal components are created.

7.1.5 Reconstructing the Hierarchy

Finally, the algorithm reconstructs the hierarchy that existed previously
below the elements of the proximal cut sets, using the backup it had created
previously. The hierarchy is constructed bottom up in a way that ensures a
path-preserving hierarchy. The removal of a proximal node may disconnect a
metanode of the hierarchy by having its edges be the only link between two
disjoint subgraphs. As a result, the two newly disconnected components
must be placed in separate components in order to respect connectivity
conservation. This operation is essentially a recursive application of the
Reform-Below-Cut operation of GrouseFlocks, as described in Chapter 6,
where the components are divided into sets defined by the previous hierarchy.
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(a) Proximal and Cut Proximal Sets

(b) Destroy Below Cut Proximal

(c) Create Proximal Components

Figure 7.5: Creating proximal components around the proximal set. Three
stages are required to rebuild the existing hierarchy around the proximal
set. The input to the reconstruction is shown in (a) with the cut proximal
set, highlighted in green, and the proximal set, highlighted in blue. The
hierarchy is backed up and then destroyed in (b). The proximal set is
divided into proximal components respecting the cut proximal set and the
rules of path-preserving hierarchies in (c).
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(a) Input to Hierarchy Reconstruction

(b) Reconstruct Hierarchy

Figure 7.6: The graph hierarchy is rebuilt around the proximal components.
The proximal components, existing hierarchy in (a), and backed up hierar-
chy are provided as input. Finally, the hierarchy is reconstructed around
the proximal components in (b).

Once complete, TugGraph has modified the hierarchy so that proximal sets
can be investigated below the proximal cut nodes of the hierarchy. The
metanodes in the proximal cut set are opened, displaying the results to the
user.

The final stage involves reconstructing the hierarchy above the proximal
set. Let this hierarchy be the set of MP metanodes. A proximal node can
split a number of metanodes proportional to its degree. If DP is the sum of
the degrees of the proximal nodes, the complexity is O(|MP |+ |P |+ DP ).

7.1.6 Worst Case Complexity

Let the graph G = (N,E) consist of two sets: the node set N and the edge
set E. Assume the depth of the hierarchy is at most O(|N |) or that we
cannot have a metanode contain a single metanode with no edges. In worst
case, a tug can take O(|E|) time. This worst case is realized when the sum
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Stage Complexity

Computing Source Set O(|MS |+ |S|)
Computing Proximal Set O(DS)

Computing Proximal Cut Set O(|P |+ |MP |)
Computing the Proximal Components O(|P |)

Reconstructing Hierarchy O(|MP |+ |P |+ DP )

Figure 7.7: Summary of asymptotic complexity of TugGraph stages. The
sets S is and P are the source and proximal sets. The sets DS and DP are
the sum of the degrees of all nodes in the S and P sets respectively. The
sets MS and MP consist of the sets of metanodes that exist above S and P
to the elements of C.

of the degrees, DS or DP , is O(|E|), causing proximal set computation or
hierarchy construction to be expensive. For deep hierarchies, computing the
source set and reconstructing the hierarchy is expensive but O(|N |). For
large proximal sets or source sets, computing the respective set dominates,
but it is also O(|N |).

7.2 Colouring and Node Sizes

Many TugGraph operations can be executed on an input graph one after
the other and in conjunction with Reform Below Cut operations of Grouse-
Flocks. In order to distinguish operations from each other, the system ro-
tates through a series of colours: purple, tan, blue, green, and light blue.
Proximal components are a more saturated version of the colour while all
other components are less saturated. Likewise, matches in a Reform-Below-
Cut operation are more saturated compared to nodes that do not match.
After a TugGraph operation have been executed, the resultant metanode
is opened and appears in the background as a disk, bounding the pull out
components.

TugGraph tends to produce many small components and a few large
components when operating on a large input graph. The small components
are the few nodes adjacent to the node or feature in the hierarchy. The
large components are the remaining elements of the graph not adjacent to
the node or feature. Due to this disparity in sizes of components the

√

|N |
size estimate used in Grouse and GrouseFlocks prevents a compact drawing.
To help solve this problem, TugGraph can present nodes at a logscale node
size. When logscale is used, it is explicitly indicated in the text.
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Figure 7.8: Chain illustrating rotating colour scheme one decomposition
and seven iterations of TugGraph. The start of the chain, the top purple
square, was selected first by Reform-Below-Cut decomposition. All subse-
quent nodes proximal components were pulled out by executing TugGraph
on the preceeding component. Colours cycle through: purple tan, blue,
green, and light blue.

(a)
p

|N |) Estimate (b) Log Size

Figure 7.9: Comparing normal sized decompositions to log sized decompo-
sitions. The square node is a single leaf node while the circular metanode
contains 1,539 nodes. Using the

√

|N | size estimate used in Grouse and
GrouseFlocks, as in (a), makes it difficult to see small components and
large components on the same scale. By taking the log of this estimate, as
in (b), the two components are visible on the same scale. As TugGraph
typically generates many small components and few large ones, log scale
node size helps produce a readable drawing.
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7.3 Results

TugGraph is implemented using the Tulip graph drawing libraries [9], Grouse,
and GrouseFlocks. This section compares TugGraph to other techniques in
terms of visual quality and timing numbers on three datasets.

7.3.1 Datasets

The Airport dataset is a graph of worldwide airline flights where nodes are
airports and there exists an edge between two nodes if there exists a non-
stop flight between the two airports. The dataset only has airport name as
a node attribute, making attribute-based systems less effective. No physical
location information is available. The dataset has 1,540 nodes and 16,523
edges.

