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Abstract

This thesis presents an optical acquisition setup and application of tomo-

graphic reconstruction to recover the shape of transparent objects. Although

various optical scanning methods have been used to recover the shape of

objects, they are normally intended for opaque objects, and there are diffi-

culties in applying them to transparent ones. An alternative is to use X-ray

computed tomography, but this requires a specialized setup, and computer

graphics laboratories are not expected to have such equipment. Addition-

ally, our setup avoids other problems of optical scanning, such as caused by

occlusions, and is able to recover the internal geometry of the objects.
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Chapter 1

Introduction

Obtaining the 3D shape of real-world objects is a major area of graphics

research. Such scanning can serve a variety of purposes, such as allowing

existing models for movies and games to be simply scanned instead of re-

lying on a human artist to create them in modeling software, but, most

importantly, it can be used to digitize the full geometry of works of art for

archiving, virtual museums, and so on.

Most commonly, laser scanners or stereoscopic imaging can be used to

obtain 3D scans. Unfortunately, these methods rely on the assumption that

the surface is opaque and diffuse. Near areas of significant detail, occlu-

sion can prevent the whole outer surface from being reconstructed, and any

internal geometry is inaccessible to the scanners. Glass and transparent (in-

cluding colored) plastics cannot be digitized using such techniques directly.

The objects can be painted, but that involves extra work, and may be too

destructive for works of art. Moreover, the disadvantages mentioned above

for surface scanning methods will now apply to the painted objects, losing

the potential information transparency provides.

The full geometry of any solid object can be recovered by the use of

transmission-based scanning. X-ray computed tomography is the most well

known version of this. A narrow-spectral band X-ray source is used, with

photon energy optimized to produce maximum contrast given the material
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Chapter 1. Introduction

and size of the object to be scanned. A series of projections are taken in

a planar or helical orbit around the object to produce views from differ-

ent angles, where the value of the projection image at each point is mainly

dependent on the absorption along the corresponding ray (scattering and

refraction are usually assumed to be minimal). Various efficient and numer-

ically stable reconstruction algorithms exist that can be used to produce a

3D volume of densities from the projection data. X-ray computed tomogra-

phy has the disadvantage of requiring expensive equipment usually lacking

in computer graphics laboratories, as well as operators trained in its use and

safety procedures, including shielding and use of dosimeters.

Tomography can be modified to use with visible light for scanning non-

refractive gaseous transparent objects. In the case of opaque objects, related

algorithms can be used to recover the visual hull of the object. A different

type of tomography has been done with infrared light in highly scattering

mediums, and it is conceivable to immerse a transparent object in a scat-

tering liquid or smoke for such scanning, but these algorithms are inefficient

and numerically unstable.

Performing transmission tomography with visible light for transparent

objects is problematic due to strong refraction at the solid-air interface. We

solve this problem by immersing the object in a transparent cylinder filled

with a fluid of a similar refractive index to the object, so that the refraction

occurs at the cylinder-air and cylinder-fluid interface, and can be accounted

for. Our calibration method determines the ray paths inside the fluid and

through the object.

2



Chapter 1. Introduction

1.1 Objectives

The goal of this research was to develop a practical, non-destructive, and

easily reproducible setup for digitizing the 3D shape of real-world transpar-

ent objects through a procedure that consists of:

• Visible light imaging.

• A calibration procedure for determining the path of light rays through

the region to be reconstructed.

• An optimized version of a tomographic reconstruction method (simul-

taneous algebraic reconstruction technique, or SART).

The resulting project was published in [31].

1.2 Basic assumptions

There are several assumptions about the nature of the objects that are to

be reconstructed. First, it is important that refractive index mismatch be-

tween the object and the fluid it is immersed in is small, on the order of

5%. If larger, the resulting reconstruction loses accuracy and the algorithm

may even fail to converge. A second assumption is that all camera rays

intersecting the object go through; that is, there are no opaque regions.

The presence of such regions creates holes in the reconstructed geometry,

and corrupts volume data in the vertical range which each of the regions

spanned. However, as discussed later, such effects can be minimized. Third,

both objects and fluid must have low scattering, as algebraic reconstruction

does not take this effect into account; different algorithms are used for to-

mography with strong scattering. Fourth, we assume the refractive index

3



Chapter 1. Introduction

of the object can be matched closely by a relatively safe and easy to obtain

fluid. Our use of potassium thiocyanate allows us to match a number of

glasses, but not things such as high-lead content crystal glass. Various flu-

ids, such as oils (possibly in solution with alcohols), can be used to match a

wider range of transparent materials, including plastics.

