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Abstract: 
Haptic icons (brief, tactile stimuli with associated meanings) are a useful new way to 

convey information through the modality of touch, but they are difficult to create because 

of our lack of understanding into what makes good haptic stimuli and how people will 

perceive them.  This thesis aims to enlarge our capabilities to design and evaluate haptic 

icons, despite these problems. We seek to do this via two overlapping threads of research. 

In the first thread, we introduce the design parameter of rhythm as a means of extending 

the expressive capabilities of the simple tactile stimuli used in haptic icons. This allows 

us to create a set of expressive and perceptually distinguishable haptic stimuli larger by 

almost an order of magnitude than any previously created. In the second thread of 

research, we tackle the problem of how to evaluate the perceptual characteristics of such 

a large set of stimuli with real people. We develop a means of evaluation that allows us to 

collect perceived difference data by present each user with only a subset of the total 

stimulus collection, and then stitch together an aggregate picture of how the stimuli are 

perceived via data collected from overlapping subsets from different users. 

 

To advance these two threads of research, two user studies are run in order to examine 

how our haptic stimulus set is perceived and to validate our new method of gathering 

perceptual difference data. One study uses an established but cumbersome technique to 

study our stimulus set, and finds that haptic rhythms are perceived according to several 

different aspects of rhythm, and that users can consistently differentiate between haptic 

stimuli along these aspects. The second study uses our newly developed data collection 

method to study the same stimulus set, and we find that the new technique produces 

results that show no significant difference from the established technique, but using a 

data collection task that is much quicker and less arduous for users to perform. We 

conclude by recommending the use of our new haptic stimulus set and evaluation 

technique as a powerful and viable means of extending the use of haptic icons to larger 

sets. 
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Chapter 1: Introduction 
Can you touch abstract information? What does it feel like? These questions drive us in 

our research into haptic communication. We wish to convey information to people from 

computers enabled with haptic displays, and we wish to do so in the simplest and most 

transparent fashion possible. To accomplish this we build upon the concept of haptic 

icons: brief tactile stimuli that have been associated with a meaning. We believe that 

haptic icons present a new means of displaying information to people that can be discrete, 

convenient and informative while simultaneously decreasing the dependence on the 

visual and auditory channels of communication. 

 

In our vision, we see haptic icons being integrated into almost any interface in which the 

visual and auditory channels are already used extensively, where haptic icons could 

provide information to users without requiring them to visually monitor the interface. We 

foresee haptic icons integrated into handheld devices, where they can support interaction 

without the user looking directly at the device, a considerable advantage in busy 

environments, or social situations in which discretion is required. We see haptic icons as 

a general-purpose design tool to help ease the flow of information from computer to 

human. 

 

Researchers have worked hard to design haptic icons and test them with users. Across 

many different haptic devices and technologies, robust design parameters such as 

frequency, amplitude and waveform have been used to create haptic stimuli that users can 

easily discern and recognize [19, 6]. Multiple applications have been created using haptic 

icons, and have been found to be successful in conveying information in practical work 

contexts [10, 18]. These promising results are opening up a much larger area of research 

for work in haptic icons. 

 

Yet many challenges still remain, not least of which is the gap in understanding between 

the design of haptic stimuli and how they will be perceived by users. Because our 

understanding of the sense of touch is quite primitive when compared to sight or hearing, 
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we are constantly forced to test our stimulus sets with users to determine how their 

members are perceptually related. Another consequence of this is that we lack insight into 

what the important perceptual parameters of touch are, such that creating new design 

parameters is often simply done by guess-and-test. What is required is further 

sophistication in all aspects of our work on haptic icons: greater sophistication in how 

they are designed, and greater knowledge in how they will be perceived. This thesis 

works to fill this void, though much more work remains to be done. 

1.1 Motive 

It has been posited that a haptic equivalent of visual icons could be used to increase 

information flow in an environment where computer interfaces are rich in the visual but 

poor in the haptic. Following theory with testing, multiple researchers across the globe 

have shown promising results in the use of various tactile stimuli to present iconic 

information. Now it is time to push beyond current capabilities, expand benchmarks 

outwards and determine how far this concept can go. Presented in this thesis are both an 

expansion of the methodology for building and evaluating haptic stimuli as well as new, 

multifaceted design parameters with enough depth to support the creation of an expansive 

set of expressive, distinct haptic stimuli.  

 

The motivation for the use of haptic icons is fairly straightforward. In modern interface 

design, the visual modality is heavily relied upon. Especially in interfaces such as the 

cockpit of a plane or the driver’s seat of a car, the user’s visual field is almost 

overwhelmed with information. But even in a simpler interface such as that of a cell 

phone, if it is placed in a busy environment where, either for social or practical reasons, 

the user cannot spend all his/her time looking at the device, the over-reliance on visual 

communication creates a bottleneck in information flow from device to user. The haptic 

modality opens up a new channel between device and user, one that can be constantly in 

contact with the user without him or her constantly attending to it. This is not to claim 

that simply moving something from the visual to the haptic domain will necessarily free 

the attentional resources formerly used to track the visual information: attention and 

multi-modal perception interact in complex ways that we are still only beginning to 
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understand, and other, cognitive bottlenecks exist in aside from basic perception of 

stimuli.  

 

Nevertheless, as an addition to interfaces already heavily dependant on other modalities, 

the advantages of using the haptic channel to display information have been consistently 

shown. For both critical control tasks and social communication, haptic icons can be used 

as a simple, straightforward means of conveying information to the user through the 

haptic channel. This simple, one-degree-of-freedom communication makes them, 

perhaps, the most basic building blocks of abstract haptic communication. 

 

Research into haptic icons has generally focused on the use of short, simple vibrotactile 

stimuli to convey information to users [19, 6]. This focus should make them easy to 

create, easy to display on a device and easy to evaluate. Unfortunately, this claim has 

been the goal, but not the reality. In truth, research is still hamstrung by poor haptic 

displays on which even simple design of stimuli presents serious challenges. Poor 

displays lead to noisy results which make evaluation difficult, and evaluation of complex 

human interaction with technology is not a simple task to begin with, as the very 

existence of the field of Human Computer Interaction (HCI) attests.  

 

Nevertheless, we are seeing more technology equipped with more advanced haptic 

displays every day, especially in handheld devices. If haptic display becomes more 

common, then the opportunity for new haptic-enabled applications increases sharply, in 

no small part due to increased user familiarity with the medium. Furthermore, as 

discussed above, handheld devices are often operated in busy, demanding environments 

where a different, discrete modality such as haptics can help make the difference between 

an easy–to-use, helpful application and one that simply causes the user more stress and 

frustration. Consequently we are applying our research to the development and 

application of haptic icons in the real world, in hope that they can solve real-world 

problems positively and efficiently. 
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We are not there yet. Research into haptic icons has generally been preliminary, 

involving relatively small numbers of icons used in laboratory environments. Developing 

stimuli has been done on a per-experiment basis, and has differed widely across 

researchers (see [27] and [18] as comparisons). What this thesis aims to do is to greatly 

increase the number of coordinated haptic stimuli that can be used in an experiment or in 

an application: increase via gross number of stimuli in existence, and increase via easing 

development. We hope to create the beginning of a general reference set of haptic stimuli 

that has been evaluated for consistency and distinctness. Moreover, we also aim to create 

a robust process for the creation and evaluation of large number of haptic stimuli, 

allowing other researchers to follow in our footsteps. Increasing by roughly an order of 

magnitude the number of haptic stimuli in a single, coordinated set that are available to 

researchers, we will be allowing for the creation of larger, more complex applications 

that can use haptic icons. These applications can then be applied to real-world situations, 

studied over longer periods of time, and evaluated for their usefulness and usability. Thus 

the contributions of this thesis are to be viewed as major steps towards a more wide-scale, 

ecologically valid evaluation of haptic icons. This thesis aims to break haptic icons out of 

the domain of “toy” research and into the domain of grounded, practical application 

work.  

1.1.1 Icons vs. Stimuli 

It should be made clear that, because our work deals strictly with the haptic stimuli 

themselves, and at no point attempts to attach meaning to them, we do not often refer to 

haptic icons throughout this document, instead haptic stimuli. Only when a stimulus has a 

meaning associated with it does it become an icon, and this semantic process is not the 

concern of this work as the stimuli must be designed first, before meaning can be 

attached to them. The process of assigning meaning is left to the designers of application 

who wish to use our stimuli to make haptic icons. 

1.2 Overview and Approach 
Two main problems stand in the way of our goal of creating a large, diverse set of haptic 

stimuli; solving them comprises the bulk of the contributions of this thesis. Both issues 
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stem from the size of the set of stimuli that we wish to create. The first challenge is how 

to create so many different stimuli which are distinctive and expressive to potential users. 

This problem is approached here by the systematic and wide-scale use of tactile rhythms, 

a little-explored parameter for use in haptic stimuli that we find greatly extends the 

number of perceptually distinct tactile sensations that can be created, even with a duration 

as short as 2 seconds. The second challenge is to evaluate larger sets of stimuli, when 

traditional means of evaluation do not scale well due to time and fatigue. Our solution to 

this problem is a new method of gathering perceptual data that requires users to judge 

only a manageable subset of the complete stimulus set, with the total, overall perceptual 

picture stitched together using judgment data from multiple users. 

 

Thus this thesis contains two intertwined, interdependent strands of research, one of 

method and one of design. The design is the creation of a set of 84 haptic stimuli (much 

larger than the previous standard of 36 set by MacLean and Enriquez [19]), using 

amplitude, frequency and rhythm. The method is an extension of the data-gathering 

techniques for multidimensional scaling (MDS) that are used to determine the perceptual 

characteristics of a set of stimuli. This method has expanded the size of stimulus sets that 

can be dealt with by a factor of three, enabling 150 stimuli, where 50 was the previous 

maximum. By running two separate but related studies we are able to both evaluate our 

stimulus set and validate our new data-gathering method. This duality informs the 

structure of this thesis: Figure 1.1 lays out the logical structure of the thesis, in terms of 

the two interlocking research strands. 

 

The key to understanding the logic of this thesis is to understand the role played by the 

two major studies discussed herein, and how they pertain to the two strands of research 

described. Both studies seek to perform MDS on the same stimulus set; they both follow 

the basic steps of (a) determining how people group our set of rhythmic haptic stimuli, 

and then (b) feeding this data into the MDS algorithm, producing a n-dimensional plot of 

the stimuli where the placement of each stimuli relative to each other stimuli represents 

how perceptually similar the two were on average judged to be. How the two studies 

differ is in the method by which perceived similarity ratings were gathered. The first 



 6

study uses the sorting technique developed by MacLean and Enriquez [19] to gather data. 

This is a proven method [20], but it is stretched to its limit by the sheer number of stimuli 

users are forced to deal with here. The second study uses a modification of the sorting 

technique that allows a larger number of users to each deal with a smaller subset of 

stimuli. This method, based on a form of between-subjects analysis, presents the user 

with a less taxing task that can be completed in a more reasonable timescale, but as an 

experimental technique the data integration must still be proven to produce valid results. 

The two studies thus provide two different looks in at the same stimuli set. 

 

Since it utilizes a previously validated technique [20], we use the first study to investigate 

the perceptual characteristics of our haptic stimulus set. By completing an in-depth 

analysis of the MDS plot and examining precisely what characteristics of our stimulus set 

influences how they are perceived, we find strong and interesting effects of tactile 

rhythm—indicating its strength as a design parameter for use with haptic stimuli. Yet in 

performing this analysis, we also develop a “gold standard” against which our new data-

gathering technique can be compared. Our second study uses the new method to examine 

the same set of stimuli, and produces results which are both quantitatively and 

qualitatively similar to the gold standard, thus allowing us to conclude that the technique 

itself is valid as well as more practical. 

 

It might be noted that, if haptic icons are truly to be the touch-based equivalent of visual 

icons, the process that we are describing seems considerably more complex and involved 

than what would be expected of a visual icon design process. When needing a new visual 

icon, one might simply give a graphic designer some requirements as to what information 

the icon need convey, and then upon receiving the designers best guess at what the icon 

should look like, one would likely simply “eyeball” the result, ensuring its 

appropriateness. Even if more detailed user testing was performed, it would likely only 

be a part of a more wider usability analysis, and certainly would never reach the level of 

complexity and rigor exhibited in our MDS studies. Yet as a technology, as a 

psychological science, and as a symbolic medium, haptics and vision are by no means on 

the same playing field—thus comparing relative design processes leaves haptics at a 
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considerable disadvantage. We have been studying and using vision, figuring out 

different ways of displaying visual information, for far longer, and in far greater detail, 

than ever has been done for haptics. 

 

Relatively primitive displays and lack of knowledge make working with haptic icons 

considerably more challenging than visual icons. If we were to limit visual icons to 

abstract expressions only (as haptic stimuli themselves are limited); if we were to require 

only 6-pixel visual icons, with no more than a dozen different shades of grey to choose 

from; if creating each individual visual icon required an extended period of work writing 

code or mathematically modeling a waveform; if all these limitations were required of 

visual icon design, then perhaps a fair comparison of methodologies would be possible. 

As the field stands, our current thorough design process represents our best attempt at 

overcoming the constraints, both perceptual and technological, that the haptic modality 

places on icon design. 

 

Thus, at the end of this research what we have accomplished is setting up a solid basis 

from which to extend the expressiveness and diversity of haptic icons. We developed a 

new design parameter that greatly increases the number of different haptic stimuli that 

can be created. We also developed a new technique for analyzing these stimuli to ensure 

their success as useful, informative signals. This creates a toolkit and a process that any 

new haptic icon developer could use to quickly and easily create a large set of discernable 

haptic stimuli tailored to his or her needs. 
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Chapter 2: Related Work 

2.1 Abstract Tactile Communication 

Though it could easily be considered a small niche of the research world, work on 

abstract tactile communication has flourished in the last few years, with groups from 

several different research labs across the world contributing to a great increase in 

knowledge about the design and application of haptic icons and informative tactile 

signals in general. Their results have all been generally positive, indicating a clear ability 

of people to discern, recognize and use haptic icons or similar types of stimuli in a variety 

of applications and contexts. 

2.1.1 Haptic Icons 

In the work of MacLean et al., which our own work largely builds upon, the design and 

use of haptic icons has been study extensively across different platforms and applications. 

MacLean and Enriquez [19] created haptic icons using a force feedback knob, varying 

waveform, amplitude and frequency to create a set of 36 haptic stimuli. In order to 

determine how these icons were actually perceived, they were thoroughly analyzed using 

Multidimensional Scaling (MDS), an analysis technique that would prove invaluable for 

further work on haptic icons, and which is expanded upon in this thesis. They found that 

their three parameters, with some adjustment, could create an even spread of perceptually 

distinguishable stimuli. Their results showed both the utility of MDS as a tool for 

perceptual analysis of haptic sensations, and demonstrated that people can make 

consistent distinctions between well-designed haptic stimuli. 

 

Following the work of MacLean and Enriquez were several more studies. Chan et al. [10, 

11] developed a haptic icon-based protocol for turn-taking in a collaborative environment 

using a haptic mouse. It showed the efficacy of haptic icons used in cognitively loaded 

environments to communicate information unobtrusively to users. Luk et al. [18] used a 

novel piezo-driven skin-stretch display to present users with haptic icons in the context of 

a handheld device. Luk et al. showed that the haptic icon design paradigm could be 
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applied equally well to new, handheld and non-vibratory platforms. Such robustness is an 

encouraging result if we wish to continue extending haptic icons in new and interesting 

directions. 

2.1.2 Tactons 

Coining the term “tactons” to describe their vibratory tactile icons, Brown et al. have also 

explored somewhat similar terrain, with similarly encouraging results. Like the work of 

MacLean et al. they have both developed design parameters for creating informative 

tactile stimuli and analyzed these stimuli to determine their perceptual nature. In [5], they 

introduce several different design factors to be used to create tactons, starting with 

frequency, amplitude and waveform as in [19], but adding to it duration and rhythm, as 

well the body location at which the stimuli is presented. These ideas were tested in-depth 

in several later papers. Firstly in [6] they tested icons with three different amplitude-

modulated textures and three different rhythms (based on previous audio icon designs) 

and found strong recognition rates for each of their two parameters (80% and 93% for 

texture and rhythm respectively). In a still-developing work [7], Brown et al. added in a 

third parameter, location of stimulus presentation, and found that recognition rates 

dropped somewhat for three-parameter icons, but could be designed around if needed. In 

collaboration with a variety of other researchers, both Brown and Brewster continue to 

expand their research into tactons by examining crossmodal effects [14], various musical 

techniques such as crescendos [8], and applications in mobile phones [9]. 

2.1.3 Other Vibro-tactile Work 

Research into tactual perception has been done at a more general level as well, not just in 

attempt to create some form of haptic icon. Tan et al. [23] have studied the display of 

tactual signals, comparing a variety of stimuli to determine the overall level of 

information that can be transmitted using artificial stimuli. Though their results 

considering the informational capabilities of tactile stimuli are a positive indication for 

us, they make no discussion of designing of stimuli for use in practical considerations, 

nor do they proceed beyond basic tactile waveforms in their stimulus set. Other 

researchers such as Klatzky and Lederman  have performed research into related areas, 

for example texture perception using a stylus [16], and have gained similarly positive 
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results. Representative of much of the work in this field, both of these works are directed 

at fairly low-level psychophysical findings, leaving considerable room still to be explored 

as we bring these tactile stimuli into more and more practical contexts. 

 

Other important work on displaying tactile information has been done by van Erp [26], 

where he specified several design guidelines for communicating through vibro-tactile 

displays. He discusses several features present in the work of both MacLean and Brown, 

such as frequency, amplitude, temporal patterns (which are essentially rhythm), and 

display location. He also points out the dangers of masking and confusion that can occur 

using spatial and temporal effects. Van Erp has also worked on tactile melodies [27], 

which is, to date, the most significant analysis of tactile melodies and rhythms yet 

published. Van Erp and Spape take 59 real-world melodies and transfer them into the 

tactile domain. Using MDS along with other statistical methods, they determine two main 

perceptual characteristics: intrusiveness and tempo. However, these results are limited to 

a description of very complex and specific musical rhythms, such that direct application 

to the design of synthetic tactile stimuli from scratch would be difficult. Nevertheless, the 

results of their experiment show encouraging trends for tactile melodies and rhythms. 

2.2 Multidimensional Scaling 

Multidimensional Scaling (MDS) is a statistical technique that provides quantitative 

values describing the perceived dissimilarities between a given set of stimuli. The MDS 

algorithm takes an input of dissimilarity values and calculates a value describing the 

distance of each stimulus in relation to every other stimulus in a perceptual space. An 

appropriate number of dimensions are chosen based on the stress value, a measurement of 

model fit, where lower stress represents a better fit. Choice of the number of dimensions 

is determined by the benefits of an additional dimension in reducing the stress level 

against the loss of interpretability an additional dimension adds. Once an appropriate 

number of dimensions have been chosen, the data can be mapped visually and analyzed 

for clustering and trends [3].  
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The main reason that we use MDS in the study of haptic icons is its ability to pick out 

trends and grouping of stimuli, when no a priori knowledge exists about how the stimuli 

will be perceived. The application of MDS to the perceptual domain was pioneered by 

Roger Shepard at Bell Laboratories in the early ‘60s [21] as a general tool for analyzing 

interstimulus similarity amongst any grouping of stimuli for which the perceived 

differences were unknown. The technique was quickly picked up by many 

psychophysicists, being applied to such areas as, for example, musical timbre. Significant 

new understandings in how timbre was intuitively perceived were brought about by the 

use of MDS [13], an early positive indicator of its usefulness as an exploratory tool. 

 

The haptic modality, compared to modalities such as vision or audition, is still largely 

lacking in a widely-accepted and intuitive description of its important perceptual 

characteristics, though the work of Tan [23] and other has taken great strides in gathering 

the basic perceptual knowledge to needed to gain such intuition.  Lacking this intuition, 

MDS can provide clues to what these characteristic might be, without us knowing 

beforehand. MDS has thus been used extensively for the study of haptic stimuli, as well 

as other stimuli in different modalities for which there is a similar lack of intuitive 

understanding. In addition to the work of MacLean et al. described in section 2.1, other 

researchers have successfully used MDS to discover new information about novel 

stimuli. For example, [15] found a 3D percept map from a set of real tactile surfaces, 

finding dimensions such as hard/soft and slippery/sticky. Bonebright [2] used MDS to 

analyze everyday sounds, in hopes of furthering his work into designing informative 

sound icons. 

 

Considerable effort has been applied to analyzing different types of MDS algorithms as 

well as different means of gathering dissimilarity data for analysis. However, for our 

purposes the standard SPSS MDS algorithm, ALSCAL, shall be used. Our main research 

interaction with MDS is in the means of gathering data; this shall be discussed in detail in 

Chapter 4. 
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2.2.1 Comparison of MDS Results 

One aspect of MDS algorithmics that does bear mentioning is how best to compare the 

results of different MDS analyses. Two different MDS output maps based on subjective 

dissimilarity ratings from different users are almost guaranteed never to be the same, 

even if the stimulus set is the same. In canonical research into MDS from the psychology 

and psychophysics fields (such as [22]), it was originally considered that Pearson’s r, the 

product-moment correlation coefficient, was sufficient to measure whether two n-

dimensional MDS outputs were statistically correlated. For clarity, note that Pearson’s r 

is unrelated to r2 which is used elsewhere in this document to describe goodness of fit for 

MDS results. Borg and Leutner [4], with a simple example, proved that the product-

moment correlation is in fact inappropriate for use with MDS outputs: 

 
Let A and B be two MDS configurations, consisting of NP = 3 points each, with 
distances d(1,2) = 1, d(2,3) = 2 and d(1,3) = 3 for A, and d(1,2) = 2, d(2,3) = 3, 
d(1,3) = 4 for B. The PM [Product-Moment] correlation of these distances is r = 
1, indicating perfect similarity of A and B. This is false, of course, since the 
greatest distance in A is three times as great as the smallest, whereas in B it is 
only twice as long. Hence, A and B do not have the same shape: B forms a 
triangle, whereas A’s points lie on a straight line, because they satisfy the 
equation d(1,2) + d(2,3) = d(1,3). 

 
Thus instead, Borg and Leutner proposed the use of the congruence coefficient defined 

as, 

 

[1] c = ∑i dAi dBi / (∑i dAi
2 ∑i dBi

2)1/2 

 

where dXi is the i-th distance value between stimuli, in configuration X, and the sum is 

over all pairs of distances in the MDS output map. Due to the tendency of c to cluster 

close to its upper limit of 1, a transformation was performed, giving us the alienation 

coefficient K, 

  

[2] K = (1 – c2)1/2 
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This formula was then empirically tested on randomly created dissimilarity matrices, at 

different dimensions and numbers of points, providing empirically derived constants 

describing similarity of MDS outputs at a 95% confidence interval. The alienation 

coefficient thus provides the only statistical measure specifically designed and tested to 

measure similarity of MDS outputs, and still stands as the state of the art for statistical 

comparison of MDS results—Borg’s own book on MDS confirms this status [2] 

 

In our own work we rely on the alienation coefficient to help validate our newly designed 

method of gathering data for MDS. By using two different data gathering methods on the 

same set of stimuli, we produce two MDS results that we hope to be similar. The work of 

Borg and Leutner gives us a statistical tool to compare the two results, to be used in 

conjunction with our standard visual interpretation of the MDS map. 
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Chapter 3: Creation of Haptic Stimuli 
The simple haptic stimulus sets developed by MacLean and Enriquez [19] and built upon 

in several ensuing publications [11, 18, 12] are based upon varying three parameters: 

waveform, frequency and amplitude. However, using these three components has only 

produced a relatively small set of stimuli, when varied using today’s tactile display 

hardware. While these parameter provide a solid basis for building tactile stimuli, we 

sought to find a means of creating new and interesting stimuli supplementing some of 

with more complex parameters that might yield better results.. 

 

Previous work on haptic stimuli has investigated the application of rhythm [6] and 

melody [27] to vibrotactile stimuli, with fairly positive results. The approaches taken 

were, however, quite different, with the work on rhythm using only a handful of very 

basic rhythms, while the research into melody used a broad range of actual musical 

melodies transposed into the tactile domain. So while their results point towards a 

positive use of rhythm and melody in developing expressive tactile signals, their goals 

were such that they do not cover a broad enough sample of the possible design space to 

reveal a consistent framework for dealing with these parameters in the tactile domain. 

Both studies lacked results that could be broadly generalized to all types of tactile 

rhythms. The initial studies by Brown et al. [6] used only three rhythms, which were too 

different and too few to establish any clear patterns. Van Erp and Spape [27] used far 

more stimuli, but because their stimuli were sampled non-systematically from real-world 

examples of music, they both lack a systematic description of their structure and suffer 

from the many possible learned musical associations that a participant in the study might 

have. 

3.1 Description of Possible Stimulus Space  

For our own purposes we felt that it was wrong to assume that the standards that inform 

normal auditory musical composition would apply to the sense of touch; the skin’s 

sensory capabilities are attuned to different things than the ear, to say nothing of the 

effects that cognitive aspects of musical appreciation might have. This is not to say an 
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approach attempting to utilize musical capabilities in the haptic domain might not be 

successful; rather, bringing the musical into the haptic is simply too large an issue to deal 

with within this thesis. Yet despite our wish to avoid borrowing too heavily from the 

musical domain, it was nonetheless considered most straightforward to represent rhythm 

and melody as a sequence of notes of varying length played at set intervals in a bar of 

“music.”  

 

For our purposes, we define rhythm as being the repeated, patterned recurrence of some 

set of variable length beats/notes, and we differentiate this from melody, which is 

concerned with the different tones that the notes in rhythm are played at. Changing the 

tones of the notes in a rhythm changes the melody, but not the rhythm; changing the 

length, number or placement of notes changes the rhythm and would also likely have an 

effect on the melody. 

 

 

If we first simply look at the number of different combinations of notes that could be 

used in a rhythm or melody, we are immediately faced with an exponentially increasing 

set of possibilities. Limiting ourselves only to quarter notes in 4/4 time, we would have 24 

= 16 different way of arranging notes, with eighth notes 28 = 256 variants, with sixteenth 

notes 216 = 65536. If we then consider playing melodies (i.e. the tone of each note is 

different, played at different vibratory frequency) or adding emphasis (i.e. playing 

different notes at different amplitudes) then the number of possibilities grows even larger.  

 

Clearly we needed a means of reducing this huge number of variants down to a 

manageable handful, in a way that would produce tactile stimuli that were different 

enough to be perceptually distinguishable and while possessing shared features that 

would contribute to some natural perceptual groupings to increase learnability. We lacked 

a clear precedent into what would make a tactile rhythm or melody distinguishable yet 

also perceptually similar enough to the other stimuli used that some natural grouping 

would be evident. Thus we were forced to rely heavily on intuition and our own 

reasoning on how to move forward.  
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Very quickly it became clear to us that, as the above numbers indicate, some a priori 

design decisions were needed to limit the scope of this work. Our first observation was 

that all melodies have a rhythm, at least implicitly, and this suggested rhythm was a more 

fundamental parameter than melody and therefore should be focused on first. To 

eliminate melody as a confound and keep our search space manageable, we therefore 

utilized only monotone (non-melodic) rhythms: all notes in a particular rhythm were 

played at the same amplitude and frequency. The particular amplitude and frequency 

level at which a rhythm is played could still be varied, meaning that we have allowed 

rhythms that have the same number, type and placement of notes, but different overall 

frequency and amplitude levels. It is only variation of frequency and amplitude within a 

rhythm that we are choosing to disregard for the sake of simplicity. We felt that these 

initial design choices narrowed the field of possible stimuli down to an area that could be 

reasonably approached in a more rigorous manner. What follows is our analysis of the 

tactile rhythm space, and a description of how we narrowed down the field to our final 

selection of rhythms. 

3.2 Sensory- and Hardware-Specific Limitations on Rhythm Space  

Still without a set precedent on how we might partition the space of all possible tactile 

rhythms, we set out to study the space as best we could. By iteratively creating different 

haptic rhythms and observing how they felt, we were able to informally develop a set of 

rules that we felt tactile rhythms needed to obey in order to produce diverse yet 

associable stimuli. Some of these rules we believe, based on our own testing, to be 

necessary for creating any tactile rhythm, while others are more design heuristics that 

represent our own intuition on what makes good stimuli. In all cases though, these 

recommendations are based on our tests on a specific hardware platform (described in 

more detail in Chapter 5), and though it is likely that much of our work here is broadly 

generalizable, we cannot remove completely the confound of the specific hardware used. 

Nevertheless we feel that our extensive informal testing with a variety of different users 

has lead to consistent high-level recommendations. 
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3.2.1 High-level Limitations 

Two facts were immediately obvious to us as soon as we started creating tactile rhythms. 

First, there needs to be a gap after each note played in a rhythm in order for the notes to 

be distinguished as separate. If the individual notes within a rhythm varied by frequency 

or amplitude, it would be possible to perceptually segment the different notes if the 

differences were large enough between adjacent notes; however, as we had already 

decided to limit ourselves to monotone rhythms, gaps in between notes were necessary.  

 

The second fact was that unless a rhythm was repeated, it was not perceived as a rhythm, 

merely a set of isolated vibrations. Furthermore, the more times a rhythm was repeated, 

the stronger the sense of rhythm became. From our testing we found that four repetitions 

was a good compromise between having enough repetitions to create a strong sense of 

rhythm without requiring an overly long total duration for the stimuli. This observation 

led us to choose a total stimulus duration of 2 seconds, resulting in a 500 ms duration for 

each iteration of the rhythm. We felt two seconds to be about the longest a stimulus could 

last and still be useful in the context of a haptic icon, while the 500 ms duration was long 

enough to allow for a fair number of different notes to be packed into a rhythm (e.g. 4 

bars of 4/4 time played at a brisk tempo, as elaborated below). Though from an auditory 

musical perspective 500 ms could be considered quite short for a bar of music, we were 

limited by our need to make the overall signal fairly short and yet still present enough 

repetitions. However, we did not find this to be too fast a pace to be playing our rhythms 

at, largely because we were not asking our users to pick out individual notes, just 

perceive an overall sense of the rhythm. Perception of the rhythms as a whole was still 

attainable, and benefit of the increased repetitions helped counteract the speed of the 

overall rhythm. 

3.2.2 Shortest Note 

With our single iteration time of 500 ms established, the next issue was to find the 

shortest length of note people could consistently perceive. From our informal testing we 

settled on a sixteenth of the total time (31.25 ms) followed by a break of a similar 

duration. We could have chosen to make the break shorter in time than the vibration, but 
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in order to make it easier for us to line up where different notes (and breaks) fell, we 

chose to keep the on and off time the same. Thus the total time required for the smallest 

note was 62.5 ms, or exactly one eighth of the 500 ms single iteration time. Consequently 

the smallest note we use is called an “eighth” note because it takes up exactly one eighth 

of the time of a single iteration of the rhythm. Having now determined the smallest 

interval, we built all our rhythms along the basis of 16 consecutive time slots, which can 

either be on or off. 

3.2.3 Selection of Different Note Types 

We next sought to determine what other note lengths we should use to build up our 

rhythms. To do this, we made a series of rhythms containing only one note, with a note 

length varying from one to fifteen of the sixteen, 31.25 ms time slots (the 16th slot was 

required to introduce a break between rhythm iterations). Of these fifteen possible note 

sizes, the following observations were made. 

 

• The difference between a 31.25 ms vibration and a 62.5 ms vibration is noticeable 

(i.e., one vs. two consecutive time slots set as “on”), though not overpoweringly 

so. 

• The difference between a 62.5 ms vibration and a 93.75 ms vibration (ie, two time 

slots vs. three time slots) is not consistently noticeable. 

• This finding holds true for all longer notes: differences of one time slot (31.25 

ms) are not noticeable. 

• However, differences of 62.5 ms are noticeable for all longer notes. 

 

These observations resulted in the following five types of notes, also described in Figure 

3.1 in terms of the number of time slots they occupy. 

 

• Eighth note (62.5 ms total play time: 31.25 ms on, 31.25 ms off) 

• Quarter note (125 ms total play time: 62.5 ms on, 62.5 ms off) 

• Half note (250 ms total play time: 187.5 ms on, 62.5 ms off) 

• Three-quarter note (375 ms total play time: 312.5 ms on, 62.5 ms off) 
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• Whole note (500 ms total play time: 437.5 ms on, 62.5 ms off) 

 

We used the larger break time of 62.5 ms (two time slots) rather than 31.25 ms (one time 

slot) because we felt it gave greater distinction between notes. The 31.25 ms break time is 

used only for eighth notes, in order to allow us to have two eighth notes played within the 

same amount of time as one quarter note, which was a feature we used to create several 

of the different groups of rhythms described in the next section. 

3.3 Description of Stimulus Set 

At this stage in our design process, we had pruned down our selection of possible 

rhythms considerably through ad hoc and informal testing. However, the rhythm space 

still remained relatively large. Having done all we could to develop rules describing 

which types of rhythms not to use, we now had to develop some positive heuristics as to 

which rhythms we should use. Again, using our intuition along with iterative informal 

testing, we developed four heuristics, which in turn created five groups of rhythms, each 

defined according to one or more of these rules. 

 

These groupings were designed into the stimuli set from the start, and represent our best 

attempt at creating a diverse yet logically grouped set of tactile rhythms. We do not claim 

that this will end up to be the best grouping of rhythms that could be used. However, 

without a clear precedent into how tactile rhythms might be grouped and perceived, our 

own intuition, along with continual informal testing, was the best tool we could use. In 

our study results we discuss how our intuitive groupings were, in part, confirmed: some 

of our groupings were held out by the study, while other unanticipated perceptual 

groupings were also found. For clarity we believe it important to specify what groupings 

we built in to our stimuli beforehand and differentiate them from the  post hoc groupings 

that our studies later revealed. The groupings below represent our initial best guess at 

how tactile rhythms might be grouped.  
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3.3.1 Heuristic One: Quarter Notes 

Our first heuristic was to consider all possible rhythms that contain only quarter notes and 

pauses. This decision was based upon both our initial testing results which found quarter 

notes to be an easily recognizable duration, as well as the consideration that a straight 4/4 

rhythm with notes on every downbeat would likely be considered one of the most simple 

and basic rhythms available. As noted above, there are 16 possible all-quarter note 

rhythms. However, many of these are perceptually indistinguishable from each other 

because of the repetition of the rhythms. As a specific example, consider all rhythms 

containing just one quarter note: the note could occur in any of the four slots, and thus we 

have four different rhythms. Yet an issue with ‘monotone’ rhythms (those without 

varying emphasis and thus a discernible downbeat) is that while looping, there are no 

indicators of its starting point. Thus all four of the single-note rhythms will feel the same 

once they have started, as the spaces between the 4 played notes (one in each iteration)  

will be the same in all cases. Similar situations occur for some rhythms of two and three 

quarter notes per iteration, and we therefore used just one instance of each of these cases. 

Thus considering all possible quarter note-only rhythms that are perceptually distinct 

from each other, we arrive at Group 1, the first five rhythms as indicated in Table 3.2. 

3.3.2 Heuristic Two: Long Notes 

Our second heuristic was to consider all rhythms containing only notes that are longer 

than quarter notes: i.e. half notes, three-quarter notes, and full notes. This decision was 

based upon the observed difference in sensation that longer vibrations gave as compared 

to shorter notes such as the quarter note, and because we felt that having a variety of 

different note lengths in our rhythms would be prudent if we wanted to obtain a good 

cross-section of different types of rhythms. Thus we have categorized quarter notes as 

being “short” and notes longer than a quarter as being “long.” Similar issues of 

duplication due to repetition were present for this group, narrowing the number of 

possible rhythms down to four, creating Group 2 in Table 3.2. 
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3.3.3 Heuristic Three: Long and Quarter Notes 

Our third heuristic was to consider rhythms which contained at least one quarter note, and 

least one of the longer notes used in Group 2. The goal here was to produce rhythms 

which had both quick and slow components. Again there were issues of duplication due 

to repetition, which pruned several rhythms, and the requirement that there be at least one 

quarter note meant that full notes could not be used. The final set of four possibilities is 

presented as Group 3 in table 3.2. 