The Net05 dataset [5] shows the structure of the Internet backbone
routers as generated in 2005 by Cheswick’s Internet Mapping Project14.
Nodes in this graph are servers and there exists an edge if those servers ex-
changed packets. The dataset has server name and IP address as attributes
for each node. It has 190,384 nodes and 228,354 edges.

The final Actors dataset is an IMDB subset centered around Sharon
Stone only considering movies in the years 1998 through 2001. In this graph,
nodes are actors and there exists an edge between two nodes if those actors
acted in a movie together in those years. Actor name is the only attribute
on the nodes. The dataset has 38,997 nodes and 1,948,712 edges.

7.3.2 Algorithms Included in Comparison

TugGraph is compared to a variety of graph hierarchy visualization systems,
and to highlighting a portion of a layout.

When a hierarchy of connectivity features can be computed recursively
in a reasonable amount of time, TugGraph is compared to Grouse. Grouse is
a system that recursively detects connectivity features such as trees, bicon-
nected components, creating a graph hierarchy that is used for visualization.
ASK-GraphView [2] produces similar hierarchies as its detection algorithms
are the same as Grouse and are applied in the same order.

TugGraph is compared to GrouseFlocks on the first two datasets. Grouse-
Flocks is able to globally detect features in a large graph using attribute
data associated with the nodes of the graph and explores the graph using
techniques presented in Grouse. It uses coarsening based on connectivity

14
www.cheswick.com/ches/map
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feature detection and edge contraction when a metanode is too large to
draw in a reasonable amount of time. The TugGraph colour scheme has
differences from GrouseFlocks: matches are encoded in saturated colours
and non-matches in desaturated versions of the same colour. We made this
change based on user feedback. We have also darkened the brown colour
used for coarsened metanodes for better contrast.

As LGL [3] and SPF [5] have been shown to work well on datasets like
Net05, these approaches are included in the comparison with highlighting
techniques to show nodes in proximity of the network of interest.

7.3.3 Presentation of Results

For each dataset, a result is presented using TugGraph and the result or
part of the result is highlighted in the remaining systems systems. Specifics
are explained in Sections 7.3.4, 7.3.5, and 7.3.6 respectively. As TugGraph
supports label editing, we manually rename proximal component metanodes
created during exploration to have meaningful names. When a TugGraph
operation was executed, the metanode that was tugged to generate the image
is outlined in red. Proximal components are always presented in saturated
colours. We used a 3.0GHz Pentium IV with 3.0GB of memory running
SuSE Linux with a 2.6.5-7.151 kernel. This section tests TugGraph on four
graphs of varying sizes.

7.3.4 Airport

With Airport, we endeavour to discover how the flight paths between
Columbus and Vancouver are interconnected. This answer involves some
attribute information for the Vancouver, Columbus, and other airports, as
well as some adjacency information, mainly the paths between Columbus
and Vancouver.

Figures 7.10, 7.11, and 7.12 shows the results for Airport under Grouse,
GrouseFlocks, and TugGraph. In Grouse, the decomposition into connec-
tivity features neither takes advantage of the attribute information nor the
proximity information. Figure 7.10 shows that even finding the airports
one hop away is buried very deep in a hierarchy of connectivity features.
Figure 7.11(a) demonstrates that GrouseFlocks is better able to solve this
problem. The system decomposes the graph into three components ini-
tially: Vancouver, Columbus, and other airports. Since there is no attribute
information for node proximity, coarsening is used to explore the airports
adjacent to both Vancouver and Columbus as shown in Figure 7.11(b). The
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solution is better than the one produced by Grouse, but the airports one
hop away from Vancouver are still scattered all over the graph hierarchy.

Figure 7.12(a) and 7.12(b) present the results using TugGraph. The pro-
cess starts with same initial decomposition shown in Figure 7.11(a). First,
Vancouver is tugged, extracting the airports one hop away from it. In Fig-
ure 7.12(a), the tugged Vancouver node is outlined in red, and the dark
tan node labeled Van One Hop contains all airports one hop from Vancou-
ver. Many small light tan nodes surround it on the periphery: they are
things connected to things one hop from Vancouver, thus there are many
components two hops from Vancouver. Other Airports contains most of
the airports two or more hops from Vancouver. Notice that Vancouver is
only connected to Van One Hop and Columbus is only connected to Van One

Hop and Other Airports. These connections signify that all paths between
Vancouver and Columbus must pass through at least one of Van One Hop

or Other Airports. As metanodes must be connected in path-preserving
hierarchies, this indicates the paths between Vancouver and Columbus are
interconnected. Figure 7.12(b) shows the results of subsequently tugging on
Van One Hop. The new blue metanode, Van Two Hops, contains airports
two hops away from Vancouver because they are adjacent to the set of air-
ports one hop away. The paths are still highly connected as few connections
exist to Columbus at the bottom of the figure.
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Figure 7.10: Browsing paths between Vancouver and Columbus with results
of a Grouse hierarchy of connectivity features.
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(a) GrouseFlocks Decomposition (b) GrouseFlocks Coarsen

Figure 7.11: Browsing paths between Vancouver and Columbus with initial GrouseFlocks decomposition shown
in (a) and GrouseFlocks coarsening shown in (b).
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(a) Tug Vancouver (b) Tug Van One Hop

Figure 7.12: Browsing paths between Vancouver and Columbus with results of TugGraph shown in (a) and (b).
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7.3.5 Net05

With Net05, we endeavour to discover the structure around the *.net.ubc.ca
portions of the network. After twelve hours of computation, Grouse had not
finished computing a hierarchy of connectivity features, so we do not show
it here. Instead, drawings produced by LGL [3] and SPF [5] are compared
as these algorithms work well on this type of data. For this dataset, logscale
node sizes are used.