There are a few practical issues to be considered. We assume the ob-

jects will not contain any parts that may be affected by the refractive index

matching fluid. In our case, the fluid is potassium thiocyanate solution, and

it is corrosive to metals; this would exclude, for example, art objects that

contain metal or metalized areas. Another assumption is that there are no

refractive heterogeneities within the object; from this follows that internal

hollow regions fully disconnected from the outside are not acceptable, since

the matching fluid cannot fill them when the objects are immersed. Addi-

tionally, objects must fit in the cylinder used to contain the fluid, well clear

of the sides, where distortion due to lensing is significant from the camera’s

perspective. We also assume that colored transparent objects will not be so

dark as to limit the contrast significantly with practical lighting and expo-

sure times. The setup needs to be such that rays are minimally divergent

through the reconstruction region, as that can produce sampling artifacts.

Although it is possible to deal with such sampling issues in the reconstruc-

tion algorithm, we assumed that would not be the case in our setup as it is

not difficult to set up the camera in such a way that ray divergence would

be limited, and sampling density within a given slice perpendicular to the

beam would be only somewhat non-uniform.

4



Chapter 1. Introduction

1.3 Overview

In Chapter 2, we discuss related work in capturing the shape of objects in

the real world. Then, in Chapter 3, we describe our physical setup and

acquisition process, followed by the algebraic reconstruction method from

tomography we use in Chapter 4. A presentation of results in Chapter 5

and a wrap-up in Chapter 6 conclude the thesis.

5



Chapter 2

Related Work

Although 3D geometry acquisition is usually associated with computer graph-

ics, it has a longer history in other fields such as medical imaging and engi-

neering. A number of techniques are related to our work.

2.1 Visible light scanning

3D scanning with visible light can be grouped into passive and active meth-

ods. Passive ones often originate from computer vision research, and the

most well known are ones that use stereoscopy, where stereo disparity be-

tween images can be used to determine depth information [28]. Shape from

stereo relies on either matching image areas by correlation, or finding cor-

responding features in the images. Due to limited precision, problems with

occlusion, and matching ambiguities, stereo is more suited to vision appli-

cations such as robot navigation than obtaining accurate shapes of objects.

Another passive method is shape from shading [35, 36], which usually

use multiple light sources instead of multiple light views. In general, such

approaches are limited by the need to know the surface reflectance, and usu-

ally it is assumed to be diffuse. Neither shape from shading nor stereoscopic

methods can deal with specularities and translucencies.

As opposed to these passive approaches, active lighting methods require

specialized illumination. They use either encoded patterns of light [26, 34,
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Chapter 2. Related Work

37]) or lasers [4]. In these methods, a calibrated structured light source

projects encoded (so the software can distinguish them) vertical planes into

the scene, and a camera images the contour lines. From the horizontal shift

of a point on each stripe, the software can compute a 3D position. As in

the case of passive methods, specularity and translucency can cause gross

errors. A different approach is needed.

Environment matting techniques [26, 34, 37] are able to capture appear-

ance of transparent objects, but are not able to get the actual 3D shape.

2.2 X-ray computed tomography

There are several medical imaging techniques that produce 3D volumes from

objects, including MRI and PET scanning. Computed tomography [13],

however, is the most commonly used, and is also used in engineering appli-

cations, such as to image defects in materials. The most frequently encoun-

tered type of computed tomography, transmission CT, assumes that refrac-

tion and scattering are negligible, and that density variations influence the

transmitted brightness along a ray. A narrow band of X-ray wavelengths

are chosen so that all rays at least partially pass through the object to be

imaged, yet sufficient contrast remains.

The most common approach for reconstructing volumetric data from

a set of projections is based on the Fourier Slice Theorem [2, 13]. One-

dimensional Fourier transforms of lines parallel to the plane of rotation are

filtered and backprojected to recover 2D slices of the objects. Each line

must be illuminated by either parallel X-ray beams, or fan beams from a

point source. Usually, the CT scanning involves multiple orbits to produce

a volume from a collection of the reconstructed slices.