3.3.4 Heuristic Four: Substituting Quarter with Eighth Notes 

Our fourth heuristic actually resulted in two groups of rhythms, as this heuristic was 

actually a means of modifying two of the groups already described. Because the number 

of different rhythms containing only eighth notes is 256 (to say nothing of rhythms 

containing combinations of eighth notes and other length notes), we felt daunted at the 

prospect of choosing some reasonable set of rhythms from this space. Consequently, we 

made the simple choice of taking the rhythms we created in Group 1 and Group 3, and in 

place of each quarter note (total playing time of 125 ms) we substituted in two eighth 

notes (playing time 62.5 ms a piece). This gave us a set of four eighth note-only rhythms 

(Group 4, analogous to Group 1) and four eighth note plus longer note rhythms (Group 5, 

analogous to Group 3). Group 4 has four rather than the five rhythms in Group 1 because 

the eighth note analog of rhythm 3 was felt to be very hard to distinguish from the eighth 

note analog of rhythm 2. 

3.3.5 Complete Stimulus Set Used 

With the 21 rhythms described in Table 3.2, we finally had set of diverse yet associable 

tactile rhythms. Thankfully we had chosen early on that, though each stimulus must be 

monotone in terms of the frequency and amplitude of all of the notes played within it, we 

can create different stimuli by simply playing the same rhythm at a different set level of 

frequency and amplitude. Keeping in mind our desire to have a large, but not overlarge 

set of stimuli, we thought it best to have two frequency levels (high and low) and two 

amplitude levels (high and low) that each of the 21 rhythms could be played at, creating 

21 x 2 x 2 = 84 different stimuli. By having only two levels of frequency and amplitude, 



 22

high and low, we hoped to ensure that the differences between each of the four frequency 

x amplitude levels would be quite strong. Table 3.3 gives the exact value, rhythm type by 

amplitude by frequency, that each of the 84 stimuli was given, and can thus be used as a 

lookup table for all further references to individual stimuli throughout this document. 

3.4 The Space Untested 

While our own selection of 21 different rhythms to use for our stimulus set was guided by 

a thorough loop of iterative testing, we by no means claim that our choices are the only 

ones that could have been made. Indeed there are many rhythms that we did not use, and 

that if studied, may well lead to further insights into tactile rhythms. As important as it is 

to understand the rhythms that we have chosen to use, it is also important to understand 

their relationship to the space of rhythms we did not choose. 

 

Right away, the choices we made in Section 3.2 sharply decreased the number of possible 

rhythms that we were working with. First limiting ourselves to only monotone rhythms, 

and then specifying a time-span that could only allow notes no shorter than an eighth of a 

bar, we made somewhat arbitary, yet we feel reasonable steps towards a choosing a well 

defined rhythm space to work within. Many other choices could be made at this level, 

such as having varying (and slower) tempos, varying amplitude of notes within a rhythm, 

using melody, using crescendos and many other musical techniques—not even to 

mention multi-bar musical compositions. All these choices could likely lead to interesting 

new developments, but they are left to others to explore. We do believe, however, that 

many of these choices represent additions of considerable complexity to the rhythm 

space, such that we feel that in most cases we chose to decrease complexity of the 

parameters we were working with. 

3.4.1 Unused Rhythms Possible Given Hardware and Sensory Limitations 

Even narrowing down our rhythm space to a more manageable size, we still had more 

rhythms than we needed for our purposes. The choices that we made to select our final 21 

rhythms are outlined above, but it is worth considering the rhythms that we did not 

choose. It is possible that some of these rhythms might be worth revisiting at a later date, 
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especially if our chosen selection of rhythms does not truly represent an even cross-

section of possible rhythms. 

 

Given the limitation set out in Section 3.2 for the size and number of notes that can be fit 

into a rhythm, we can see that for rhythms containing only quarter or longer notes, we 

have exhausted all possible rhythms that could be used. Rhythm Groups 1, 2 and 3 

specify all of the rhythms using only quarter notes, only notes longer than quarter notes, 

and both quarter and longer notes, respectively. Consequently for these note lengths we 

can be confident in the coverage of our different rhythms. 

 

However, as specified in Section 3.3.4, we were not as thorough in our coverage of 

rhythms containing eighth notes. There are 256 rhythms containing only eighth notes, and 

though many of them are likely the same due to repetition, we still only use four. Though 

these four do have a good level of variance in terms of the number and placement of 

notes, we neglect many of the more complicated rhythms that could be created, as well as 

any rhythms with just one eight note separated by pauses on both sides (this because we 

were echoing the rhythms in Group 1, replacing one quarter note with two eighth notes). 

These more complicated rhythms could well have produced interesting, more nuanced 

results, yet for this initial exploration it was thought best to start with relatively simple 

patterns. Moreover, it was noted that the subtle differences in placement of a single 

eighth note were often very hard to notice perceptually, so we felt that fully examining 

this space would lead to diminishing returns. 

 

Considering the combination of eighth notes with other, longer notes, there are yet more 

possible combinations that were not used. In rhythm Group 5, we combined eighth notes 

with longer notes, but many other possibly arrangements remain. Again, we felt that we 

had a fairly reasonable cross-section of different numbers and placements of eight notes, 

but by no means exhaustive. Taking, for example, rhythm 18 (containing a two-thirds 

note followed by two eighths), we could have also made this rhythm using just one eighth 

note, placing it either in the last or next-to last slot. While one of these rhythms might 

have produced slightly different results than rhythm 18, it is doubtful it would have been 
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greatly different, given the shortness of the eighth notes. Furthermore, it is almost certain 

that users would not have been able to discern the difference between the single eight 

note being in the last or next-to-last slot. This sense of diminishing returns is strong when 

considering eighth notes, given that they lie almost on the threshold of perceptual 

distinguishability. 

 

One last combination of notes that we did not use at all was combinations of quarter notes 

and eighth notes. This was largely because, as described in Section 3.2.3, we found the 

difference between these two note types to be quite perceptually weak. Beyond this, we 

deemed 21 rhythms to be a fairly large number of rhythms, and so did not want to over-

extend our reach. As we wished to test these rhythms at different amplitude and 

frequency levels, given the importance of these parameters in prior research into tactile 

stimuli, the number of rhythms we developed would provide us with a large set of stimuli 

as it was. So we chose not to use all possible rhythms that we could have, mostly for 

practical reasons. Nevertheless we feel that the majority of the rhythms we did not use 

would have been perceptually quite difficult to distinguish between, and we feel 

confident that the rhythms we did select represent the strongest and widest selection we 

could have reasonably chosen. 
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Chapter 4: Subset Data Gathering Methodology for 

MDS 
In order to be able to analyze the large sets of haptic stimuli that we are creating, we need 

to gather dissimilarity ratings from users that we can then feed into the MDS algorithm. 

However, collecting judgment data from people on that many stimuli at once is unwieldy 

and impractical. Our insight is to present users with less than the total stimulus set, and 

then create a total, aggregate view of the stimulus set by averaging overlapping data from 

multiple users. If we gather data simply by presenting users with pairs of stimuli and 

asking them to rate their similarity, it is easy to safely use a subset of possible stimulus 

pairs in a set, but pairwise comparisons also take far too long to perform and suffer from 

calibration and drift problems as subjects are being asked to make absolute judgments. 

Conversely, using a different data gathering method such as asking users to sort the 

stimuli into different groups based on perceived similarity is a far quicker task, but makes 

splitting apart the stimulus set much harder. Herein we address these challenges by 

developing a means of sorting stimulus sets that allows us to present users with only a 

subset of the total stimulus set, greatly shortening the total time and effort required of an 

individual asked to provide perceptual judgments. In practical terms, this brings about a 

three-fold increase in the number of stimuli that can be examined (from 50 to about 150). 

This is a significant result for tactile stimuli which are particularly difficult to gather 

perceptual data from; further, 150 may approach the limits of distinct stimuli that can be 

displayed and eventually learned given today’s tactile display hardware. 

 

The challenges imparted by this new data gathering method are of two types. The first is 

in development of an algorithm for splitting up a stimulus set into subsets that can be 

sorted individually by users and then successfully stitched back together again to form an 

aggregate picture. Secondly this method faces several challenges in its experimental 

validity, there being some potentially confounding effects of judgments gathered from 

only part of the total stimulus set. As we are proposing a novel method for gathering 

dissimilarity data for MDS, and several potential problems are clearly extant, a means of 
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validating this method must be developed and applied in a real-world experiment. This 

validation process is described in Chapter 7, but first in this chapter we outline the new 

data gathering method and discuss its strengths and weakness. 

4.1 Other Methods for Dealing with Large Set Sizes 

One of the limitations of the basic MDS procedure is that it requires a dissimilarity rating 

for every pair of stimuli involved. A dissimilarity matrix for a stimuli set of size n 

contains n(n – 1)/2 dissimilarity values (since the dissimilarity ratings are symmetric it is 

only a half matrix, hence the division by two). Consequently the number of dissimilarity 

values required increases quadratically with the number of stimuli. As the number of 

stimuli being compared becomes large, it is an increasingly laborious task to gather all 

these dissimilarity values. Subject fatigue and loss of calibration quickly become a 

problem.  If we are to study a set of 84 (or more) different haptic stimuli using MDS, then 

we will need a method of gathering data that overcomes this problem of size.   

 

Tsogo et al. performed a review of established data gathering techniques for dealing with 

oversized sets of stimuli [25], i.e. set sizes which are too large for the acquisition methods 

available for those data. According to their review, there are two main simplifying 

approaches available to mitigate this problem: using incomplete dissimilarity matrices, 

and gathering comparisons via sorting tasks, rather than individual pair-wise 

comparisons. Both of these methods reduce the length of time and amount of work 

required from users to gather perceptual data, but both eventually come up against hard 

limitations as to the total number of stimuli they can handle.  In this context “pair-wise 

comparisons” is the method whereby each possible pairing (disregarding order) of two 

different stimuli in a set are presented to a user, who is then asked to provide a rating of 

similarity; a “sorting task” is the method whereby users are presented with the entire 

stimulus set and ask to “sort” or categorize them into groups according to perceived 

similarity. A third data gathering method that we would also add to Tsogo’s accounting is 

the use of a pre-determined scale that can be applied individually to each stimuli. In this 

case, the user is presented with each stimulus individually, and asked to rate it on a pre-

determined Likert-type scale, as used by Van Erp, for instance, to study tactile melodies 
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[27]. Since this method requires only one judgment per stimuli, it is only O(n), while 

pair-wise comparisons require the full O(n2) comparisons. Sorting tasks require a number 

of comparisons between those two extremes, though the exact number is not fixed due to 

its dependence on the individual sorting strategies of each of the users. Nonetheless, these 

three techniques span the range of data gathering methods for MDS, each with their own 

strengths and weaknesses, to be discussed below. 

4.1.1 Incomplete Dissimilarity Matrices 

The insight behind incomplete dissimilarity matrices is that it is not always necessary to 

have difference ratings for all pairs of stimuli from all subjects.  Spence and Domoney 

[22] investigated how incomplete dissimilarity matrices can be dealt with in perceptual 

MDS methods, when the data comes from a standard pair-wise comparison task. For 

every dissimilarity value d(i,j), comparing the ith to jth stimulus, a pair-wise comparison 

task requires that those two stimuli are presented to a user, and that the user provides a 

rating of how perceptually similar the two stimuli are. In this case d(i,j) = d(j,i) because 

judgments are symmetric and the order of stimuli does not matter, requiring n(n – 1)/2 

total dissimilarity values. 

 

Spence and Domoney make two important claims. First, that for an individual, it is not 

necessary to have a complete dissimilarity matrix in order to get an accurate result from 

MDS, though each stimulus must have at least one dissimilarity value (connecting it to at 

least one other stimulus in the matrix), and it should be possible to move from any one 

stimuli to any other, by chaining along dissimilarity values (i.e. there are no unconnected 

islands of stimuli). Second, that since each judgment in a pair-wise comparison task is 

independent, it is possible to combine multiple incomplete dissimilarity matrices from 

different users to create an average, complete dissimilarity matrix. The first claim frees us 

from having to always guarantee that each individual compares every stimulus in the set, 

while the second claim means that we can combine dissimilarity values from different 

individuals to make a total, averaged picture—though unfortunately Spence and 

Domoney’s work on incomplete matrices was performed on data from individuals, rather 

than averaged values, so the combinations of these two claims cannot be directly made.. 
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Most encouraging of Spence and Domoney’s results was their finding that even with one-

third of the entries in an individual’s dissimilarity matrix removed (either at random or in 

a cyclical pattern), the resulting difference map (MDS output) varied less than 10% from 

the map derived from the complete matrix. This result is promising, indicating that we 

need not be overly concerned with getting every difference rating for a set of stimuli. 

That there is a certain amount of looseness to how many difference ratings must be 

gathered, and from whom they must be gathered from, gives us much greater room to 

devise new data gathering methods of our own. 

 

However, if we wish to gather only particular dissimilarity values in either a cyclical or 

random fashion as Spence and Domoney recommend, we are required to use pair-wise 

comparison between each stimulus, because it is the only technique that allows you to 

individually pick the exact dissimilarity values you want without getting any other 

values, unlike other data gathering methods such as sorting. The number of pair-wise 

comparisons needed for a set increases exponentially with the number of stimuli. 

Removing one-third of all entries may be a fairly large amount, but it is still one-third of 

a quadratically increasing amount, meaning that the incomplete dissimilarity matrix 

method will always eventually run into issues of having too many stimuli to judge in one 

experimental task. Furthermore, pair-wise comparisons have been found to have almost 

twice the level subjective fatigue as compared to sorting tasks [1]. So this method is 

limited both in number of stimuli that can be compared as well as accuracy of ratings 

given. 

4.1.2 Sorting Tasks 

Whereas Spence and Domoney show that it is not necessary for each participant to 

compare every stimulus to every other stimulus in the set, the sorting task method seeks 

to make the act of comparing stimuli much more efficient by having subjects compare all 

stimuli at once and sort (or categorize) them into discrete groups based on perceived 

similarity. Dissimilarity matrices can then be created using the number of times that two 

stimuli occurred in the same group as a measure of their similarity (and inversely, their 
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dissimilarity). Often participants are required to sort the stimuli multiple times into 

different numbers of groups, in order to give varying levels of resolution.   

 

A variant of this method was used by MacLean and Enriquez [19] and analyzed in [20], 

to determine the perceptual characteristics of a series of haptic stimuli. Their results show 

that allowing users to sort a large set of stimuli into different numbers of groups provides 

a strong and robust measurement of the perceived differences between a fairly large set of 

stimuli, while greatly shortening the overall time of the experiment. Unfortunately, even 

this method is still limited in the number of stimuli that can be judged. Maclean and 

Enriquez tested 30 stimuli in their study, a number significantly lower than our own goal, 

and informally guessed that a maximal reasonable set size by this method and using 

stimuli of this sort is 40 or 50. 

4.1.3 Per-stimulus Judgment Tasks 

The per-stimulus judgment task is a particular type of data gathering method, that differs 

largely from the previous two methods in that it provide a confirmatory rather than 

explanatory description of the stimulus set. Van Erp and Spape [27], in a study 

particularly relevant to our own, analyzed 59 different tactile melodies by asking 

participants to judge the melodies according to 16 different pre-determined criteria such 

as “cheerful” or “polished,” each on its own 5-point Likert scale. This allowed them to 

get judgments on all 59 melodies within a reasonable time-span and gave them data to 

which they were able to apply MDS. However, it is clear that they approached the data 

with a fixed belief about what aspects of the stimuli would be important to peoples’ 

perceptions—specifically the 16 criteria on which they asked participants to judge the 

stimuli. Though one could, by finding unexpected correlations between parameters, 

perhaps indirectly discover new features of the stimulus set, it would be difficult to 

directly discover any completely new and unforeseen perceptual parameters. While this 

technique may be acceptable when some idea about the nature of the stimuli already 

exists, in our own case we know so little about the stimuli that we wish to make no 

assumptions about how people will perceive them going into our experiment, so as to 

minimize any bias we might have on the results.  
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4.2 Design of Proposed Subset Data Gathering Method 

Though the methods described in Section 4.1 have been widely used to handle large sets 

of stimuli, they still fail to sufficiently reduce the time and effort needed to gather data 

for the goals defined here. Though the per-stimuli judgment task would be fast enough, it 

contains too many assumptions about the stimuli for our purposes. Both sorting tasks and 

incomplete matrices are valid attempts at reducing the number of comparisons needed to 

get useful MDS data, but again, take too long to be practical. Sorting 84 haptic stimuli 

takes approximately two hours to perform.  

 

Yet it might seem strange that we so quickly came to the limits of the existing methods 

for dealing with large stimulus sets. The reason this is so is because of the nature of 

haptic stimuli, especially in our own case. With a two second duration, the comparison of 

any two stimuli will take at a bare minimum four seconds, and likely much more if an 

individual wishes to feel the stimuli multiple times. Compared to visual stimuli, which 

can be viewed simultaneously and in the manner of a few milliseconds, it quickly 

becomes clear why data gathering for our own stimuli is so much more difficult. Add to 

this the general lack of experience people have with haptic stimuli (compared to aural or 

visual stimuli) and we are confronted with a situation where the cost of each single 

comparison is considerably higher for haptics compared to other modalities that MDS is 

regularly used for. 

 

Given this difficulty, we asked whether the sorting task could be combined with 

incomplete matrices to further cut down on the number of comparisons need to gather 

perceptual data. This idea forms the basis for our novel MDS data gathering method: 

using a sorting task on a subset of the total stimuli, and building up an aggregate result by 

piecing together dissimilarity data from multiple differing subsets. By using less than the 

total number of stimuli in a sorting task, we can ensure that a participant will be able to 

complete their experimental task within a reasonable timescale. However, splitting up the 

simulus set into subsets creates several difficulties which are discussed throughout the 

remainder of the chapter. As soon as each participant no longer experiences every 

stimulus in the set, many potential issues arise of study design (which and how many 
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stimuli should they get) and study validity (can judgments given from only a subset of the 

stimuli apply to the whole). 

 

Through informal testing it was determined that a subset of size 50, with 3 complete 

sortings into 3 different numbers of groups, would take a participant roughly an hour to 

complete, and so this became our target subset size. By giving participants different 

subsets that cover different portions of the set of stimuli, we can gather dissimilarity data 

about all of the stimuli in the total set. Averaging together the results from the different 

participants can then give us a total picture of the perceptual space for a given set of 

stimuli. What this subset method of gathering MDS data does is essentially forego 

unreasonably long individual experiment session durations by using a larger number of 

participants to gather the same amount of data. 

4.2.1 Creation of Subsets 

The primary challenge to this new method is in determining how large to make each 

subset, and how to distribute stimuli amongst subsets in order to ensure each individual’s 

results can be aggregated into the whole to produce accurate overall judgment ratings. 

Because we wished to avoid biasing results, we chose to create random subsets, giving 

each random subset to just one participant to judge. We hoped this would minimize data 

bias due to the way a particular subset was perceived. However, the creation of random 

subsets is actually a somewhat more complicated matter if we are concerned with gaining 

an even coverage of judgments across the entire dissimilarity matrix. Uniform coverage 

is desirable because it minimizes the number of participants needed in order to achieve a 

required number of observations for each point in the matrix. 

 

To this end, we developed a program that attempts to minimize the number of 

randomized subsets required to ensure that each value in the dissimilarity matrix has at 

least the specified number of observations. The algorithm is given the total size of the 

stimulus set that is to be used, the size of the subsets desired, as well as the minimum 

number of observations that each point in the dissimilarity matrix needs to have, and 

produces as many randomized subsets as is required by the given parameters.  
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Unfortunately it is non-trivial to produce a group of subsets which provide only the 

requisite number of observations to each point, due to the fact that every stimulus that is 

added into a subset will be compared with all other stimuli in the subset. For example, if 

a subset contains stimulus 2, and we are still lacking comparisons of stimulus 2 with 3, 

and 2 with 4, it is impossible to get those comparisons without also getting a comparison 

between 3 and 4. If another subset already exists with stimuli 3 and 4, then an overlap 

between the two subsets is unavoidable. This problem becomes progressively more 

complicated as the number of subsets increases, requiring more and more comparisons in 

order to achieve a minimally overlapping set. We have dealt with this problem with the 

following algorithm. 

 

Description of Subset Algorithm 

Our algorithm contains a two-dimensional array which keeps track of the number of 

observations (NO_cur) for each value in the dissimilarity matrix, and tries to make sure 

each value reaches the minimum number of observations (NO) without going over. It 

does this by continually adding in stimuli to new subsets, trying to bring NO_cur up to 

NO for each value. Thus at all times a list is kept for each stimulus detailing how many 

observations are needed against which other stimuli. This list is called a stimulus’ free-set 

(as in, there exists free space to add in new observations), and it is essentially a list of 

stimuli that this stimulus still needs to be compared with (which means they must appear 

in the same subset). 

  

The algorithm begins by selecting the first stimulus to be placed in a new subset, 

choosing the stimulus with the largest free-set (i.e. the largest number of stimuli it still 

needs to be compared against).  Thus the most “greedy” stimuli are always dealt with 

first. Then the following loop begins: 

• A stimulus is selected that is in the free-sets of all the simuli already in the subset.    

• If there is not one single stimulus that all the stimuli already in the subset have in 

their free-set (as is often the case), then the new stimulus is selected according to 

the following criteria (in decreasing priority): 
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1. The new stimulus should occur in the largest number of free-sets of stimuli 

already in the subset. If the stimulus is not in an already selected stimulus’ 

free-set, the previously selected stimulus will end up with more than NO 

observations for that point. By minimizing the number of values in the matrix 

that receive more than NO observations, we ensure that we get as even 

coverage of observations as possible. 

2. Provided the new stimulus is in as many free-sets as possible, the next check 

is how much of its own free-set overlaps with the other stimuli’s free-sets. The 

stimuli with the largest amount of overlap is chosen. This will increase 

likelihood of meeting criteria 1  when more stimuli are selected in the future. 

3. The new stimulus should have the largest free-set possible (ie, it should be the 

most “greedy”). Though ultimately, the greedy stimuli need to be dealt with 

most urgently, if we only ever grabbed the greediest stimuli without regard to 

anything else, we might quickly reach a point where it is impossible to add in 

new stimuli to the subset without creating many values in the matrix with 

greater than NO observations. 

• Once the new stimulus is chosen, it is noted which required observations have 

now been accounted for (and which non-required observations have now been 

added as well). 

• The process then repeats itself until the subset has been filled, and then starts 

again on a new subset until all required observations have been filled. 

 

Pseudocode 
User specified constants: 

 

NO - minimum number of observations needed for each value in 

 dissimilarity matrix 

Stimulus_set_size - size of the total stimulus set to be used 

Subset_size - size of subset to be used 

 

Main Loop: 

 

Variables: 

MATRIX - 2D array, of Stimulus_set_size, used to keep track of how many  
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 observation each value in the dissimilarity matrix will have,  

 given the subsets thus specified 

NO_temp - number of observations that we wish to obtain in this 

iteration of the loop 

 

For NO_temp = 1 to NO  

 While MATRIX still has values < NO_temp, do 

 

  Call CreateSubset 

 

  Add observation to MATRIX caused by new subset 

 

  Save new subset to file 

 

 End loop 

End For 

 

CreateSubset: 

 

Variables: 

SUBSET - array returned containing all stimuli in this subset 

STIMULI - array of all available stimuli that could still be added  

 to SUBSET 

 

While SUBSET < Subset_size Do 

 

 Populate STIMULI with all stimuli not in SUBSET 

 

 // 

 // First Criterion 

 // 

 For each stimulius in STIMULI 

  number_of_conflicts = how may values in MATRIX would  

     be > NO_temp, if stimulus was added to SUBSET  

   

  If number_of_conflicts < min_conflicts, 

   min_conflicts = number_of_conflicts 

 End For 

 

 Remove all stimuli from STIMULI with   

     number_of_conflicts > min_conflicts 

  

 If size of STIMULI is one,  
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  add remaining stimulus to SUBSET, iterate loop 

  

  

 // 

 // Second Criterion 

 // 

 For each stimulus in SUBSET 

  free_list = list of stimuli that still need to be compared  

     to stimulus in order to reach NO_temp 

 End For 

  

 subset_free_list = intersection of all stimuli's free_list 

  

 If subset_free_list is empty, 

  skip to Third Criterion 

  

 For each stimulus in STIMULI 

  free_list = list of stimuli that still need to be compared  

     to stimulus in order to reach NO_temp 

  

  overlap_size = size of intersection of free_list  

     and subset_free_list 

   

  If overlap_size < min_overlap, 

   min_overlap = overlap_size 

  

 End For 

 

 Remove all stimuli from STIMULI with overlap_size > min_overlap 

 

 If size of STIMULI is one,  

  add remaining stimulus to SUBSET, iterate loop 

  

  

 // 

 // Third Criterion 

 // 

 For each stimulus in STIMULI 

  free_set_size = number of values in MATRIX along stimulus'  

     row or column that are < NO_temp 

   

  If free_set_size < min_free_set_size, 

   min_free_set_size = free_set_size 
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 End For 

  

 Remove all stimuli from STIMULI with  

     free_set_size > min_free_set_size 

   

 If size of STIMULI is one  

  add remaining stimulus to SUBSET, iterate loop 

 Else 

  randomly choose stimulus from STIMULI,  

  add to SUBSET, iterate loop 

 

End Loop 

 

Problems with algorithm 

Because this algorithm was not the focus of this thesis, the actual end program written 

takes one major shortcut for the sake of efficiency and simplicity. In order to find a truly 

minimal number of subsets, the calculation performed for Criterion 2 should not just 

check whether the next stimuli will have a maximum amount of overlap with the free-sets 

of the stimuli in the subset, but should also check whether stimuli that are in that 

overlapping free-set, if chosen, would produce good results. That is to say, it is possible 

that choosing a stimulus that has a smaller amount of overlap compared to some other 

stimulus might actually work out better in the long run, because the stimuli that are in 

that overlap might in fact be better choices than the stimuli in the larger overlapping free-

set. That is, choosing these stimuli might not lead as quickly to a point where the only 

stimuli that can be added in will create overlap points where the number of observations 

is greater than NO. We realized this error, but had to cut short our development time in 

order to proceed with the rest of our research. 

 

Consequently the subsets created are not necessarily the most mathematically optimal 

non-overlapping subsets, though for our purposes they do provide reasonable coverage 

and randomization (see Appendix C for examples of actual subsets used in our studies). 

One exception to this is the tendency for the distribution of overlapped and non-

overlapped points to clump together, as stimuli chosen in earlier sets tend to be used less 

in the later sets, which are more constrained in which stimuli they can select. A more 
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thorough and mathematically complete algorithm could be developed, but is outside the 

scope of this work. This effect can be seen clearly in Chapter 7, Sections 7.2 and 7.3, 

where this subset method is used in a full study and its results are discussed. 

4.2.2 Robustness and Scalability 

As this new data gathering method is designed to accommodate larger sets of stimuli, it is 

reasonable to ask how large a set this method can handle. The tradeoff that our method 

offers is that instead of increasing the length of time that a particular individual must 

spend judging stimuli, an experimenter may simply increase the number of individuals 

judging stimuli, with the amount of time per individual staying constant. Once an 

experimenter has figured out how large a stimuli set a person can be reasonably expected 

to sort within a target time frame (usually an hour), and decided what the minimum 

number of observations each point in the aggregate dissimilarity matrix should have, then 

our subset algorithm will be able to provide as many subsets as needed to acquire the 

requisite number of observations. At this point it is simply an issue of finding enough 

participants to run through each of the subsets, and then the data will be collected. Thus, 

theoretically, whatever the set size, it is only an issue of using enough participants in 

order to gain the necessary data. 

 

However, in reality there are several concerns in regard to the scalability and robustness 

of this technique in the face of increasingly large stimuli sets. The first is the size of the 

subsets used to gather judgments: the smaller the subset, the more participants required to 

gather data, as well as the greater the potential for disagreement in judgments from 

different subsets, especially if the superset is large or perceptually complex. Another 

concern is the number of subsets (and thus participants) that will be required to satisfy the 

total number of observations specified. Last is the number of overlapping observations 

required in order to overcome any variability brought about by the large number of 

different participants contributing to the overall average, as well as any noise brought 

about by subsets whose small size might create idiosyncratic judgments from 

participants.  
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Size of Subset Required For Data Collection 

One of the first issues an experimenter must deal with when using the subset method is 

determining the size of the subsets to be used. In order to gather the necessary judgment 

data as quickly as possible, as large a subset size as possible is desired (the exact benefit, 

in terms of decreased number of participants, is discussed later below). Consequently, it 

is suggested that through trial runs with sample participants, the maximum size of 

stimulus subset that can be sorted within a reasonable timeframe (usually about an hour) 

be determined for a given hardware and stimulus set combination. However, the 

maximum size is not the only concern with regard to subset size: there is also the issue of 

whether there is a minimum size which a subset must be larger than, in order to gain 

judgments that, when averaged together, will accurately reflect the entire stimulus set.  

 

Though finding a time-driven maximum subset size is not overly difficult to determine, 

the issue of minimum subset size is slightly less clear-cut. Small subset sizes would limit 

the number of different stimuli a participant was exposed to, giving them a smaller 

“world view” from which to make their judgments. While their judgments within this 

world view would be valid, averaging them with other judgments that came from 

different world views would likely cause noise in the data. It is always possible to gather 

more observations in an attempt to counter the noise, but if the subsets were different 

enough it could be that no amount of observations could cause the values to converge in 

agreement. 

 

What would likely determine if a given subset size was too small to produce converging 

results would be the actual number of underlying perceptual dimensions of the total 

stimulus set. The more perceptually complex the stimulus set (i.e. the more dimensions it 

has), the more variability there might be in judgments from different subsets. If the 

stimuli were only ever perceived as being “A” or “B” then even with very small subset 

sizes, there would likely be very little disagreement about how each of the stimuli were 

grouped. It is when there is a wide variety of stimuli that subsets can end up with far 

more of one type of stimuli than another, and perhaps another type of stimuli not present 

at all. It is this type of uneven distribution that would cause greater variability between 
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subsets and thus would require greater numbers of observations to counteract. This 

creates a somewhat paradoxical situation: how can we know how complex the stimuli set 

is (and thus the size of subset needed), when that is the very thing that MDS is supposed 

to discover? 

 

Thankfully, practical considerations ensure that we rarely come truly face-to-face with 

this issue. To begin with, as alluded to above, and discussed more thoroughly below, very 

small subset sizes are quite impractical since they require a huge number of subsets (and 

thus participants) even to gain a bare minimum number of observations. Secondly, when 

deciding upon a stimulus set to study, experimenters are rarely without any intuition as to 

how many perceptual dimensions there might be—it is usually clear roughly how 

perceptually complex a set of stimuli is. Furthermore, in analysis of perceptual MDS 

results, it is very rare to deal with a result of dimensionality greater than 4 due to 

problems of visualization; a quick review of papers involving perceptual MDS finds very 

few analyses larger than even 3 dimensions. Consequently the level of perceptual 

complexity that a stimulus set has is often specifically designed in order to ensure its 

interpretability. This does not mean experimenters could not unwittingly produce a 

stimulus set too complex for the size of subset they specified, but careful selection of 

stimulus set, as would be done for any MDS study, will likely minimize this danger.  

 

As a general rule, an experimenter should ensure that the subset size is large enough such 

that several stimuli that exhibit any given type of parameter (and any of the particular 

levels that that parameter might have) be present in any random subset. Though, as 

discussed above, there is no guarantee that there might be unforeseen characteristics in 

the stimulus set, as long as each of the various known (or assumed) major parameters has 

some representation in each subset, then it is likely that most important perceptual 

characteristics will be gathered. The simplest way to achieve this is to have a subset size 

as close to the superset size as possible without the subset become too large to sort with a 

reasonable effort. Of course this is generally not possible (since it was too-large supersets 

that this technique was designed to deal with in the first place), and so, as the subset size 

decreases and the chances of particular dimensions of the stimulus set being left out of a 
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given subset increase, more randomized subsets (judged by more participants) are needed 

to counteract the increased level of noise and disagreement. 

 

Number of Subsets Required For Data Collection 

When each participant is tested on a unique subset, the number of subsets required is 

equal to the number of participants required. We will discuss here a version of our subset 

creation algorithm in which each participant is tested on a unique subset, which provides 

the specified number of observations in the fewest subsets possible. Repeating subsets 

with multiple participants can also be done if desired (this is, in fact, done in Chapter 7 to 

help validate the subset method), but is less efficient in terms of number of participants 

run.  

 

In our subset creation algorithm, there are three factors that affect the number of subsets 

required for an experiment: the size of the total stimuli set (NT), the size of the subset 

(NS), and the minimum number of observations required (NO). In our own practical 

experience, a bare minimum of five observations per value in the dissimilarity matrix is 

required for reasonable results, though there are exceptions, as discussed below. 

Assuming that the size of the subsets is large enough to capture significant characteristics 

of the stimulus superset, as discussed above, and holding the minimum number of 

observations constant, it is the ratio between NS and NT that affects the total number of 

subsets required. The total size of the stimulus set does not have an effect, as the 

coverage of both subset and total set grows as a quadratic function of their size, thus 

ensuring that our subset algorithm will produce the same number of subsets for a pairing 

of NS = 50, NT = 100 as NS = 5, NT = 10; there will simply be a factor of ten fewer 

stimuli in the subsets produced for the latter as opposed to the former. 

 

In Figure 4.1, we show a curve of the number of sets required to obtain at least five 

observations in each point in a dissimilarity matrix plotted against the NS/NT ratio. As 

can be seen, the smaller the ratio, the greater the number of subsets required, to the point 

that any ratio lower than approximately one third will likely require far more participants 

than any experimenter would be willing to run. What this means is that though our new 
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technique is theoretically unbounded, in reality there is a cap on how large a stimulus set 

can be tested with it. We cannot state exactly what the upper limit on total set size is 

though, because it is dependant on how many stimuli could be put in a subset. For our 

purposes, with our target subset size of 50, we would probably not want to have a total 

stimulus set size of much greater than 150. However, our target size of 50 is at least 

partly limited by our means of sorting and the nature of the stimuli themselves.  

 

Number of Observations Required for Data Collection 

The curve in Figure 4.1 represents, in truth, a lower bound for the number of subsets 

needed for a given NS/NT ratio, as NO is fixed at five, a value we have found sufficient 

for our own purposes, but may under other circumstances be insufficient. More 

observations are needed to deal with noisy data, which can result from two main causes: 

greater variance within the pool of participants, or too-small subsets. Individual 

differences will always be a factor, but the effect of subset size on the noisiness of the 

judgment data will vary from stimulus set to stimulus set. 

 

As discussed above, the likely determining factor in the size of subset (and thus the 

number of observations needed) is actually the true underlying dimensionality of the 

stimulus set. Obviously if NS was equal to NT, then all subsets would be the same and the 

only cause of variance would be from individual differences. But as NS/NT gets smaller, 

the difference between individual subsets increases, as they have less chance of overlap. 

This means that the view each participant has on the stimulus set differs by more and 

more. We advocate completely randomizing subset selection in order to cover over 

differences between subsets, so that each aggregate dissimilarity value is built up of 

values from enough different subsets so as to cover over any large, subset-specific 

variances. Given this, it would seem clear that smaller subset sizes would require a larger 

number of observations per dissimilarity value, in order to deal with the higher level of 

variance. Perceptual judgments from an NS of 2, for example, would likely differ hugely, 

and it may even be that no number of observations would ever create a complete picture 

of the stimulus set with such a small NS. 
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Thus in each case, the particular combination of NS, NT and NO that will meet an 

experimenter’s needs will have to be decided individually. Nevertheless, given a not too 

diverse set of stimuli, our method can cut the number of stimuli that need to be presented 

to a user by a third, while still only requiring a very feasible number of participants to run 

the experiment. Such a decrease is of great use for our own goals, but also of general use 

to anyone who wishes to gather perceptual dissimilarity data about a large set of stimuli. 

4.3 Potential Threats to Validity of Method  

The subset method combines two previously validated experimental methods—sorting 

tasks and incomplete dissimilarity matrices. Joining the two together, however, by no 

means implies the validity of the combination. Certain characteristics of the sorting 

method throw into question the validity of results produced by using comparisons 

collected using anything other than the entire stimulus set.  