The results are shown in Figures 7.13, 7.14, 7.15, 7.16, and 7.17. Once
again, the problem is solved using TugGraph and used highlighting to show
the solution in other approaches. Figures 7.13 and 7.14 show where the
UBC servers are in the dataset and highlight the portions that are four
hops away. In these figures, all nodes and edges of the dataset four hops
from the *.net.ubc.ca servers are highlighted. As the graph has not been
simplified, it is difficult to see the path in the context of the entire graph. The
paths between the UBC servers that are far away from each other cannot
be emphasized without redrawing the data. With GrouseFlocks, shown
in Figure 7.15(a), the initial decomposition segments out the UBC servers
into two disconnected components with the rest of the Internet in between
them. As with the previous dataset, when the huge Internet metanode is
expanded it is too complex to draw in full and must be coarsened, as shown
in Figure 7.15(b). The servers four hops away are all inside the single large
metanode outlined in red. The GrouseFlocks solution is more suitable for
this task than the previous two drawings, but it is still difficult to browse
the connections between UBC and the rest of the Internet.

Figures 7.16(a) through 7.17(c) show how TugGraph can help browse
the connections of UBC into the Internet to see if there is a single server
that connects UBC to the Internet. Again, TugGraph starts from the initial
GrouseFlocks decomposition shown in Figure 7.15(a). First, the UBC metan-
ode is tugged, revealing that the two parts of the UBC network are still
disconnected and adjacent to the two saturated tan leaves 142.103.204.2

and ubci9-tx-vantx.bc.net. However, there is no single connection to
Internet. ubci9-tx-vantx.bc.net is tugged and the result is shown in
Figure 7.16(b). rx0wh-bcnet.vc.bigpipeinc.com is the greatest common
ancestor, joining the two disconnected components of UBC to Internet

as no other edges connect Internet to the rest of the graph. We continue
browsing this connection in Figures 7.16(c), 7.17(a), 7.17(b), and 7.17(c) by
tugging on the nodes named in the captions and outlined in red in each of
these figures.
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Figure 7.13: Exploration of the Net05 dataset using LGL. In this drawing, UBC servers and those four hops away
are highlighted pink.
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Figure 7.14: Exploration of the Net05 dataset using SPF. In this drawing, UBC servers and those four hops away
are highlighted pink.
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(a) GrouseFlocks Decomposition (b) GrouseFlocks Coarsen

Figure 7.15: Exploration of the Net05 dataset using GrouseFlocks. An initial GrouseFlocks decomposition in (a)
based on server name. As there is no attribute encoding proximity information, GrouseFlocks resorts to coarsening
in (b). GrouseFlocks shows a good initial decomposition but is unable to go further since the attribute information
on this dataset is minimal. Coarsened components shown in brown in this figure.
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(a) Tug UBC (b) Tug ubci9 (c) Tug rx0wh

Figure 7.16: Exploration of the Net05 dataset using TugGraph. TugGraph shows how UBC connects to the
Internet in (a) through (c). Nodes tugged to produce each presented subfigure are outlined in red.
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(a) Tug c7507 (b) Tug 69.156.254.254 (c) Tug bellnexia

Figure 7.17: Exploration of the Net05 dataset using TugGraph. TugGraph shows how UBC extends further into
the Internet in (a) through (c). Nodes tugged to produce each presented subfigure are outlined in red.
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7.3.6 Actors

On Actors, we demonstrate that we can generate an overview of Bacon
numbers for any movie released between 1998 and 2001. This example is
primarily used to illustrate the capabilities of TugGraph and does not nec-
essarily correspond to a real user task. The Bacon number of an actor is
zero if the actor is Kevin Bacon and b + 1 if the actor has acted in a movie
with an actor of Bacon number b. In a graph where nodes are actors and an
edge is a movie both actors have acted in, Bacon numbers are paths through
this graph and the length of a path to get to an actor from Kevin Bacon
determines the Bacon number. If we consider shortest paths, like we do
with TugGraph, we are considering the minium Bacon number of the actor.
Grouse was unable to generate a hierarchy of connectivity features in over
twelve hours of execution time. GrouseFlocks could be used for this explo-
ration, but would produce images very similar to the ones already shown.
We thus show only a TugGraph result in Figure 7.18. For this dataset,
logscale node sizes are used.

Figure 7.18 shows that two tugs creates an overview of how Bacon num-
bers are organized in this graph. The diagram shows that all actors with
Bacon Number 1 have acted in a movie with at least one other actor with
the same Bacon number by connectivity conservation. Actors with Bacon

Number 2 also have this property as there are only two saturated blue com-
ponents. However, the trend stops at Bacon number of three as there are
many desaturated blue components connected to Bacon Number 2. Actors
with Bacon numbers of one or two tend to act in movies together as there
are few connected components.

7.3.7 Timings

This section presents timing numbers for each of the visualizations above.
On Airport, to compute the hierarchy of connectivity features required

by Grouse, the decomposition algorithm took 189 seconds. In GrouseFlocks,
selection and decomposition into Columbus and Vancouver took about 1.5
seconds. Coarsening in the next step took 0.64 seconds. As the first step
of TugGraph is the same as GrouseFlocks, the decomposition and selection
was about the same. Each tug took about two seconds to complete.