7



Chapter 2. Related Work

Another approach that is becoming more common is Algebraic Recon-

struction Techniques (ART) [7, 13], which essentially solves a set of lin-

ear equations by iteratively updating current estimated voxel densities with

those of the projection image. ART methods normally proceed in a ray by

ray basis, but an alternative, Simultaneous ART (SART), proceeds one pro-

jection at a time. A variant of the latter is what we use in our application.

A significant advantage is that SART can handle cone beams, and is not

restricted to a carefully aligned, equally spaced set of projections.

Statistical methods have also been applied to computed tomography, but

have generally been very inefficient [14].

2.3 Visual hull and voxel coloring

Visual hull reconstruction techniques share some similarities with tomogra-

phy [16, 21, 27], but they can only produce the visual hull. A more promising

approach for opaque objects may be [20], where the reflected light is taken

into account. Voxel coloring [29] solves a correspondence problem as visible

light scanning methods, but has the tomography-like constraint for the cam-

era positioning and reconstruction region. Although it is an improvement

over the visual hull, it is still unable to capture occluded details. None of

these methods work with transparent objects.

2.4 Optical tomography

Optical transmission tomography has been used to acquire the shape of non-

refracting, partially-transparent objects such as plasmas [12] and flames [9,

10]. However, all solid objects have significant refraction, making such meth-

8



Chapter 2. Related Work

ods unsuitable. Emission-based reconstruction of fluids containing fluores-

cent dyes was studied by [11]. Tomography not based on straight transmis-

sion has also been studied. Optical tomography in biological tissues with

high scattering generally relies on statistical methods or non-linear optimiza-

tion [1], and is very inefficient and overly complex in the case of no scattering.

Related methods include the use in microscopy of phase information in the

interferometry-like optical coherence tomography [30]. In microscopy appli-

cations refractive index matching has recently been applied to transmission

tomography on a small scale [5], with filtered backprojection used for re-

construction; however this lacks scalability as it is limited to the known ray

paths within the microscope’s imaging field. Our calibration procedure and

the use of SART allows us to have a much more flexible, macroscopic setup.

9



Chapter 3

Acquisition

The simplicity of our setup is apparent from Figure 3.1, consisting of an opti-

cal table on which we mounted a camera on the left, a transparent cylinder

holding the object and refractive index matching fluid, and a brightly lit

diffuse background surface on the right. After a simple calibration step to

obtain the ray paths in the cylinder, a number of projections are taken for

different rotations of the turntable (several exposures for each angle). To

scan non-colored transparent objects, dye is added to the fluid.

Figure 3.1: The acquisition setup.

3.1 Physical setup

Since we were concerned with optical quality, we used a precision glass

cylinder from a scientific supplier, with a diameter of 15 cm. Due to lensing

10



Chapter 3. Acquisition

distortion near the sides, that gave a cylindrically shaped usable reconstruc-

tion region of about 9 cm diameter, and this is the limit of objects we can

scan, as they must fit fully within that region.

A base centering the cylinder on the turntable, and the object support

stand and calibration panel holders were made of plastic using a rapid pro-

totyping machine [4]. We used a 1.5 megapixel machine vision camera that

could capture 12-bit linearly quantized, Bayer mosaicked images. In order

to get a dynamic range beyond the 12 bits of the camera, multiple exposures

were used and combined into high dynamic range images using HDRGen [33].

The background was a diffuse white surface which we illuminated with

a strong light at an angle from the side, so as to avoid any reflections on the

cylinder surface. Higher background brightness has the advantage of speed-

ing up acquisition by reducing needed exposure times. Since the surface was

not completely uniformly lit, we used a calibration image with the cylinder

without an object in it so that we could factor out the unevenness.

3.2 Minimizing refraction

Since the refractive index of the object to be scanned needs to be approx-

imately matched by the fluid it is immersed in, it was necessary to find a

practical fluid with a refractive index that would allow some adjustment

in the target range. As we were most interested in glass rather than plas-

tic objects, we examined possibilities with refractive index of 1.5 to 1.6.

Borosilicate glasses are commonly around 1.5, with more common glasses

somewhat higher. Some types of glasses, such as lead crystal, have a very

high refractive index and we did not attempt scanning such materials.