4.3.1 Incomplete Individual Results 

Firstly, compared with the straight pair-wise comparison task where it is easy to remove 

just a single comparison (because each comparison is independent of all others), in the 

sorting task it is impossible to remove one comparison without removing all of the 

comparisons of a given stimulus. This is because in a sorting task all stimuli present are 

compared against all others, so removing one stimulus removes all the comparisons of 

that stimulus against all the other stimuli present. Thus there is no way to create an MDS 

plot from just one individual containing all of the stimuli in the set (as in the incomplete 

but completely connected set advocated by Spence & Domoney [21]), and if each 

individual is given a different subset, it also means that each individual’s MDS plot will 

involve (at least some) different stimuli. Consequently it will be very hard to compare 

individual MDS plots directly with each other, as a means of determining how consistent 

different people were in judging the stimuli set. Comparison of individual results is a 

useful tool in proving the quality of the averaged results, and the subset method is hurt by 

not having a direct means of performing this comparison.  
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4.3.2 Subset-relative Judgments 

Unfortunately, creating average results from a series of incomplete dissimilarity matrices 

is also problematic due to the inter-dependant nature of all perceptual judgments 

performed in a sorting task. In a pair-wise comparison task, each comparison is 

dependant only on the two stimuli being compared (subject learning effects over time are 

assumed to be negligible). However, in a sorting task, each stimulus is being compared, 

either explicitly or implicitly, relative to all other stimuli present, and thus a change of 

one stimulus could completely change the groupings of all other stimuli. What this means 

is that an incomplete dissimilarity matrix produced by a sorting task comparison of one 

subset of stimuli versus a different but overlapping subset of stimuli could produce 

radically different dissimilarity values even for the stimuli in the intersection of the two 

subsets.  

 

As an example, consider a total stimulus set in which one stimulus was played at ten 

times the amplitude of any of the other stimuli. If a participant was presented with a 

subset without the very loud stimulus, the relative amplitude differences of the remaining 

stimuli would seem more salient. However, if the very loud stimulus was present in the 

subset, the participant might now judge all the remaining stimuli to be at the same 

amplitude level, because the differences between the rest of the stimuli is so small 

compared to the difference between the very loud stimulus and all the rest. In this way 

the presence or absence of one stimulus could potential produce very different sorting 

strategies leading to very different results. Thus any attempt at averaging over all 

dissimilarity values could be potentially covering over a very noisy set of data, producing 

averages that essentially reflect no real-world population. However, it is not clear how 

strong an effect the relative nature of these judgments would have on the resulting 

dissimilarity matrix; or stated another way, how many repetitions, assembled from many 

participants, would be required in order to diminish the effect of this noise (as discussed 

in Section 4.2.2). This potential threat to validity is why we emphasize the randomization 

of subsets. We believe that cases of the above happening will likely be fairly rare, if the 

stimulus set is well designed. Thus if all participants are presented with a unique, 
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randomized subset, we believe that instances of this problem occurring should, on 

average, be covered over by the far greater number of reasonable, well-formed subsets. 

4.3.3 Ability to Discover Overall Perceptual Trends 

An additional problem that arises from averaging together different subsets is that due to 

overlap points, some values in the dissimilarity matrix will be averaged over observations 

from a larger number of participants than other values. This might, in essence, make 

certain dissimilarity values more “trustworthy” than others—that is, less likely to contain 

aberrant, fluke results. One option for dealing with this problem is to use some sort of 

weighted MDS, with each dissimilarity value weighted according to the number of 

observations or the standard deviation. However, by choosing to use a method that 

specifically aims to make the number of observations per value in the dissimilarity matrix 

as even as possible, we can deal with this issue without resorting to more complicated 

MDS models. Thus it will be important in experimentation to check the number of 

observations and/or consistency of the standard deviation of the various values within the 

dissimilarity matrix to ensure that they are not having an adverse effect on the MDS 

results, though we will not have a strict mathematical means of analysis for these 

features.  

4.4 Pilot Study: Initial Study on Voicecoil Vibrators  

An exploratory pilot study was run to determine the issues involved with both the 

rhythmic haptic stimuli discussed in Chapter 3, as well as the subset method of data 

gathering for MDS discussed above. The results of this study were used to inform the 

more thorough and detailed studies discussed throughout the remainder of this thesis. 

4.4.1 Apparatus 

For this study, vibrotactile stimuli were emitted from the transducers VBW32 Skin 

Stimulators from Audiological Engineering Corp. MA. The peak frequency transmitted 

by the device is 250Hz with a usable output range from 100Hz to 800Hz. The transient 

response of the device is 5ms. The experimental software responsible for presenting the 

vibratory stimuli was written in VB6, which logged results in a .csv format. The 

experiment was run on a Dell laptop running Windows XP. 
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4.4.2. Participants 

Thirteen university undergraduate and graduate students (8 females) with ages ranging 

from 19 to 36 years were recruited for this study.  

4.4.3 Stimulus Set 

Via brief preliminary psychophysical testing, two frequencies and two amplitude levels 

were determined for use with the 20 of the 21 rhythms discussed in Chapter 3. We were 

still in development of our stimulus set at the time, and so did not use rhythm 4 in our set 

(see Table 3.2 for explanation of rhythm numbers). The two frequency levels were 150Hz 

and 300Hz, and the amplitudes were defined as the maximum volume output of the 

vibrators, along with the threshold amplitude level, as determined for each of the 

frequency levels. This resulted in a set of 80 stimuli, comprised of 20 rhythms x 2 

amplitudes x 2 frequencies. 

4.4.4 Procedure 

We generally followed the method of [19]. Participants sorted the entire 80-stimulus 

rhythmic haptic stimulus set using the apparatus described above. Each participant 

completed 3 sorting tasks on the same stimulus set. At the beginning of the study, 

participants were instructed to feel each stimulus by clicking on to each numbered tile 

organized at the bottom of the screen, and to group stimuli that felt the same in the same 

boxes. Participants were also told that they could feel the stimuli as many times as they 

needed by clicking on the tile again, and were allowed to change their mind about the 

groupings by clicking and dropping the tile in the desired box. In the first sort, 

participants were told to group stimuli into whatever number of discrete, non-overlapping 

groups they felt was appropriate to describe the perceived dissimilarity between stimuli. 

For the remaining two sorting tasks, participants were required to sort the stimuli into a 

specified number of groups, either 3, 9 or 15. Of these three group numbers, the one 

closest to the number of groups chosen in the first sorting task was not used, with the 

remaining two numbers randomly assigned to the second and third sorting tasks. Having 

three repetitions of the sorting task performed on the same set of stimuli and varying the 
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number of groups that the stimuli are sorted into as we have done has been shown 

previously in haptic MDS studies to yield good resolution for perceived differences [20].  

4.4.5 Results and Discussion 

An average dissimilarity matrix was constructed from the participants’ data, and then run 

through the SPSS ALSCAL algorithm for 1 to 5 dimensions. Graphing the resulting 

stress values shows no clear elbow indicating a point of diminishing returns in terms of 

goodness of fit (Figure 4.2); instead both 2 and 3 dimensional results provide reasonable 

stress levels, while higher dimensions are somewhat decreased in improvement. For the 

sake of parsimony as well as ease of interpretation, the 2D solution was chosen as the 

primary solution for analysis, though the 3D solution is given some consideration as a 

secondary tool for analysis. 

 

Several features are immediately evident from visual inspection of the 2-D perceptual 

map (see Figure 4.3). First is the clear circular arrangement of the stimuli around the 

center of the graph. According to MacLean and Enriquez [19] this circumplex 

arrangement is a common result in perceptual MDS studies, including those involving 

haptic stimuli, resulting from judgments of stimuli as either very similar or very 

dissimilar according to the frequency and amplitude of the vibrations used, regardless of 

rhythm. This trend is further emphasized by the projection of the design parameters of 

amplitude and rhythm onto the perceptual map, as they both neatly bisect the map in 

nearly orthogonal directions. This projection is done by averaging the location of all the 

stimuli that have one value of the parameter, plotting the points, and drawing an axis 

between these points. The length and placement of these axes on the map indicate their 

overall importance in the perception of the stimuli. This result is consistent with those of 

MacLean and Enriquez who found frequency and amplitude were both extremely 

important perceptual features, as well as being highly correlated in terms of perception. 

 

The second salient point is the even spread of stimuli around the circumplex distribution 

and the general lack of clustering amongst the stimuli. A cluster of stimuli around one 

position indicates that people perceptually group them together as being related in the 
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visible dimensions. A lack of any such clustering indicates an overall level of 

distinctiveness and discernability of our stimulus set, such that even stimuli that are 

perceived as being perceptually similar to each other are nonetheless perceived as distinct 

and separate sensations. MacLean and Enriquez [19] with a similar circumplex 

arrangement, nonetheless also showed clear clustering in mid-process results, a result 

distinctly different from our own.  

 

It is noted that in that previous work, iterations were performed for the distinct purpose of 

designing non-clustered stimuli set with maximum perceptual ‘spread’, with the MDS 

result guiding adjustments. In other cases, clustering might be desirable in order to 

promote ‘family’ associations of meanings (e.g. Enriquez, Chita & MacLean [12]). 

 

Thus we are left with the question of why the MDS plot shows no clear clustering, while 

other similar studies have. Specifically we wonder what effects rhythm has had on the 

perception of the stimuli, and whether it has played any role in this lack of clustering. The 

only clear rhythm effect is the one outlier stimulus, situated far outside the circumplex of 

stimuli, which is the full 4 quarter note rhythm, stimulus 1, played at the highest 

frequency and amplitude. That this is the most distinctive of all rhythms is to be 

expected, as it was the simplest according to our interpretation of rhythm, and it was 

played at the most clearly discernable frequency and amplitude combination used. Yet 

the remaining stimuli’s marked descent into a cloud of opaque rhythm effects is made all 

the more frustrating because of the tantalizing promise of this one outlier. 

 

We are thus left with ambiguous, noisy results and several possible explanations for this 

ambiguity. Given that the experimental method used was untested, one obvious possible 

explanation is that the new data gathering method introduced too much noise into the 

data. However, since the stimulus set is also unique and untested, it could also be 

suggested that the results of this study accurately reflect the difficulties people had in 

perceiving similarities amongst rhythmic haptic stimuli. Yet another issue is that 

vibrators used to display the stimuli may have lacked sufficient dynamic range and 

responsiveness to effectively display the more complicated haptic stimuli used here. The 
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difficulty in resolving these possible explanations led us to design and implement the 

studies described in Chapters 6 and 7, hoping to determine the validity of the 

experimental method used and the true perceptual nature of the rhythmic haptic stimuli 

created. 
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Chapter 5: Methods 
The apparatus used in the pilot study − voicecoil vibrators attached to the sound-card 

output of a PC − has been used before successfully to create and test haptic stimuli. 

However, we felt that we may have been approaching the limits of this setup. The 

voicecoil vibrators were not as precise in their output as might be desired, leading to 

worries that our more complicated haptic stimuli might not be being displayed in 

complete detail. Furthermore, the voicecoils were separate from the PC, making them 

somewhat awkward to naturally introduce into regular application use. Thus when the 

opportunity arose to use prototype hardware from Nokia based on piezo technology, we 

gladly took advantage of it. It offered more precise timing and control over feedback, and 

an embedded platform that could support new haptic applications without any additional 

peripheral devices. In 5.1, we describe the hardware, a relatively new type of handheld 

haptic display on which very little haptic icon work has been done previously. In 5.2, we 

discuss the sorting program that we were required to write, in order to perform data 

gathering on the new handheld platform. 

5.1 Discussion of Hardware Platform 

The Nokia 770 (Figure 5.1) is a handheld internet tablet, with a large (90x54 mm) high-

resolution (800x480) screen, ARM-based processor, and runs a modified version of the 

Debian Linux distribution. While the 770 is already commercially available, Nokia has 

added haptic feedback to a prototype model, identified as the 770T (see [16] for details). 

Though visually identical to the 770, the 770T has a piezo-mounted touchscreen, which 

allows the screen to be pulsed with small displacements in the axis orthogonal to the 

screen, giving the sensation of a single “click” when done once, and of a continuous 

vibration when done repeatedly at tightly spaced intervals. This technique can give quite 

convincing and satisfying haptic feedback, all within the context of a handheld device. 

 

We are much indebted to Nokia for supplying us with several of these devices along with 

their technical support.  What follows is a discussion of the new hardware platform’s 
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suitability to our own ends, with regard to creating and analyzing a large set of rhythm-

based haptic stimuli. 

5.1.1 Control of Haptic Feedback 

Haptic feedback in the 770T is controlled through the use of feedback scripts, which are 

compiled into byte-code and sent to the hardware that controls the piezos. The feedback 

scripts consist of a series of commands for driving the piezos. There are five main 

commands: charge, discharge, delay, loop and voltage set. The charge command tells the 

device to begin charging the piezos and can specify the speed (by specifying the 

resistance of a current limiting resistor) that the piezos will be charged at. This creates the 

leading edge of a single “click” motion. The discharge command causes the piezos to 

discharge, thus creating the trailing edge of a single “click” motion. The delay command 

is used to specify timing between clicks and between charges and discharges. The loop 

command is used, as would be expected, to simply specify the number of times a set of 

commands should be repeated. Lastly the set voltage command sets the overall voltage 

level to which the piezos will be charged. No more than 255 total commands can be used 

in any one feedback file. 

 

These feedback files, once compiled and loaded into the hardware, can be associated with 

a given type of GUI widget (for example, a button or a scroll bar) or specific individual 

widgets, and the feedback will then be played whenever the click event for the specified 

widget is fired. The 770T hardware only has space for 16 user-defined feedback files to 

be loaded into the hardware at one time, though multiple widgets can be mapped to the 

same feedback file. 

 

In order to create sustained vibrations which can be used to make up a rhythm, 

consecutive series of closely spaced clicks had to be placed together to build up what is 

essentially a square wave playing at a given frequency. These vibrations give us the notes 

that can be used to make rhythms, while the delay command gives us the off-notes. Thus 

a single haptic feedback file could be used to make an single haptic stimulus from our 

rhythm set. 
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5.1.2 Baseline Perceptual Data 

According to [22] the most perceptually salient parameters to be varied with the piezo 

touchscreen are the duration of the voltage curve and the speed at which the leading edge 

of the curve rises. These parameters corresponded roughly to the perceived amplitude or 

“strength” of the feedback.  This claim was confirmed via our own informal user testing; 

in further agreement with [22], our testing also showed that the height of the voltage 

curve had an insignificant effect on the perceived strength of sensation, thus it was 

decided that the default voltage level of 173 V would be used for all feedback. 

 

In order to create rhythms, we first needed to determine how to make continuous 

vibrations that were distinct. This necessitated a small, informal experiment in which 

users were presented with different combinations of feedback strength and vibration 

frequency, and asked to order them from strongest to weakest. For amplitude, we used 

wave durations of 0.5 ms (low) 1 ms, 2 ms, 4 ms and 10 ms (high amplitude) and 

resistance levels starting at 13.2 (low) and moving up to 1.0 kOhm (high amplitude) in 10 

even intervals, thus controlling the sharpness of the leading edge of the voltage curve 

(curve rise time) as well as the length of the curve. High resistance levels produced low 

perceptual amplitudes because they decrease current thus slowing curve rise time 

Frequencies ranged from 150 Hz to 300 Hz, at 50 Hz intervals.  

 

From this it was found that there were generally four levels of perceived intensity of 

signal. Frequencies of 150, 200 and 250 Hz were all perceived essentially the same; they 

felt very strong and distinct to the touch. Vibrations played at 300 Hz felt much softer. 

Only the two extremes of voltage curve rise time were distinctively different, but they did 

tend to dominate the perception of curve duration. Voltage curve durations of greater than 

1 ms were found to cause no perceptual differences when occurring within a vibration, 

while the difference between 1 ms and 0.5 ms was evident, but perceptually it was 

generally overwhelmed by frequency and curve rise time. Thus for the purposes of 

creating rhythms, we selected one wave duration (1 ms), two curve rise levels (1.0 and 

13.2 kOhm), and two frequencies (200 Hz and 300 Hz). Thus we have a high and a low 
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amplitude and a high and a low frequency vibration, providing 4 different vibrations that 

we could use for our rhythms. 

5.1.3 Advantages and Disadvantages of Hardware 

From our initial experiences using the 770T, we observed that compared to the voicecoil 

vibrators as used in the pilot study, the piezo-driven 770T provided much more crisp and 

precise feedback. Though it is perhaps not able to produce as strong a sensation, the 

quick reaction times of the piezos were felt to have delivered a much more distinct 

feedback with sharp starts and stops, whereas the voicecoils had more noise associated 

with its edges, creating feedbacks that were not as well defined, feeling “mushier” to the 

touch. This, coupled with the very precise timing control provided by the feedback 

scripts, gave us hope that the 770T would have an increased expressive capability, 

making it easier to distinguish small differences between haptic stimuli, and generally 

giving greater discriminatory power to our haptic stimulus set. 

 

Nevertheless, the 770T did have its drawbacks. As mentioned, amplitude of feedback 

given was generally less than the voicecoil vibrators, but in addition to this there was a 

strong audio component to any feedback given on the 770T due to the vibration of the 

screen within the casing. This sound required noise-cancelling headphones to be worn at 

all times during any testing of feedback on the device, with fairly loud white-noise 

having to be played in order to drown out the sound, which can be fairly intrusive and 

annoying to users. Another serious drawback was the hardware limitations on the number 

of commands per feedback file and the number of feedback files that can be active at any 

given moment. Though these problems could be worked around, they did create 

difficulties in the development process and somewhat hampered the controllability (and 

ease of programming) of the overall system. 

 

Overall, we felt that the quality of the haptic feedback was well worth the switch to the 

new device. Furthermore, with an open-source operating system and a large (for its size) 

graphical display, it was felt that the 770T represented a strong platform on which to 
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develop new haptic applications, and thus was worth choosing as a device to characterize 

and study. 

5.2 MDS sorting program 

As outlined in Chapter 1, two different MDS studies were required in order to both 

perceptually characterize our new rhythmic haptic stimuli set as well as validate our new 

method of gathering perceptual data. Both of these studies require gaining perceptual 

judgment data from users. Prior to this, we had used a simple PC setup, as in the pilot 

study. However, using a handheld, Linux-based platform for our studies necessitated a 

change in the stimuli sorting program that is used to collect perceptual dissimilarity data 

from the user.  

 

For several reasons it was no longer feasible to use the box-sorting technique utilized in 

our pilot study (and developed by MacLean and Enriquez [18]); the format was too 

space-intensive to fit on a small screen, and it was felt that having the box-sorting GUI on 

a desktop PC while having the user still needing to hold the 770 and interact with it using 

a stylus would be needlessly complicated both from a usability and a technical 

standpoint. Usability-wise, it would require constant switching between two different 

tasks on two different platforms, and from a technical side, it would require detailed 

communication between handheld device and PC, as well as a complete re-write of the 

box-sorting GUI for Linux rather than the Windows platform. Consequently, we designed 

a new interface that would allow the stimuli to be sorted using strictly the 770 with no 

other devices necessary. 

 

The main limiting factor in the design of the new interface was screen space. The 

800x480, 90 x 54 mm screen does not provide enough space to simultaneously display 

buttons representing all stimuli as well as boxes which the buttons can be sorted in to.  

Especially when the user is expected to sort stimuli into a large number of groups, the 

box and buttons sizes required would be extremely small, something that is definitely a 

troublesome issue when we are relying on the hand-eye coordination of touch-screen 

interaction. The possibility of having multiple screens that the user must switch between 



 54

in order to access all stimuli and boxes was raised, but it was felt that it was important 

that all stimuli and groups be present and accessible at all times, so that no stimuli were 

neglected and all groups were at the same level of visual saliency.  

 

The method thus decided upon was to have a spatially static field of buttons that could be 

grouped by assigning different colours to the buttons, with each colour representing a 

different group. While adding colour does bring with it certain limitations, such as 

inaccessibility to colour-blind users and unavoidable affective responses to certain 

colours, we felt that this was the simplest technique that would achieve our goals of 

having all groups and stimuli present in the interface simultaneously. With this interface, 

users can feel any of the stimuli by pressing on any of the buttons, each associated with 

one stimulus. The user can then add a button to a group by selecting one of the colours 

along the bottom and assigning it to the desired button. In order to decrease confusion, an 

automatic sorting function is provided, which simply places all of the buttons, sorted by 

colour, at the top of the screen, with the un-coloured placed after it. In order to aid with 

the sorting task, users were provided with sheets of paper with coloured squares printed 

on them corresponding to all the grouping colours, where they could write descriptive 

names for each group if they so desired. This helped users conceptualize and remember 

the groups they were sorting, as well as providing insight to the experimenters about how 

users were sorting the stimuli. 

5.2.2 Loading Haptic Feedback 

We were successful in having all stimuli and groups equally accessible at all times both 

visually and physically, but hardware limitations forced us to introduce load times for 

playing some of the stimuli. As mention in Section 5.1, the 770 maps specific feedback 

files to types of GUI widgets, or specifically named widgets, but only provides space for 

16 different user-defined feedback files to be loaded at any one time. As a result of this, 

only 16 buttons can play their particular stimuli immediately after being pressed. Any 

other stimulus has to be loaded first (a process that takes no more than two seconds), 

which, in turn, unloads one of the other 16 buttons that already had its feedback loaded. 
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To load an unloaded button, the user simply presses it once to load it, and presses it again 

to feel it. Loaded buttons are indicated with a “!” next to their numbers. 

 

In order to minimize the amount of loading required by the user, both pre-fetching and a 

history queue were implemented for feedback loading. Thus eight out of the sixteen 

feedback slots were used as a history of the last eight buttons the user had pressed, while 

the remaining eight feedback slots were used to pre-load the nearest buttons next to any 

newly-loaded button. What this allowed the user to do is move from the top-left down to 

the bottom-right, having most of the buttons loaded ahead of time for him or her. 

Furthermore, since the immediate neighbours of any non-loaded button would also be 

loaded along with it, returning to feel what any given button felt like in a colour group 

would load all of the other buttons in the group provided the buttons have been sorted 

(see Figure 5.3 for an example). Though this does not remove all loading times, it does 

greatly decrease the total amount, making the sorting task less frustrating and time 

consuming for the user. 
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Chapter 6: Investigation of Rhythmic Haptic Stimuli 

(Gold Standard Study) 
In Chapter 3 we developed our stimulus set using a novel application of rhythm to tactile 

stimuli. As always with haptic stimuli, developing them was one challenge, but 

determining how they were actually perceived by people was another. The intuitive 

understanding of haptic perception that guided our design process is by no means a 

guarantor of how the stimuli will be perceived by the broader public. Especially in the 

case of haptic rhythm, on which so little research has been performed, our knowledge is 

lacking. Thus in this chapter we seek a clearer picture of the important perceptual 

characteristics of our stimulus set, and how these relate to the design parameters we used 

to create the stimuli. 

6.1 Purpose and Structure of Study 

The purpose of this study was to produce a thorough description of the perceptual 

characteristics of our rhythmic haptic stimulus set through the use of an existing, verified 

experimental method. In this study, we wished mostly to learn what characteristics of the 

stimulus set define its perceptual space—that is, the dimensions along which people 

perceive these stimuli as a group, as opposed to the engineering parameters used to 

construct them. Moreover, by using a verified method we also aim to produce a “gold 

standard” result, which our modified, subset method of data gathering can be compared 

against.  

 

To this end, we decided to use the sorting method of data gathering with the full set of 84 

haptic stimuli; and in fact, this decision influenced the maximum set size we could test 

here. Since participants sorted the entire stimulus set, there were no concerns about 

participants making judgments based on only part of the total set, and thus the resulting 

aggregate dissimilarity matrix could be taken as a reasonable representation of the 

average perception of the total stimulus set. While the sorting technique is a validated and 

widely used technique [19], it is generally used with a much smaller number of stimuli. 

Sorting a full set of 84 stimuli is a much longer and more involved process, with 
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participant fatigue becoming a major issue. At 2 hours, the experiment time is extremely 

long; realistically this was the absolute maximum set size that this sorting task can 

handle, and then only with carefully chosen subjects 

 

In order to minimize worries of fatigue, as well as trying to guarantee that our results 

would indeed constitute a “gold standard,” several slightly unusual alterations were made 

to the study. Primarily, participants were solicited directly, with the express aim of 

choosing people who were dedicated and trustworthy enough to be vigilant throughout 

the task, as well as having already had some experience with vibratory tactile stimuli. 

This would help ensure the quality of the data gathered, with the obvious proviso that it 

may not reflect entirely accurately the perceptions of the general public. Furthermore, this 

resulted in all participants, in fact, being acquaintances of the experimenter, another 

biasing factor. However it was felt that using unmotivated, inexperienced users for a 

fairly long and arduous study would almost certainly give results too noisy and 

inconsistent to interpret. Several other allowances were made in an attempt to minimize 

the strain put on participants running the study, as will be discussed in the “Method” 

section. We feel that these allowances, while deviating somewhat from the standard 

experimental method, actually help to guarantee that our results stand up in the face of 

such a large stimulus set. 

6.2 Full-set MDS study 

As a well established standard for the study of haptic stimuli, MDS studies have been 

shown to be a great tool for discovering perceptual characteristics of novel sensations 

[19]. What follows is a description of the first of the two major MDS studies performed 

in this thesis. It represents our best attempt to create a clear perceptual description of the 

rhythm-centered stimulus set we made. 

6.2.1 Method 

Six expert participants were solicited directly for the study. While relatively few, the 

demanding criteria set for the participants made recruitment difficult but meanwhile 
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ensured a smaller amount of higher-quality data. Participants were 5 males and 1 female, 

all graduate students in computer science, with an age range between 24 and 40. 

 

The experiment lasted two hours, but participants were given the choice of breaking the 

experiment up into two one-hour sessions in order to minimize the fatigue of running the 

experiment. Of the six, two chose to break the experiment up, and four chose to do it in 

one two-hour block. Participants were compensated $20 in total for the experiment. 

 

Participants sorted the entire 84-stimulus rhythmic haptic stimulus set on the Nokia 770T 

tactile platform described in Chapter 5, using the program also described there. Each 

participant completed 3 sorting tasks on the same stimulus set. In the first sort, 

participants were told to group stimuli into whatever number of discrete, non-overlapping 

groups they felt was appropriate to describe the perceived dissimilarity between stimuli. 

For the remaining two sorting tasks, participants were required to sort the stimuli into a 

specified number of groups, either 3, 9 or 15. Of these three group numbers, the one 

closest to the number of groups chosen in the first sorting task was not used, with the 

remaining two numbers randomly assigned to the second and third sorting tasks. Having 

three repetitions of the sorting task performed on the same set of stimuli and varying the 

number of groups that the stimuli are sorted into as we have done has been shown 

previously in haptic MDS studies to yield good resolution for perceived differences [20]. 

 

Because of the auditory noise made by the 770T when playing haptic feedback, users 

wore Bose Quiet Comfort 21 acoustic noise cancelling headphones during the experiment. 

While the normal procedure is to play white noise during testing to drown out the sound, 

it was felt that for obvious reasons listening to two hours straight of loud white noise 

would itself be an impediment to making well-reasoned judgments. Consequently, and 

since participants had already been selected for their trustworthiness and dedication, 

participants were allowed to listen to music self-chosen according to stated criteria, and 

told to self-monitor to ensure that no sound from the device could be heard. The criteria 

were simply that the music was consistently loud enough to mask the noise made by the 

                                                 
1 http://www.bose.com/controller?event=view_product_page_event&product=qc2_headphones_index 
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770T, and that it be emotionally neutral enough that it would not overly affect the 

participant’s mood.  The music played by the participants was periodically checked to 

ensure that it followed these criteria, and no violations were observed. 

6.2.2 Basic Results 

As per the methods of MacLean and Enriquez [19], similarity values were created for 

each pair of stimuli by taking each instance of co-occurrence in the same sorted group as 

an indication of perceived similarity, adding a similarity score to that pair proportional to 

the number of total groups used in that particular sorting task. Thus higher similarity 

values were given when two stimuli were placed together during the 15-group sorting 

task than the 3-group sorting task. These total similarity values were then subtracted from 

1000 to create a dissimilarity matrix for each subject. These individual dissimilarity 

matrices, covering the total 84x84 (symmetric) comparisons between stimuli, were then 

added together and averaged, to create an overall average dissimilarity matrix for the 

group. 

 

Analysis of MDS Plot 

The resulting dissimilarity matrix (Appendix A) was then run through the SPSS 

ALSCAL algorithm for 1 to 6 dimensions. Graphing the resulting stress values (Young’s 

s-stress Formula 1 was used) shows no clear elbow indicating a point of diminishing 

returns in terms of goodness of fit (Figure 6.1); instead both 2 and 3 dimensional results 

provide reasonable stress levels, while higher dimensions are somewhat decreased in 

improvement. Specifically, the 2D solution has an s-stress value of 0.36668 and an r2 of 0 

.47788, while the 3D solution has an s-stress value of 0.26630 and an r2 of 0.58049. Both 

s-stress and r2 values range from 0 to 1, with low s-stress values showing better fit, while 

low  r2 values show worse fit. These particular s-stress values are both relatively high, 

indicating the difficulty of fitting the data into the required dimensions; this is likely due 

to the number of stimuli used.  Furthermore in both cases the r2 values are fairly low, 

indicating that around half of the variance in the data set was not accounted for in the 

MDS model.  
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However, given our own experience with MDS plots of haptic stimuli, such levels of 

stress and r2 are not necessarily signs that the plots themselves will not yield informative 

and trustworthy results [20]. Given this, and the diminishing returns of the s-stress plot, 

for the sake of parsimony as well as ease of interpretation, the 2D solution was chosen as 

the primary solution for analysis, though the 3D solution is given some consideration as a 

secondary tool for analysis. Despite the relatively poor s-stress and r2 values, these 

solutions proved amenable to reasonable interpretation. 

 

2D Results 

Initial examination of the 2D plot (Figure 6.2) shows a clear circumplex arrangement in 

the data similar to that found in the pilot. Overall distribution of stimuli along this 

circumflex is fairly even. A few denser clusters are evident, but only as part of a general 

trend of dispersed stimuli. At best only three very large clusters could be said to exist, but 

they are almost too broad to be of any interpretive value. Instead, several grouping trends 

according to amplitude and rhythm are explored in the next section.  

 

In analysis of MDS output, our main goal is to determine how the engineering parameters 

that were used to create the stimulus set map to the perceptual parameters that 

participants used to group the stimuli. In our stimulus set, three main engineering 

parameters were used: amplitude, frequency and rhythm type. Our main method of 

projecting engineering parameters onto the perceptual space is to average the values of all 

the stimuli in a given group as defined by some parameter, and treat the resulting point as 

a centroid representing the overall group that can then be compared against other groups. 

For example, one group might be all observations for a given amplitude, and another 

group all observations for another amplitude. Drawing a line between the centroids of 

two different groups (as done for amplitude and frequency in Figure 6.2) creates an axis 

from which we can further interpret the data. The length of this line can be interpreted as 

the strength of the effect of this parameter, because the length of the line is the distance 

between the two centroids of the two groups, and in MDS maps, distance in layout 

equates to magnitude of perceptual difference. 
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Thus projection of the design parameters of amplitude and frequency onto the perception 

space shows a very strong and very clean cut trend of amplitude, but almost no trend of 

frequency whatsoever (Figure 6.2). The dominance of amplitude in distinguishing stimuli 

is as expected, and agrees with the previous results in the study of haptic stimuli [19, 18, 

20]. However the lack of effect of frequency is a unique result, counter to previous 

findings, and is discussed in the next section as well. 

 

Analysis of Standard Deviation 

Analyzing the standard deviation of the averaged values in the dissimilarity matrix 

provides encouraging results that broadly agree with the MDS output. The overall 

average standard deviation for all dissimilarity values for the matrix is 160.02, which, on 

scores of 0-1000 is fairly large, but not insurmountably so—prior research has shown 

positive results with comparable levels of SD [19]. More interesting is the distribution of 

the standard deviation over the dissimilarity matrix (Figure 6.4). Unlike the pilot study, 

where the spread of high and low points of standard deviation was, as far as could be 

distinguished, completely random, there are clearly two different areas of SD, one with a 

higher overall SD, one with lower overall SD. These can be seen as the rough square of 

low SD (light coloured squares) in the middle of the half-matrix displayed in Figure 6.4, 

and the two darker corners (high SD) of the triangle. As stimuli numbered 1-42 were 

high-amplitude, and those numbered 43-84 low-amplitude (see Table 3.3), the light 

square corresponds precisely to the area where stimuli with low amplitude are compared 

against stimuli with high-amplitude (or vice versa), while the darker areas are precisely 

where stimuli of the same amplitude level (either low or high) are compared against each 

other.  

 

This distribution of standard deviation confirms the large role that amplitude played in 

how people characterized the stimuli, as evinced by examination of individual MDS 

results: almost everyone agreed that stimuli of different amplitude levels were indeed 

different, while there was much more disagreement about the similarity of stimuli of the 

same amplitude level, differing only by rhythm. Compared to the results of the pilot 

study, these results contain considerably more structure both in terms of MDS output and 
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distribution of standard deviation. This gives us much more confidence to delve deeper 

into the MDS results in order to investigate the effect of rhythm on the perception of 

haptic stimuli (below). 

 

Quality of Judgments from Participants 

Since we are treating the results of this study as a “gold standard” truth of how our 

stimulus set is perceived, we need to feel confident that the judgments given us by our 

participants are trustworthy. The use of only six participants has been shown to produce 

consistent results (i.e. low between-subjects standard deviation, and similar overall 

structure in MDS result) for haptic stimuli before [20]. However, the use of six 

participants with a more tiresome task is a concern. Fatigue was potentially a problem for 

this experiment, given the large size of stimulus set the participants were being asked to 

sort. Mitigating this concern, we observed that four out of the six participants elected to 

perform the experiment in one large 2-hour block, preferring to “get it over with,” though 

by their own reports the task was not overly taxing. Especially with being able to listen to 

music of their own choosing, most participants reported being fairly comfortable with 

making perceptual judgments for an extended period of time.  

 

Furthermore, we find from analysis of the standard deviation that the level of 

disagreement between participants was fairly low. Aside from the trend of amplitude 

described in the above section, the level of SD is within a similar range for all values in 

the dissimilarity matrix. While we do not have a good threshold for a reasonable absolute 

value of standard deviation in a task of this type, consistency of the standard deviation 

values for the averaged dissimilarity matrix helps confirm that participants’ results did 

not suffer from random noise introduced by fatigue. Along with the strength of the MDS 

results we actually obtained, we feel that our participant pool has been shown to produce 

trustworthy perceptual judgments. 

6.3 Analysis of Frequency and Rhythm  

The clearest result from our initial data analysis was that of amplitude, neatly bisecting 

the MDS plot, indicating a strong perceptual role for our stimulus set. The strength of 
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amplitude is in accord with previous research [19], but other results require further 

examination, such as the absence of the effect of frequency, and the perceptual role 

played by the different rhythms. In particular, we will show that the frequency and 

rhythm results are intertwined, and thus discussed here in relation to one another. 

6.3.1 Frequency 

Unlike amplitude, in plotting the centroids from the two frequency (“tonal”) levels, we 

find almost no trend whatsoever (Figure 6.2); the two centroids are extremely close 

together in the middle of the MDS map. Since the frequency of stimuli did not seem to 

play a large perceptual role in dividing the overall map, it would be expected that stimuli 

with the same rhythm and amplitude but different frequencies should occur very closely 

together, which is largely, but not exactly, the case.  

 

Pairs of low and high frequency stimuli with the same rhythm are usually within at least 

the same quadrant of the map, if not much closer. For example, in the upper-left 

quadrant, high-amplitude and high-frequency stimuli 15, 16, and 17 all sit close to their 

low-frequency equivalents 36, 37, and 38, and in the lower-right quadrant stimuli 50 and 

52 are quite near their counterparts 71 and 74. However, if frequency had absolutely no 

perceptual salience, then it would have been expected that the pairs of stimuli differing 

only by frequency would have been exactly co-located, which is almost never the case. 

The observed difference in placement could be due to noise in the data, but given the 

consistency of the rest of the results, it would seem odd that there might be pockets of 

such high noise that coincidently occur between stimuli of different frequencies. In 

Figure 6.4, there appear to be no distributions of standard deviation for between and 

within frequency level comparisons, as there are for amplitude (see 6.2.2 for discussion). 