To draw the Net05 dataset LGL and SPF took 12 hours and 30 minutes
respectively to draw the entire graph. GrouseFlocks took 115 seconds for the
initial decomposition and 15 seconds to produce the coarsened graph. After
selection and decomposition into UBC and non-UBC servers, TugGraph
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Figure 7.18: Investigating trends in Bacon numbers across Actors. Bacon

Number 1 contains all actors with a Bacon number of one. The saturated
blue node to its right and Bacon Number 2 and contain actors with a Bacon
number of 2. Actors with Bacon numbers of one or two tend to act in a lot
of movies as their components are connected.

took about 20 seconds to tug out each proximal component along the path.
TugGraph took about 110 seconds for the initial decomposition into

Kevin Bacon and the rest of the graph in Actors. The algorithm took 101
seconds to tug out Bacon Number 1, and 409 seconds for Bacon Number 2.

7.4 Robustness

In its drawing phase, TugGraph exhibits the same robustness constraints for
steerable drawing as Grouse because Grouse is used. We refer the reader to
Chapter 5 for a discussion of robustness with respect to drawing.

With respect to hierarchy creation, subtle changes to the connectivity
close to to a focus feature should be emphasized because we are explor-
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ing the connectivity around a focus feature. Connectivity located far away
from a focus feature is not emphasized as it is contained by large metan-
odes. Therefore, the technique is robust with respect to steerable hierarchy
creation.

7.5 Discussion

In the four example datasets, the dependence of tug timings on the sizes
of the source and proximal sets along with the sum of their degrees is ap-
parent. There is a general progression in the increase in runtime as dataset
size increases. Between Net05 and Actors, the test demonstrates that a
sharp increase in degree affects the running time because of the increase in
connectivity from two hundred thousand to two million edges.

Another important observation is that the TugGraph result images do
not require zoomed-in insets to show details of the graph structure that
cannot be seen simultaneously with the overview. Typically, in large graph
visualization a wide range of scales are needed to understand features in the
data in a global context. Hierarchy-based visualization tools, including Tug-
Graph as presented in this paper, are able to represent the sought structure
succinctly at a single scale.

Looking at the overall running times for each of the datasets, we see that
TugGraph is suitable for displaying the structure near a small set of nodes
in a larger graph. Compared to the time required to compute a hierarchy
of connectivity features or computing a full layout using LGL or SPF, the
running time of executing TugGraph is significantly smaller in most cases.
Also, the diagrams it produces are better suited for exploring connectivity
near a feature because less relevant portions of the graph are abstracted
away.



182

Chapter 8

Future Directions

The thesis has extensively explored a feature-based approach to graph draw-
ing. Although we have presented many novel techniques and algorithms,
these techniques and algorithms are not complete solutions and many open
problems remain. A few of these open problems are discussed in this chapter.

8.1 What application areas are there for

feature-based graph drawing?

The feature-based graph drawing techniques and algorithms presented in
this thesis are helpful in providing drawings with more clarified high-, mid-,
and low-level structure. However, we do not have conclusive evidence that
these techniques and algorithms help provide domain experts answer their
questions.

Chapter 4 presented SPF. This algorithm made advances in display-
ing the biconnected component structure of datasets in these domains by
breaking edge uniformity constraints. These improvements were measured
in terms of speed of algorithm execution and through metrics that counted
the number of component overlaps.

In this section, we now explore whether it is possible to further clarify
these drawings by using GrouseFlocks as presented in Chapter 6. Figure 8.1
presents an LGL drawing of a small network in Figure 8.1(a). Nodes coloured
yellow in this drawing are nodes whose names do not contain .net while
pink nodes are nodes whose names contain .net. Relationships between
individual servers are illustrated, but relationships between the components
that contain .net or do not contain .net are more difficult to see. In
Figure 8.1(b), a drawing using GrouseFlocks shows the same network using
the same colouring scheme. Circular nodes in this diagram are metanodes
containing components of the network that are either entirely .net or not
entirely .net. This diagram is an overview of the entire dataset where users
can drill down to see relationships. It may be more suitable for investigating
how subnetworks are connected. However, further user experimentation is
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(a) LGL (b) GrouseFlocks

Figure 8.1: Comparing LGL and GrouseFlocks on a decomposition of a
small network dataset. Pink components are all routers whose names end
with .net in both networks. Yellow components are all other servers on the
network. GrouseFlocks is able to show how these .net components connect
the other groups of servers in the dataset.

required to determine this conclusively.
This thesis does not present conclusive evidence that such a interactive

system will be beneficial for the investigation of large networks. This ev-
idence would be acquired through formal user studies that would help us
understand how users investigate large graphs and define more precisely the
kinds of features domain experts are interested in seeing in a large graph.
These questions could be answered through design studies, formal user ex-
perimentation, and insight-based approaches [64].

8.2 How can feature-based graph drawing be

applied to weighted graphs?

In many graph drawing problems, the input graph supplied to the graph
drawing system has weights. These real values, associated with the nodes or
edges of the graph, are often very important to application areas of graph
drawing. For example, in computer networking where nodes are servers and
edges are the connections between servers, weights on the edges between
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nodes could indicate the level of congestion for the link. How could the
feature-based approaches discussed in this thesis be applied to handle graphs
with weights?

Currently, if a particular weight on the nodes of the graph is sought,
GrouseFlocks could be used directly to decompose the graph into connected
components of nodes that have a particular weight and nodes that do not.
However, neither ranges of weights or weights on edges of the graph are han-
dled. In order to handle ranges of weights, we could extend GrouseFlocks
to perform decompositions on ranges of values instead of exact values. In
this case, nodes of the graph would be grouped into connected components
of nodes that have weights in a certain range and nodes that are not in
this range. To handle edge weights via a decomposition approach similar
to GrouseFlocks, a few methods for decomposing graphs based on edges
exist [47]. However, we have not investigated the applicability of such ap-
proaches yet. Further study is required before we could describe such a
system.