A number possible matching fluids exist [22], including benzene, and

11
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various mixtures of alcohols and other hydrocarbons, as well as different

oils. Most of these are either prohibitively toxic for use in a typical graphics

laboratory, or difficult or expensive to obtain. One simple solution was to use

common mineral oil, but this has the disadvantage of having a fixed index

of refraction, without the possibility of adjustment that a solution has. We

did test the cheaper alternative of vegetable oil, but were unsuccessful in

finding a dye that would not cause significant scattering when dissolved in

the oil. A very concentrated sugar solution can reach the refractive index of

glass, but due to the high viscosity of the syrup, it is difficult to work with.

With these considerations in mind, we chose to use a solution of potassium

thiocyanate in water [3], which, while corrosive and an irritant, was deemed

sufficiently safe with careful handling.

By varying the concentration, a range of refractive indices can be matched.

At 80%, it has a refractive index of 1.5, which is suitable for borosilicate

glasses and some plastics. To obtain a higher index of about 1.55, we created

a super-saturated solution by heating it to dissolve more of the salt, after

which the solution was allowed to cool (the refractive index varies some-

what with temperature). The onset of crystal formation and resulting fall

of refractive index was slow enough to allow time for complete acquisitions.

The exact index of refraction achieved was not measured due to lack of

instrumentation.

It was found that the potassium thiocyanate solution had significant

dispersion, which is in addition to the dispersion caused by the objects. It

was thus necessary to limit the wavelength of light used to a small portion

of the spectrum, by only using the green pixels from the Bayer mosaicked

image from the camera. Additional narrowing was accomplished by the use

of a green filter mounted in front of the camera lens.

12
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3.3 Calibration

For tomographic reconstruction, it is necessary to know the path of each ray

through the reconstruction region. Similar to lumigraph/lightfield render-

ing [8, 17], we parameterized the rays by two planes. By placing the planes

inside the cylinder, we do not need to be concerned with any effects outside

this region, such as refraction at the cylinder-air and cylinder-fluid inter-

faces, as long as these remain symmetric under turntable rotation. As we

only perform calibration once, it was critical to center the cylinder precisely.

Figure 3.2: Front and rear calibration images.

The planes and their positioning structure were made with the rapid

prototyping machine, and we attached calibration grids to their front. The

calibration pattern and recognition was done using the ARTag system [6],

which was able to detect almost all markers in the image despite the strong

lensing distortion, given relatively even illumination. The system identifies

13



Chapter 3. Acquisition

the corners of the square markers, and ray coordinates on each plane are

interpolated between these points. No low pass filtering was necessary as

the refractive distortion varies slowly with respect to the marker density.

For each camera pixel, using the coordinates of the ray’s intersection

on the two planes, and knowing the plane geometry, it is possible to deter-

mine the path of the ray segment within the cylinder. The region formed

by the intersection of ray beams from all turntable orientations forms the

reconstruction region within which the objects must fit. A decimated rep-

resentation of the ray segments is shown in Figure 3.3 (vertical decimation

is increased for clarity), along with the reconstruction region formed by the

intersections of beams from all views.

Environment

Reconstruction Region

Figure 3.3: Ray distribution and reconstruction region from calibration.

3.4 Acquisition

Scanning consists of imaging a projection from a number of different rota-

tions. The number of projections needed depends on the resolution of the

object, and following [24], we use on the order of 0.67 times the horizontal

14



Chapter 3. Acquisition

volume resolution. In order to improve results given the higher ray den-

sity at the rear of the reconstruction region, images are taken around a full

rotation rather than just 180◦.

The set of exposures from which each projection is created is adjusted to

get the full contrast range of the region of the image occupied by the object,

so that at the shortest exposure time the darkest pixels are black, and at the

longest, the lightest ones are saturated. Since HDRGen failed to correctly

derive the camera curves for some views, the same camera parameters were

used for all projections in a set, even though in theory they should not vary.

In order to scan clear objects, it is necessary to add a contrast agent (food

coloring) to the refractive index matching fluid. This creates a problem,

since now there is light absorption along each ray outside the reconstruction

region. Referring to Figure 3.4, the absorption along a ray is given by

Acyl = e
−

∫
b

a
α(t)dt = e−(d−a)α,

where a and b are the intersection points of the ray with the cylinder and α

is the absorption coefficient. Since we have an image of the empty cylinder,

from which we have factored out the background image, we can determine

α for each ray. In practice, there is some variation over the cylinder due to

measurement errors, so we average the value obtained from all rays.