Consequently it cannot be concluded that the frequency of stimuli had no effect 

whatsoever, merely that it did not have a consistent effect across all stimuli, and that in 

total magnitude its effect on distinguishing stimuli was less than that of amplitude, or 

indeed, certain types of rhythm.  
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Possible Explanation for Lack of Effect 

This relatively small effect of frequency runs counter to the previous results of MacLean 

and Enriquez [19], who found that frequency dominated all other parameters, along with 

amplitude and waveform, among others. One potential explanation for the lack of effect 

is that the previous results were gained from continuous vibrations (in [19], of 2 second 

duration), while our results were gained from rhythms involving mostly quite short notes 

(e.g. a quarter note, the most frequently used,  lasted for just 62.5 ms). Potentially, the 

short duration of the individual vibratory notes did not allow their overall frequency to be 

clearly perceived: a quarter note would allow just 12.5 repetitions at the lower frequency, 

200 Hz (see Section 5.1.2 for frequency values used). 

 

Pasquero et al. [20] have shown that performing MDS analysis on a sub-matrix of the 

total dissimilarity matrix can effectively unfold dimensions that were hidden in the 

perceptual map for the total stimuli set; essentially, a subsection of the stimuli might have 

a local dimensionality which is suppressed by a more dominant one that applies to the 

overall set. Thanks to this fact, we were able to look only at the rhythms containing 

longer notes, in hope that the longer vibration times would allow people more time to 

perceive frequency (Figure 6.5). However, when mapped and expanded, the stimuli 

behaved similarly to the larger group: they fell in a general circumflex arrangement, with 

amplitude being the largest distinguishing factor and frequency playing a considerably 

smaller role. Though the axis of frequency was slightly larger than in the full MDS plot, 

given the small sample size of long note stimuli (16 /84 stimuli contained only half-notes 

or longer, with an average on-time of 1312.5 ms allowing 26.2.5 cycles of the lower 

frequency level) it is hard to claim any clear effects. 

 

With this explanation eliminated, only two other likely possibilities exist: either the two 

frequency levels were too similar to be consistently distinguished between, or rhythm 

dominated or masked frequency in a perceptual sense, essentially overriding any 

judgments that people might have made based on frequency. As outlined in Chapter 5, 

initial testing was done with different frequency and amplitude levels in order to 

determine values that would be perceptually quite different. These tests were performed 
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only on continuous vibrations, and not on rhythms, because we wished to avoid the 

confounding factor of which rhythm or rhythms should be tested. Furthermore, 

participants could feel each vibration for as long as they wished, furthering differing the 

sensation from the time-limit rhythms. Nevertheless, the frequency levels selected created 

sufficient perceptual separation in the continuous vibration test, and the rhythmic stimuli 

themselves were tested informally to ensure that rhythms at different frequency levels 

could be distinguished.  

 

So despite there being some a priori evidence of perceptual difference between stimuli 

played at different frequencies, it was seemingly not large enough to create a difference 

that people noted and used as a grouping criterion when combined with rhythm. Perhaps 

this lack of difference is because the two frequency levels chosen were dissimilar enough 

to create a difference, but only at the edge of creating a difference big enough to be 

perceptually important in classifying. This borderline condition might be an explanation 

for the inconsistent effect of frequency, but without a more concrete theory, we chose to 

largely ignore the effect of frequency  throughout the remainder of this analysis. In future 

work, it will be relevant to consider a larger frequency differential than that made 

possible with the present hardware. 

6.3.2 Rhythm 

In the pilot study no obvious trends over rhythm were discernable. For every possible 

common-sense grouping applied to the data, there were enough exceptions that flew in 

the face of the trend that it was impossible to be certain that we were not simply imposing 

our view of the data onto what was essentially noise. In contrast, in the results from the 

full-set study the separation on amplitude was much more obvious and pronounced, and 

some clear clustering was evident, as opposed to almost no clustering in the pilot study 

results. This gave us greater confidence that our new hardware, as well as evaluation 

using trusted experts, had in fact tapped into the real perceptual characteristics of our 

stimuli—which, though displayed on different hardware, were made using the exact same 

parameters as in the pilot. 
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Analysis of 2D Solution 

As is often the case for analysis of MDS solutions, the 2D map was used as a 

landmarking tool; its easy-to-conceptualize nature makes distinguishing the broad 

features of a solution a much more feasible task. Examining the 2D plot of our data 

(Figure 6.2), there appeared to be two breaks across from each other in the circumflex, 

and if we drew a line between these two breaks we split the perceptual maps into two 

halves roughly orthogonal to the two halves created by amplitude. This seemed very 

encouraging, pointing towards the existence of a second major perceptual axis in the 

definition of the stimulus set’s space, and since frequency had already been ruled out as a 

potential factor, the next reasonable place to look for a cause of this separation was 

rhythm. 

 

Inspecting the stimuli that fell along the left side of the map and the stimuli that fell along 

the right, it soon became clear that, barring a handful of exceptions, the stimuli along the 

left all involved rhythms that were comprised of entirely “short” notes, while the stimuli 

along the right had rhythms that contained “long” notes (see Figure 6.3). For our 

purposes, a “short” note was a either a quarter or an eighth of a bar long—thus stimuli 

from Groups 1 and 4 (see Section 3.3 for explanation) are rhythms containing only short 

notes. A “long” note is any note that is a half bar or longer; Groups 2, 3 and 5 all contain 

one or more long note. Plotting centroids for this split of “long” versus “short” note 

groups, we find an axis roughly as large in size, and orthogonal to, that of amplitude. The 

fact that such a strong grouping occurred according to pre-defined logical groupings of 

the rhythms was an encouraging result; these separations were a priori built into the 

stimulus set based on our intuitive understanding of how rhythms might be perceived. 

Finding these assumptions confirmed, at least in part, from our experimental results 

indicates that we are likely seeing evidence of peoples’ true perceptual characteristics, 

rather than chance artifacts of the experimental and data analysis process. That we found 

evidence of the perception of parameters that we built into the stimulus set might seem to 

be a self-fulfilling prophesy; however, lacking knowledge of the overall possible space of 

rhythms, some assumptions and intuitions had to be used. That we have found these 
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assumptions and intuitions confirmed experimentally indicates that we were justified in 

our original decisions, and nevertheless allowed us to notice some unexpected trends. 

 

Analysis of 3D Solution 

Attempting to find a different perspective on rhythm, the 3D MDS solution was 

examined. Arbitrarily assigning the names X, Y and Z to the three axes produced by the 

MDS algorithm, it was noted that the X-Y plane (Figure 6.6) was structured according to 

the same parameters as the 2D solution (though without the circumflex arrangement), 

with the Y axis differing along amplitude values, and the X axis differing along the “long 

note” to “short note” rhythms. However, examining the X-Z (Figure 6.7) and Y-Z (Figure 

6.8) planes, it became evident that the Z axis was defined according to a different set of 

criteria.  

 

As discussed in Section 3.2, the rhythms were constructed to fall into 5 major groups. 

Since the grouping of “long notes” and “short notes” already fell along these grouping 

trends, the 3D data was examined to see where each of these 5 groups was situated. What 

was discovered was that along the Z axis Group 2, the group containing only “long” 

notes, appeared at the very extreme end of the axis, with all the other groups spread fairly 

evenly along the rest of the axis. This seemed to indicate that there might be something 

special with Group 2, distinguishing it from the rest of the rhythms containing long notes. 

This makes intuitive sense, as Group 2 contains only long notes, while Groups 3 and 5 

contain both long and short notes.  

 

This difference manifests itself in an important perceptual characteristic of rhythm that 

will be discussed further below, namely the feeling of “evenness” or regularity, versus 

“unevenness” or irregularity of a given rhythm. At a high-level, rhythms that contain only 

notes of the same length feel even, while rhythms that contain notes of different lengths 

(or rest notes of different lengths) feel uneven. Yet given only the 3D solution, all that 

was evident was the different place of the long-note, even rhythm group; there was no 

clear evidence of evenness similarly affecting the short-note rhythms. 
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Amplitude-Independent Analysis 

The fact that in the 3D solution the Y axis accounts for most of the effect of amplitude, 

presumably allowed the Z axis to account for certain perceptual features of rhythm that 

could not be fit into the 2D solution. As mentioned above, by taking only one section of 

the total dissimilarity matrix and analyzing it using MDS, factors that were hidden in the 

larger solution can appear [20]. Thus if we remove completely the dominant factor of 

amplitude, the more subtle characteristics that define rhythm have a chance to manifest 

themselves. To this end, two sub-analyses were performed on the two halves of the 

stimulus set that had the same amplitude level. Unfolding the data in this way, it became 

clear that there were actually two perceptual axes involved in the perception of rhythm. 

As initially noticed in the 2D solution one of the dimensions was the length of the notes 

in the rhythm (presence of absence of the longest notes). The other dimension, as hinted 

at in the 3D solution, was the “evenness” of the rhythms.  

 

The 2D MDS output for all the high-amplitude stimuli is shown in Figure 6.9. As can be 

seen, the map can clearly be split into two halves of even and uneven rhythms; a large 

gap separates the two halves. Here we also see evidence of evenness of rhythms affecting 

both short and long note rhythms, which was hidden in the 3D solution. The split 

between the rhythms containing long notes and those containing only short notes is not 

quite as distinct, but still clearly observable. Initially this result may seem 

counterintuitive; the length of notes was the major discriminating factor in the 2D 

solution, so it would seem reasonable to assume that in the unfolded single-amplitude 

solution it would have the strongest effect. However, the likely cause of this is the fact 

that the “note length” axis actually contains a range of potential values, and can be 

somewhat ambiguously defined at certain points, while rhythms can be fairly 

unambiguously classified as either “even” or “uneven.” 

 

Note Length 

Generally speaking, the definition of a “long note” rhythm is any rhythm containing at 

least a one half, three-quarters or whole note. Seemingly the longest note present in a 

rhythm defines how it is perceived along this perceptual axis. Rhythms with three-
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quarters or whole notes tend to fall near the ends of the axis, while rhythms containing 

half notes fall closer towards the middle, and those containing only short notes fall 

towards the opposite end, all as would be anticipated. Furthermore, if short notes are also 

present in a rhythm, the more short notes there are relative to long notes, the further 

towards the middle of the axis the rhythm will fall. This is especially evident for rhythms 

11 and 19, which consist of a half note followed by two quarter notes or four eighths 

respectively, and both of which fall roughly in the middle between the long note and 

short note groups. This placement only serves to reinforce that note length is indeed the 

trend that is being displayed here, as the rhythms contain long and short notes in equal 

measures; their placement directly in the middle of the axis is exactly where one would 

expect them to be.  

 

The trend of note length is not perfectly consistent throughout. Given the position of 

rhythms 1, 2 and 3 in the map, it may be claimed that the number of notes in a rhythm is 

also confounded somewhat with overall note length. Seemingly by having multiple short 

notes, these rhythms have moved towards the center of the axis. Under this explanation, it 

might actually be more accurate to describe the trend as one of overall time spent with 

notes playing versus not playing: if we add up the total duration of all notes played in the 

rhythms near the center of the axis, they come to a similar total, though the number of 

notes might be quite different for each rhythm. But this description is not strictly true 

either, as the three rhythms that are the equivalent of rhythms 1, 2, and 3, but with two 

eighth notes replacing each quarter note (and therefore with the same amount of total 

playing/not playing time), are placed much farther towards the “short” end of the note 

length axis. It is sufficient to say, then, that increasing the number of notes present can 

have an effect of moving rhythms more towards the “long” end of the note length axis, 

but that effect is not stronger than the overriding effect of the longest note present in the 

rhythm. 

 

Evenness of Rhythm 

As opposed to the note length axis, the even/uneven perceptual axis is very clearly 

delineated, with essentially no middle ground between the two groups. This can be felt 
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quite distinctly when the stimuli are actually displayed on the haptic device. Even 

rhythms have a regular repeating nature in which each part of the rhythm feels the same 

as every other part, throughout the duration of the stimulus. Uneven rhythms have an 

irregular, lurching feel to them; even with our monotone, same-amplitude stimuli, there is 

an emphasized portion of the rhythm and a deemphasized portion, such that the rhythm 

has an overall two-part structure, with a perceived emphasis on the first part of the 

rhythm. The most obvious examples of uneven rhythms are those in Groups 3 and 5, 

which consist of one long note followed by a number of shorter notes. Thus the longer 

note draws the emphasis, while the smaller notes are deemphasized, creating a skipping, 

one-two emphasis within the rhythm.  

 

By only looking at the structure of the rhythms (as shown in Table 3.3), it is easy to 

conceptualize that Groups 2 and 5 might be perceived as uneven given the above 

description, yet it far less intuitive as to why rhythms 2, 3 and 15 also feel uneven, 

despite containing only notes of the same length. Yet upon feeling these rhythms, the 

sensation of unevenness is distinct. What appears to create the feeling of “unevenness” in 

these stimuli is actually the rest that occurs after the notes; the initial set of notes played 

thus creates the emphasized portion of the rhythm, with the blank occurring as the 

deemphasized portion. A caveat to this is that the rhythm must contain more than one 

note before the rest in order for it to be perceived as uneven. In the case of rhythms like 

5, 7 and 8, which all contain only one note and then a rest for the remainder of the bar, 

the rhythm is seemingly recontextualized into one longer, slower pace rhythm containing 

a single bar consisting of a note played four times, instead of a bar repeated four times 

containing one note per bar. What appears to be causing this are the different sizes of the 

blank periods in the rhythm: in 2, 3 and 14, there are the blank periods that separate each 

note, as well as a longer rest note at the end of the bar. Thus what appears to define an 

“uneven” rhythm, in terms of how our subjects have placed them here, is that it either 

contains notes of two different lengths, or blank periods of two different lengths. The 

blank space between pairs of eighth notes, however, does not seem to count towards this 

effect. Consequently rhythms such as 16 and 17 are perceived as even. 
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As a last, confirmatory point, each of the four groups, from the four perceptual quadrants 

found in the amplitude-independent data (long-even, long-uneven, short-even, short-

uneven, as seen in Figure 6.9), were individually run through the MDS algorithm (Figure 

6.10). The resulting outputs were fairly similar in layout to the full 2D solution, with 

amplitude playing the largest defining role, but now with stimuli more spread out. No 

further insights were gained into how tactile rhythms are perceived. The most significant 

result of this sub-analysis was the stress and r2 values produced by these solutions (Table 

5.1). As can be seen, stress values are lower and r2 values higher than the overall 2D 

solution. While some of this improvement can be attributed to the smaller number of 

stimuli, it should be noted that the long-uneven group has a lower stress value that the 

short-even group, even though it has 8 more stimuli. Consequently, we can see this as 

further evidence that the stimuli in these groups naturally “fit” together, as it is fairly easy 

algorithmically for MDS to deal with them. 

 

Rhythm Groupings in 2D Solution 

Returning to the 2D solution, we can see how these two axes manifest themselves when 

forced to contend with the overriding factor of amplitude (Figure 6.11). Plotting the mid-

points of the 4 groups (short-even, short-uneven, long-even, long-uneven), several 

features can be noted. Firstly, the mid points all fall roughly in a line orthogonal to the 

line of the axis created by amplitude. Secondly, it is clear that of the two factors, note 

length has a stronger effect than evenness of rhythm, such that stimuli are grouped first 

by note length, and then within that group they vary according to evenness of rhythm. 

However, by introducing unevenness as a criterion, it explains the position of several 

stimuli whose placement was somewhat counter to the trend using strictly note length. 

For instance, without considering evenness stimuli 44 and 45 appear to wrongly be 

positioned with the long-note rhythms, despite consisting only of quarter notes. With 

evenness considered, it becomes evident that 44 and 45 are uneven rhythms, and are 

actually positioned in a group containing long-note rhythms as well as uneven rhythms. 

This result gives further weight to the claim that these two dimensions of rhythm are truly 

being perceived by people and that this is not a case of over-analysis of the data. 
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6.4 Summary  

In Chapter 3 we created a set of 84 different haptic stimuli by varying three design 

parameters: amplitude, frequency and rhythm. In this chapter, we set about studying how 

these stimuli were actually perceived when presented to users. Since the other main 

challenge this thesis deals with is how to present such a large number of stimuli to users, 

certain concessions had to be made in order to successfully examine these stimuli. 

Nevertheless, the results we achieved were extremely encouraging, especially in regards 

to the effect of rhythm within tactile stimuli. Our analysis showed clearly that different 

aspects of rhythm could be distinguished, and that coupled with amplitude could create a 

very wide range of perceptually different haptic stimuli. 

 

Our study consisted of asking six expert users to sort all 84 stimuli into groups, using the 

standard sorting method of data gathering for MDS. Since sorting 84 stimuli using a 

small handheld display is quite a tiresome task, only devoted and diligent participants 

were solicited. An elite subject pool is not always possible to recruit, and nor are its 

results necessarily reproducible by the general public. Yet despite the challenges in 

gathering participants, their willingness to accept a more difficult commitment and their 

prior experience and knowledge in the field made certain that data quality was high, and 

gave it credence in establishing ground truth.  

 

After gathering the subjective perceptual data and running it through the MDS algorithm, 

we performed analysis, primarily on the 2D solution. We found amplitude to be the 

strongest perceived differentiating factor, while frequency was almost completely absent 

from the picture. The strength of amplitude agreed with previous findings [19], but the 

lack of frequency did not, an effect that can mostly be explained by the strong role of 

rhythm (which was conversely not present in the earlier analyses).  

 

From our analysis, it appears that the two primary characteristics on which our rhythms 

are distinguished between are the length of the longest note present in a rhythm, and the 

“evenness” of the rhythm (“even” rhythms only have notes and rests of the same length, 

“uneven” rhythms have notes or rests of different length). Controlling for the effect of 
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amplitude, these two criteria are perceived roughly orthogonally, with note length being 

the slightly more dominant of the two. Though the rhythms that we tested in our stimulus 

set do not by any means cover the range of all possible rhythms, their simplicity should 

make these trends quite generalizable. Indeed, the consistency with which these two 

criteria were used to judge our rhythms is very encouraging, and should prove extremely 

useful to those wishing to use tactile rhythms in the future. 

 

Our results have provided interesting new insights into how tactile stimuli are perceived, 

and specifically how haptic stimuli can be designed in order to maximize both perceptual 

differentiability and grouping. Furthermore, using an established, validated technique 

with committed, expert users has provided us with a clear “gold standard” as to what 

constitutes ground truth for the human perception of this stimulus set. Thus we now have 

an empirically derived standard that can be used to compare the results from our as-yet 

unvalidated novel data gathering method, a goal we pursue in the next chapter. 
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Chapter 7: Subset Method Validation Study 
In Chapter 6, we examined our haptic stimulus set through the use of the sorting method 

often used to gather MDS data on haptic stimuli [19] [11] [18]. However, using this 

method with the full set of 84 stimuli created an extremely arduous task which was 

demanding even for skilled participants—problems outlined in depth in Chapter 6. In 

fact, if our total stimuli set had been any larger, we likely could not have performed the 

full-set study at all, sorting 84 stimuli at once being about the absolute maximum that 

could be done by a single participant. Consequently, this makes the full-set study 

described in Chapter 6 a unique, one-off experiment. With the goal of creating a general, 

easy-to-use method for evaluating large numbers of haptic stimuli, a less arduous 

technique must be developed.  

 

As proposed in Chapter 4, by combining several existing methods that deal with large 

stimulus set sizes in MDS, we devised the subset method of data gathering for MDS that 

allows users to sort only a subset of the total stimulus set, thus greatly shortening 

experiment times, loosening restrictions on potential participants, and yet still producing 

a total picture of the perceptual space of a given stimulus set by averaging over a series of 

overlapping subsets. The cost of this method is in requiring a considerably larger number 

of participants for a given set size (to obtain sufficient overlap and reduce noise due to 

between participant variability), as well as the increased complexity of experiment design 

and analysis. 

 

This chapter is concerned with validating the accuracy of this new method, by testing the 

hypothesis that the subset method of data-gathering for a perceptual MDS analysis can 

produce results comparable to the normal, full-set sorting method, but with a 

considerably shorter and less taxing experimental task. Thus, in addition to providing 

new results about rhythm stimuli, the full-set study also played the role of “gold 

standard” in this scheme.  
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7.1 Validation Overview 

As discussed in Chapter 4, our main concern with collecting dissimilarity data from 

subsets of the total stimuli set is that the specific composition of each subset might affect 

how participants judge each stimulus. As an analogy, consider a quiet library in which 

everyone is whispering: if someone were to talk at a normal voice level, they might be 

considered “loud” compared to everyone else being “quiet.” But if someone were then to 

start yelling, the person talking at a normal level might also be considered “quiet” 

compared to the “loud” yeller; conversely, the yeller might be considered “very loud” 

while the normal talker would still be “loud.” Thus a subset without the yeller might 

produce different results across the board compared to a subset with the yeller. This is 

essentially a question of relative versus absolute judgments, and how great their effect 

might be on judgments within a subset. 

 

At a slightly higher level, we are also concerned that participants might miss some of the 

larger patterns existent in the stimuli due to their lack of representation in the particular 

subset that participants are presented with. Especially if there is a small but highly 

distinct group of stimuli, there is a definite chance that some subsets might not have any 

of these stimuli, causing the user to completely miss their existence. Missing these 

stimuli would, in turn, create problems when averaging together the results from the 

different users, as different subsets would highlight different aspects of the stimuli, 

creating noisy averages that cover over incongruent pieces. On the other hand, it is 

possible that this will not be an issue, because the particular trends are only noticed when 

the stimuli that manifest these trends are present in a subset, thus making each subset fit 

together like a jigsaw, with different subsets providing coverage for the particular trends 

that are most evident in their stimuli. In fact, this situation could even serve to highlight 

subtle aspects of the stimuli that might be obscured in a full-set analysis. What we hope is 

that the relative difference values assigned to stimuli by participants stays at least roughly 

the same regardless of the composition of the subsets. The presence or absence of 

particularly “loud” stimuli would thus function in a way similar to a fish-eye lens on the 

MDS plot—distorting and compacting the positioning of all the stimuli around it, yet 

keeping their relative positioning. This kind of mild distortion can then be dealt with in a 



 76

convergent manner by averaging together observations collected from different 

randomly-generated subset comparisons. 

 

Our criteria for validation of the subset data-gathering method are thus as follows. Firstly, 

stimuli that occur together in different subsets multiple times (such that dissimilarity 

values for that pair of stimuli will come from more that one subset) must still be given 

comparable dissimilarity ratings by users. “Comparable” in this case will mean that the 

level of standard deviation between ratings from overlapped stimulus pairs is no larger 

than the overall level of noise in users’ dissimilarity ratings. Secondly, the averaged 

dissimilarity matrix must produce MDS results that are reasonable and logically sound, 

standing alone. Thirdly, the results must be similar to the gold-standard study, both 

qualitatively and quantitatively. Criterion one checks for the effect of subset-relative 

judgments, while criteria two and three check whether the averaged result in fact reflects 

the real nature of the stimulus set. Criterion two is thus a lighter version of criterion three, 

assuming the accuracy of the gold-standard result. 

7.1.1 Criterion 1: Consistency of Results Obtained from Different Subsets 

Inter-subset consistency is checked largely through examination of the uniformity of 

standard deviations of the averaged dissimilarity matrix elements. By looking at the 

standard deviation of values in the matrix where multiple subsets contributed to the 

dissimilarity rating, and comparing them to those points that have been covered only by a 

single subset (provided multiple participants judged the subsets, so that standard 

deviation can be calculated), we can see whether the points of overlap have higher 

variability compared to the points of non-overlap. There is always some disagreement 

among different users when it comes to perceptual judgments (and, indeed, users can 

often disagree with themselves on different repetitions). However, if different subsets do 

indeed produce highly different results for the same stimulus pairs, then it would be 

assumed that there would be a much higher level of disagreement (and thus standard 

deviation) for those areas of overlap, compared to the normal level of noise 

(disagreement) between ratings given by participants.  
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In order to be able to perform this particular test on the data, a slight variation on the 

proposed experimental method had to be made. Our original design called for complete 

randomization of the stimuli in each subset, such that each participant would be presented 

with a unique subset. Randomization was to be performed in order to minimize any 

possible effect due to subsets, so that the damage of any particularly unfortunate grouping 

of stimuli in a subset would be covered over by the bulk of reasonable subsets. It was also 

done to ensure an even coverage of the dissimilarity matrix with as few participants as 

necessary.  

 

However, if we wished to compare the standard deviation of matrix points that average 

over multiple different subsets versus points that are averaged only over the same subset, 

then subsets must be repeated in order to develop a baseline level of noise/standard 

deviation that is to be expected when different participants are presented with the exact 

same set of stimuli. In this way we can compare the baseline level of standard deviation 

from individual difference to the level of standard deviation that occurs from individual 

differences plus differences due to participants experiencing different stimulus subset. To 

make this comparison possible, the minimal number of subsets needed to cover the entire 

dissimilarity matrix with one observation was created, which in our case took 5 subsets. 

These five subsets were used multiple times, such that each of the five subsets was sorted 

by several participants, allowing us to determine our baseline level of standard deviation 

while getting multiple observations per stimulus pair. This baseline level could then be 

compared against the standard deviation of areas where the five subsets overlapped, 

giving us a measure of how much comparisons from different subsets disagree with each 

other compared to the overall level of disagreement. 

7.1.2 Criteria 2 & 3: Overall Accuracy of Results 

Criteria two and three both pertain to the resulting MDS output map: they seek to 

determine whether the output has real-world traction, and specifically whether it 

compares favorably to our gold standard. We perform much of the analysis required for 

these critieria in an ad-hoc method similar to the analysis performed in Chapter 6 on the 

output of the full-set study. Yet calling our analysis ad-hoc is not meant as a slight to its 
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efficacy. Computerized clustering algorithms have yet to consistently attain the results of 

detailed human analysis; their lack of semantic reasoning and “common-sense” 

appreciation of the dataset is usually their downfall. Nevertheless, since this type of 

analysis can be considered as quite qualitative, a statistical means of testing similarity has 

been considered as well. As the accepted statistic for the comparison of MDS results, the 

coefficient of alienation, K, is also used to determine statistical similarity, using the 

empirically-derived values presented by Borg and Leutner [4] to determine similarity at 

the p = .05 level (as discussed in Section 2.2.1). However, statistical significance is not 

always practical significance, so it is important that our qualitative analysis—our 

assessment of reasonableness of result—agrees with the statistical measures on the 

similarity of the results of the two studies; both measures of analysis are required if we 

are to consider criteria three to have been met. 

7.1.3 Strengths and Weaknesses of Validation Process 

Overall, the main weakness of this validation process is the degree of bootstrapping 

involved in the creation of the stimuli and the design of our studies: we are testing a new 

study methodology on a new stimulus set. Furthermore, the gold standard that we are 

comparing the results of our new study against comes from stretching an already 

established technique potentially to its breaking point.  

 

However, these two studies were carefully designed to minimize any circularity in their 

reasoning and to minimize the amount of bootstrapping. The full-set study uses an 

already valid technique to gather data, and its main weakness is the potential fatigue of its 

participants, which we watched closely for. The subset study uses an unvalidated 

technique, but its potential weaknesses are in the logic of the study itself, and it is, in fact, 

designed to minimize the issue of fatigue that troubles the full-set study. So each study’s 

weaknesses are designed to counteract the weaknesses of the other, with the full-set study 

providing the solid ground-truth, produced at a heavy cost, while the subset study can be 

compared to this ground-truth with data much more easily gleaned from the user. 
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7.2 50-Stimulus Subset MDS Study 

Our study using the subset method of data gathering for MDS takes place in two parts. In 

the first part we ran a study on 15 participants using the subset method, specifically 

designing our experiment to allow us to analyze several different characteristics of our 

new methodology in order to test for validity. While this experiment did produce several 

very important insights into the strengths and weaknesses of our new method, it also 

failed to produce an MDS plot that was sufficiently similar to our gold standard due to 

the experimental design decisions we made (specifically, it was derived from non-

uniform number of observations across the full-set dissimilarity matrix). Thus in the 

second part of our study, we ran an additional 7 participants with the specific aim of 

gaining a better coverage of perceptual data across the entire stimulus set. By adding 

these supplementary data points, we were able to increase the quality of the resultant 

MDS plot such that it was both qualitatively and quantitatively similar to our gold 

standard. At the same time, we gleaned an important methodological insight, i.e. the 

importance of uniform coverage. 

7.2.1 Method (Study Part One) 

Fifteen participants, 5 female, 10 male, ages ranging from 22 to 35 were recruited to run 

this experiment. All were graduate students at UBC. The experiment lasted 

approximately one hour, and participants were compensated $10 for their time. 

 

As in the full-set, gold standard study, participants sorted a set of haptic stimuli on the 

Nokia 770T using the program described in Chapter 5. Each participant sorted a 

particular stimulus set three times during the experiment session. In the first sort, 

participants were told to group stimuli into whatever number of discrete, non-overlapping 

groups they felt was appropriate to describe the perceived dissimilarity between stimuli. 

For the remaining two sorting tasks, participants were required to sort the stimuli into a 

specified number of groups, either 3, 9 or 15. Of these three group numbers, the one 

closest to the number of groups chosen in the first sorting task was not used, with the 

remaining two numbers randomly assigned to the second and third sorting tasks. 

Participants wore Bose Quiet Comfort 2 acoustic noise cancelling headphones during the 
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experiment, which played white noise loudly enough to mask the sound made by the 

haptic feedback on the device. White noise was substituted for music, which was used for 

the gold-standard study, because (a) the experiment time was shorter (and so the noise 

less tiresome) and (b) we had recruited ‘normal’ rather than especially trustworthy 

participants, and were not comfortable allowing them to self-monitor their own music 

choice. The use of white noise is a much simpler and more realistic experimental setup. 

 

Unlike the full-set study, participants were not presented with the full 84 haptic stimulus 

set, but instead with a subset of 50 haptic stimuli. Subsets of size 50 were chosen as the 

target size as, in initial testing, it was found to be the largest number of stimuli that could 

be consistently sorted in approximately an hour, using the technique described above. 

Using the subset algorithm described in Chapter 4, and employing the modifications to 

our method described in Section 7.1.1, we produced 5 randomly distributed subsets (see 

Appendix C for specific subsets used) that we could use multiple times in order to test if 

judgments differed from subset to subset. Our algorithm ensured that every two stimuli 

appeared together at least once in one of the subsets, and guaranteed that a dissimilarity 

value would be present for each combination of stimuli. While our algorithm attempts to 

minimize the amount of overlapping coverage, certain points in the dissimilarity matrix 

are overlapped by as many as four different subsets, though most points are covered by 

only one or two subsets. This overlap is unfortunate but some amount is unavoidable due 

to the nature of the sorting task. Each one of the 15 participants performed their sorting 

task on one (and only one) of the five subsets, meaning that each subset was sorted by 

three participants, with 3 participants x 5 subsets giving the total 15 participants, as 

shown in Table 7.1.  

7.2.2 Results 

Dissimilarity values for each participant were calculated in the same manner as described 

in Section 6.2.2. Full 84x84 symmetric dissimilarity matrices were then created for each 

participant, containing the dissimilarity values for those stimuli present in the subset they 

were tested with, and a value of -1 for all stimuli not presented, to mark them as missing. 

These dissimilarity matrices were then averaged over all users, with only the non-missing 
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values used to create the average value for each point within the matrix (many of the final 

values were thus averaged over different numbers of individuals). 

 

This averaged dissimilarity matrix was then run through the SPSS ALSCAL algorithm 

for dimensions 1 to 4. The resultant stress values were plotted (see Figure 7.1), and a 

marked elbow was looked for, but no obvious candidate was forthcoming. The most 

likely candidate for an elbow was the 2D solution, though the overall curve of the graph 

was fairly even. The 2D solution had S-Stress = 0.38949 and r2 = 0 .23463, while the 3D 

had S-Stress = 0.28216 and r2 = 0.35597. These stress values are reasonable, though the 

r2 values are very low, indicating that a large amount of variability in the data was not 

accounted for in the solutions. However, this trend occurs across all dimensions, so we 

were forced to use the data as it was. Therefore, as in our full-set study, for parsimony as 

well as ease of interpretation, the 2D solution was selected for analysis, and the 3D 

solution was consulted for clarifying purposes. 

 

Upon an initial analysis of the 2D solution, several features were evident (see Figure 7.2). 

Firstly, the strength of the amplitude axis is still quite evident, which is encouraging if we 

are concerned about the results being realistic: the subset technique has at least captured 

this, the strongest trend in the data according to our gold standard. Additionally, 

essentially no effect of frequency was found, just as in the gold standard. However, 

applying the rhythm trends as established in our gold standard, we see that the placement 

of the four groups has shifted. In the gold standard, the 2D solution was split, 

orthogonally to the trend of amplitude, first according to the note length of the rhythms, 

short to long, and then within those two halves, from even rhythms to uneven rhythms. In 

the 2D solution for the subset study, however, the solution is split first according to 

evenness of rhythm, and then by note length. The major manifestation of this is that the 

group of stimuli that has long notes and an even rhythm has shifted over to the far 

extreme left of the map, pushing the other three groups towards the right.  

 

Comparing the subset study MDS output statistically with the gold standard, we find a 

result contradictory to our visual inspection: the coefficient of alienation, K, is 0.4485, 
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which,  at NP = 84, ND = 2, is less than K critical = 0.55, and is significant for p = .05, 

according to the work of Borg and Leutner [3] and described in detail in Section 2.2.1. 

This result means that the similarity between the MDS maps of the subset and full-set 

studies is statistically similar, at a 95% confidence interval. Here we are presented with a 

case where statistical significance does not seem to agree with our practical analysis. The 

reason for these troublesome results is discussed in the following section 

7.2.3 Reasons for Difference in MDS Results 

The discrepancy between our statistical and practical analysis was a major concern to us. 

The placement of the “long-even” group in a different position as opposed to the gold 

standard study was a potentially fatal result for our new study methodology. This result is 

the primary reason why we determined that we needed to run additional participants, as 

described in Section 7.2.4—a choice that would result in a successful validation of our 

new technique. First, however, we will describe how a limited number of observations 

caused this group of stimuli to be placed differently, the key insight leading us to run 

additional participants. 

 

Analysis of Standard Deviation 

As visual inspection and statistical comparison differed in their conclusions, greater 

importance was placed upon our third means of analysis, comparison of the standard 

deviation values of the averaged dissimilarity matrix. The average standard deviation of 

all values in the dissimilarity matrix is 346.27, which is considerably higher than the gold 

standard’s average SD of 160.02, so right away we were presented with a potential 

explanation for the difference in the two MDS outputs (gold standard and subset study) as 

being some source of additional noise in the subset data.  

 

Next we observed the distribution of the SD values over the dissimilarity matrix for the 

subset study, and noted a marked difference in the distribution of high and low SD values 

as compared to the gold standard (see Figure 7.3). The gold standard generally contained 

high SD values for points in the matrix where two stimuli of the same amplitude level 

were being compared, and low SD values for points where stimuli of different amplitude 
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levels were compared. By contrast, the subset study has distinct “stripes” of high SD 

values running through the dissimilarity matrix. These stripes occur along groups of four 

or five stimuli, and extend through comparisons with other stimuli of both different and 

the same amplitude level. No overall trend of between and within amplitude comparisons 

can be seen. 

 

As noted in Figure 7.4, many of these stripes of high SD occur along stimuli from the 

“long-even” group —the same group whose placement in the MDS map is the primary 

difference between the full-set and subset study’s results. Though there are two other 

stripes that correspond to stimuli in parts of other groups (the high-amplitude and 

frequency members of Group 4 from Table 3.2, and the high-amplitude, low-frequency 

members of Group 5), the long-even group has by far the largest number of stimuli that 

are part of these high SD stripes. Certainly it can be noted that not all of the stimuli in the 

long-even group correspond to areas of high standard deviation; indeed several of the 

stripes are off by one or two stimuli from the actual stimulus groups. However, as we will 

argue later, this is because such stripes of high SD are the result of a combination of 

certain hard-to-judge groups with areas that received low numbers of observations, and 

so this lack of exact correspondence is to be expected. 