Another way to present weighted graphs would be to allow these weights
to influence the spacial position of the nodes in the final drawing. It may
be possible to apply some of the attribute data presented in Section 2.2 to
emphasize the weights present on the nodes of the graph. Another approach
would be an adaptation of Kamada and Kawai [46] where weights are used
to compute the graph theoretic distance between nodes. These weighted
distances would produce a drawing more reflective of weights present on the
edges of the graph. However, this thesis does not deal directly with weighted
graphs. Further study is required to determine appropriate techniques and
algorithms for the drawing of weighted graphs.

8.3 How can feature-based graph drawing be

applied to graphs with a natural embedding?

Sometimes, graphs come with a natural geometric embedding. A good ex-
ample of this type of data is the Airport data present in Section 7.3.4.
In this graph, nodes are airports and edges connect airports if there is a
direct flight between them. For this data, it would seem natural to place
the airports according to their geographic positions and have a visualization
technique that is oriented around this specific embedding.

In this thesis, we do not provide any techniques or algorithms for visualiz-
ing this type of data. Therefore, a thorough literature search on techniques
for visualizing this type of data was not conducted. One could picture a
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system where a hierarchy is constructed based on the euclidian positions of
nodes in the given layout. Many of the techniques presented in Section 2.2.3
could be used to construct a hierarchy based on the layout presented to the
algorithm. A technique such as EdgeLens [81] could be used to clarify the
connections between nodes in areas of the supplied layout where edges have
small angles between them. However, it remains an open problem to see
how these techniques can be combined into one that can visualize this sort
of data.

8.4 Can feature-based graph drawing be applied

to directed graphs?

The thesis has focused on undirected graphs. The question remains what
sorts of features can be investigated on directed graphs. By convention, di-
rected graphs have an ordering to their drawings. Sources, nodes containing
edges primarily directed out from them, are placed at the top of the drawing.
Sinks, nodes containing primarily edges directed towards them, are placed
near the bottom of the drawing. The work of Sugiyama and Misue [70]
provides an excellent starting point for this research, but further investi-
gation into decomposition methods and appropriate drawing algorithms is
necessary.

What would be formal definitions for features in directed graph drawing?
Often in directed graph drawing, a user may want to understand edges that
point up to nodes at previous levels of the drawing. Are there higher level
features in directed graphs? Can these connectivity features be combined
with attribute data? Currently, it is future work, to see how the techniques
and algorithms in this thesis can be extended to directed graph drawing.

8.5 Is there a notion of almost-feature?

A feature-based approach to graph visualization consists of a decomposition
phase and a layout phase. In the decomposition phase, a feature is detected
or it is not. This hard constraint is similar to those in constraint-based
graph drawing: a subgraph either matches a feature or it does not. An
almost-feature is a feature that is missing an element of the strict definition
of the feature, but shares some high percentage of similarity with the feature.
Almost-trees were studied with the SPF system presented in chapter 4, but
many open questions remain.
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Is it even possible to describe when a subgraph is some percentage similar
to an exemplar feature being sought in a large input graph? In what appli-
cations is this concept meaningful? Notions such as stretch factor may be
adapted in order to detect almost-features, but further research is required
to see if almost connectivity features can be defined. Additionally, it is possi-
ble that almost-features based on attribute data exist as well, but it remains
to be seen how those features can be formalized. A further understanding
of almost-features will help increase the robustness of the algorithms and
techniques presented in this thesis.

8.6 Can systems be made to help users design

features?

A feature-based approach caters to users by helping them find levels of
structure in their large input graphs. Defining a feature is pivotal to an
effective feature-based graph drawing system. Are there better ways than
those presented here to help users define connectivity and attribute features?

One could picture a system where users draw the type of subgraph sought
in the input graph. However, such a system would have to solve the subgraph
isomorphism problem that is known to be NP-complete. Are there other
ways for users to design their own connectivity features? Would such a basic
system be effective because the features being sought are small, because the
user has drawn them by hand? This system, where users draw the type of
subgraph sought, does not consider attribute data associated with the nodes
and edges of the graph. What would be a good system for designing features
based on attribute data? Also, is there a way to make a system that can
define features based on a combination of connectivity and attribute data?

8.7 Can we automatically recognize layouts of

poor visual quality?

Some algorithms work very well on certain types of graph data, but not very
well on others. A fundamental question of graph drawing has always been:
can we automatically recognize a layout of poor visual quality?

Purchase [63] and Ware et al. [78] provide some quantitative metrics for
assessing visual quality of a graph layout, but in order to compute these
metrics, a full layout of the graph in its entirety is required as input. Is it
possible to assess visual quality in less time than the time required to draw
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the graph? Can we assess it before the layout starts or can we determine
visual quality on-the-fly during algorithm execution? Currently, we don’t
know if it is even possible to assess visual quality during or before layout
execution. Perhaps it is possible to create other detection algorithms, similar
to the HDE detector in TopoLayout, that can determine if a layout algorithm
is capable of producing a good result before drawing begins.

In order to answer this question, we require a better understanding of
what visual quality means, and we need to develop further metrics that have
efficient algorithms to assess the level of visual quality quantitatively.

8.8 Are there features that are a mix of

connectivity and attribute data?