If b and c are the intersection points of the ray and the reconstruction

region (which can be computed from the calibration data), the absorption

due to the ring of fluid outside this region is

Aenv = e−(b−a)α · e−(d−c)α = e−(b−a+d−c)α

for each ray. The pixel values associated with the rays can be simply divided

by their corresponding Aenv to extract an image of the reconstruction region,

so that tomography can be applied as in the case of colored objects.

15



Chapter 3. Acquisition

a b c d

Figure 3.4: Geometry for acquisition of clear objects.

After acquisition, the Bayer mosaicked images (and ray data) are re-

sampled to a resolution matching that of the volume to be reconstructed,

and cropped to the smallest reconstruction region that fits the object for

efficiency reasons.
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Reconstruction

Although the Fourier Slice Theorem based reconstruction is very efficient,

it is for either parallel rays or those from point sources. In our case, the

ray distribution does not match either case, necessitating the use of a more

general method such as Algebraic Reconstruction Techniques (ART). Specif-

ically, Simultaneous Algebraic Reconstruction (SART) was chosen; although

it is somewhat slower than ART, it produces less sampling artifacts when

ray density varies. No visible sampling artifacts manifested themselves in

our testing on simulated data, so that SART was sufficient without taking

explicit account of sampling nonuniformities, thereby simplifying the algo-

rithm.

4.1 SART

A ray is attenuated exponentially by absorption along its path. In the

discrete case, we assume that within each discrete region, attenuation is

constant, and the integration becomes summation. If we convert the images

and operations to log space, we get absorption

log A = −

∫ c

b
α(t)dt ≈ −

∑
i

αi.

where the region under consideration is between a and b along the ray,

and ai are the densities at each discrete region along the ray. Through

17



Chapter 4. Reconstruction

several iterations through the set of projections (randomized each time), we

perform a forward projection through the volume, compute an error image,

and update voxels during a backprojection step.

Our approach derives from the SART version described in [24, 25]. The

volume is sliced along the axis that is most perpendicular to the direction

from which the current projection has been taken (minimizing the angle

between the slices and the image plane). This allows us to walk the ray

front slice by slice, accumulating filter-weighted values and later backpro-

jecting the correction image. After several iterations through the volume,

density values at each voxel converge to the reconstruction region from the

acquisition step, and an isosurface can be then extracted.

4.2 Projection

The first step is object order volume rendering similar to [15]; however,

samling is done differently. Walking the ray front through each volume slice,

at each ray-slice intersection, the voxel within a filter window are weighted

by a Kaiser-Bessel filter [18] (Figure 4.1). This radially symmetric filter was

precomputed and pre-integrated (splatted) in MATLAB; thus, determining

the filter weight is a fast table look-up. A filter radius of two was sufficient

for anti-aliasing, while a larger radius only increased blurring. The resulting

(log) absorption for ray i through the volume is

log A
(k)
i =

∑
n winα

(k)
n∑

n win
,

where the α
(k)
n denotes the current density estimate of voxel vn, and win

is the filter weight of the ray for that voxel. For efficiency, the sum in the

denominator is accumulated in parallel, and the division performed after

18
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all slices have been processed. The resulting log absorption rendering is

subtracted from the log projection, giving the pixels of the correction image

for the next step, ∆Ai = log Ai − log A
(k)
i .

Figure 4.1: Cross section and splatted views of the Kaiser-Bessel filter.

4.3 Backprojection

To apply the corrections to the volume, the correction value for each ray is

multiplied by a relaxation parameter λ, and distributed to each voxel along

the ray:

α
(k+1)
j = α

(k)
j + λ

∑
i

∑
j wij∆Ai∑

j wij
.

As in the forward projection step, this proceeds slice by slice, and within

each slice, for a given ray, all voxels within the filter window are found, and

the weighted corrections are applied to them. As in equation (4) in [24],

normalization can be deferred after all slices have been processed, and the

19
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rearranged equation becomes

α
(k+1)
j = α

(k)
j + λ

∑
i

Ai−

∑
n

winα
(k)
n∑

n
win

wij∑
i wij

.

Choosing λ affects the number of iterations required for reconstruction.