 

Nevertheless, a high degree of variability would explain why the long-even group 

appears in a different position in the subset study’s results compared to the full-set study. 

What requires an explanation is the source of this high degree of disagreement among 

participants. Comparison of individual MDS plots is not overly fruitful, as most 

participants saw different sets of stimuli than the others and thus have, by definition, 

different MDS plots (see Appendix B for individual plots). Consequently we continue to 

rely on standard deviation as our main method of analysis. 

 

Hypothetical Explanations for Divergent Long-Even Group Results  

There are several possibilities for the observed strips of high standard deviation 

associated with the long-even group in the subset MDS result. It could be that by a fluke, 

these stimuli only ever occurred in one of the subsets, thus biasing their results 
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(Hypothesis 1); it could be that this is the result of different subsets producing different 

results for the stimuli in this group (Hypothesis 2); it could be that there was simply not 

enough data gathered for the stimuli in this group to gain a statistically reasonable 

average (Hypothesis 3); or it could be that the long-even group is inherently harder to 

judge than the other groups (Hypothesis 4). Hypothesis 4 is hard to prove definitively; 

instead it becomes the default conclusion by elimination if the other explanations are 

actively disproved.  

 

In the following, we will address Hypotheses 1-3. 

 

Hypothesis 1: Fluke Distribution of Stimuli 

As the subsets were randomly created, it would be expected that the stimuli in the long-

even group would appear fairly evenly throughout all five different subsets used, and this 

is indeed the case. All five subsets contained between 7 to 12 out of the 16 total stimuli in 

the long-even group (see Appendix C for subsets used). Thus all of the subsets would 

have contributed values to describing this group, so Hypotheses 1, the ‘fluke’ uneven 

distribution of stimuli, is eliminated. 

 

Hypothesis 2: Subset-Relative Judgments 

We know that long-even note rhythm stimuli occurred at roughly the same frequency in 

all 5 subsets; however, we do not know if one or more of these subsets had a distribution 

of stimuli that would cause the judgments in the set to be skewed and/or noisy. If such 

outlier subsets existed in our study, it could be that they contributed to the long-even 

group being placed differently in the MDS plot (hypothesis 2). If this were the case, we 

would notice this most distinctly for dissimilarity values that were averaged using data 

from different (conflicting) subsets.  

 

A simple way of determining whether the averaged dissimilarity values for the long-even 

group came mostly from overlapping subsets or just from single subsets was to look at 

the number of values used in the average of each dissimilarity value in the group. If we 

plot the number of observations for each dissimilarity value in a similar way to the 
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standard deviation values (see Figure 7.5), we can see which values were produced only 

from a single subset (evaluated by three participants, and shown in dark purple), and 

which values were produced with data from more than one subset (run by some multiple 

of three participants (shown as light purple or white cells, i.e. lightest means highest 

number of both observations and distinct subsets used).  

 

By lining up the columns and rows that contained the long-even group (orange) with the 

plot of the number of observations, we can see that for the most part, the dissimilarity 

values for the long-even group have been aggregated from single subsets (dark purple; 

though the particular subset that has contributed to each value does differ). Given the 

high standard deviation that the long-even group is correlated with (as illustrated in 

Figure 7.4), a possible explanation is that the noise was due to judgments for different 

subsets being distinctly different as a consequence of between-subset variations--yet this 

appears not to be the case. These levels of high SD seem to be occurring despite the 

values being averaged from only one subset, so we can claim that Hypothesis 2, noise 

from conflicting subsets, does not appear to be a convincing explanation for the source of 

the higher overall noise exhibited in the subset analysis compared to the single set 

analysis.  

 

It should be noted that there is another way that subset-relative judgments could have 

affected the placement of the long-even group, but it is not an effect that would have 

produced the distinctive , long-even group associated stripes of high SD that are evident. 

If there were any subsets that produced  judgments for the long-even group which were 

distinctly different from that of the other subsets (i.e. these stimuli substantially 

rearranged on the MDS output, as opposed to their relative positions ‘stretched’ a little), 

then stitching together the results from these subsets could create a contradictory picture 

of the  entire stimulus set, as evinced by high noise associated primarily with members 

found in the idiosyncratic subset as opposed to just the problematic stimuli group. 

However, the stripes of high SD occur across all five different subsets (since the long-

even group that corresponds with them appears in all five subsets)--so either all the 

subsets produced idiosyncratic results for the long-even group, or none of them did. If 
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each subset skewed its judgments consistently, we would not notice a trend of higher SD 

for the long-even group, a consistent skew should produce similar results for each of the 

subsets which in turn produce a low SD when aggregated. In fact the only way in which 

we would be able to determine such a skew would be in comparison to the gold standard. 

 

Alternatively, if the subsets caused judgments to skew unpredictably for each participant 

(between-participant variations rather than between-subsets, but in a subset-specific way) 

then we would expect to see levels of high SD across all stimuli and not just in the long-

even group (Hypothesis 4 already accounts for there being something particular about the 

long-even group that tends to create noise).  

 

Hence it is not the case that our observed noise resulted from the fact that in some 

instances, dissimilarity values in the long-even group were averaged from multiple-

individual evaluations of a single subset, as we can see no evidence that any of the 

subsets produced ‘bad’, outlier results. In Section 7.3.2 we further discuss how we found 

no evidence of subset-relative skewing of judgments overall, but for our current argument 

pertaining to the long-even group it suffices to say that such subset-relative judgments do 

not appear to have caused the high SD exhibited by this group. Thus we are left with 

either Hypothesis 4 (long-even group is inherently hard to judge) or Hypothesis 3 (this 

group did not receive sufficient observations). 

 

Hypothesis 3: Insufficient Observations 

While one can view the plotted observations (Figure 7.5) as a means of determining how 

many different subsets contributed to an average value, we can also simply consider the 

number of observations as a raw value in itself, disregarding how many subsets these 

observations came from. Performing this mental switch, we notice that the long-even 

group largely corresponds to areas with the minimum number of observations (three, 

represented by dark purple). A low n value in the calculation of standard deviation allows 

outliers to more strongly affect the value, and so the high standard deviation that the 

long-even group corresponds to could well have been caused by have an n of 3 for many 

of its values. It is thus possible that outliers from such a small sample of data (as 
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evidenced by the high SD) caused the long-even group to be placed differently in the 

subset study’s MDS output, as compared to the gold standard. Given that the subsets 

were randomized, we can only conclude that it was simply an unfortunate distribution 

that caused the long-even group to have so few observations for many of its dissimilarity 

values. 

 

Thus far, our data analysis allows us to make this claim specifically about the long-even 

group, but we have not yet presented a general analysis of how the number of 

observations (as well as the number of subsets) can affect the quality of the MDS results. 

In Section 7.4 we discuss this topic in much greater detail. Nevertheless this analysis is 

key to understanding why we decided to run additional participants: i.e. we needed to 

distinguish between Hypothesis 3 (insufficient observations) and Hypothesis 4 (inherent 

difficulties in judging) to explain the placement of the long-even group. Thus, we chose 

to obtain additional data to rigorously test Hypothesis 3. 

 

To bring the current analysis to closure, we will thus make a forward reference to the 

conclusions derived from this augmentation of our study in Section 7.3, where we do 

indeed find that increasing the number of observations (apparently independently of the 

number of subsets) to a level that is relatively uniform across all stimulus pairs, 

diminishes the stripes of high SD. That is, low observation numbers seem to correlate to 

high SD, and this compounded with the fact that the long-even group, by chance, 

appeared to particularly suffer from receiving a low number of observations. Further, the 

augmented subset study produced an MDS result in which the long-even group is placed 

consistently with the gold-standard result. We therefore will conclude that Hypothesis 3 

is upheld.  

 

Hypothesis 4: Long-Even Group is Inherently Hard to Judge 

Our results to this point do not allow us either to firmly accept nor refute Hypothesis 4, 

that the long-even group was inherently harder to judge. Compounded with the lack of 

observations, this inherent difficulty could well have been an additional source noise. We 
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therefore must conclude that it may also have contributed to the stripes of high standard 

deviation seen associated with this group in Figure 7.5.  

 

Summary of Long-Even Results 

Overall, these findings are very encouraging: we were initially worried that subsets might 

produce poor results, but have found instead that they can produce strong results quite 

similar to the gold standard. Along the way, we discovered the importance of maintaining 

uniform coverage, of at least 5 observations per point, across the whole dissimilarity 

matrix. Below we will further disambiguate the role of the subsets themselves in the 

result (7.3.2). 

7.2.4 Study Part Two: Additional Participants with New Subsets 

The fact that many values in the averaged dissimilarity matrix for the initial subset study 

only came from a single subset, tested three times on three different participants, was due 

to a particular choice in the study design of using only 5 subsets for 15 participants. We 

made this choice so we could gather a baseline level of variance due to individual 

differences, and compare it against the level of variance between different subsets. 

However, this choice had the negative side effect that there was a fairly large range in the 

number of observations that a given value in the aggregate dissimilarity matrix could be 

averaged over. Values where subsets overlapped were replicated three times, meaning 

that while some values had as few as three observations, others had as many as twelve. 

Since it appeared that these values with a low number of observations might be causing 

the MDS output to differ from the gold standard (Hypothesis 3), it was decided that we 

should run more participants, using new subsets designed to “fill in the gaps” left by the 

first subsets, thus evening out the number of observations across the entire dissimilarity 

matrix. 

 

Method 

Seven additional participants were run through the same procedure as described in 7.2.1, 

but this time each with a unique subset of 50 stimuli designed to even the coverage 

provided by the first subset study. Participants were all graduate students at UBC, ages 
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ranging from 22 to 29. The seven additional subsets ensured that each point in the 

aggregate dissimilarity matrix had a minimum of 5 observations (filled from a minimum 

of 3 different subsets), while the majority of points had between 6-10 observations and 

some points had as many as 17. 

 

Results 

Adding the dissimilarity matrices produced from the 7 additional participants to those 

produced from the original 15 participants, we created a new aggregate dissimilarity 

matrix, which we then ran through the SPSS ALSCAL algorithm as before. Figure 7.6 

shows the stress plot for the new MDS solutions, from dimensions one to six. Though the 

stress curve is very similar to Figure 7.1, again with no marked elbow, there is a 

significant increase in r2 values for both the 2D and 3D solutions at 0.32848 and 0.47007 

respectively, indicating a greater amount of variability in the data has been accounted for 

in the solution. 

 

Graphing the MDS output with the additional participants’ data, and applying again the 

grouping of stimuli from the gold standard, we find a much more encouraging result (see 

Figure 7.7). The trend of amplitude is just as strong as before; but now the trend of 

rhythms, from long note to short note with uneven to even nested within, is present in the 

exact same order as the gold standard (Figure 6.10), though mirrored left-right. As 

relative, not absolute, position is what is important in MDS plots, mirrored results are 

equivalent. Mapping an axis along the centroids of all four of these groups creates a line 

almost perfectly perpendicular to the axis of amplitude, precisely as it does in the gold 

standard. Additionally, idiosyncratic placements of stimuli such as 44 and 45 (from the 

short-uneven group) amongst a generally long-uneven cluster are replicated quite 

similarly to the gold-standard solution. Further qualitative similarities and analysis are 

described in Section 7.3.1.  

 

Two quantitative values also point towards an increase in similarity to the gold standard. 

The average standard deviation is down from 346.27 to 245.78, which is still higher than 

the gold standard’s value of 160.02, but greatly decreased from the initial subset study, 
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indicating that these results are more internally consistent. Furthermore, the new, lower K 

value of 0.3534, a roughly 21% decrease from the previous value of 0.4485, is consistent 

with the theory that the additional participants run have increased the similarity between 

the subset study’s results and the gold standard—though as discussed before and further 

elaborated in 7.3.1, K cannot be taken as a complete guarantor of similarity. 

 

Running additional participants was done in order to address our analysis in Section 

7.2.3. The results of this addition back up Hypothesis 3, i.e. that insufficient observations 

can explain altered placement of the long-even group in Part 1 of this study.  

7.3 Validation of Subset Technique 

We set out to prove the validity of the subset method of data gathering for MDS by 

ensuring that it met three criteria: that different subsets did not produce significantly 

different results for the same stimuli; that the resultant MDS plot was reasonable and 

believable in terms of interpretability; and that the MDS output compared favorably to 

that of the gold standard. Below, Section 7.3.1 describes how the output of the MDS 

algorithm is structured and how it compares to the gold standard, thus validating our 

method in terms of  the second and third criteria, given sufficient data as collected in Part 

Two of this study. After this, Section 7.3.2 describes how the standard deviation of the 

dissimilarity values shows where discrepancies between individuals arose, disproving the 

theory that these discrepancies arose from the use of subsets, thus satisfying the first 

criterion. The analysis of standard deviation (7.3.2) is made easier by first considering the 

shape of the MDS output, which is why it is discussed second.   

7.3.1 Criteria 2 and 3: Reasonableness of Results & Comparison to Gold 

Standard 

The initial MDS results of our subset study could be said to have met the second criterion 

of reasonable and believable results, but failed on the third criterion of similarity to the 

gold standard. The strength of amplitude and the lack of effect of frequency were as 

expected, and grouping according to certain aspects of rhythm on an axis perpendicular to 

that of amplitude were also evident. Without a gold standard referent, we could have 
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concluded that these results in fact represented ground truth as to the perceptual 

characteristics of the rhythmic haptic stimulus data set. Even with the gold standard, 

according to our statistic of similarity, K, the two results were similar. However, 

according to our visual, ad hoc analysis of the MDS outputs, the two trends of rhythm 

were without a doubt different: the four main groups differed in order of appearance 

along the rhythm axis, which would lead do different conclusions about which aspects of 

rhythm were more perceptually important in differentiating between stimuli. 

 

Happily, running additional participants closed the gap between the subset study and gold 

standard, greatly increasing their similarity even to detailed visual inspection. Though 

rotated roughly 45 degrees clockwise, and mirrored along the rhythm axis (both simply 

products of random variations within the MDS algorithm itself, and therefore 

inconsequential), the two MDS maps maintain the same order of grouping along the 

rhythm axis, and have an even stronger and cleaner separation along the amplitude axis. 

K was similarly more positive, approaching more closely its ideal value of 0. Thus at a 

broad level, the subset results did seem to resemble those of the gold standard to a 

reasonable and practically useful degree (in the absence of other objective measures). 

 

Sub-Group Analysis for Higher Resolution 

However, these trends were fairly high level, and so a more detailed analysis was 

performed in order to determine how well the subset method captured the more nuanced 

characteristics of the stimulus set. In the analysis of the gold standard, a sub-analysis of 

all the stimuli with a high amplitude level was performed in order to examine more 

closely what effects rhythm had on the stimuli’s perception, regardless of amplitude; we 

performed a similar sub-analysis on the data produced by the subset method, to see if it 

yielded the same insights.  

 

In Figure 7.8, the high-amplitude sub-group is analyzed in isolation and graphed. 

Applying the same groupings as in the gold standard and plotting their axes, we see that 

they are almost exactly the same length and in similar directions. Indeed the general 

layout of the two graphs, Figures 7.8 and 6.9, is strikingly similar. The evenness of a 
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given rhythm makes up one axis, going from even in the top right to uneven in the bottom 

left, while note length makes up the second axis, going from long notes in the top left to 

short notes in the bottom right.  

 

However, there are some differences between the two MDS maps, most notably that the 

short-even and short-uneven groups are not totally separated, as they are in the gold 

standard. The two stimuli with a four quarter-note rhythm, and the two stimuli with an 

eight eighth-note rhythm are situated amongst the short-uneven group, which is counter 

to their placement in the gold standard. This placement may indicate that, at least for 

short-note rhythms, the number of notes in a rhythm is sometimes considered as the same 

thing as the perceived evenness of the rhythm. However, at this level of detail, we are 

entering into a realm of very precise pronouncements about how very small numbers of 

stimuli are perceived, from a study that involved the judgment of a very large number of 

stimuli. Insights at this level are probably better served by studies run on small sections 

of the data, looking for particular characteristics of individual stimuli. Thus at a 

secondary level of detail (with amplitude removed) the results from the subset study can 

be said to be similar to that of the gold standard, though at an even further level of detail, 

discrepancies begin to appear. This level of correspondence is likely greater than we can 

expect between any two experiments run on the same stimuli, so for our purposes, the 

MDS results of the subset study and the gold standard can be said to be both qualitatively 

and quantitatively similar. 

 

Questioning the Statistical Analysis 

One last question that might be asked is why the K statistic failed to account for the 

differences in MDS outputs that were observed through our own analysis. A potential 

explanation for this is due to dependence of K on the distances between each data point 

on the map, as K is calculated by comparing the distances between each data point in the 

first map against the same distances in the second map. Since both 2D results were 

arranged in a circumflex, most points in the MDS map have large distances between 

them, across the circumflex. Consequently, the similarity of these large distances may 

have had a large enough effect on the K statistic that the change in position from one side 
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of the circumflex to the other, of a small number of stimuli, created too small a difference 

to greatly change the overall K value. Since K does not encode the relative importance of 

any particular stimuli, it could not reflect the significance that the change in position of 

those particular stimuli had. Indeed, a similar change in position (distance-wise) of a 

different but similar number of stimuli could likely have produced more-or-less the same 

ordering of rhythm groups, which we would have then used as an argument for the 

similarity of the two MDS results. This result only serves to confirm to us the importance 

of cross-checking conclusions using several means and of looking for practical 

significance as well as statistical significance; which our results, in the end, have indeed 

demonstrated. 

7.3.2 Consistency of Results: Do Subsets Introduce Too Much Noise? 

The standard deviation of each averaged dissimilarity value can be used as an indicator of 

the degree to which different participants disagreed on how dissimilar a pair of stimuli 

appear: the higher the standard deviation, the higher the disagreement between 

participants. If all the participants were tested with the same subset, then the level of 

disagreement can be attributed solely to individual differences, and/or variability in 

repeated observations by the same individual, in their perception of the given stimuli. If 

the participants were judging the same stimuli, but in different subsets, then an additional 

potential source of disagreement is the relativizing effect of different subsets on 

perceptual judgments. Thus if we are concerned about whether splitting the stimuli up 

into subsets will cause too much variability in judgments (Criterion 1 in Section 7.1.1), 

analysis of standard deviation is where we need to concern ourselves. 

 

Noise Due to Subset-Relative Judgments: Between-Subsets Analysis 

The need to check for this effect drove our initial 3 participant x 5 subset study design: 

we required replicated data for a small number of unique subsets, as opposed to a larger 

number of non-replicated unique subsets, with their more complex overlapping pattern. 

The data from the additional participants is discussed in the next section, but this 

particular analysis requires the 3x5 structure of the first part of the study. As we had three 

participants sort each subset in the first round of our study, we can create an average for 
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the dissimilarity values for each subset, and examine the standard deviation of those 

averaged values to determine the baseline level of noise that comes solely from 

individual differences. The baseline SD gives us a reference point to compare against the 

SD of dissimilarity values averaged with data from multiple, overlapping subsets—values 

indicating the level of noise from individual differences plus the effect of different 

subsets. If the SD for these overlap values is substantially greater than the baseline, then 

we would have strong evidence for there being an effect of subset on the judgments given 

by participants. 

 

This comparison is performed by plotting the SD of all values in the dissimilarity matrix, 

aside by side with the number of subsets involved in the average of each dissimilarity 

value, as is shown in Figure 7.9. By comparing back and forth between the two halves of 

the matrix, various trends can be discerned. Through choice of colouring we highlight 

that the darker areas of high SD (and specifically the distinct “stripes”) generally occur 

where there are darker areas indicating a single subset – i.e. non-overlap areas; and that 

the lighter areas of low SD generally occur where there are lighter areas of high numbers 

of subsets. This result is in contrast to our original concern that increasing the number of 

subsets in play would increase SD for observations from overlapping subsets, although it 

is countered by the fact that these points also have more observations overall. 

Nevertheless, it does appear that dissimilarity values from overlapping subsets converge 

towards an appropriate value for this stimulus set.  

 

If some particular subsets affect peoples’ judgments by consistently skewing them a 

certain way (for all individuals), then we would expect to see the result of overlapped 

dissimilarity values having higher SD, a result that we did not see. However, if some 

subsets by chance contain combinations which generate confusion or disagreement and 

simply make everyones’ judgments noisier, then we would expect to see that some 

subsets exhibit overall levels of noise higher than others. This too, is not evidenced by 

our data, most strongly by the instances of stripes of high SD. These stripes occur across 

values from all five of the subsets used originally, and as noted above, generally only 

have single subsets contributing to each of its dissimilarity values. The consistency of 
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these stripes of SD across all five subsets seems to indicate that no one subset was noisier 

than the other. 

 

The fact that the levels of high SD found in the first round of the study cannot seemingly 

be attributed to the negative effects of subsets is strong support for the subset method 

meeting the first criterion of validity (no effect of subset-relative judgments). 

 

Evidence from Additional Participants 

Further evidence for the lack of subset-relative effects is the results from running 

additional participants, each with their own, unique subset. If each unique subset did tend 

to produce judgments that were unique for the stimuli contained in the subset, then 

adding in seven new subsets to a data set already built up of five different subsets should 

increase the overall noise level in the aggregate matrix. Yet the net effect was to reduce 

standard deviation and increase the MDS result’s similarity to the gold standard. This 

reduction confirmed our initial hypothesis (Section 4.2) that the best way to counteract 

any effect of subset, large or small, is to completely randomize the selection of each 

subset used and to use overall a ‘reasonably’ large number of subsets relative to the size 

of the complete stimulus set. In this way, if any one subset did have a strong relativizing 

effect on judgments, its effect would be minimized due to its data being mixed in with 

many other subsets, which should, on average, contain a reasonable cross-section of 

stimuli. Another way of saying this is that we wished to have as many different subsets as 

possible, to minimize the effect of each one; randomized subset construction maximizes 

this effect. By giving multiple participants the same subset (Part One of this study), we 

were able to observe this trend, but this technique is not recommended for regular use: 

instead complete subset randomization, as originally specified, will minimize overall 

noise levels in the data, as well as the number of participants needed to obtain a desired 

number of observations for each data point. 

 

In summary, we cannot claim that there will be no effects of subsets; and to some extent, 

the low impact of subsets observed here could be a function of characteristics of the 

particular overall stimulus set which we have explored in the present research. Other sets, 
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e.g. those containing small groups of highly salient stimuli, could potentially be more 

vulnerable to such problems. However, it appears that (a) potential subset effects can be 

mitigated by using more and randomly created subsets, as opposed to fewer; and (b) the 

effect of subsets handled in this way are likely to be small, or even negligible (as 

observed here) in comparison to that of individual differences. Since the problem of 

individual differences is one that is never going to be removed completely from an 

experiment, we can assume that the effect of subsets, if any, will manifest itself very 

infrequently if handled properly. Individual differences are a problem that any MDS data 

gathering technique suffers from, so we feel we can conclude that our new subset 

technique suffers from no problems worse than those confronted by any other method 

known to this author. 

7.4 Reflections on the Design of the Subset Data Gathering Method 

With a strong case made for the validity of the subset method of data gathering, we turn 

next to a reflection on the overall nature of the technique, its strengths, weaknesses and 

peculiarities. Especially in our analysis of the standard deviation of the dissimilarity 

matrix, we found many interesting features indicating where our experimental technique 

succeeded, and where it struggled. As we wish this technique to be taken up by other 

researchers in the field, we outline here several important features or the subset method 

that any experimenter who wishes to use it should be aware of. 

 

7.4.1 Observations vs. Subsets 

In validating our method, we showed that subset-relative judgments did not appear to 

have a strong negative effect on our results (7.3.2). If judgments did differ from subset to 

subset, this difference was not evident to us. Furthermore, in our analysis of the long-

even group (in Section 7.2.3), we concluded that its improper placement in the MDS plot 

from the first part of our study was due to it receiving an insufficient number of 

observations in conjunction, perhaps, with it being an innately difficult group to judge. 

These two results together seem to indicate that to ensure the quality of MDS results 

using the subset method, one should concern oneself most with gathering enough 
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observations, and not be too concerned about the effect of subsets; and potentially to even 

employ more subsets to reduce the skewing influence of ‘outlier’ stimulus groups. We 

pursue this argument to its conclusion here. 

 

Importance of Having Sufficient Observations 

A low n value in the calculation of standard deviation allows outliers to more strongly 

affect the value. Thus analyzing Figure 7.9, we cannot be too surprised to find that having 

high SD in dissimilarity values seem to consistently occur where there are a low number 

of observations, though the converse is not always the case. It is important to note that a 

low number of observations has not in all cases resulted in high standard deviation, 

especially the noticeable “stripes” of high SD. Referring back to Figure 7.5, we see that 

these stripes also largely correspond with several different groups of stimuli from 

particular types of rhythms. Thus a second condition for creating high SD seems to be 

that the stimuli being averaged are from either the long-even group, or the two additional 

small subgroups of stimuli that also have high SD. 

 

The nature of these two conditions is largely quite encouraging. By design, the areas of 

the dissimilarity matrix with the highest number of observations are also the areas with 

the greatest amount of overlap between subsets. Yet these areas of high overlap in fact 

generally correspond to values with low standard deviation; and even with the noise-

reducing role of increased observations, if subset overlap was a source of truly discrepant 

data, we would not expect to see this. What this correspondence seems to indicate is that 

having observations coming from multiple different subsets has not been a noticeable 

source of noise in our data—the judgments from different subsets have generally 

converged. Instead, our major source of noise appears to be simply the effect of 

individual differences, regardless of subset, causing havoc within an average only when it 

contains too few observations.  Furthermore, adding in more observations (as was done in 

the second part of the study) served to decrease overall standard deviations levels (see 

Figure 7.10) while simultaneously adding in more subsets. 

 

Value of Having Many Subsets 
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However, a potential confound to the claim that increased observations brought about 

better data is that, in adding in seven more participants we also added in seven more 

subsets. Thus it could be argued that it was adding in subsets and not observations that 

increased the quality of the data. Though we had previously been concerned that different 

subsets would produce markedly different judgments, we had also tried to mitigate this 

problem by creating random subsets that would, on average, not suffer too heavily from 

this problem. Thus it could be argued that adding in more subsets simply allowed for the 

differences between subsets to be covered over more evenly (indeed, a positive role 

which we originally hypothesized in our argument for subset randomization). 

 

We did not find evidence of the subset-specific effect which the problem subset 

randomization was meant to mitigate. Furthermore, the only positive effect we would 

supposedly be gaining from adding in more different subsets would be to counter this 

effect. It would almost then seem that our entire attempt to create randomized subsets 

was of no value, given that the main effect that it was meant to counter was not found – at 

least for this stimulus set. 

 

Yet it would be premature to conclude that randomization is unnecessary, for two main 

reasons. First, we have not shown that there will never be subset-relative effects, merely 

that they were not evident in the current results. Indeed, it seems intuitive to us that there 

must be at least some variation due to subsets occurring, if only at a fairly small level, 

and that randomization would still be the best means of handling this problem. Thus we 

would argue that randomization acts as a sort of “safety net” that should help guard 

against effects of subset, should any manifest themselves; and further, could help to 

identify when larger subset effects do occur through a simple subset-overlap SD analysis.  

 

The second point is efficiency:  our subset randomization algorithm also helps to 

minimize the number of subsets needed in order to have a certain number of observations 

for all values in the dissimilarity matrix. This helps cut down on the number of 

participants needed to run a study using the subset method and at the same time optimizes 

uniformity of number of observations across all stimulus pairs, which is very important 
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given that one of the major tradeoffs of the subset method is the number of participants 

needed to gather data. In fact, if we had used unique randomized subsets from the start, 

we would only have required 17 participants to gain the same number of observations (as 

opposed to 22), and the distribution of observations would have been considerably more 

even, with a range of 5 to 12 rather than 5 to 17 observations per dissimilarity value. 

 

Types of Outliers and Method to Deal with Them 

Another way viewing the argument put forward above is in terms of outliers. In our 

analysis of standard deviation, it was noted that there were two main possible sources of 

outlier data points that could cause noise in the data: individual differences and 

idiosyncratic subsets. Furthermore it was noted that these two sources produced different 

types of outliers, and could be dealt with separately using different methods. 

 

The common source of outliers in psychological experiments is from individual 

differences in perceptual, physical or cognitive ability. We found this most evident in the 

five groups of three participants that each judged the same subset. Despite all 

experiencing the same subset, they still exhibited a high degree of standard deviation, 

even more so than where subsets overlapped, though not at a level that their results were 

entirely different (see Appendix B for individual plots). Nevertheless these differences in 

opinion must be attributed to individual differences. The standard method of dealing with 

such individual differences is to ensure the participant pool is representative of the 

overall population and to use enough participants to gain a representative sample. While 

we made our best effort to ensure participants were representative, we found that we had 

initially gathered too few observations for many of the data points. Thus we used 

increased observations to guard against outliers from individual differences. 

 

The second source of outliers was subsets, though we did not find strong evidence of this 

being a large source of outlier data in the present data set. Nevertheless, we have not 

disproven that subsets could exist that would greatly skew any judgments given from it. 

Thus it is useful to consider the fact that the outliers caused by such subsets would occur 

not at the level of individuals, but at the level of entire subsets. Instead of one individual 
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producing outlier results, one subset could produce outlier results over and over again, 

each time it was used by a new participant. To guard against this form of outlier, we used 

unique randomized subsets, so that the cost of any one outlier subset is mitigated by, on 

average, having many more subsets that do not cause strong subset-specific effects. 

 

In essence, adding in more randomized subsets and adding in more observations both 

help reduce the effect of outliers, but at different levels. More subsets reduces the effect 

of outlier subsets, more observations reduce the effect of outlier individuals. 

7.4.3 “Striping” of Standard Deviation 

One last particular facet of the standard deviation results that does bear further 

examination is the “stripes” of high standard deviation in the aggregate dissimilarity 

matrix. As can be seen in Figure 7.3, the stripes are very distinct and generally occur in 

groups of four or five consecutive stimuli, though several single-stimulus stripes are also 

evident. While these stripes were observed to occur due to a combination of a low 

number of observations with certain groups of stimuli, adding more participants and 

subsets removed the stripes of extreme high levels of SD. Yet if we observe the 

distribution of SD within the new aggregate dissimilarity matrix (Figure 7.10) we find 

striping again, though at a much lower absolute level of standard deviation. Some of 

these stripes are in similar places as before, but many of them are not. Furthermore, their 

correspondence with areas of lower numbers of observations is less marked than before.  

 

Thus we are forced to conclude that the striping at least somewhat comes from the 

algorithm that creates the subsets (see Chapter 4, Section 4.2 for details). The most likely 

explanation is that those stimuli which are placed into subsets made first by the subset 

algorithm (as is the case for many, but not all, of the stimuli that are part of stripes), end 

up not being used very often in later subsets, since they have already gotten the requisite 

number of observations assigned to them via the subset creation algorithm. This in turn 

causes other stimuli that occur more in the latter subsets to have a much more randomly 

distributed number of observations, since it becomes harder and harder for the subset 

algorithm to come up with stimulus pairings that do not create overlap. Thus stimuli used 
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in early subsets will likely appear in fewer different subsets, receiving fewer total 

observations, and thus higher standard deviation. This potential weakness of the subset 

algorithm was admitted early on, and it could possibly be dealt with through continued 

iterations on the subset algorithm. However, once lower than a certain threshold of SD, 

there seemingly appears to be no longer a great effect of the striping on the actual output 

of the MDS algorithm. Moreover, if we had used completely randomized subsets (rather 

than re-using the first five) this effect may have been even smaller to begin with. 

7.5 Summary 

With all 22 participants run through our subset study, the results we produced were very 

similar, both qualitatively and quantitatively, to the gold standard which we produced 

using an established, validated data gathering technique. Furthermore, the addition of 

more subsets was found to increase rather than decrease the quality of the MDS output. 

Thus our three criteria for validating our new experimental method were met.  

 

The effect of different subsets on judgments made in the sorting task was found to be 

negligible compared to individual differences in judgments, as evidenced by the relative 

distribution of standard deviation for within-subset averaged dissimilarities and between-

subset dissimilarities. The fact that we saw areas of high SD generally being associated 

with values that only a single subset contributed too, and that adding in more new subsets 

resulted in lower SD values, all point towards subsets not having a negative effect on 

overall agreement within the data. Thus criterion one was met. 

 

Criteria two and three were met due to the reasonable and interpretable results of running 

the dissimilarity matrix gathered by our subset method through the MDS algorithm, and 

its significant similarity to our gold standard. The 2D MDS output from the subset study 

exhibited very similar trends of amplitude and rhythm as those found in the gold 

standard, full-set study. Furthermore, the two outputs were statistically similar in layout 

according to the alienation coefficient K, the best statistical measure available for judging 

similarity of MDS results [4]; although we point out that this statistic must be used with 

caution in the current context, and paired with other means of analysis. 
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With all criteria met, and with results that are clearly similar to the gold standard, we can 

feel confident that our new subset method of gathering data for MDS will indeed produce 

valid results in future studies. Thus validated, we can recommend the method for use with 

any similarly large stimuli set, as a means of gaining perceptual dissimilarity ratings from 

users quickly and accurately. 
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Chapter 8: Conclusion 
We set out in this thesis to accomplish two main goals. Firstly we wished to create a large 

and diverse set of haptic signals, by using rhythm as a parameter that could potentially 

increase a set’s expressive range; and to ascertain the perceptual dimensions by which 

users actually categorize these signals. This first goal brought about the second goal, 

which was to develop a new means of evaluating the perceptual characteristics of such a 

large set of haptic stimuli. This we accomplished through the development and validation 

of a novel technique for allocating stimuli to participants, allowing smaller subsets to be 

tested separately on different users and greatly easing the task of data gathering. 

 

In each of these goals we produced contributions to the field. The use of rhythms as a 

design parameter opened up a huge design space that easily allowed for the creation of a 

large set of different haptic stimuli. Prior work on haptic rhythms [24] [5] had only 

shown some evidence of this promise. Furthermore, people responded well to the use of 

rhythms in haptic stimuli; they were able to discern different aspects of rhythm within the 

stimuli, and distinguished the stimuli accordingly. Not only was the stimulus set 

successful, but our new experimental methodology proved valid as well. By producing 

results that are comparable both statistically and practically to an established gold 

standard we showed that breaking the data gathering task into subsets of the total, and 

then building the overall picture out of the pieces, is indeed a valid way to gather 

perceptual data about a stimulus set. The particular contributions of each of these 

successfully met goals are described in the sections below. 

 

At a high level, these contributions mean that we have crossed a major hurdle in what we 

can do with haptic icons. No longer confined to small numbers used in restricted 

laboratory studies, haptic icons can now be produced and analyzed in set sizes of more 

broadly practical utility, given human perceptual abilities. Larger scale haptic icon 

production can ensure that a designer wishing to use haptic icons can find the types of 

stimuli that he or she wants, can find enough of them, and can know how each of them 
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will feel relative to each other. This is a strong step towards mainstreaming the use of 

haptic icons, and bringing them into the world of practical application development.  

8.1 Conclusions on Rhythms for Haptic Icons 

When we were trying to find a means of enlarging the number of haptic icons that could 

be made, rhythm intuitively seemed like it might have depth enough to allow this. Our 

intuition was amply repaid by the results we found. We made a simple first trial at 

creating haptic stimuli using rhythm, attempting to use as few parameters as possible in 

order to allow for easier interpretation. Thus we did not even tap all of the potential 

aspects of rhythm—not to mention melody—that could be used with haptic stimuli. 

Nevertheless we easily created a set of 84 haptic stimuli that we intuitively believed, and 

later confirmed, to be distinct. 

 

As always with haptic stimuli, designing them was one problem, but determining how 

people actually perceived them was a second, and in many ways more difficult problem. 

By using an established data gathering technique, we were able to build a dissimilarity 

matrix for all stimuli which could be applied to MDS. Analyzing the resultant output 

map, we were able to gain great insight into how these rhythm-based stimuli were 

perceived.  

 

Perceptually, our stimuli were distinguished first by their amplitude, though not by 

frequency. This result counters results of previous studies that found both amplitude and 

frequency to be of importance [17]. This difference is perhaps because after amplitude, it 

was the previously untested parameter of rhythm that appeared to be the most important 

distinguishing feature. Rhythms shortened the overall time people were exposed to the 

frequencies of the vibrations, the quick succession of relatively short notes overwhelming 

the effect of frequency. This strong role of rhythm, and the conclusions we were able to 

make about how haptic rhythms are perceived, is a major contribution of this thesis. 