In this thesis, features have been either based on connectivity or attribute
data. With the exception of requiring a feature based on attribute data to be
connected, there are few examples where graph connectivity and attribute
data combine to make a feature. Is it possible to create hybrid features
where the definition of the feature uses both connectivity and attribute
information?

An example could arise when visualizing large computer networks. Sup-
pose an organization wants to understand how their networks are redun-
dantly connected through the Internet. To answer this question, not all
bridge nodes and edges are interesting: only those bridge nodes that are
part of the Internet and could connect the networks of the company are of
interest. What sorts of systems could be developed to help users investigate
these hybrid features?

8.9 Can we relax the path-preserving hierarchy

constraint?

Path-preserving hierarchies guarantee that if there exists a path through any
hierarchy cut presented to the user, there exists a path in the underlying
input graph. If a system were to ignore this constraint, paths present in a
hierarchy cut may not actually exist in the underlying graph, misleading the
user to think that there is a path in the graph when there is not. Are there
types of tasks suitable for these types of hierarchies?

If the designer of a system were to discard connectivity conservation,
paths through metanodes in the graph hierarchy are not guaranteed to ex-
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Figure 8.2: If connectivity conservation is broken, paths may no longer
exist through metanodes of the graph hierarchy. If the red-dashed edge is
removed, a path cannot continue from the left hand metaedge to the right
hand metaedge through the purple metanode.

ist. As shown in Figure 8.2, if the red dashed edge is removed then there
no longer exists a path through the purple metanode from the left hand
metaedge to the right hand metaedge drawn as thick lines in the diagram.
If the questions only required direct adjacency information to be answered,
a graph hierarchy created in this way is more suitable for these tasks. As all
connected components can be grouped into a single metanode, the overview
would have less information, making it more likely to be understandable.
Questions that would involve only direct adjacency information would in-
clude: What are the one hop connections from my computer network to the
Internet? and What countries are directly serviced by Germany?

Relaxing the edge conservation constraint would mean that edges in a
cut may or may not be present in the underlying graph. A system with this
constraint relaxed could show high level relationships between metanodes
that the domain expert knows exists, but are not present in the data. They
could also be used to show intermittent connections in time varying data.
For example, suppose the user would like to show the links on a large com-
puter network that have gone down. These links would not be present in
the acquired network as the servers that have gone down would not transmit
packets. A domain expert could potentially add in these links if they are
sure that they exist in the graph. Perhaps, in these situations, breaking
edge conservation would help users with this task.
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8.10 Can feature-based graph drawing be used to

improve graph diff?

Graph diff is a problem where a user presents the system with two graphs
and asks it to represent the nodes in common or present in only one of the
graphs. If nodes have one-to-one correspondences in the two input graphs,
the system does not need to solve subgraph isomorphism. Thus, it may be
possible to define difference features: features that are present in one graph,
in the other graph, or both graphs.

Would such a system be able to help users examine differences between
graphs the two graphs? Visualization would be important for this problem
in order to formulate questions about why or how a graph is changing over
time. For example, in computer networking, such a system could be used
in order to understand how a network grows over time. This suggested
approach shows promise as the user would be able to abstract away graph
differences into metanodes if they were only interested in graph similarities
or vice versa.
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Chapter 9

Conclusion

This thesis presents five feature-based graph drawing systems that con-
tribute various novel techniques and algorithms to the area. Although the
techniques and algorithms presented in this thesis do not provide final so-
lutions to problems in graph drawing, they provide improvements in terms
of running time and visual quality over previous approaches. Support for
these improvements is provided through empirical evaluations.

This chapter presents the advantages and limitations for each of the
techniques discussed in the thesis in Section 9.1 and presents a summary of
each chapter and its contributions in Section 9.2.

9.1 Technique Advantages and Limitations

This section discusses the advantages and limitations of each of the ap-
proaches presented in this thesis and situations where they might be applied.
A summary of all the information in this section is presented in Figure 9.1.

TopoLayout, presented in Chapter 3, is an algorithm for drawing graphs
that contain connectivity features. One of its primary advantages is that
the approach is unsupervised and the drawing algorithm does not require
user interaction. However, the technique has difficulty illustrating mid-level
structure. The TopoLayout approach should be applied when the input
graph does contain connectivity features and a user would like to see the
data in terms of these features. Smaller input graphs would be preferable
to larger graphs since the entire graph is depicted in the final drawing.

SPF, presented in Chapter 4, is well suited for the drawing of quasi-trees.
One of its primary advantages is that the approach is unsupervised and does
not require user interaction. Additionally, it has running time advantages
over the TopoLayout approach for graphs that have many biconnected com-
ponents. However, the entire graph must be drawn and displayed at once.
This approach can be applied when the user needs to see all of the data and
the graph has tree-like structure.

Grouse, presented in Chapter 5, is well suited for exploring a fixed graph
hierarchy on top of a fixed graph. The approach scales to larger graph
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datasets because it is able to reduce node and edge occlusion over the previ-
ous cited approaches. The reduction in the amount of occlusion is supported
through a qualitative assessment of visual quality of the images. The hier-
archy is generated automatically. This automatic hierarchy generation is
an advantage when the user is not interested in customizing the hierarchy
according to attribute information, or no attribute information is available.
However, the entire graph is not shown and only connectivity features are
considered when creating the hierarchy. This approach is recommended
when no attribute information associated with the nodes of the graph is
available.

GrouseFlocks, presented in Chapter 6, allows users to customize hier-
archies based on attributes associated with the nodes of an input graph.
The primary advantage of this approach is that the system allows users to
generate graph hierarchies based on attribute data. Additionally, automatic
coarsening ensures interactive performance while preserving large features
in the hierarchy. However, manual creation of a graph hierarchy can be
difficult as there are exponential number of such hierarchies. If attribute
information is impoverished or not available, this technique is probably not
applicable because hierarchies cannot be generated easily. GrouseFlocks is
suited for large graphs with many attributes associated with the nodes of
the graph.