Larger values speed up convergence, but if too large, the algorithm will

give too much weight to the last projection that was processed, and will

not converge. An initial value of 0.04 to 0.1 was useful, and best results

from the fewest iterations were achieved by reducing λ after each iteration

through the set of projections. In most cases, after three iterations there

was no further improvement (measured by the total correction applied each

time), and even two iterations produced good results.

4.4 Implementation

An optimization for SART proposed in [25] is to cache filter weights deter-

mined during the projection step so they can be used for the backprojection

one. Due to the need for a large amount of memory, they propose going

through the volume slices in slabs shifting vertically, where the slab thick-

ness depends on the vertical travel of the ray through the volume, as well as

the filter weight. Due to the lensing of rays through our volume, we decided

it may be possible that slabs would be too thick for this to be a significant

improvement.

Instead, we traverse whole slices at a time and the filters lookup opera-

tion is performed separately during backprojection. In order to have good

cache coherency, the volume is laid out in memory in the order in which

it will be accessed. Since slice orientation (parallel to x-y or y-z plane) is

determined by which one is most perpendicular to the direction from which
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the corresponding projection was taken, a layout that is optimal for half the

projections is sub-optimal for the other half. Our image order is randomized

for an iteration, but afterwards the sequence is sorted in several bins so that

the volume may be reorganized in memory just a few times.

An additional optimization was parallelization using OpenMP. Running

it on a dual-CPU system with two hardware threads per CPU, it was possible

to parallelize most processing-intensive parts of the algorithm, since each

slice can be processed independently, only needing accumulation to compute

the correction image.

Using SIMD instructions on the CPU is unfortunately not possible for

this algorithm’s core, given this type of filter kernel sampling (other than

for converting floating point values to filter table indices), since current

CPUs do not provide the scatter and gather operations that are necessary

for vectorization in this case (GPUs do, however).

In order to improve results with mismatches between the refractive index

of the fluid and object, it is possible to weigh down rays that are most likely

to be incorrect. If a ray intersects an object at an acute angle, it will be

more affected by refraction. To find these rays efficiently, after each iteration

through the set of images, gradients are computed for the density estimate

at each voxel. The cosine of the maximum angle a ray encounters during

projection between its direction and the gradients of the voxels it intersects

is multiplied to λ, lowering the ray’s likely erroneous contribution. In order

to have a noticeable effect, this necessiates the use of more than the two or

three iterations that are otherwise sufficient.
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Results

Initially, we tested our implementation on simluated data from a ray tracer,

which allowed us to determine that refractive index mismatch up to around

5% still produced acceptable results (small features not swamped by ar-

tifacts). Raising the mismatch resulted in both global deformation and

increased surface roughness. The volume resolutions for the synthetic and

acquired data were set to correspond to the projection image resolutions.

To test reconstruction of colored objects, without a dye in the fluid, we

used a red glass object that is shown, along with one of the projections, in

Figure 5.1. A total of 360 projections were taken.

Figure 5.1: Example colored transparent object and one of the projections.

The object was reconstructed on a volume of 475 × 276 × 475 voxels (a

voxel corresponding to about 0.12 mm), taking about an hour and a half
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on our dual 3.6 GHz system for five iterations through all projections. The

marching cubes algorithm [19] was used to extract an isosurface from the

volumetric data. In an ideal case of a uniformly absorbing object material,

the voxels would have two possible values, corresponding to the fluid and to

the material. In practice, we get a histogram with two peaks. In order to

extract an isosurface from the volume, an iso-value is chosen in the valley

between the peaks (Figure 5.2).
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Figure 5.2: Historgram of reconstructed volume densities.

The reconstruction of the colored object can be seen in Figure 5.3. Note

the reconstructed internal geometry of the hole shown in the cut-away view,

a feature unique to tomographic approaches. The bottom of the object

necessitates a simple cleanup; it is an artifact due to the opaque base on

which the object rested during acquisition.

To reconstruct clear objects, food coloring dye was used to make the fluid

absorptive. The amount of dye to use is a compromise between increasing

contrast with more dye, while retaining enough brightness, given our light
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source, to avoid the need for very long exposure times. Figure 5.4 shows one

projection of a queen and bishop pieces from a colorless glass chess set. All

pieces were reconstructed by using three iterations.