 

Our analysis showed that our haptic rhythms were perceived according to two orthogonal 

axes. Though these axes may be particular to the types of rhythms we chose to study, we 
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hope that the simplicity of our rhythms should make our insights  a solid grounding for 

more complex instances. The first axis was what we termed “note length,” while the 

second was “evenness” of the rhythm. How a stimulus was perceived along the “note 

length” axis depended on the longest note present in the rhythm. If a rhythm contained a 

half note or longer, it would fall on the “long” end of the note-length axis; if it contained 

only notes shorter than a half note, then it would fall on the “short” end of the axis. The 

“evenness” of a rhythm was determined by whether there were notes or rests of differing 

lengths within a given rhythm. If so, then the rhythm will feel distinctly uneven or 

unbalanced; conversely if a rhythm has only the same length notes and rests, it will feel 

even. This was a consistently reported perception that showed itself clearly in the data, 

yet was an unexpected perceptual classification which was not part of our original rhythm 

creation scheme. Nevertheless, these two axes of perception for rhythm appear to be 

strong and robust. Not only that, but they provide useful tools for future designers to 

predict how the stimuli they make will be grouped perceptually. 

 

Compared to previously created sets of haptic icons, we succeeded in making an icon set 

larger than any yet created. The next largest, the tactile melodies created in [24], was 53 

icons, but these icons were collected at random from a database of real-world musical 

melodies. More systematic icon sets like those created in the work of MacLean and 

Enriquez [17] or Brown et. al. [16] are generally even smaller, at 36 and 27, respectively. 

Thus we have roughly doubled the size of any prior icons sets. Furthermore, the 

perceptual axes our icon set exhibited—such as “note length” and “unevenness”—have a 

much larger and more interesting space for growth compared to such prior axes as 

amplitude or waveform; as they are not strictly ordinal in nature there is much more room 

for creative design.  

 

The different perceptual axes found for rhythmic haptic stimuli, even when using a fairly 

simple set of rhythms, already show interesting and novel ways that stimuli can be 

distinguished. Our stimulus set has shown very promising results, with interesting 

perceptual features leading to an easily diversified set of rules about perception of haptic 

rhythms. The detailed insight into how these haptic stimuli are perceived has made them 
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of great use to designers who wish to use haptic icons in their application, or to create 

more haptic icons themselves. 

8.2 Validation of MDS Data Gathering Technique 

Our new method of gathering perceptual judgment data also proved successful. By 

splitting the data gathering task into smaller subsets, we were able to greatly reduce the 

amount of time it takes for a user to perform a complete set of judgment tasks. This sub-

sectioning allows for much more feasible experiment times, and ensures that fatigue is 

considerably less of an issue for the judgments given. Fatigue in particular is a very large 

issue, as other methods of data gathering such as pair-wise comparisons [20] can be 

heavily affected by drifts in judgment criteria caused by fatigue or loss of attention over 

time. Our new technique allows experimenters to select whatever size stimulus set they 

would like, giving them complete control over how hard they wish to push the 

participants in their study. The only major tradeoff of this technique is that the smaller the 

subset of stimuli presented to the user, relative to the superset, the more participants will 

have to be run in order to gain the same amount of data. For practical purposes, we 

suggest that a subset / superset size ratio less than one third will require an impractical 

number of participants; in our case, with a subset size of 50, this would allow for a 

superset of 150, which is almost twice again the size of our current—quite large—

stimulus set. Thus we still have considerable room for growth before our data gathering 

method reaches its capacity.  

 

To review the work we accomplished in designing and validating this new method of data 

gathering, we first proposed a simple study design based on combining two existing 

methods of gathering data for MDS. By using the sorting method as used by MacLean 

and Enriquez [17] among others, as well as the incomplete-set design described by 

Spence and Domoney [20], we developed the subset method, whereby each participant in 

the study was presented with a subset of the total stimulus set, with the average 

dissimilarity matrix being created out of the patchwork coverage of the various 

overlapping subsets. 

 



 107

We then validated our new technique by running a study using the new method on the 

same rhythmic haptic stimulus set that we had already studied using an established, but 

more cumbersome technique (the “gold standard”). What we found was extremely 

encouraging. Using 12 different subsets and 22 participants, we produced MDS results 

that both visually and statistically highly resemble the MDS results from the gold 

standard. The same trends of amplitude and rhythm that we found in the gold standard 

study were also found in the results of the subset study. Furthermore, the statistic of 

similarity K [3], also showed the two results to be statistically similar at p=.05. 

 

Perhaps even more convincing, was that when presented initially with somewhat unclear 

results, it was running additional participants with more different subsets that improved 

the results to a point at which they were clearly similar to the gold standard. It was seen 

as a potential stumbling point of our method that participants would make their 

judgments completely relative to the stimuli present in their subset, and thus each set of 

judgments would be highly dependant on the subset they were from. However, we have 

shown that by randomizing subset selection, adding in more subsets (along with more 

participants) actually increases the accuracy of the averaged data.  

 

Thus our main concern was allayed, and our resultant MDS output was confirmed as 

similar to the gold standard. Consequently we feel confident that our new subset data 

gathering method will produce valid results, and can be used in cases where the size of 

the stimulus set that needs to be tested is larger than any one user can be reasonably 

expected to make judgments on in a single sitting. 

8.3 Future Work 

There are two main areas of future work that start where this thesis ends off. The first is a 

further refinement of the haptic stimulus set using the insights we gained from our 

studies, and the second is a larger goal of applying these haptic icons in more in-depth 

applications. 
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Given what we found in our twin studies on the rhythmic haptic stimulus set, there are 

clear indicators of which design parameters we used were most important to people 

perceptually, and which were not. Certainly amplitude, length of notes present in rhythm 

and evenness of rhythm are among the former, while frequency (in the ranges tested, and 

in the presence of the more salient rhythmic variation) is among the latter. Thus if we 

wish to improve upon our stimulus set, making each stimulus more distinctive from the 

others as well as providing logical grouping for the stimuli, we need to take our findings 

into account and redesign the stimulus set accordingly. This redesigned stimulus set 

would have to be tested again with users (most likely using our new data gathering 

method), so that we could feel confident that our stimulus set actually exhibited the 

perceptual characteristics we anticipate. 

 

With a well-designed stimulus set in tow, our next task, and the true aim of all the work 

that has gone into this, would be to apply the stimulus set as haptic icons in an interesting 

application and test it with users. Specifically, our hope is that with such a large stimulus 

set, we might be able to study the use of a haptic icon-enabled application over a longer 

period of time, in order to determine the upper maximum of how many different haptic 

icons a user can reasonably handle in an application. Due to the novel nature of the 

sensation haptic icons deliver, it is our belief that users have to struggle considerably with 

overcoming the novelty and unfamiliarity of the feeling before they are able to use haptic 

icons successfully. Yet if users were exposed to haptic icons for a longer period of time, 

to the point at which these sensations became normalized, then we might be able to 

determine such things as just how prevalent the use of haptic icons can be in an 

application, how many haptic icons people can learn to use, and how useful haptic icons 

can be for designing usable interfaces.  

 

It is our sincere hope that the work done in this thesis will provide a key piece in 

answering these questions. 
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Figure 1.1 Logical structure of thesis. Chapters 3 & 6 pertain to the design and 
evaluation of the rhythmic haptic stimulus set. Chapters 4 & 7 pertain to the experimental 
design and validation of the new data gathering method. Chapter 5 describes the methods 
and apparatus that are shared by the studies described in Chapter 6 and 7.  
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Table 3.1. Note Types Used in Rhythms. Though at its smallest level of granularity there 
are 16 different slots in which vibration can be played, logically the notes are arranged 
either according to whole, three-quarter, half, quarter and eighth notes. Each note consists 
of both the time in which the vibration is played as well as the off-time where no 
vibration is played that is needed in order for one note to be distinguished from the next. 
Rest notes are referred to in the same manner as normal notes, except no vibrations are 
played. 
R# Note Type 
 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 
 Whole Note 
 Three-Quarters Note  
 Half Note Half Note 
 Quarter Note Quarter Note Quarter Note Quarter Note 
 Eighth Eighth Eighth Eighth Eighth Eighth Eighth Eighth 
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Table 3.2. Rhythms Used in Stimulus Set. Each row represents one “bar” that is repeated 
four times over a 2 second interval to make a rhythm. Within each bar, a note is 
demarcated by a pair of bold black lines. Notes contain both the on-time of the vibration 
plus the off-time that allows each note to be distinct from the next. Thus within each note 
there is a grey area indicating a time period where vibrations are playing and a white area 
indicating no vibrations are playing. This is except for rest notes, which are all white. See 
Table 3.1 caption for explanation of types of notes. 
R# Notes 
 GROUP 1 
1                 

2                 

3                 

4                 

5                 
 GROUP 2 
6                 

7                 

8                 

9                 
 GROUP 3 
10                 

11                 

12                 

13                 
 GROUP 4 
14                 

15                 

16                 

17                 
 GROUP 5 
18                 

19                 

20                 

21                 
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Table 3.3 Lookup Table for Stimulus Set. Stimulus numbers are used to refer to 
individual stimuli throughout the remainder of this document. We used a total of 84 
stimuli, which consisted of 21 rhythms which varied as described in this chapter, 
combined with 2 amplitudes and 2 frequencies, distributed as described here. 
 High Amplitude Low Amplitude 
Rhythm 
# 

High 
Frequency 

Low 
Frequency

High 
Frequency

Low 
Frequency

1 1 22 43 64 
2 2 23 44 65 
3 3 24 45 66 
4 4 25 46 67 
5 5 26 47 68 
6 6 27 48 69 
7 7 28 49 70 
8 8 29 50 71 
9 9 30 51 72 
10 10 31 52 73 
11 11 32 53 74 
12 12 33 54 75 
13 13 34 55 76 
14 14 35 56 77 
15 15 36 57 78 
16 16 37 58 79 
17 17 38 59 80 
18 18 39 60 81 
19 19 40 61 82 
20 20 41 62 83 
21 21 42 63 84 
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Number of Subsets Required to Gain Minimum 5 
Observations Vs. Subset Ratio
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Figure 4.1. Graph of subsets versus subset ratio, for a desired minimum of five 
observations per dissimilarity value. For any ratio of subset size (NS) to total set size 
(NT), between 0 and 1, our subset creation algorithm attempts to create the minimal 
number of subsets that will ensure that at least the required number of observations are 
present for each point in the dissimilarity matrix. The resultant curve is shown above. As 
can be seen, anything lower than a ratio of roughly a third requires a number of subsets 
that is quite unreasonable for practical purposes. 
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Pilot Study, Stress Values
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Figure 4.2. Stress values for the first five dimensional MDS solutions. No distinct elbow 
in the curve can be seen 
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Figure 4.3. 2D Map of MDS Results. Trends of frequency and amplitude are as 
displayed. Green and blue stimuli are high amplitude, grey and orange stimuli are low. 
Green and orange stimuli are high frequency, blue and grey stimuli are low frequency. 
Icon numbers are as in Table 3.3. As can be seen, rhythms do not appeared to be grouped 
together, and even frequency and amplitude do not appear to have an overly strong 
grouping effect. 
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Figure 5.1. The Nokia 770 
 
 
 

 
Figure 5.2. The MDS stimuli sorting program, with 50 stimuli. 
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Full-Set MDS Stress Values
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Figure 6.1. Stress values for the first six dimensional MDS solutions. No distinct elbow 
in the curve can be seen. 
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Figure 6.2. 2D MDS output, with all 84 stimuli plotted. Green and blue stimuli are high 
amplitude, grey and orange stimuli are low. Green and orange stimuli are high frequency, 
blue and grey stimuli are low frequency. Projected axes are labeled accordingly. See 
Table 3.3 for a lookup table of individual stimulus numbers, and in particular to identify 
their rhythm. 
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Figure 6.3. 2D MDS output, with all 84 stimuli plotted. Projected axes are labeled 
accordingly. Green stimuli are from Groups 1 and 4, containing only “short” notes; blue 
stimuli are from Groups 2, 3 and 5, containing “long” notes. See Table 3.3 for a lookup 
table of individual stimulus numbers and Table 3.2 for a lookup of rhythm groups. 
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Figure 6.4. Distribution of standard deviation values for averaged dissimilarity matrix. 
Black squares indicate high SD, grey-blue medium-high, grey medium-low, and white 
squares have lowest SD. 
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Figure 6.5 MDS plot for stimuli only containing long notes. Green and blue stimuli are 
high amplitude, grey and orange stimuli are low. Green and orange stimuli are high 
frequency, blue and grey stimuli are low frequency. Projected axes are labeled 
accordingly. See Table 3.3 for a lookup table of individual stimulus numbers. 
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Figure 6.6 X-Y plane of 3D MDS for all 84 stimuli. X is the horizontal axis, Y the 
vertical. The green stimuli are from the short-even group, the blue are the short-uneven, 
the orange the long-even, and the grey are long-uneven (see text for explanation of group 
names). Projected axes are labeled accordingly. 
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Figure 6.7 X-Z plane of 3D MDS for all 84 stimuli. X is the horizontal axis, Z the 
vertical. The green stimuli are from the short-even group, the blue are the short-uneven, 
the orange the long-even, and the grey are long-uneven 
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Figure 6.8 Y-Z plane of 3D MDS for all 84 stimuli. Y is the horizontal axis, Z the 
vertical. The green stimuli are from the short-even group, the blue are the short-uneven, 
the orange the long-even, and the grey are long-uneven. Frequency axis is omitted due to 
space constraints, but is similar in size to Figures 6.6 and 6.7. 
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Figure 6.9. High-amplitude only MDS sub-analysis. The green stimuli are from the 
short-even group, the blue are the short-uneven, the orange the long-even, and the grey 
are long-uneven. Projected axes are labeled accordingly. 
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Figure 6.10 Individual MDS plots for the four rhythm groups. Clockwise from top left: 
long-even, short-even, short-uneven, long-uneven. Green and blue stimuli are high 
amplitude, grey and orange stimuli are low. Green and orange stimuli are high frequency, 
blue and grey stimuli are low frequency.. 
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Figure 6.11. 2D MDS output with all stimuli. The green stimuli are from the short-even 
group, the blue are the short-uneven, the orange the long-even, and the grey are long-
uneven. The middle axis is made up of the plotted centroids of the 4 groups, as labeled. 
We consider this to be the gold standard MDS map for our stimulus set. 
 
 
Table 6.1. S-Stress and r2 values for individual groups 2D MDS output 
Group S-Stress r2 

Long-even .23096 .82260 
Long-uneven .27128 .73703 
Short-even .27397 .71022 
Short-uneven .22747 .79722 
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Table 7.1. Mapping of Subsets to Participants. Subsets are defined in Appendix C. 
 Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 
Participants 1,6,11 2,7,12 3,8,13 4,9,14 5,10,15 
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Figure 7.1. For first round of subset study, stress values for dimension 1 to 6 of the MDS 
solutions. 
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Figure 7.2. For first round of subset study, 2D MDS output map of results. Grouping is 
the same as in Chapter 6. Green is the short-even group, blue is short-uneven, orange is 
long-even, and grey is long-uneven. As can be noted, the orange long-even group is 
significantly out of place from the ordering in the gold standard, out on the far right of the 
map.  
 



 130

 
Figure 7.3. For first round of subset study, distribution of standard deviation values for 
averaged dissimilarity matrix. Black squares have the highest levels of standard 
deviation, blue-grey squares the next-highest, light-grey lower still, and white the lowest. 
Note the distinct stripes of darker (higher standard deviation) values, running along 
various columns and rows. 
 



 131

 
Figure 7.4. For first round of subset study, distribution of standard deviation values for 
averaged dissimilarity matrix with stimuli groups marked in opposite half of matrix. 
Stimulus groups are labeled along the side and top; note that each is spread across 4 
places in the matrix, once for each combination of amplitude and frequency. The four 
orange columns/rows correspond to the “long-even” group. The green columns/rows 
correspond to stimuli 14-17, members of Group 4 in Table 3.2, played at high amplitude 
and high frequency. The grey columns/row correspond to stimuli 39-42, members of 
Group 5 in Table 3.2, played at high amplitude and low frequency. 
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Figure 7.5. For first round of subset study, distribution of number of observation per 
value of averaged dissimilarity matrix with stimuli groups marked in opposite half of 
matrix. Stimulus groups are labeled along the side and top. The colour coding for the 
number of observations is that dark purple values have 3 observations, light purple have 
6, white values have 9 or greater. Coding of stimuli groups is the same as in Figure 7.4 
 



 133
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Figure7.6.  Stress values for dimension 1 to 6 of the MDS solutions for the subset study 
with additional participants (second round of subset study). 
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Figure 7.7. 2D MDS output map for subset study with additional subjects (second round 
of subset study). Green is the short-even group, blue is short-uneven, orange is long-even, 
and grey is long-uneven. 
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Figure 7.8. 2D MDS map of only high amplitude stimuli (second round of subset study). 
Green is the short-even group, blue is short-uneven, orange is long-even, and grey is 
long-uneven. Two perceptual axes are labeled accordingly. 
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Figure 7.9. For the first round of the subset study: one half of this matrix shows standard 
deviation (bottom left triangle) while the other half shows the number of observations 
(top right triangle). Stimulus groups are labeled along the side and top. Color coding of 
SD: Black squares have the highest levels of standard deviation, blue-grey squares the 
next-highest, light-grey lower still, and white the lowest.. Colour coding of number of 
observations: dark purple values have 3 observations, light purple have 6, white values 
have 9 or greater. It can be seen how the (darker black) stripes of high SD correspond to 
the (darker purple) areas of low numbers of observations. There are however many areas 
of low observations that do not correspond to areas of high SD; thus we claim that both 
low numbers of observations plus more “difficult” stimuli are needed to create stripes of 
high SD. 
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Figure 7.10 Standard deviation and number of observation for subset study with 
additional participants (second round of study). Format is same as in Figure 7.9. Stimulus 
groups are labeled along the side and top. Color coding of SD: Black squares have the 
highest levels of standard deviation, blue-grey squares the next-highest, light-grey lower 
still, and white the lowest. Colour coding of observation values differs slightly, dark 
purple values have 5 observations, light purple between 6 and 9 observations, white 
values greater than 9 observations. As can be seen, overall level of SD is much lower, 
and overall level of observations is much higher and more evenly spread 
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Appendix A: Dissimilarity Matrices 
Proceeding pages display the averaged dissimilarity matrix for the pilot study described 
in Section 4.4. 



1 2 3 4 5 6 7 8 9
1 0
2 993 0
3 1000 924 0
4 1000 978 989 0
5 872 966 972 908 0
6 978 1000 1000 983 898 0
7 1000 672 1000 1000 938 971 0
8 1000 1000 1000 950 956 889 893 0
9 973 907 966 871 933 956 950 994 0

10 1000 813 983 622 983 1000 700 951 891
11 978 770 862 674 1000 889 1000 963 848
12 973 938 800 987 989 907 1000 1000 800
13 989 938 926 806 989 1000 815 933 830
14 1000 978 1000 1000 989 1000 956 989 991
15 956 978 947 933 920 1000 1000 1000 920
16 1000 978 1000 972 1000 1000 978 989 965
17 900 933 944 939 858 1000 733 850 858
18 973 844 907 906 917 907 767 1000 1000
19 984 929 956 822 1000 1000 900 969 924
20 1000 973 944 840 833 983 989 947 811
21 971 939 844 973 983 960 956 922 822
22 965 991 830 991 956 898 972 922 960
23 937 989 785 711 956 889 878 1000 968
24 983 948 915 1000 1000 987 666 1000 911
25 870 830 867 956 922 938 585 839 982
26 967 967 889 967 739 839 889 916 933
27 969 924 972 972 807 938 806 911 961
28 989 983 1000 1000 871 933 1000 978 1000
29 839 1000 806 1000 960 1000 1000 972 963
30 900 883 844 978 822 939 883 772 878
31 948 939 630 969 920 939 989 989 944
32 898 987 778 1000 822 928 978 933 880
33 889 889 711 1000 956 828 1000 1000 889
34 937 938 978 933 922 791 889 1000 907
35 952 991 917 974 948 978 928 951 886
36 863 917 963 983 960 960 1000 973 970
37 944 870 926 1000 830 871 889 907 898
38 1000 889 978 1000 704 916 1000 1000 684
39 922 1000 885 1000 839 809 1000 719 917
40 929 983 856 1000 833 889 1000 1000 896
41 858 924 722 1000 807 844 983 1000 861
42 991 989 983 956 978 983 956 933 1000
43 911 978 794 987 972 862 878 811 982
44 889 961 1000 978 972 956 1000 939 972
45 893 989 793 830 1000 900 889 883 937
46 978 970 789 983 960 950 844 987 857
47 1000 938 922 929 836 972 939 951 906
48 985 941 839 950 702 920 917 878 928
49 943 950 1000 1000 967 950 964 982 993
50 904 983 834 956 956 896 889 1000 936
51 978 1000 896 750 973 785 867 989 972
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1 2 3 4 5 6 7 8 9
52 852 1000 858 1000 770 916 978 874 941
53 941 756 822 983 955 950 1000 960 990
54 858 938 817 991 916 978 985 987 920
55 858 911 978 989 1000 987 926 922 1000
56 908 960 1000 991 858 839 907 804 859
57 926 867 983 1000 867 793 815 893 864
58 858 950 822 987 966 966 818 900 889
59 833 989 836 850 917 739 700 961 992
60 987 983 933 922 836 916 1000 906 972
61 853 858 933 911 939 956 911 920 1000
62 983 966 947 896 963 853 1000 834 828
63 800 978 941 972 956 884 1000 1000 902
64 926 874 1000 989 1000 1000 985 985 991
65 782 933 1000 911 858 839 878 933 900
66 978 941 1000 1000 871 933 722 859 844
67 987 1000 872 816 900 956 696 939 852
68 889 924 983 1000 939 911 920 878 881
69 933 748 964 987 987 1000 1000 867 871
70 960 950 822 983 1000 867 766 839 809
71 963 972 956 963 983 1000 889 956 938
72 1000 1000 972 963 944 972 1000 1000 987
73 1000 880 963 1000 978 951 1000 933 896
74 989 950 972 947 978 852 900 960 992
75 939 848 978 978 964 939 867 898 1000
76 889 880 966 942 952 983 944 944 978
77 876 950 904 1000 822 645 666 818 854
78 993 906 948 978 1000 987 929 898 924
79 889 920 906 1000 989 889 1000 893 972
80 933 900 928 964 772 896 963 951 939
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

10 11 12 13 14 15 16 17 18

0
978 0
973 958 0
807 816 827 0

1000 867 964 943 0
845 933 983 944 962 0

1000 1000 1000 1000 1000 986 0
889 933 901 1000 1000 970 963 0
972 1000 950 978 1000 1000 828 848 0
984 1000 989 933 880 1000 858 922 948
948 989 825 917 978 938 959 983 918
987 959 946 916 983 965 981 1000 989
883 959 924 928 963 892 908 818 884
922 916 1000 906 896 959 982 917 943

1000 889 900 889 967 872 805 911 1000
989 989 1000 989 1000 885 948 867 937
937 956 933 950 951 835 989 805 889
963 856 867 989 1000 795 985 885 800

1000 1000 952 956 960 978 943 947 889
1000 938 1000 789 973 682 889 911 896
1000 920 967 867 1000 874 882 833 966
1000 944 1000 862 983 911 963 889 982
983 768 922 933 941 866 1000 933 853
938 990 893 1000 964 870 982 841 922
941 917 966 831 983 947 880 920 907
907 955 989 972 983 873 974 784 936
769 863 956 964 987 837 1000 951 966
856 949 961 952 983 973 952 1000 819
987 785 889 1000 1000 966 956 742 928
950 896 859 874 918 837 984 849 879
978 987 889 941 1000 756 1000 904 889

1000 939 815 1000 1000 856 785 911 1000
956 978 922 928 811 813 1000 1000 858
978 937 905 978 884 905 907 871 1000

1000 882 989 1000 1000 917 929 1000 966
822 733 863 987 815 983 989 983 922
711 901 924 987 983 871 989 845 968
811 987 983 1000 822 922 911 972 972
983 1000 1000 933 1000 966 947 950 983

1000 978 970 858 1000 908 938 956 989
971 1000 1000 987 982 870 958 661 992

1000 920 816 987 983 878 751 789 972
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56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

10 11 12 13 14 15 16 17 18
930 837 796 1000 972 967 941 871 1000
987 973 830 933 889 900 989 707 981
983 933 876 939 983 756 991 773 867

1000 1000 883 938 950 916 978 917 991
889 949 898 892 900 944 918 933 830
852 989 949 950 1000 841 968 828 911
978 1000 939 947 894 839 896 889 983
967 835 896 961 889 904 911 922 961

1000 987 950 1000 960 966 800 960 983
1000 1000 849 898 966 917 933 1000 839
862 956 867 966 978 800 806 809 928
944 883 828 918 952 966 978 844 933

1000 848 1000 985 1000 924 991 867 862
987 956 989 1000 1000 853 918 834 944
983 947 772 767 904 844 889 956 833
944 856 738 867 1000 806 792 805 978
792 1000 840 989 978 978 1000 817 919
987 884 966 1000 981 694 960 938 924
956 972 911 850 987 898 1000 871 1000
978 889 844 939 956 793 983 815 924
982 1000 875 1000 889 989 924 950 978

1000 938 889 906 963 1000 922 831 978
990 974 952 973 896 900 975 834 897

1000 904 856 789 950 978 933 1000 989
973 892 975 970 983 875 968 889 878
889 947 946 944 966 841 989 728 733
955 870 965 876 861 884 1000 956 893
794 1000 804 920 818 811 972 827 983

1000 882 874 960 872 993 889 917 994
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2
3
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5
6
7
8
9
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11
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15
16
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32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

19 20 21 22 23 24 25 26 27

0
980 0
878 928 0
917 939 978 0
882 964 813 958 0

1000 922 904 933 825 0
937 970 915 962 987 951 0
933 967 944 944 880 933 938 0
813 989 960 858 967 933 950 911 0

1000 1000 943 907 871 856 833 928 909
972 1000 1000 933 876 933 883 1000 978
939 933 970 878 934 961 867 861 928

1000 993 900 822 883 886 926 917 929
893 881 921 991 1000 908 950 1000 900
893 918 848 918 917 861 967 844 889

1000 978 827 964 911 960 933 907 1000
981 965 848 1000 883 1000 978 951 885
769 915 989 933 794 943 971 907 949
896 856 966 937 1000 924 943 900 924

1000 884 1000 956 793 876 717 767 898
915 978 858 870 933 933 990 956 952

1000 889 933 867 856 839 836 907 973
973 939 907 951 889 924 983 965 906

1000 942 939 889 876 872 907 964 872
918 903 895 987 973 930 924 1000 922
971 978 975 867 1000 915 960 806 787
774 835 966 1000 978 1000 900 1000 956
787 987 966 1000 856 933 981 809 852
993 1000 906 1000 906 769 1000 991 704

1000 989 987 911 972 711 911 893 911
946 989 896 922 806 832 841 849 738
911 1000 911 933 884 901 863 963 911
989 978 906 1000 889 922 926 882 1000
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19 20 21 22 23 24 25 26 27
867 879 899 948 960 879 973 893 914

1000 975 873 956 883 851 900 1000 989
1000 972 1000 1000 784 1000 987 1000 1000
874 982 951 966 872 1000 844 951 892
940 940 914 1000 1000 1000 959 783 978
908 902 911 978 839 978 882 989 944
925 917 845 972 811 862 907 942 852
765 737 871 943 941 927 830 889 911
985 920 938 972 983 800 983 961 782
772 991 876 989 966 726 811 1000 950

1000 844 1000 983 989 831 1000 972 858
1000 844 963 767 981 836 875 944 1000
993 898 989 922 678 942 858 893 951
937 981 959 939 1000 919 902 989 876

1000 756 852 844 840 872 961 1000 933
920 947 1000 1000 742 893 987 956 787
908 978 944 933 822 917 1000 956 944
815 1000 1000 978 918 987 987 956 929
852 1000 966 966 938 900 853 871 841
972 1000 966 966 973 867 744 883 983

1000 896 973 929 898 907 833 963 956
1000 922 907 1000 978 674 726 983 973
941 982 956 982 987 822 944 874 989
922 844 827 933 889 1000 933 1000 883
990 854 841 805 978 982 952 1000 941

1000 733 987 941 917 867 911 778 956
930 914 841 987 950 952 956 1000 848
938 763 817 1000 956 889 1000 889 983
959 1000 915 1000 983 867 818 885 870
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1
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3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

28 29 30 31 32 33 34 35 36

0
917 0
856 926 0
836 811 906 0

1000 898 881 931 0
960 920 815 956 891 0
900 900 978 939 902 870 0
933 933 867 911 744 839 995 0
885 933 978 1000 978 987 944 783 0
983 778 978 1000 898 960 978 943 921
898 834 830 844 884 983 778 933 963
818 944 878 916 926 922 863 933 978
951 938 939 933 1000 794 867 867 833
960 872 822 800 925 951 844 920 822
756 911 849 778 763 972 926 983 828
778 1000 989 933 1000 916 825 981 896
983 987 933 941 918 1000 915 933 938
978 955 987 900 969 933 1000 944 992
983 955 933 978 933 966 952 1000 925
911 989 1000 1000 911 1000 944 900 966
956 939 907 978 961 989 950 1000 960
862 922 861 902 882 950 816 902 874
906 896 898 859 844 944 885 955 885
852 956 900 987 920 922 933 1000 783
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57
58
59
60
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66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

28 29 30 31 32 33 34 35 36
893 861 882 930 946 950 778 833 973
900 950 874 898 737 889 848 895 878
778 906 933 939 662 1000 853 785 844
789 956 896 839 867 922 929 791 818

1000 951 943 896 870 965 908 943 943
978 833 937 956 893 896 894 964 989
725 889 852 800 756 1000 853 964 966
906 978 902 978 989 883 896 987 896
987 893 972 920 1000 885 874 987 839

1000 956 989 939 963 867 817 983 987
920 900 978 1000 939 1000 978 933 1000
702 900 966 944 917 817 828 983 983
893 989 944 978 911 917 867 852 944

1000 862 893 956 943 867 959 989 937
922 963 941 963 872 1000 793 922 983
952 884 831 1000 806 917 900 871 911

1000 916 978 989 906 806 898 889 844
947 933 872 978 947 933 956 738 1000
800 867 955 748 933 987 840 944 933
839 756 839 966 1000 941 844 983 973
800 1000 933 867 911 874 729 916 966
856 922 807 898 867 966 815 950 893
900 1000 911 874 822 989 800 900 978
950 898 883 951 911 871 898 1000 920
822 947 905 867 870 872 904 948 965

1000 1000 941 878 836 967 944 944 895
938 849 883 896 852 794 993 989 989

1000 950 960 973 960 963 966 880 840
978 904 989 848 937 983 975 911 819
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11
12
13
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18
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22
23
24
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27
28
29
30
31
32
33
34
35
36
37
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39
40
41
42
43
44
45
46
47
48
49
50
51

37 38 39 40 41 42 43 44 45

0
896 0
882 933 0
917 956 990 0
784 983 836 832 0
883 747 800 871 863 0
871 946 856 944 876 941 0
900 960 917 900 989 960 983 0
678 956 761 900 978 942 933 983 0
741 1000 884 898 917 900 1000 875 965
896 950 878 938 933 1000 844 856 911
852 983 1000 902 878 1000 871 973 840
889 900 844 831 885 982 968 973 970
872 838 1000 874 889 848 920 1000 885

1000 963 933 1000 966 900 989 1000 1000
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58
59
60
61
62
63
64
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66
67
68
69
70
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72
73
74
75
76
77
78
79
80

37 38 39 40 41 42 43 44 45
871 908 800 759 938 968 963 867 785
872 867 973 734 813 870 947 956 922
889 1000 902 878 917 883 989 883 898
883 956 700 836 773 796 919 828 1000

1000 973 900 906 987 989 984 1000 989
815 989 938 872 911 1000 911 952 898
748 917 928 947 826 933 822 1000 972
920 950 1000 811 835 904 893 942 963
950 894 1000 1000 963 900 917 719 874
711 1000 966 722 789 983 978 911 916
900 967 950 950 872 987 1000 966 1000
989 959 1000 861 795 862 1000 904 966
889 793 889 778 1000 1000 970 983 911
815 989 983 917 1000 915 851 989 989
794 1000 963 944 978 906 978 1000 978
720 987 767 911 885 989 1000 978 689
822 1000 920 889 898 900 941 966 800
964 867 889 1000 933 938 904 978 822
800 773 862 827 805 952 1000 889 911
883 947 807 844 720 983 966 889 956
867 810 833 600 983 933 917 904 806
785 941 862 800 600 928 1000 880 938
983 797 963 770 872 956 969 1000 826

1000 978 850 991 683 933 991 973 813
911 907 950 896 972 959 971 989 974
859 989 917 1000 861 989 966 989 867
874 930 894 972 947 874 903 1000 1000

1000 906 978 867 978 872 939 880 970
785 841 950 885 951 978 867 813 936
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7
8
9
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11
12
13
14
15
16
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46 47 48 49 50 51 52 53 54

0
940 0
956 975 0
876 956 958 0
840 850 800 854 0
907 800 963 1000 859 0
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56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

46 47 48 49 50 51 52 53 54
969 973 941 841 985 849 0
933 985 933 826 755 796 891 0
978 991 922 836 920 989 747 937 0
926 939 906 794 985 911 973 978 949

1000 933 994 982 917 925 889 783 880
765 960 956 857 950 1000 926 885 906
978 939 994 1000 985 845 893 822 956
960 956 982 842 989 889 933 1000 733
828 922 1000 871 951 1000 840 956 871
933 922 922 726 755 815 871 817 680

1000 889 933 900 1000 898 928 933 900
850 1000 983 884 978 800 983 983 844
902 922 982 915 911 911 970 867 1000
698 818 970 876 898 851 773 989 938

1000 926 896 867 767 963 785 1000 811
972 822 844 852 1000 1000 707 917 917
938 959 960 800 911 1000 806 960 956
956 963 889 956 956 972 983 972 906

1000 918 922 822 800 840 662 889 952
956 744 911 933 966 844 955 1000 911
944 1000 907 614 1000 830 863 867 555
956 1000 911 785 917 667 933 850 866
902 939 944 674 973 819 870 911 872
951 965 933 883 716 839 989 628 1000
822 791 851 908 978 907 896 845 856
911 844 840 941 792 911 908 849 1000
987 849 970 918 972 963 937 834 933
970 973 939 902 853 972 1000 880 955
836 858 848 943 972 946 944 827 924
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7
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9
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11
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13
14
15
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55 56 57 58 59 60 61 62 63
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69
70
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74
75
76
77
78
79
80

55 56 57 58 59 60 61 62 63

0
953 0
900 938 0
911 783 898 0
987 876 972 909 0
845 1000 983 889 952 0
951 900 939 978 850 870 0

1000 1000 1000 920 983 966 967 0
1000 1000 933 915 866 966 1000 975 0
969 978 772 922 951 1000 950 922 892
924 863 956 882 916 711 785 922 915
933 889 1000 783 862 966 1000 964 1000
983 811 853 1000 967 966 960 987 778
956 951 867 844 928 839 963 861 1000
878 972 861 898 867 966 947 900 922
933 889 967 816 916 800 978 738 852
955 1000 939 947 844 978 983 884 1000
966 987 756 796 1000 689 907 640 978
844 983 911 756 950 828 978 756 963
878 962 900 847 884 874 1000 978 830
956 922 1000 948 858 989 1000 1000 1000
936 844 796 882 787 964 1000 763 867
900 989 956 870 933 966 963 889 916
956 982 915 896 956 989 978 816 896
822 818 983 889 950 933 1000 822 922
956 969 944 946 896 850 911 983 991
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64 65 66 67 68 69 70 71 72
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70
71
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73
74
75
76
77
78
79
80

64 65 66 67 68 69 70 71 72

0
884 0
867 918 0
889 1000 879 0

1000 1000 867 994 0
960 978 944 852 886 0
933 933 960 807 973 854 0
978 896 884 904 983 835 959 0
806 941 898 978 956 634 674 921 0
689 963 839 883 1000 706 918 722 692
810 782 1000 807 952 900 939 729 852

1000 789 1000 991 972 872 941 333 983
940 944 939 947 966 844 785 739 839

1000 978 933 889 983 983 983 973 978
971 983 1000 1000 966 867 755 911 793
880 1000 889 878 978 1000 983 944 1000
787 941 911 844 883 813 987 811 872
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74
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80

73 74 75 76 77 78 79 80

0
899 0
906 994 0
889 920 973 0
963 1000 963 875 0
911 987 886 987 943 0
920 907 885 983 956 936 0
940 1000 978 856 960 920 817 0
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 159

Proceeding pages display the averaged dissimilarity matrix for the full-set (gold standard) 
study described in Chapter 6. 