TugGraph, presented in Chapter 7, allows users to explore a pre-generated
hierarchy using proximity information. Its primary advantage is that it pro-
vides adjacency-driven hierarchy creation capabilities that are useful when
attribute information is scarce. However, the technique requires a graph
hierarchy as input and does not consider attribute information. This tech-
nique is suggested when a good, shallow hierarchy is available and the data is
attribute impoverished, or the structure near a feature needs to be explored.
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Technique D L Advantages Limitations

- Fast, general graph drawing technique - Entire graph must be drawn
TopoLayout, Chapter 3 O O - Unsupervised hierarchy generation and drawing - Connectivity features must be present

- Depict connectivity features well - Mid-level structure remains hidden
- High- and low- level structure improvement - Only works well on quasi-trees

SPF, Chapter 4 O O - Fast on large quasi-trees - Entire graph must be drawn

- Cuts reduce node and edge occlusion - Parts of graph hidden
Grouse, Chapter 5 I S - Graph drawn incrementally, on demand - Hierarchy required as input

- Nodes with same attribute value kept together - Manual creation of many possible hierarchies
GrouseFlocks, Chapter 6 S S - Interactive performance with coarsening - Deep or coarsened hierarchies can be confusing

- Immediate visualization of attribute data - Rich attribute information required
- Adjacency driven hierarchy creation - Created hierarchy required as input

TugGraph, Chapter 7 S S - Works with attribute-poor data - Only local proximity information considered
- Structure visible at a single scale

Figure 9.1: In this table, the advantages and limitations of TopoLayout, SPF, Grouse, GrouseFlocks, and Tug-
Graph are presented. Discussion of these advantages and limitations is present in Section 9.1. In this table, the
D column is the decomposition phase of the technique and the L column is the layout phase of the technique. A
value of O in these columns indicates offline computation, a value of I indicates required as input, and a value of
S indicates steerable computation.
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9.2 Chapter Summaries and Contributions

This section summarizes each chapter and restates the contributions of the
work presented as presented in the Thesis Overview of Section 1.5, providing
a conclusion to the thesis.

Chapter 3 presents TopoLayout. TopoLayout is a multilevel, feature-
based graph drawing algorithm that recursively detects the connectivity
features described in the introduction, forming a graph hierarchy. Neither
its decomposition nor its layout phase are steerable.

The contribution of TopoLayout is a multilevel graph drawing algorithm
based on connectivity features. It also introduces a pass for reducing edge
crossings in the final drawing.

Chapter 4 presents a second feature-based graph drawing algorithm,
Smashing Peacocks Further or SPF. SPF is a feature-based graph drawing
algorithm that is based on TopoLayout. The algorithm is tuned for graphs
with tree-like structure. Neither its decomposition nor its layout phase are
steerable.

The contribution of SPF is an algorithm that tunes the TopoLayout
pipeline for drawing quasi-trees. Additionally, the approach extends the
previous RINGS algorithm in order to make it area-aware. In the empirical
evaluation of SPF, we extended some traditional graph drawing metrics to a
multilevel graph drawing context in order to evaluate the high-level structure
in the drawings.

Chapter 5 presents Grouse, a steerable graph hierarchy exploration sys-
tem. Grouse realizes an algorithm to explore a previously constructed hi-
erarchy of connectivity features. Grouse takes this previously constructed
graph hierarchy as input, but its drawing phase is steerable.

The contribution of Grouse is an algorithm for the steerable exploration
of a graph and an associated graph hierarchy of connectivity features. Ad-
ditionally, a re-layout algorithm is presented that keeps nodes in the final
drawing closer to their input size.

Chapter 6 presents GrouseFlocks, a system for the exploration of the
space of graph hierarchies that can be constructed on top of a graph using
attributes associated with the nodes of the graph. In this system, both the
layout and decomposition phases are steerable.

The contribution of GrouseFlocks is a path-preserving technique for the
steerable creation and exploration of graph hierarchy space based on at-
tribute data associated with the nodes of the graph. The approach also
introduces a coarsening algorithm that preserves large metanodes in the
created hierarchy.
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Chapter 7 presents TugGraph, a system that assists users in exploring
areas of a graph adjacent to a feature. Using an initial decomposition, the
systems allows users to interactively modify the graph hierarchy based on
information directly adjacent to nodes and metanodes. In this system, both
layout and decomposition phases are steerable.

TugGraph contributes a technique, and algorithms implementing the
technique, for exploring a region of the graph located near a feature.

In this thesis, we extensively explore the area of feature-based graph vi-
sualization by developing and evaluating novel techniques and algorithms.
We provide support for our claims of improved visual quality and running
times of these systems through empirical evaluations against previous ap-
proaches.
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Appendix A

Parameter Settings to

Obtain Results

In the following appendix, we document the parameter settings for all of
the techniques and algorithms presented in this thesis used to generate the
result images presented in this thesis.

A.1 ACE Algorithm

• all node weights set to 1.0

• power iteration has converged when angle between the eigenvector of
the current iteration and the previous iteration is less than 1e−8

A.2 HDE Layout Algorithm

• number of dimensions to the high-dimensional space d is 50

• power iteration has converged when angle between the eigenvector of
the current iteration and the previous iteration is less than 1e−3

A.3 GRIP Algorithm

The parameters are cited here for completeness. These values are actually
the default values of the GRIP code supplied by S. Kobourov.