Figure 5.3: Reconstructed object from Figure 5.1 and cut-away view showing

internal geometry.

Figure 5.4: Clear object and colored fluid projection.

The queen and bishop and their reconstructions, manually separated

from the 243× 248× 243 volume, can be seen in Figure 5.5 and Figure 5.6,
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respectively. A number of artifacts are visible in this example. Since the ob-

jects were positioned beside each other, they had to be manually separated,

thus the reconstructed bases are not clean. Additionally, imperfections in

the glass, especially air bubbles, resulted in holes/dents in the recovered

surfaces, because they appear dark in the projections and all rays that cross

them incorrectly lower the density of voxels along their paths.

Figure 5.5: Queen and bishop.

This problem is most obvious in the king piece. The cross was broken

from the body and subsequently glued. Figure 5.7 clearly shows how the

dark seam corrupts reconstruction in the region around it. We were able to

get some improvement by clamping the darkness of the pixel value to that

which would result from the highest absorption possible along the given ray

(which is possible since we compute the absorption coefficient of the fluid

during reconstruction). Moreover, we determined that the limited diver-

gence of rays through the volume (which was also the case with our physical

setup), did not cause the visible sampling artifacts discussed by [24], so we

simplified our implementation by not dealing with it explicitly.
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Figure 5.6: Queen and bishop reconstructions.

Figure 5.7: A projection showing the defect in the king, and the resulting

artifact in reconstruction.
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In order to test the accuracy, we tried spray-painting the figures and

using the Cyberware laser scanner (Figure 5.8), a long process of merging

various scans for each figure, but the results have artifacts and a significant

lack of detail. Using digital calipers instead, we were able to determine an

accuracy of reconstruction around 0.5 mm on the voxel grid pitch of 0.12

mm for the rectangular object.

Figure 5.8: Laser scans of the painted bishop and king.

The photographs and reconstructions of the other chess pieces are shown

in Figure 5.9.

To test a larger dataset, we performed reconstruction of the jar in Fig-

ure 5.10 in a 243 × 344 × 243 volume. The threads on the jar’s throat are

about one millimetre in the thinnest parts, and the noise floor is visibly

below that scale in the reconstruction.
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Figure 5.9: Chess pieces and reconstructions.
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Figure 5.10: Jar and reconstruction.

The weighting of ray correction values by the angle between the ray and

local gradients to deal with small refractive index mistmatches had limited

success: it caused some improvment in the reconstruction quality, but also

had a penalty in terms of speed. Reconstruction time for smaller volume

resolutions is significantly faster – on the order of 20 minutes for a cubic

volume 128 voxels per side on our system. In these cases time is dominated

by the acquisition step, due to the need for fairly long exposure times, and

multiple exposures, used for each projection. The former could be sped up

by the use of a brighter light source, and the latter by a high dynamic range

camera. For resolutions of 512 voxels per dimension, reconstruction time is
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several hours for a single iteration, so for such and higher resolutions, the use

of graphics hardware to accelerate reconstruction similar to [23] may seem

attractive, though implementation would not be as straightforward due to

some of the differences in our adaptation of SART.
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Conclusions and Future

Work

We created a practical, non-destructive system for acquiring the 3D shape

of real-world objects through the use of tomographic reconstruction with

visible light acquisition, using a simple and inexpensive setup for refractive

index matching, and a calibration method of finding the ray paths through

the reconstruction region. The system is capable of a fraction of a percent

accuracy, although some post-processing may be needed to remove some

high frequency noise. Acquisition and reconstruction together take from

one to two hours depending on number of projections and reconstructed

volume resolution. Thus, we have achieved the objectives outlined in the

introduction.

For improved resolution of reconstructions, simply increasing projection

resolution is not sufficient. A number of possible changes may be necessary:

more precise refractive index matching, higher dynamic range images, finer

calibration, and more projections.

Possibilities for future work include the exploration of the use of other

fluids for matching the refractive index, allowing a wider range of transparent

materials to be used; using a transparent plastic instead of glass cylinder

to allow large objects to be scanned without making price a prohibitive
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factor; explicitly taking local ray sampling density into account to allow

more freedom in the geometry of the camera and object setup; and the

reduction of the number of needed projections and increase in efficiency by

the use of priors, similar to their application in X-ray tomography by [32].
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