1 2 3 4 5 6 7 8
1 0
2 745 0
3 896 591.57143 0
4 957.28571 985.85714 849 0
5 957.28571 843.28571 805.71429 554.42857 0
6 905.57143 905.57143 743.42857 791 838.57143 0
7 905.57143 905.57143 971.71429 791 881.85714 449.57143 0
8 905.57143 648.71429 943.14286 743.57143 725.42857 597.42857 530.57143 0
9 891.14286 738.85714 805.14286 853.57143 957.28571 597.14286 763 834.85714

10 877.28571 792.14286 725.14286 952.57143 1000 706.42857 834 773
11 649 773.28571 929 1000 819.28571 919.71429 919.71429 891.14286
12 863.14286 435.71429 734.14286 985.85714 843.28571 905.57143 905.57143 734.42857
13 863.14286 497 672.85714 938.42857 843.28571 834.85714 819.85714 616
14 839.42857 985.85714 905.57143 791.28571 696.14286 985.85714 985.85714 985.85714
15 914.85714 772.85714 768 877 696.14286 985.85714 900.14286 985.85714
16 829.42857 886.57143 820.42857 650.14286 796.28571 971.71429 971.71429 943.14286
17 896 985.85714 849 654.57143 473.71429 971.71429 971.71429 971.71429
18 668.14286 806.28571 828.85714 1000 957.57143 777.14286 877.28571 848.71429
19 877.28571 558.57143 363.57143 952.57143 914.28571 834 919.71429 843.71429
20 877.28571 611.28571 662.57143 938.71429 914.28571 834 919.71429 891.14286
21 649 601.85714 607 1000 857.42857 919.71429 834 748.57143
22 588.28571 834.85714 943.42857 914.85714 729.14286 858.14286 715.28571 905.57143
23 872.71429 687.71429 354.42857 891.42857 577.42857 695.71429 924.28571 943.14286
24 985.85714 848 678.14286 792.42857 654 985.85714 985.85714 957.28571
25 909.85714 852.71429 801.57143 621.57143 586.85714 971.71429 971.71429 886
26 957.28571 900.14286 849 654.57143 365 924.28571 924.28571 824.71429
27 919.71429 610.71429 805.14286 985.85714 938.42857 583.28571 549.42857 682.28571
28 919.71429 691.42857 985.85714 757.71429 843.28571 407.42857 345.28571 311.14286
29 909.85714 938.42857 715.85714 568.85714 706.42857 459 510.85714 653.42857
30 738.85714 919.71429 985.85714 882.14286 985.85714 734.42857 482.85714 810.42857
31 829.85714 744.71429 820.28571 1000 1000 849 834 820.42857
32 696.42857 649.57143 867.71429 952.57143 857.42857 919.71429 834 700.85714
33 863.14286 553.85714 734.14286 877.14286 985.85714 863.14286 692.28571 743.85714
34 863.14286 635.42857 767.85714 985.85714 757.57143 749.14286 905.57143 663.71429
35 696.85714 985.85714 985.85714 957.28571 957.28571 985.85714 985.85714 985.85714
36 872.71429 673.57143 697 863.14286 724.71429 985.85714 985.85714 957.28571
37 744 901 863.14286 550 553.57143 938.42857 938.42857 985.85714
38 896 985.85714 763.28571 654.57143 388 886 971.71429 971.71429
39 553.85714 834.57143 867.71429 1000 1000 919.71429 919.71429 891.14286
40 857.71429 421 496.42857 985.85714 843.28571 985.85714 985.85714 814.71429
41 682.28571 549.71429 853.57143 938.42857 985.85714 905.57143 905.57143 743.85714
42 696.42857 748.85714 825.28571 886.85714 929.28571 919.71429 777.14286 805.42857
43 734 1000 1000 971.42857 971.42857 1000 1000 1000
44 1000 957.28571 828.85714 952.57143 1000 857.42857 1000 924
45 952.57143 724.85714 924 1000 1000 1000 1000 971.42857
46 886.57143 734.42857 791 800.57143 753.14286 924.28571 924.28571 971.71429
47 957.28571 985.85714 815.28571 800.57143 667.42857 838.57143 924.28571 971.71429
48 795.57143 952.57143 952.57143 1000 1000 833.85714 910.14286 857.42857
49 1000 1000 985.85714 985.85714 985.85714 819.71429 957.28571 985.85714
50 971.42857 733.57143 591.85714 909.85714 957.28571 705.71429 985.85714 710.14286
51 943.14286 985.85714 985.85714 957.28571 957.28571 848.28571 900.14286 843.28571
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1 2 3 4 5 6 7 8
52 938.42857 795.85714 781.14286 1000 1000 857.42857 929.28571 885.71429
53 985.85714 943.14286 957.28571 985.85714 985.85714 985.85714 985.85714 957.28571
54 1000 957.28571 900.71429 952.57143 1000 957.57143 1000 924
55 1000 957.28571 971.42857 1000 952.57143 839.42857 952.57143 900.71429
56 914.85714 1000 1000 971.42857 971.42857 1000 1000 1000
57 938.42857 924 924 1000 1000 1000 1000 971.42857
58 924 952.57143 795.57143 719.57143 719.57143 843.28571 985.85714 985.85714
59 971.42857 957.57143 843.28571 696.57143 744 843.28571 985.85714 938.42857
60 900.14286 971.42857 971.42857 952.57143 1000 957.57143 1000 924
61 985.85714 828.85714 971.42857 952.57143 857.42857 1000 914.28571 781.14286
62 985.85714 885.71429 971.42857 1000 1000 957.57143 1000 885.71429
63 1000 772.28571 885.71429 1000 866.85714 796.14286 809.71429 900.71429
64 862.14286 1000 1000 971.42857 971.42857 1000 1000 1000
65 914.28571 914.85714 971.42857 1000 1000 1000 1000 971.42857
66 985.85714 800.57143 957.28571 938.42857 985.85714 985.85714 915.14286 909.85714
67 971.42857 1000 985.85714 672.14286 719.57143 985.85714 985.85714 938.42857
68 971.42857 914.28571 843.28571 648.85714 648.85714 843.28571 985.85714 900.14286
69 1000 957.57143 985.85714 985.85714 985.85714 862.14286 896 985.85714
70 1000 871.85714 985.85714 985.85714 985.85714 862.14286 957.28571 900.14286
71 919.71429 919.71429 900.14286 985.85714 900.14286 653.71429 877 763
72 871.57143 1000 1000 971.42857 971.42857 862.42857 1000 857.42857
73 952.57143 909.85714 924 1000 1000 1000 1000 971.42857
74 1000 871.57143 971.42857 857.42857 1000 1000 1000 885.71429
75 1000 814.71429 971.42857 1000 857.42857 957.57143 1000 828.85714
76 1000 914.85714 971.42857 1000 1000 1000 914.28571 971.42857
77 829.14286 1000 1000 971.42857 971.42857 1000 1000 1000
78 904.85714 957.28571 885.71429 1000 914.28571 914.28571 1000 971.42857
79 900.71429 929.28571 985.85714 871.57143 957.28571 943.42857 985.85714 985.85714
80 985.85714 900.71429 791.28571 644.85714 606.57143 900.14286 843.28571 909.85714
81 938.42857 924 924 1000 1000 957.57143 938.71429 971.42857
82 1000 957.28571 971.42857 1000 1000 1000 857.42857 971.42857
83 1000 957.28571 828.85714 1000 1000 815 914.28571 971.42857
84 1000 957.28571 971.42857 1000 1000 886.85714 914.28571 900.71429
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

9 10 11 12 13 14 15 16

0
834.85714 0
815.71429 582.71429 0
563.28571 596.85714 375 0
625.71429 474.28571 697 359.42857 0

924 1000 771.85714 938.42857 985.85714 0
881.57143 857.71429 611.57143 778.14286 801.14286 648.71429 0
882.14286 971.42857 885.71429 957.28571 957.28571 905.57143 905.57143 0
871.57143 1000 819.28571 900.14286 985.85714 634.85714 696.14286 563.85714
772.42857 625.14286 720.28571 648.71429 639.28571 952.57143 938.42857 900.71429
682.28571 711.71429 707.28571 540.57143 502.57143 1000 663.28571 971.42857
520.85714 682.85714 725.28571 558.57143 416 1000 943.42857 862.71429
905.57143 535.85714 725.28571 596.85714 449.85714 1000 857.71429 971.42857
891.14286 919.71429 738.85714 905.57143 905.57143 563.57143 776.57143 872.71429
943.42857 786.42857 644.57143 811.14286 872.42857 724.71429 483.42857 792.14286
857.42857 896 776.57143 943.14286 881.85714 724.71429 615.42857 644.57143
853.57143 1000 819.28571 985.85714 985.85714 696.14286 696.14286 650.14286
957.28571 1000 819.28571 985.85714 985.85714 553.57143 696.14286 753.85714

568 863.14286 905.57143 738.85714 738.85714 1000 1000 843.28571
748.85714 858.14286 905.57143 777.14286 729.42857 1000 1000 985.85714
814.71429 1000 1000 985.85714 985.85714 734.42857 877 849
597.71429 819.85714 858.14286 872.28571 834 952.57143 866.85714 882.14286
692.28571 141.71429 582.71429 596.85714 521.71429 1000 857.71429 971.42857
905.57143 345.85714 512 383.57143 402.14286 1000 857.71429 971.42857
677.57143 549.42857 596.85714 401.85714 497 985.85714 929.28571 896
801.57143 241.57143 549.42857 392.42857 450.71429 938.42857 881.85714 957.28571
838.28571 1000 952.57143 852.71429 985.85714 511.57143 839.14286 985.85714
809.71429 914.85714 625.42857 792 900.71429 677.28571 321.71429 763.85714
867.71429 985.85714 805.14286 971.71429 971.71429 467.85714 682 593.57143
814.71429 1000 819.28571 985.85714 985.85714 634.85714 696.14286 563.85714

730 664 492.57143 563.85714 493.14286 952.57143 853.57143 971.42857
771.85714 914.85714 720.42857 468.42857 577.42857 938.42857 654.71429 871.57143
919.71429 588.28571 739.42857 725.28571 616.57143 985.85714 786.71429 957.28571
905.57143 521.42857 582.71429 596.85714 678.14286 1000 943.42857 881.57143

924 1000 866.85714 952.57143 1000 682.42857 924 733.57143
1000 767 886.57143 886.57143 909.85714 1000 985.85714 790.71429

771.71429 914.85714 957.28571 871.57143 957.28571 1000 985.85714 790.71429
734.14286 1000 957.57143 762.71429 762.71429 957.28571 914.85714 901
772.28571 1000 957.57143 943.42857 943.42857 957.28571 914.85714 971.71429
819.14286 1000 857.42857 914.28571 1000 943.42857 1000 1000
757.57143 1000 952.57143 866.85714 1000 952.57143 952.57143 985.85714
667.28571 795.57143 985.85714 819.28571 771.85714 971.42857 971.42857 985.85714
828.85714 914.28571 952.57143 938.42857 900.14286 895.71429 824.14286 985.85714

162



52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

9 10 11 12 13 14 15 16
985.85714 772.28571 957.28571 971.42857 828.85714 985.85714 1000 971.42857
871.85714 957.28571 914.85714 815 900.71429 800.85714 929.28571 909.85714
914.28571 909.85714 957.28571 871.57143 909.85714 1000 843.28571 971.42857

701 886.57143 957.28571 871.57143 886.57143 1000 985.85714 971.42857
909.85714 985.85714 938.42857 952.57143 1000 516.57143 924 1000

1000 971.42857 971.42857 971.42857 971.42857 985.85714 1000 828.85714
943.14286 843.28571 915.14286 929.28571 1000 971.42857 971.42857 890.71429
857.42857 753.14286 985.85714 914.28571 952.57143 971.42857 971.42857 985.85714

1000 924 885.71429 971.42857 924 943.42857 1000 743.14286
957.57143 838.28571 929 786.42857 653 943.42857 871.85714 971.42857
809.71429 971.42857 924 924 971.42857 938.42857 952.57143 971.42857
929.28571 844.14286 957.28571 957.28571 886.57143 1000 985.85714 971.42857

924 1000 952.57143 952.57143 1000 724.85714 924 1000
952.57143 914.85714 824.14286 909.85714 957.28571 809.71429 938.42857 705
914.28571 909.85714 957.28571 857.42857 895.71429 985.85714 971.71429 814.71429
914.85714 952.57143 957.57143 957.57143 910.14286 971.42857 929 890.71429
895.71429 843.28571 938.42857 952.57143 1000 924 924 890.71429
757.57143 957.57143 952.57143 866.85714 1000 952.57143 952.57143 985.85714
700.42857 957.57143 952.57143 952.57143 1000 952.57143 952.57143 985.85714

763 919.71429 872.28571 872.28571 919.71429 952.57143 809.71429 985.85714
828.85714 1000 866.85714 952.57143 1000 867.42857 924 771.71429
914.28571 957.28571 957.28571 871.57143 814.71429 957.57143 985.85714 828.85714
938.42857 848 800.57143 814.71429 719.57143 910.14286 938.42857 790.71429
866.85714 957.28571 909.85714 681.28571 672.14286 952.57143 938.42857 971.42857

1000 829.14286 957.28571 957.28571 871.57143 1000 757.57143 924
924 1000 866.85714 952.57143 1000 516.57143 924 914.28571

795.57143 943.14286 895.71429 909.85714 957.28571 952.57143 795.85714 971.42857
909.85714 1000 952.57143 952.57143 1000 695.71429 924 915.14286

1000 867.42857 957.28571 943.14286 895.71429 905.57143 891.42857 877
771.71429 971.42857 971.42857 885.71429 828.85714 943.42857 1000 971.42857
952.57143 957.28571 909.85714 909.85714 957.28571 910.14286 938.42857 790.71429
952.57143 729 909.85714 909.85714 729 952.57143 852.71429 971.42857
929.28571 800.85714 957.28571 957.28571 658.28571 1000 757.57143 924
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

17 18 19 20 21 22 23 24

0
914.28571 0

1000 862.85714 0
952.57143 625.14286 553.85714 0

1000 586.85714 616.57143 682.85714 0
672.85714 849 919.71429 919.71429 919.71429 0
710.57143 758.14286 563.14286 843.28571 786.42857 687 0
421.57143 914.85714 800.85714 767 896 762.71429 601 0
544.42857 1000 1000 938.71429 952.57143 734.14286 710.57143 682.28571
431.28571 1000 1000 1000 1000 686.71429 663.14286 611.57143
985.85714 905.57143 724.71429 682.28571 863.14286 872.28571 938.42857 1000
985.85714 905.57143 858.14286 905.57143 763 919.71429 985.85714 1000
749.71429 1000 914.28571 914.28571 952.57143 914.85714 805.71429 792.42857
843.28571 677.28571 905.57143 844.28571 639 919.71429 985.85714 1000

1000 767.71429 759.14286 540.28571 488.42857 919.71429 929 753.42857
1000 586.85714 641 682.85714 212.42857 919.71429 929 896

985.85714 781.85714 606.28571 497.28571 739.42857 763 914.85714 943.14286
985.85714 734.42857 687.57143 611.28571 493.14286 905.57143 829.14286 881.85714
810.28571 866.85714 1000 1000 1000 601.71429 985.85714 985.85714
682.28571 839.14286 819.71429 772.28571 914.85714 606.28571 426.57143 401.85714
558.57143 915.14286 985.85714 924.57143 985.85714 473.42857 606.57143 668.14286

180 1000 914.28571 724 1000 672.85714 624.85714 278.71429
914.28571 311.14286 716.71429 512 483.14286 919.71429 886.57143 896
985.85714 909.85714 496.42857 734.14286 629.71429 985.85714 615.85714 848
985.85714 601 583 626.28571 454.85714 905.57143 914.85714 881.85714
839.42857 586.85714 759.14286 677.85714 483.14286 734.71429 929 735.42857
828.85714 952.57143 1000 1000 1000 914.85714 1000 1000

1000 711 839.14286 957.28571 957.28571 914.28571 828.85714 914.85714
914.28571 871.57143 957.28571 772.28571 867.42857 1000 971.42857 814.71429
943.14286 929.28571 776.85714 819.28571 1000 839.14286 811.14286 985.85714
943.14286 1000 871.85714 771.71429 929.28571 909.85714 796.14286 843.28571
914.28571 914.28571 1000 1000 952.57143 943.42857 1000 1000
900.14286 866.85714 1000 1000 1000 1000 985.85714 1000
957.28571 843.28571 757.71429 805.14286 915.14286 971.42857 843.28571 1000
957.28571 952.57143 1000 1000 914.28571 943.14286 985.85714 985.85714
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

17 18 19 20 21 22 23 24
1000 629.71429 957.28571 772.28571 867.42857 985.85714 828.85714 929

852.71429 871.57143 914.85714 909.85714 957.28571 943.42857 914.85714 895.71429
914.28571 871.57143 767 957.28571 886.57143 1000 971.42857 957.28571
914.28571 767.85714 957.28571 814.71429 957.28571 952.57143 924 772.28571
971.42857 938.42857 985.85714 985.85714 985.85714 819.71429 1000 914.28571

1000 971.42857 971.42857 971.42857 924 985.85714 971.42857 885.71429
862.14286 843.28571 915.14286 985.85714 938.42857 971.42857 843.28571 914.28571
800.85714 757.57143 938.42857 943.42857 943.42857 971.42857 843.28571 929.28571

1000 971.42857 924 971.42857 971.42857 943.42857 971.42857 971.42857
1000 971.42857 881.57143 971.42857 743.14286 943.42857 929 971.42857
1000 881.57143 971.42857 828.85714 971.42857 985.85714 971.42857 786.42857
1000 853.57143 871.57143 829.14286 914.85714 809.71429 838.28571 914.85714

971.42857 952.57143 1000 1000 1000 914.85714 1000 1000
1000 806.14286 957.28571 914.85714 914.85714 1000 971.42857 914.85714

900.14286 767.85714 909.85714 957.28571 957.28571 985.85714 957.28571 900.71429
719.57143 1000 910.14286 1000 1000 971.42857 943.42857 1000
791.42857 795.57143 985.85714 985.85714 985.85714 971.42857 843.28571 929.28571
900.14286 866.85714 1000 957.57143 957.57143 1000 985.85714 1000
985.85714 952.57143 1000 815 957.57143 1000 985.85714 857.42857
985.85714 872.28571 691.42857 834 919.71429 919.71429 900.14286 1000
971.42857 952.57143 1000 1000 1000 914.85714 1000 1000
914.28571 667.71429 957.28571 814.71429 909.85714 957.57143 971.42857 957.28571

1000 596.71429 943.14286 705.42857 848 957.57143 971.42857 957.28571
914.28571 577.85714 957.28571 814.71429 814.71429 1000 971.42857 914.85714
952.57143 853.57143 814.71429 867.42857 829.14286 1000 971.42857 867.42857
971.42857 952.57143 1000 1000 1000 819.71429 1000 1000

1000 895.71429 857.42857 714.85714 943.14286 1000 885.71429 814.71429
957.28571 839.42857 1000 1000 1000 900.71429 915.14286 957.57143
834.85714 957.28571 824.14286 829.14286 914.85714 843.28571 791.28571 792.14286
914.28571 743.14286 971.42857 686.28571 924 943.42857 971.42857 828.85714

1000 848.57143 957.28571 957.28571 957.28571 815 971.42857 871.57143
1000 520.71429 957.28571 814.71429 871.57143 1000 828.85714 914.85714

952.57143 711 814.71429 767.28571 871.57143 1000 971.42857 867.42857
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

25 26 27 28 29 30 31 32

0
316.14286 0
900.14286 852.71429 0
900.14286 900.14286 435.71429 0

773 607.14286 644.42857 463.71429 0
882.14286 985.85714 625.14286 554.42857 748.14286 0
952.57143 1000 863.14286 905.57143 952.57143 819.85714 0

1000 1000 863.14286 715.28571 1000 639 393.28571 0
838.85714 900.14286 653.14286 673.42857 985.85714 787.71429 596.85714 549.42857
985.85714 985.85714 877.28571 777.14286 900.14286 872.28571 241.57143 350.57143
957.28571 814.71429 1000 1000 814.71429 952.57143 1000 1000
682.28571 682.28571 1000 1000 863.14286 952.57143 772.28571 914.85714
454.85714 368.28571 952.57143 1000 692 896.28571 985.85714 985.85714
544.42857 431.28571 985.85714 985.85714 664 985.85714 857.42857 1000

1000 1000 905.57143 905.57143 1000 677.28571 664 483.14286
985.85714 985.85714 819.28571 857.42857 985.85714 910.14286 914.85714 772.28571
900.14286 900.14286 791.57143 786.57143 985.85714 738.85714 635.71429 407.42857
871.85714 801.14286 819.85714 819.85714 886.85714 724.71429 521.42857 340.57143
971.42857 971.42857 1000 1000 971.42857 809.71429 1000 1000

1000 1000 1000 952.57143 1000 957.57143 957.28571 839.14286
952.57143 1000 957.57143 1000 952.57143 1000 724.57143 914.85714
943.14286 895.71429 757.71429 985.85714 943.14286 985.85714 1000 1000
943.14286 895.71429 938.42857 985.85714 857.42857 985.85714 857.42857 1000
952.57143 1000 900.71429 929 952.57143 971.42857 952.57143 1000
985.85714 985.85714 957.28571 914.85714 985.85714 909.85714 1000 1000
871.57143 871.57143 705.28571 796.14286 957.28571 971.71429 985.85714 938.42857
957.28571 957.28571 929.28571 957.57143 957.28571 866.85714 914.28571 914.28571
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

25 26 27 28 29 30 31 32
866.85714 914.28571 857.71429 829.42857 952.57143 915.14286 867.42857 914.85714
985.85714 843.28571 1000 1000 843.28571 1000 957.28571 957.28571

1000 1000 1000 910.14286 1000 1000 957.28571 909.85714
1000 952.57143 952.57143 957.57143 1000 1000 744 957.28571

971.42857 971.42857 985.85714 985.85714 971.42857 938.42857 985.85714 985.85714
952.57143 1000 857.42857 1000 952.57143 957.57143 924 971.42857
814.71429 862.14286 971.71429 971.71429 909.85714 929.28571 938.42857 915.14286
957.28571 886.57143 929.28571 924.28571 886.57143 971.71429 943.42857 896

1000 1000 786.71429 910.14286 1000 1000 971.42857 924
1000 1000 929.28571 809.71429 1000 914.28571 885.71429 695.42857

914.28571 914.28571 843.57143 871.85714 1000 952.57143 828.85714 971.42857
1000 952.57143 910.14286 1000 914.28571 1000 844.14286 914.85714

971.42857 971.42857 1000 1000 971.42857 952.57143 1000 1000
1000 857.42857 957.57143 1000 857.42857 952.57143 914.85714 914.85714

985.85714 985.85714 857.42857 881.85714 985.85714 929.28571 957.28571 909.85714
791.42857 862.14286 985.85714 938.42857 957.28571 843.28571 1000 952.57143
776.42857 705.71429 886 886 886.57143 924.28571 985.85714 985.85714
985.85714 985.85714 844.14286 957.28571 985.85714 909.85714 957.57143 957.57143
900.14286 900.14286 758.42857 871.57143 985.85714 909.85714 815 957.57143
985.85714 985.85714 806.28571 834.57143 900.14286 829.57143 919.71429 919.71429
971.42857 971.42857 786.71429 957.57143 971.42857 952.57143 1000 1000
952.57143 1000 786.71429 1000 952.57143 1000 909.85714 957.28571
914.28571 914.28571 829.42857 900.14286 1000 896 848 848

1000 1000 929.28571 815 1000 952.57143 957.28571 814.71429
1000 1000 886.85714 1000 1000 914.28571 829.14286 829.14286

971.42857 971.42857 1000 1000 971.42857 952.57143 1000 1000
1000 1000 985.85714 985.85714 914.28571 896 800.57143 943.14286

957.28571 957.28571 985.85714 943.42857 957.28571 938.42857 1000 1000
905.57143 834.85714 957.57143 952.57143 749.14286 1000 914.85714 867.42857
952.57143 1000 929.28571 957.57143 952.57143 1000 781.14286 971.42857

1000 1000 929.28571 1000 1000 952.57143 957.28571 957.28571
1000 1000 929.28571 957.57143 1000 866.85714 871.57143 871.57143
1000 1000 1000 957.57143 1000 914.28571 800.85714 871.57143
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

33 34 35 36 37 38 39 40

0
582.71429 0
985.85714 938.42857 0
900.71429 853.28571 938.42857 0
910.42857 971.71429 672.14286 597.42857 0
985.85714 900.14286 896 539.71429 558.57143 0
739.42857 630.71429 866.85714 867.42857 985.85714 1000 0

720 710.42857 867.71429 696.85714 971.71429 985.85714 867.42857 0
592.14286 621.57143 985.85714 900.71429 971.71429 985.85714 426.57143 900.71429
368.57143 535.57143 1000 872.42857 943.42857 839.42857 483.14286 914.85714

1000 952.57143 825 952.57143 971.42857 971.42857 952.57143 786.57143
909.85714 957.28571 1000 871.57143 985.85714 1000 957.28571 834.57143
957.28571 914.85714 834 814.71429 985.85714 857.42857 871.57143 957.28571
805.14286 985.85714 957.28571 915.14286 839.14286 943.14286 957.57143 724.71429
985.85714 900.14286 957.28571 843.28571 909.85714 714.85714 957.57143 905.57143
957.57143 1000 857.71429 1000 1000 1000 771.71429 919.71429
957.57143 952.57143 866.85714 952.57143 1000 985.85714 866.85714 872.28571
643.71429 1000 971.42857 1000 971.42857 957.28571 985.85714 738.85714
943.42857 938.42857 715 938.42857 957.28571 957.28571 952.57143 858.14286
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

33 34 35 36 37 38 39 40
815 929 985.85714 971.42857 1000 1000 814.71429 891.14286

943.14286 943.14286 715.14286 943.14286 829.14286 938.42857 829.14286 862.85714
867.42857 957.28571 914.28571 957.28571 985.85714 1000 871.57143 877
914.85714 886.57143 914.28571 814.71429 938.42857 857.42857 871.57143 877

1000 952.57143 549.14286 952.57143 971.42857 971.42857 938.42857 872.28571
971.42857 971.42857 724.71429 971.42857 1000 1000 971.42857 929

1000 1000 710.28571 1000 876.28571 862.14286 985.85714 957.57143
952.57143 957.57143 624.57143 1000 971.42857 886.57143 900.14286 1000
881.57143 971.42857 943.42857 971.42857 1000 1000 971.42857 805.42857

924 828.85714 943.42857 971.42857 1000 1000 929 748.57143
843.28571 924 938.42857 781.14286 1000 857.42857 924 843.71429
814.71429 758.42857 1000 957.28571 938.42857 914.28571 957.28571 877

1000 952.57143 606.28571 952.57143 971.42857 971.42857 952.57143 952.57143
957.28571 867.42857 729.42857 909.85714 843.28571 1000 909.85714 824.14286

825 943.14286 639 943.14286 971.71429 985.85714 871.57143 943.14286
952.57143 1000 891.14286 1000 876.28571 862.14286 957.57143 1000
914.28571 952.57143 662.85714 952.57143 876.28571 791.42857 938.42857 952.57143

1000 910.14286 866.85714 952.57143 1000 985.85714 866.85714 872.28571
914.28571 910.14286 952.57143 809.71429 1000 843.28571 952.57143 872.28571
877.28571 786.57143 952.57143 952.57143 1000 900.14286 872.28571 952.57143
957.57143 952.57143 867.42857 952.57143 971.42857 971.42857 952.57143 786.57143
957.28571 957.28571 871.85714 957.28571 985.85714 1000 729 877
776.42857 814.71429 910.14286 909.85714 985.85714 1000 658 787.14286
914.85714 767 866.85714 909.85714 985.85714 1000 681.57143 686.71429
957.28571 914.85714 1000 957.28571 985.85714 952.57143 957.28571 877

1000 952.57143 468.71429 952.57143 971.42857 971.42857 952.57143 866.85714
957.28571 824.14286 691.42857 624.42857 985.85714 771.71429 895.71429 867.42857
957.57143 952.57143 662.85714 881.85714 815 957.28571 952.57143 952.57143
752.85714 815 805.14286 862.85714 891.42857 749.14286 957.28571 943.14286

929 971.42857 857.71429 828.85714 1000 857.42857 743.14286 891.14286
814.71429 909.85714 910.14286 909.85714 985.85714 1000 909.85714 829.57143
914.85714 909.85714 952.57143 909.85714 985.85714 1000 767.28571 829.57143
914.85714 886.57143 1000 957.28571 985.85714 952.57143 814.71429 877
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

41 42 43 44 45 46 47 48

0
411.57143 0

1000 1000 0
909.85714 957.28571 724.71429 0
772.28571 957.28571 805.14286 667.28571 0
985.85714 1000 891.14286 919.71429 1000 0
985.85714 1000 891.14286 919.71429 753.71429 535.28571 0

1000 1000 849 905.57143 852.71429 919.71429 919.71429 0
1000 1000 858.14286 905.57143 838.85714 905.57143 844.28571 472.85714

866.85714 900.14286 891.14286 729.42857 938.71429 696.14286 745 639.57143
985.85714 1000 829.57143 919.71429 1000 834.57143 877 554.71429
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

41 42 43 44 45 46 47 48
843.28571 871.57143 905.57143 706.14286 881.57143 919.71429 919.71429 677.28571
943.14286 909.85714 877.28571 877 871.57143 863.14286 682.28571 791.57143

767 957.28571 905.57143 815.42857 796.14286 919.71429 606.85714 777.42857
957.28571 957.28571 905.57143 759.14286 714.85714 872.28571 548.57143 777.42857

1000 985.85714 602.14286 919.71429 1000 891.14286 891.14286 863.14286
971.42857 971.42857 971.71429 677.14286 734.42857 1000 1000 924.28571

1000 985.85714 971.42857 744.28571 872.28571 711 814.71429 952.57143
910.14286 915.14286 971.42857 809.71429 687.85714 719.57143 615.85714 914.28571

924 971.42857 763.28571 829.57143 957.28571 919.71429 738.85714 735.85714
924 971.42857 849 591.85714 862.14286 877.28571 696.42857 778.28571

885.71429 885.71429 844 834.57143 814.71429 919.71429 596.28571 778.28571
772.28571 814.71429 905.57143 664 663 872.28571 605.71429 905.57143

1000 1000 544.85714 985.85714 905.57143 885.71429 971.42857 929.28571
914.85714 957.28571 672 421 544.42857 1000 1000 985.85714
753.14286 957.28571 1000 711 553.57143 985.85714 985.85714 914.28571
952.57143 1000 814.71429 938.42857 905.57143 582.85714 591.57143 985.85714
914.28571 829.42857 924 857.42857 816 814.71429 711 1000
957.57143 1000 858.14286 905.57143 857.71429 905.57143 905.57143 383.28571
871.85714 914.28571 858.14286 905.57143 739.57143 905.57143 701.71429 530.28571
777.14286 919.71429 938.42857 985.85714 924.57143 985.85714 658.14286 606.42857

1000 1000 687.28571 905.57143 985.85714 891.14286 710.28571 498.14286
957.28571 957.28571 863.14286 801.57143 810 919.71429 919.71429 478.42857
776.42857 762.28571 649 592.42857 776.57143 919.71429 919.71429 806.57143
957.28571 957.28571 858.14286 759.14286 857.42857 919.71429 738.85714 706.71429
772.28571 909.85714 905.57143 759.14286 900.71429 919.71429 919.71429 654

1000 1000 521.28571 985.85714 905.57143 971.42857 971.42857 929.28571
957.28571 943.14286 857.42857 914.85714 734.42857 1000 771.71429 1000

1000 1000 767.28571 943.42857 905.57143 730.14286 862.14286 943.42857
853.28571 744 1000 909.85714 811.14286 748.14286 558.71429 1000
971.42857 971.42857 849 877 681.28571 919.71429 777.14286 360.57143
957.28571 814.71429 634.85714 383 667.28571 919.71429 919.71429 792.42857
957.28571 957.28571 858.14286 616.57143 943.14286 919.71429 919.71429 611.57143
814.71429 909.85714 905.57143 664 848 919.71429 738.85714 863.14286
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

49 50 51 52 53 54 55 56

0
664.28571 0
734.71429 611 0
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

49 50 51 52 53 54 55 56
738.85714 677.28571 905.57143 0
763.28571 919.71429 844.28571 796 0
673.71429 655.42857 877.28571 796 372.71429 0
777.42857 877.28571 877.28571 753.57143 372.71429 316.14286 0
872.28571 877 587.42857 891.42857 816 919.71429 919.71429 0
943.42857 957.57143 805.14286 848.57143 971.42857 914.85714 957.28571 719.42857
985.85714 800.57143 748.28571 795.57143 1000 1000 1000 690.85714
838.85714 691.57143 790.71429 800.85714 914.28571 805.57143 914.28571 776.57143
863.14286 829.85714 731.14286 781.85714 368.85714 368.57143 416 801.85714
905.57143 872.28571 687.85714 877 564.14286 648.71429 696.14286 801.85714
815.71429 791.57143 745 592.42857 472.57143 416 231 858.14286
905.57143 919.71429 919.71429 806.28571 696.14286 682 460.14286 919.71429
938.42857 971.42857 525 985.85714 896.28571 985.85714 985.85714 482.85714
938.42857 1000 952.57143 886.57143 814.71429 943.14286 839.42857 952.57143
914.28571 952.57143 805.14286 858.28571 857.42857 824.14286 767.85714 819.28571
971.71429 909.85714 929 1000 776.85714 757.71429 805.14286 971.42857
877.14286 653.57143 743.28571 757.57143 1000 938.71429 1000 729.14286
125.85714 768 706.42857 696.42857 834 777.42857 819.85714 872.28571
293.14286 621 706.42857 610.71429 919.71429 801.85714 763 872.28571
654.42857 602 601.71429 1000 819.28571 516.42857 762.71429 952.57143
720.57143 611 417.42857 905.57143 635.14286 682.28571 682.28571 725.85714

639 919.71429 849 425.14286 653.71429 682 620.71429 877.28571
872.28571 819.85714 801.57143 648.71429 834.57143 877 815.71429 815.71429

730 877.28571 759.14286 611 515.28571 458.71429 355 872.28571
724.71429 919.71429 763.28571 530.28571 591.85714 482.57143 521.42857 919.71429
795.57143 971.42857 729.14286 985.85714 957.57143 985.85714 985.85714 335.85714
910.14286 943.42857 771.85714 896 957.28571 914.85714 814.71429 757.71429
881.85714 914.85714 558 957.57143 1000 943.42857 901 600.71429
938.71429 891.28571 805.14286 929 943.14286 848.57143 957.28571 819.28571
596.57143 877.28571 792.42857 411 667.85714 653.71429 511.14286 863.14286
858.14286 919.71429 801.57143 891.14286 834.57143 862.85714 801.57143 744.14286
634.85714 734.71429 673.42857 287.57143 781.85714 725.28571 621.57143 872.28571
863.14286 877.28571 791.57143 706.14286 648.71429 497 465.14286 919.71429
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

57 58 59 60 61 62 63 64
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

57 58 59 60 61 62 63 64

0
563.28571 0
738.85714 396.85714 0
800.57143 1000 952.57143 0
705.42857 1000 952.57143 460.14286 0
881.85714 1000 1000 331.14286 611.28571 0
862.14286 1000 957.57143 696.14286 601 653.71429 0
710.57143 710.28571 710.28571 868 868 924.28571 985.85714 0
568.57143 919.71429 877.28571 871.57143 719.57143 867.42857 701.85714 858.14286
472.57143 738.85714 605.71429 781.14286 828.85714 929 615.85714 738.85714
905.57143 535.57143 687 757.71429 715.28571 805.14286 805.14286 791.28571
738.85714 301.71429 222.42857 1000 1000 866.85714 1000 662.85714
943.42857 985.85714 857.71429 834.85714 834.85714 787.42857 863.14286 938.42857
943.42857 985.85714 882.14286 834.85714 834.85714 558.85714 863.14286 938.42857
943.42857 985.85714 924.57143 692 734.42857 644.57143 719.42857 938.42857
829.14286 971.42857 971.42857 265.42857 536.14286 550 724.71429 792

767 952.57143 914.28571 526.14286 763.85714 711.14286 801.57143 901
929 943.42857 985.85714 778 778 687.28571 815.71429 910.14286

957.28571 1000 914.28571 487.85714 482.85714 398 578.28571 938.42857
957.28571 1000 957.57143 568.57143 720.57143 526.14286 716.71429 985.85714
710.57143 710.28571 710.28571 843.57143 929.28571 924.28571 985.85714 449.57143
493.42857 682.28571 724.71429 971.42857 971.42857 719.85714 871.57143 596.28571
724.71429 634.85714 601 943.42857 985.85714 853.57143 943.42857 363.28571
790.71429 676.71429 317.28571 924 924 971.42857 686.57143 819.28571
895.71429 952.57143 914.28571 612.14286 749.71429 512 877 929.28571
633.85714 914.28571 1000 763.85714 526.14286 758.85714 563.85714 853.57143
957.28571 857.42857 857.42857 668.71429 720.57143 578.85714 759.14286 938.42857
862.14286 1000 1000 653.71429 515.28571 611.28571 412.42857 985.85714

175



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

65 66 67 68 69 70 71 72
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

65 66 67 68 69 70 71 72

0
678.14286 0
905.57143 872.28571 0
872.28571 696.42857 639.28571 0

896 914.28571 971.71429 938.42857 0
896 1000 971.71429 791.42857 241.28571 0

938.42857 1000 791 877.14286 687.42857 626.14286 0
852.71429 857.42857 776.57143 924 692.28571 692.28571 406.85714 0
881.85714 667.71429 985.85714 1000 568.28571 654 915.14286 649.85714
667.85714 896 1000 852.71429 801.57143 715.85714 881.85714 759.14286

792 767.85714 805.14286 952.57143 701.71429 787.42857 644.57143 564.14286
797 853.57143 985.85714 1000 611.57143 611.57143 772.57143 834.85714

772.42857 738.85714 877 662.85714 795.57143 938.42857 938.42857 767.57143
758.85714 696.14286 919.71429 677.28571 910.14286 767.28571 824.42857 952.57143
815.71429 696.42857 801.57143 648.71429 924.28571 924.28571 881.85714 867.42857
914.85714 715 810 502.28571 957.57143 896.28571 853 1000
957.28571 885.71429 985.85714 1000 507 511.42857 872.71429 735.85714

416 800.85714 985.85714 952.57143 787.42857 787.42857 867.71429 745
792 853.57143 985.85714 809.71429 606.57143 606.57143 825.28571 745

744.28571 758.42857 805.14286 1000 905.57143 905.57143 620.14286 682.28571
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

73 74 75 76 77 78 79 80
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

73 74 75 76 77 78 79 80

0
560 0

407.42857 555 0
454.85714 745 593.28571 0
943.42857 910.14286 938.42857 985.85714 0
957.28571 853.28571 909.85714 957.28571 691.42857 0
985.85714 952.57143 853.57143 943.42857 506.14286 691.42857 0
957.28571 957.28571 957.28571 914.85714 819.28571 690.85714 724.14286 0
212.14286 635.42857 440.42857 530.28571 929.28571 828.85714 943.42857 971.42857

646 474.28571 683.42857 730.85714 896 909.85714 938.42857 814.71429
312.28571 555 360.85714 326.71429 938.42857 909.85714 853.57143 957.28571

659 673.14286 393.28571 483.14286 985.85714 957.28571 901 957.28571
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

81 82 83 84
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

81 82 83 84

0
763.85714 0
345.28571 683.42857 0

692 706.42857 488.42857 0
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 182

Proceeding pages display the averaged dissimilarity matrix for part one of the subset 
study described in Section 7.2.