• dimensionality of layout is set to 2

• ideal edge length 32

• number of initial vertices 4

• displayPar set to 1
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• random set to false

• FR full set to false

• plot all vert set to false

• rounds is 20

• finalRounds is 30

• heat fraction is 0.17

• r is set to 0.15

• s is set to 3.0

A.4 FM3 Algorithm

The parameters are cited here for completeness. These values are actually
the default values of the FM3 code supplied by S. Hachul.

A.4.1 General Parameters

• save rep forces set to 0

• print information set to 1

• fix selected nodes set to 0

• edgelenth from label set to 1

• rand seed set to 100

• unit edgelength set to 100

• edgelength measurement set to 1

• divide et impera set to 1

• multilevel set to 1

• max int pos exponent set to 40
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A.4.2 Divide et Impera Step Parameters

• steps for rotating componenets set to 10

• allow components to be tipped over set to 1

• rectangle offset set to 1

• random fits set to 5

• random runs set to 5

A.4.3 Multilevel Step Parameters

• enforce few edge crossings set to 0

• planarity required set to 1

• min graph size set to 50

• galaxy choice set to 1

• random tries set to 20

• change max iter set to 1

• max iter factor set to 10

• init placement way set to 1

A.4.4 Calculation Step Parameters

• force model set to 2

• spring strength set to 1

• strength of rep forces set to 1

• rep calculation set to 5

• stop criterion set to 2

• threshold set to 0.01

• max iterations set to 30

• cool temperature set to 0
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• coolvalue set to 0.99

• force scaling factor set to 0.05

• initial placement set to 2

• plan subgraph layout set to 1

A.4.5 Postprocessing Parameters

• resize drawing set to 1

• resizing scalar set to 1

• fine tuning iterations set to 20

• fine tune scalar set to 0.2

• adjust post rep strength dynamically set to 1

• post spring strength set to 2.0

• post strength of rep forces set to 0.01

A.4.6 Repulsive Force Parameters

• resize drawing set to 1

• resizing scalar set to 1

• fine tuning iterations set to 20

• fine tune scalar set to 0.2

• adjust post rep strength dynamically set to 1

• post spring strength set to 2.0

• post strength of rep forces set to 0.01
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A.5 TopoLayout Parameters

• Bushy Tree set to Bubble Tree

• Connected set to Connected Component Packing

• Deep Tree set to Hierarchical Tree (R-T Extended)

• Cluster Buster is unchecked

• Intl. Fast Ov. is checked

• Near-Mesh is Area HDE

• Node/Edge is 1.0

• Stren High is Circular

• Stren Low is GEM (Frick)

• Torques is checked

• Unkwn High is Circular

• Unkwn Low is GEM (Frick)

A.5.1 HDE Detection Algorithm

• all drawing parameters present in Section A.2

• minimum allowable variance (largest eigenvalue) is 100

A.5.2 Tree Walker Layout Algorithm

• minimum spacing between layers is 1.0

• minimum spacing between nodes is 1.0

A.5.3 HDE Layout Algorithm

• same as those presented in Section A.2
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A.5.4 Area-Aware GEM Algorithm

• µ r is the average radius of a node in the graph

• ideal edge length l is max(4, µr)

• maximum number of iterations is the number of nodes in the graph

A.5.5 Crossing Reduction Algorithm

• maximum number of iterations is the number of nodes in the graph

A.5.6 Fast Overlap Removal Algorithm

• x direction node border 1e−6

• y direction node border 1e−6

A.6 SPF Parameters

A.6.1 LGL Algorithm

• node size is 1.0

• grid size is 400

• ideal edge length is 10

A.6.2 Optimized LGL Algorithm

• Rmax is the maximum radius of a node

• N is the number of nodes in the input graph

• Grid size is 400Rmax

√
N

• ideal edge length is 10Rmax

A.7 Grouse Parameters

• Layout parameters same as Section A.5 because TopoLayout used un-
modified

• Number of animation frames set to 150



Appendix A. Parameter Settings to Obtain Results 207

A.8 GrouseFlocks Parameters

• Layout parameters same as Section A.5 because TopoLayout used un-
modified

• Number of animation frames set to 50

• Coarsening threshold set to 200

A.9 TugGraph Parameters

• Layout parameters same as Section A.5 because TopoLayout used un-
modified

• Number of animation frames set to 50

• Coarsening threshold set to 200
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Appendix B

Figure Permissions

A few figures presented in Chapter 2 appeared in publications of other au-
thors. Credits are presented below:

• Figures 2.3(a) and 2.3(b) are reproduced with permission of their re-
spective authors. Source images supplied by their respective authors.

• Figure 2.4 reproduced with the permission of Dr. Tim Dwyer and the
IEEE ( c©2006 IEEE) [22].

• Figure 2.5 reproduced with the permission of Dr. Michael Jünger.
Source image supplied by the author.

• Figures 2.6 and 2.7 reproduced with the permission of Dr. Yehuda
Koren. Source image supplied by the author.

• Figure 2.8 reproduced with the permission of Dr. Tamara Munzner.
Source image supplied by the author.

• Figure 2.9 reproduced with permission of Aleks Aris. Source image
supplied by the author. Used with permission of Human-Computer
Interaction Lab, University of Maryland.

• Figure 2.10(a) reproduced with permission of Dr. Emden R. Gansner
and the IEEE ( c©2004 IEEE) [36].

• Figures 2.10(b) and 2.11 reproduced with the permission of Dr. Frank
van Ham. Source images supplied by the author.