1 2 3 4 5 6 7 8
1 0
2 687.3333 0
3 906.7778 494 0
4 829.7778 788.6667 886.0833 0
5 967 934 967 769 0
6 967 967 901 967 895.5 0
7 967 934 934 950.5 813 587.5 0
8 810.6667 755.6667 893.1667 827.1667 802 703 868 0
9 884.5 956 908.3333 703 868 835 785.5 835

10 965.44446 929.3333 870.1111 936.1111 967 835 967 656.6667
11 703 791 967 868 983.5 835 884.5 692
12 928.7778 687.3333 873.7778 917.7778 1000 868 1000 783.1667
13 983.5 967 879 945 1000 967 950.5 835
14 466.5 791 886.3333 952.3333 967 967 983.5 1000
15 945 802 809.3333 948.6667 967 857 934 1000
16 549 857 835 802 769 1000 1000 895.5
17 909.6667 876.6667 761.1667 772.1667 835 769 934 725
18 909.6667 794.6667 798.3333 928.7778 967 934 945 689.6667
19 819.3333 848.1111 876.6667 909.6667 868 967 983.5 805.1667
20 884.7778 761.1667 905.3333 822.8333 934 868 884.5 744.6667
21 950.5 967 923 956 857 868 631.5 780
22 578.3333 840.5 912 854.25 967 967 967 862.5
23 857 675.5 829.5 912 901 967 967 827.6667
24 827.1667 591.44446 518.1111 793.1111 730.5 983.5 897.3333 593
25 654.3333 848.1111 871.1667 491.66666 901 637 967 711.6667
26 906.5 824 787.3333 673.6667 307 967 851.5 934
27 967 857 912 945 967 703 538 780
28 967 956 879 952.3333 901 406 406 912
29 967 934 967 934 747 631.5 703 505
30 717.1667 761.1667 876.6667 601.6667 967 868 917.5 794.1667
31 965.44446 896.3333 826.1111 954.44446 934 868 934 882.1667
32 761.1667 574.1667 865.6667 794.1667 967 967 868 761.6667
33 1000 1000 930.3333 919.3333 967 835 884.5 582
34 687.3333 826.1111 827.1667 761.1667 934 835 835 755.6667
35 624.44446 731.3333 965.44446 866.44446 967 824 967 865.6667
36 945 824 849.6667 901 967 857 983.5 967
37 860.6667 527 912 527 769 967 934 796.5
38 852.3333 881.1111 739.1667 689.6667 604 967 983.5 747
39 1000 967 912 1000 967 967 802 983.5
40 835 967 919.3333 937.6667 1000 868 868 967
41 967 967 802 934 950.5 950.5 983.5 934
42 1000 901 901 967 1000 934 670 956
43 670 978 980.75 980.75 967 868 983.5 950.5
44 983.5 703 945 1000 1000 967 978 879
45 930.3333 983.5 835 1000 1000 967 978 923
46 912 961.5 972.5 759.1667 868 934 917.5 950.5
47 967 989 901 934 802 835 785.5 771.3333
48 948.1667 915.1667 931.6667 948.1667 967 703 703 877.44446
49 967 857 1000 967 950.5 736 802 725
50 1000 978 917.5 967 967 934 818.5 769
51 879 950.5 950.5 851.5 967 835 967 967
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1 2 3 4 5 6 7 8
53 835 897.3333 983.5 917.5 967 1000 1000 813
54 928.5 956 945 956 1000 901 989 884.5
55 989 1000 969.75 945 1000 967 983.5 873.5
56 952.3333 945 947.75 947.75 1000 868 851.5 884.5
57 362 983.5 1000 934 983.5 934 974.3333 1000
58 1000 902.55554 804.3333 1000 967 967 829.5 901
59 852.3333 925.1111 887.6667 772.1667 1000 934 818.5 893.1667
60 890 952.3333 879 912 868 934 945 798.8333
61 945 707.6667 829.2222 926.6667 967 835 967 917.5
62 928.5 967 970.6667 948.6667 1000 967 978 1000
63 945 961.5 945 961.5 967 1000 1000 875.3333
64 882.6667 663.6667 876.8889 963.3333 1000 967 1000 725
65 904.1667 948.1667 948.1667 964.6667 1000 868 967 976.44446
66 983.5 703 934 989 967 1000 961.5 824
67 1000 862.5 835 983.5 967 895.5 967 857
68 941.3333 923 952.3333 715.55554 967 791 868 879
69 852.3333 870.1111 805.1667 854.6667 736 901 835 730.5
70 967 891.55554 787.8333 983.5 967 670 851.5 785.5
71 929.3333 917.7778 810.6667 926.1667 934 736 653.5 766.6667
72 934 983.5 983.5 950.5 917.5 703 714 736
73 736 868 1000 1000 1000 967 703 1000
74 1000 967 945 945 1000 1000 835 1000
75 758 967 1000 901 1000 934 1000 1000
76 890 765.8333 815.3333 961.5 934 934 950.5 862.5
77 1000 1000 945 945 967 802 967 857
78 764.3333 932.44446 865.6667 948.1667 1000 1000 901 964.6667
79 882.1667 730.5 758 937.1667 1000 967 967 888.44446
80 983.5 967 978 824 934 967 967 846
81 912 952.3333 765.3333 930.3333 934 967 983.5 799.8889
82 901 956 934 1000 1000 934 785.5 967
83 917.5 923 974.3333 952.3333 1000 967 1000 835
84 967 985.3333 879 862.5 1000 934 950.5 934
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

9 10 11 12 13 14 15 16

0
917.5 0

791 967 0
934 706.6667 868 0
956 593 934 505 0

941.3333 934 802 1000 934 0
978 956 934 1000 934 842.3333 0
802 879 857 967 967 802 813 0
967 898.6667 802 882.1667 868 868 846 945

851.5 530.1667 681 695.1667 780 983.5 967 824
1000 670 626 296 923 868 868 857
857 717.6667 901 475.66666 813 1000 923 1000
923 824 604 708.5 743.3333 989 912 967

820.3333 1000 659 952.3333 978 607.6667 897.3333 648
835 862.5 857 796.5 1000 945 1000 851.5

961.5 931.6667 862.5 893.1667 950.5 961.5 950.5 659
824 670 802 560 1000 956 901 604

919.3333 983.5 967 967 989 945 915.6667 890
923 945 890 967 1000 1000 912 917.5

882.6667 912 901 956 1000 974.3333 893.6667 1000
868 967 851.5 1000 1000 967 967 934
472 931.6667 780 931.6667 934 934 967 824

884.5 541.6667 1000 703 719.5 1000 840.5 1000
879 909.6667 461 794.1667 934 934 879 912
725 626 868 538 772.6667 956 978 890

1000 929.3333 593 786.3333 637 967 956 824
884.5 976.44446 1000 943.44446 983.5 411.5 807.5 835

974.3333 972.5 967 835 923 915.6667 417 945
934 970.6667 1000 919.3333 1000 945 917.5 912
956 929.3333 967 786.3333 967 956 736 670
835 1000 736 736 802 967 912 983.5
868 917.5 538 967 952.3333 945 853.3333 780
868 461 785.5 340 670 967 934 934
967 703 736 582 395 868 934 983.5

838.6667 978 1000 978 1000 732.3333 989 835
989 901 934 741.5 820.3333 967 934 1000
989 825.55554 967 840.2222 919.3333 919.3333 978 1000
681 941.3333 967 945 923 941.3333 967 802
967 967 934 1000 857 1000 1000 967
945 816.1667 967 931.6667 1000 1000 967 1000
934 967 862.5 934 967 868 1000 857
967 703 1000 967 1000 1000 956 1000

706.6667 978 967 934 978 945 985.3333 835
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

9 10 11 12 13 14 15 16
1000 934 593 1000 967 802 923 857
917.5 950.5 752.5 917.5 983.5 879 961.5 1000

934 708.2222 835 631.2222 794.6667 923 945 945
952.3333 923 835 923 875.3333 956 967 1000

983.5 1000 917.5 967 950.5 466.5 1000 967
769 835 934 1000 967 1000 505 934
956 863.3333 967 852.3333 670 956 967 736

1000 967 1000 923 967 1000 967 1000
950.5 893.6667 703 923 846 967 972.5 945

919.3333 906.5 769 967 879 875.3333 959.6667 945
923 754.8333 703 732.8333 945 1000 967 983.5
967 791 637 794.6667 791 912 950.5 1000
967 796.5 868 835 967 912 1000 983.5
945 956 967 813 893.6667 956 934 1000

1000 1000 879 868 983.5 1000 857 890
846 967 967 941.3333 934 983.5 879 802
791 830.3333 703 786.3333 1000 956 901 1000
967 868 802 1000 1000 1000 956 1000
923 698.3333 967 929.3333 1000 956 1000 967

884.5 967 917.5 824 967 967 961.5 1000
912 1000 868 1000 967 967 1000 934
967 945 736 1000 967 967 945 972.5
967 868 703 835 868 857 967 1000
967 884.5 802 681 835 758 1000 1000

1000 857 505 747 747 1000 912 956
967 929.3333 1000 929.3333 1000 538 956 967

1000 810.6667 890 788.6667 648 901 912 901
846 1000 1000 956 864.3333 945 978 835

917.5 895.5 967 945 752.5 950.5 983.5 967
901 934 736 1000 967 1000 923 1000
835 983.5 769 967 934 941.3333 978 835
824 791 835 835 901 956 1000 1000
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

17 18 19 20 21 22 23 24

0
926.1667 0
893.1667 591.44446 0
893.1667 848.1111 626 0

879 582 758 864.3333 0
961.5 952.3333 846 914.75 1000 0

952.3333 807.5 824 862.5 736 637 0
780 877.8333 892.1111 807.7778 895.5 882.6667 791 0

794.1667 928.7778 798.3333 631.5 1000 708.5 895.5 848.1111
505 983.5 901 912 1000 908.3333 879 747

917.5 725 857 670 967 967 912 857
824 928.5 1000 912 761.6667 952.3333 967 961.5
703 967 967 934 901 967 901 884.5

948.1667 884.7778 909.6667 865.6667 868 818.5 912 807.7778
904.1667 612.6667 505 593 752.5 959.6667 917.5 898.6667

802 706.1667 673.1667 761.1667 703 818.5 758 576.5
857 846 956 395 857 989 835 983.5

860.1667 793.1111 804.1111 744.6667 571 730.5 840.5 771.1111
964.6667 948.1667 929.3333 899.44446 983.5 765.3333 939.5 865.6667

912 983.5 967 923 890 937.6667 868 813
862.5 945 890 875.3333 983.5 805.6667 895.5 846

461 906.7778 884.7778 810.6667 967 873.5 879 596.6667
851.5 703 505 835 901 912 934 967

879 664.5 329 787.3333 688.3333 879 890 967
901 549 538 307 967 967 934 917.5
846 703 835 824 516 1000 879 901

983.5 956 1000 983.5 945 765.0833 920.6667 974.3333
967 868 967 930.3333 926.6667 989 890 983.5

917.5 890 837.3333 849.9167 915.6667 974.0833 909.6667 703
1000 923 950.5 950.5 978 858.5833 876.6667 963.3333

705.3333 963.3333 974.3333 895.5 824 948.1667 931.6667 825.55554
884.7778 915.1667 948.1667 865.6667 967 956 967 948.1667

967 912 890 1000 835 967 824 912
879 890 989 967 1000 967 967 967

1000 989 851.5 909.25 978 903.75 934 1000
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

17 18 19 20 21 22 23 24
835 842.3333 798.3333 917.5 967 818.5 928.5 875.3333

818.5 851.5 879 923 917.5 989 950.5 991.75
983.5 842.3333 870.3333 772.9167 937.6667 983.5 1000 967
917.5 904.6667 840.5 945 791 964.25 945 875.3333

967 1000 917.5 1000 983.5 703 1000 1000
983.5 748.55554 989 1000 967 964.6667 948.1667 967

909.6667 873.7778 928.7778 860.1667 835 939.5 879 914.1111
716.3333 952.3333 941.3333 961.5 967 926.1667 909.6667 821.8889

917.5 639.3333 1000 912 835 956 967 967
1000 802 802 967 857 989 1000 983.5

871.6667 796.5 699.8333 721.8333 967 895.5 952.3333 928.5
752.5 518.3333 923 868 813 963.3333 923 928.5

888.44446 915.1667 769 835 1000 967 926.6667 964.6667
945 917.5 967 948.6667 930.3333 978 967 967
967 886.3333 912 934 967 1000 758 677.3333
945 928.5 890 974.3333 967 921.44446 909.6667 945
681 862.7778 895.7778 876.6667 1000 857 912 739.6667
703 847.55554 945 983.5 901 967 983.5 989

948.1667 844.44446 976.44446 882.1667 868 961.5 967 862.7778
692 923 983.5 912 934 950.5 967 978
967 835 1000 1000 1000 912 1000 901

983.5 571 736 1000 1000 967 1000 1000
967 670 736 901 571 1000 1000 1000

873.5 744.8889 730.5 796.5 901 961.5 895.5 941.3333
884.5 703 736 879 879 1000 983.5 967

931.6667 921.44446 965.44446 948.1667 1000 835 917.5 943.44446
932.44446 763.5 843.6667 854.6667 879 1000 875.3333 893.1667

945 895.5 758 974.3333 945 978 1000 967
799.8889 871.6667 937.6667 941.3333 961.5 939.7778 837.1111 766.8889

901 846 901 1000 967 1000 1000 945
1000 620.5 505 967 824 901 835 961.5
912 846 879 851.5 1000 961.5 1000 974.3333
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2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

25 26 27 28 29 30 31 32

0
626 0
967 967 0
923 879 692 0
736 593 769 637 0

783.1667 934 890 967 967 0
670 923 692 697.5 934 931.6667 0

810.6667 912 945 912 967 645.6667 827.1667 0
868 963.3333 868 912 967 967 686.5 967

752.7778 1000 791 802 835 662.1667 896.3333 607.1667
764.3333 939.5 967 967 967 717.1667 954.44446 849.1667

956 879 912 879 967 1000 791 780
725 769 912 950.5 934 785.5 967 846

760.1111 494 967 956 901 931.6667 896.3333 747
967 912 895.5 835 868 1000 516 648

1000 948.6667 615 827.6667 901 835 923 835
934 934 901 824 901 884.5 428 703

1000 1000 884.5 967 1000 868 967 730.5
978 945 769 893.6667 967 884.5 886.3333 917.5

1000 956 934 978 1000 967 967 923
853.8333 989 835 978 1000 967 869.55554 879

730.5 875.3333 967 919.3333 868 884.5 948.6667 917.5
956 703 868 868 670 950.5 967 837.3333

931.6667 967 659 769 868 865.6667 854.6667 936.1111
934 967 593 769 851.5 895.5 1000 857
978 868 901 703 835 967 835 983.5
934 967 879 901 967 705.3333 970.6667 906.5
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

25 26 27 28 29 30 31 32
934 1000 857 1000 967 780 967 714
901 983.5 967 983.5 917.5 978 983.5 818.5

804.3333 945 912 875.3333 1000 950.5 766.8889 1000
961.5 945 769 780 901 950.5 897.3333 961.5
1000 983.5 967 934 983.5 967 1000 1000
989 1000 835 1000 967 934 868 967

804.1111 956 802 956 1000 915.1667 731.3333 909.6667
952.3333 1000 901 1000 967 983.5 802 831.8333

1000 967 560 835 967 884.5 901 967
901 1000 780 941.3333 1000 967 912 802

815.3333 967 818.5 692 967 835 782.3333 875.3333
923 901 967 873.5 1000 950.5 912 923

818.5 780 956 901 1000 849.1667 796.5 921.44446
1000 945 967 959.6667 967 1000 967 967
983.5 983.5 791 983.5 967 945 967 890

626 967 1000 983.5 967 851.5 970.6667 934
870.1111 560 934 824 967 882.1667 797.3333 697.5

923 868 868 868 703 983.5 901 983.5
928.7778 824 703 659 835 849.1667 896.3333 948.1667

967 851.5 802 703 670 950.5 1000 1000
901 1000 873.5 1000 1000 703 945 890

1000 901 829.5 1000 1000 1000 1000 851.5
1000 1000 967 1000 1000 934 901 736
945 1000 934 1000 983.5 967 917.5 780
802 901 956 967 802 934 967 752.5

954.44446 967 802 967 1000 948.1667 929.3333 964.6667
964.6667 1000 868 967 1000 876.6667 931.6667 906.7778

1000 978 1000 959.6667 934 604 983.5 967
941.3333 983.5 967 1000 934 934 1000 851.2222

1000 1000 967 1000 1000 835 802 868
956 985.3333 813 985.3333 1000 967 972.5 912

930.3333 923 967 923 1000 967 791 917.5
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

33 34 35 36 37 38 39 40

0
1000 0
1000 731.3333 0
1000 1000 791 0
1000 692 842.3333 884.5 0
1000 906.7778 896.3333 626 857 0
835 604 967 780 1000 857 0

875.3333 1000 983.5 919.3333 956 967 912 0
340 571 1000 967 967 934 604 967
791 868 1000 1000 1000 890 780 890
989 983.5 783.6667 930.3333 967 978 923 923

930.3333 1000 917.5 835 967 967 835 919.3333
886.3333 1000 945 934 978 802 1000 897.3333

945 983.5 923 930.3333 882.6667 912 945 897.3333
923 912 1000 1000 1000 759.55554 1000 956
868 948.1667 948.1667 967 967 876.6667 917.5 835
967 857 835 868 934 934 1000 868
967 887.8889 967 1000 896.3333 853.3333 857 1000
945 978 879 934 910.44446 1000 912 776.3333
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

33 34 35 36 37 38 39 40
901 761.6667 835 967 764.3333 978 736 769

917.5 897.3333 934 917.5 948.1667 1000 736 835
739.6667 978 967 893.6667 958.1111 1000 802 948.6667
952.3333 813 956 945 906.7778 945 923 897.3333

1000 934 538 934 934 1000 1000 1000
1000 989 1000 505 1000 978 1000 967
1000 873.7778 929.3333 923 923 925.1111 967 967
1000 974.3333 1000 967 824 777.8889 967 967
884.5 967 945 923 914.1111 967 967 758

923 1000 917.5 904.6667 956 967 692 783.6667
813 763.5 983.5 967 909.6667 890 774.5 835
824 923 967 901 950.7778 758 967 813

1000 915.1667 904.1667 967 1000 964.6667 917.5 1000
970.6667 1000 901 868 950.5 967 802 967

950.5 923 824 862.5 934 917.5 967 967
983.5 923 897.3333 912 842.3333 923 912 983.5

967 928.7778 896.3333 956 857 684.6667 967 1000
967 985.3333 967 1000 929.3333 989 1000 1000
967 921.44446 929.3333 857 1000 939.7778 1000 1000

895.5 978 967 1000 967 846 857 917.5
1000 1000 868 967 1000 1000 939.5 1000
1000 736 967 912 945 1000 835 945
868 736 967 934 967 1000 736 571
736 846 934 868 909.6667 890 626 967
879 703 1000 780 945 967 769 912
967 961.7778 296 901 1000 976.44446 1000 1000
879 909.6667 964.6667 615 972.5 882.1667 967 912

985.3333 901 851.5 923 758 967 934 974.3333
868 875.3333 983.5 983.5 945 733.8889 983.5 923

1000 941.3333 901 967 929.3333 989 670 868
901 901 917.5 908.3333 983.5 923 879 534.3333
703 923 1000 956 929.3333 948.6667 725 1000
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

41 42 43 44 45 46 47 48

0
868 0

1000 967 0
1000 582 934 0
967 747 888.8333 659 0

1000 923 872.3333 860.6667 844.8333 0
857 967 948.1667 1000 761.1667 893.1667 0
835 912 738.3333 934 917.5 956 868 0

983.5 1000 571 692 835 659 571 472
1000 857 945 769 917.5 950.5 934 758
1000 1000 727.75 890 917.5 788.25 983.5 653.5
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

41 42 43 44 45 46 47 48
703 868 666.8333 835 901 983.5 945 765.8333
868 868 730.2222 851.5 886.3333 890 978 798.8333
593 714 931.25 728.6667 822.4167 925.75 967 840.5
934 967 836.1667 798.3333 826.75 914.75 961.5 694.3333

1000 1000 516 912 840.5 917.5 950.5 967
967 802 931.6667 923 788.6667 843.6667 884.7778 868

1000 769 683.3333 967 967 780 868 752.5
890 967 865.6667 791 728.1667 865.6667 754.3333 983.5
901 1000 868 950.5 923 879 967 598.5

1000 1000 809.3333 908.3333 871.6667 879 1000 912
538 835 851.5 879 743.8333 967 967 758
769 802 886.3333 785.5 864.3333 952.3333 967 917.5
736 934 879 1000 853.8333 950.5 967 844.44446
967 747 945 424.33334 802 853.3333 835 967
934 802 917.5 851.5 472 901 983.5 967

1000 1000 943.44446 967 877.44446 530.6667 863.3333 972.5
890 835 978 1000 917.5 829.5 601.8889 865.6667

1000 835 895.5 868 934 983.5 868 747
802 1000 776.8333 1000 983.5 945 846 483

983.5 857 835 983.5 934 901 868 758
1000 851.5 813 1000 1000 945 967 774.5
736 851.5 912 901 1000 1000 901 769

818.5 868 824 901 791 934 1000 967
769 725 829.5 835 813 901 950.5 813
593 774.5 967 615 879 1000 824 967

1000 835 884.5 1000 983.5 983.5 978 948.1667
1000 873.5 950.5 714 923 983.5 934 921.44446
967 1000 945 897.3333 945 615 857 1000
967 884.5 976.44446 670 624.44446 884.7778 721.3333 989
703 571 650.3333 967 967 983.5 978 716.3333

1000 1000 813 923 901 857 901 681
868 560 831.8333 670 802 895.5 923 666.8333
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50 51 52 53 54 55 56 57

0
769 0
538 739.1667 0
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

50 51 52 53 54 55 56 57
725 870.1111 722.6667 0
901 782.1111 738.1111 618.6667 0
868 656.6667 784.3333 755.6667 826.1111 0
626 882.1667 836.5833 719.5 824 767.8333 0

851.5 983.5 868 769 750.6667 950.5 868 0
868 956 983.5 923 941.3333 917.5 950.5 824
901 978 901 847.55554 891.55554 884.5 782.3333 934
934 912 934 868 978 917.5 763.5 912
802 522.3333 697.7778 654.3333 711.6667 818.7778 859.1111 835
835 1000 871.6667 868 483 860.6667 857 774.5
934 827.1667 887.6667 717.1667 733.6667 538 612.6667 967
967 632.3333 921.44446 863.3333 827.1667 672.1111 767.44446 857

1000 1000 884.5 950.5 934 815.3333 956 802
725 1000 934 967 818.5 849.6667 758 912

895.5 879 961.5 890 875.3333 928.5 851.5 934
901 967 915.6667 967 950.5 967 952.3333 934
967 890 983.5 1000 989 851.5 879 1000
769 683.1111 706.1667 683.1111 646.44446 656.6667 799.6667 763.5
505 644.3333 846 843.8889 634.8889 912 837.3333 983.5

752.5 576.5 846 879 853.3333 928.5 868 934
1000 1000 483 1000 857 890 912 824
868 967 637 604 560 736 483 824

950.5 967 934 703 582 868 802 879
818.5 777.6667 816.1667 816.1667 741.7778 502.66666 810.6667 862.5

967 901 1000 703 472 527 703 1000
967 908.3333 862.5 941.3333 816.6667 961.5 1000 516
758 868 934 846 901 780 950.5 934
692 1000 846 967 934 956 820.3333 785.5
901 901 945 923 901 945 904.6667 934

1000 914.1111 887.6667 662.6667 472 871.1667 785.5 796.5
835 1000 692 769 571 919.3333 915.6667 818.5
835 686.7778 750.1667 791 703 601.6667 670 868
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58 59 60 61 62 63 64 65
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

58 59 60 61 62 63 64 65

0
857 0

884.7778 886.3333 0
608.6667 967 967 0

923 967 923 796.5 0
950.5 928.5 928.5 838.1667 835 0

575.6667 857 890 692 796.5 794.1667 0
967 799.6667 983.5 901 747 796.2222 901 0
791 967 824 950.5 842.3333 967 912 967

983.5 967 752.5 967 884.5 868 769 1000
896.3333 725 786.3333 956 950.5 945 941.3333 967

912 914.1111 741.2222 868 1000 879 824 948.1667
788.8889 945 890 164 1000 948.1667 538 950.5

967 809.3333 967 725 802 802 769 882.1667
1000 983.5 818.5 934 917.5 857 835 901
659 670 1000 637 681 873.5 868 835
626 736 967 582 791 725 967 818.5

1000 1000 967 406 593 703 362 659
820.8333 895.5 912 736 692 640.1667 576.5 851.5

934 967 890 945 747 785.5 681 917.5
897.3333 855.44446 945 835 868 983.5 1000 750.1667
655.8333 766.6667 950.5 826.3333 912 956 677.8333 789.44446

835 406 967 950.5 923 1000 956 769
954.44446 930.3333 699.3333 1000 967 901 906.5 930.3333
886.3333 803.55554 912 654.3333 637 783.1667 863.3333 851.5

967 824 967 736 629.6667 813 868 604
945 832.8889 923 632.3333 901 695.1667 797.3333 879
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66 67 68 69 70 71 72 73
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54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

66 67 68 69 70 71 72 73

0
884.5 0

945 659 0
703 884.5 923 0

1000 961.5 1000 901 0
802 917.5 967 906.7778 820.3333 0

950.5 842.3333 934 901 763.5 686.5 0
967 1000 912 868 824 1000 1000 0
703 967 967 1000 758 967 967 565.5
934 950.5 934 1000 967 967 917.5 967
868 901 912 912 785.5 868 895.5 967
736 736 890 857 802 868 1000 967

1000 813 967 965.44446 860.6667 866.44446 879 659
835 824 928.5 948.1667 804.3333 915.1667 769 884.5

787.3333 950.5 516 868 835 1000 983.5 934
983.5 752.5 794.1667 821.8889 934 934 967 983.5

769 879 967 945 723.44446 689.8889 813 758
923 884.5 923 956 1000 791 835 714

1000 835 934 919.3333 723.44446 733.8889 912 967
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3
4
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8
9
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13
14
15
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74 75 76 77 78 79 80 81
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55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

74 75 76 77 78 79 80 81

0
670 0
769 648 0
692 736 736 0
659 934 1000 1000 0
890 967 688.8333 774.5 849.1667 0
934 967 868 890 1000 890 0
967 527 862.5 917.5 967 945 813 0
758 868 849.1667 835 871.6667 950.5 967 989
769 637 835 967 868 967 890 835
868 703 563.1667 736 923 967 736 758
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84

82 83 84

0
571 0
769 857 0
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Proceeding pages display the averaged dissimilarity matrix for part one of the subset 
study described in Section 7.2.



1 2 3 4 5 6 7 8
1 0
2 792.6 0
3 905.3333 523.8571 0
4 814.5833 818.8571 847.26666 0
5 950.5 960.4 884.5 725 0
6 960.4 983.5 854.8 894.4 887.8 0
7 960.4 943.4286 938.125 950.5 864.3333 571 0
8 833.25 804.375 847.1429 790.5714 861.4 615 670 0
9 868 961.5 917.5 732.7 917.5 785.5 802 884.5

10 920.2308 937.8 869.5833 943.8333 917.5 821.8 960.4 717.75
11 736 829.5 884.5 934 991 838 901 846
12 928.7778 733.2 873.7778 917.7778 1000 851.5 802 713.625
13 975.25 960.4 881.2 950.5 983.5 901 925.75 821.8
14 457.85715 874.6 887.8 947.2 950.5 943.4286 978 983.5
15 946.375 752.5 828.4 953.8 967 912 943.4286 980.2
16 659 912 846 653.5 820.8571 924.5714 983.5 868
17 906.7778 880.1429 775.5 804.375 582 841.6 950.5 711.25
18 895.125 832 781 941.7273 978 835 909.25 730.125
19 860.1667 869.5833 870.375 932.25 943.4286 983.5 987.625 841.5
20 905.3333 767 889.06665 829.6667 950.5 835 901 719.8571
21 943.4286 967 923 956 894.4 769 649.375 824
22 610.6 806.7143 911.1539 857.8461 960.4 950.5 967 864.3333
23 868 645.25 839.7143 910.4286 920.8 884.5 829.5 850.2308
24 858 584.7273 480.5 813.8 769 985.8571 916 645.25
25 667.6667 826.3077 903.375 457.875 917.5 802 975.25 734.25
26 917.5 763.5 808.6 706.3 318 917.5 872.7143 782.2
27 967 912 947.2 967 967 631.5 543.5 842.3333
28 901 961.5 891.1 907.6 884.5 367.5 349.42856 729.4
29 960.4 917.5 894.4 874.6 755.8 580 670 417
30 763.125 808.5 880.1429 644.4286 962.875 824 875.3333 807.2
31 960.8461 918 853.0833 957.5833 901 802 940.6 886.875
32 796.125 620.8571 800 738.7143 861.4 920.8 861.4 788.25
33 985.8571 1000 894.4 884.5 950.5 655.8571 791 587.5
34 753 841.53845 781.1429 795.2857 940.6 835 858.5714 767.25
35 638.7273 838.8 959 869.9 960.4 879 967 909.5
36 934 815.2 838 871 943.4286 863.2857 980.2 912
37 870.75 478.6 844 451 642.5 912 957.5714 825.1
38 893.1667 877.8333 705.375 721.875 509.7143 967 987.625 698.875
39 1000 967 802 945 985.8571 910.4286 884.5 934
40 839.125 967 907.6 943.9 934 868 886.8571 960.4
41 967 980.2 785.5 950.5 955 910.9 919.3333 901
42 983.5 901 730.5 912 971.7143 811.4286 802 901
43 652 981.1429 983.5 976.4286 960.4 901 989 962.875
44 987.625 736 940.6 1000 1000 980.2 983.5 927.4
45 947.75 957.5714 861.4 1000 1000 980.2 983.5 934
46 884.5 967 978 736.93335 873.5 960.4 938.125 957.5714
47 980.2 984.7692 915.1429 943.4286 637 901 759.5714 779
48 961.125 936.375 941.4286 955.5714 980.2 835 851.5 915.1539
49 983.5 914.2 1000 983.5 946 759.1 827.6667 835
50 1000 954.3077 929.2857 971.7143 894.4 835 844.4286 826.75
51 901 957.5714 957.5714 872.7143 881.2 881.2 937.6667 975.25
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1 2 3 4 5 6 7 8
53 868 914.75 975.25 938.125 985.8571 967 1000 859.75
54 946.375 928 940.6 960.4 1000 915.1429 991 913.375
55 991.75 1000 969.2 956 1000 940.6 987.625 891.5714
56 964.25 952.8571 951.6 958.2 1000 881.2 888.625 901
57 664.5 987.625 1000 945 930.7 950.5 982.2308 1000
58 983.5 926.9167 853.25 950.5 901 983.5 872.125 925.75
59 792.6 940.53845 903.7143 804.7143 1000 967 844.4286 919.875
60 928.5 939.5 909.25 888.625 863.2857 967 958.75 849.125
61 950.5 804.8 836.4 934 983.5 835 983.5 938.125
62 938.7143 983.5 970.6667 948.6667 1000 967 983.5 1000
63 963.3333 967 884.5 909.25 901 1000 1000 906.5
64 918.7692 798.2 899.4167 956 1000 980.2 1000 793.75
65 928.125 948.75 955.5714 969.7143 1000 868 983.5 983.6923
66 985.8571 656.8 940.6 990.1 983.5 985.8571 974.3333 912
67 901 825.5714 863.875 987.625 978 930.3333 946.6923 862.5
68 925.75 934 961 758.2727 960.4 874.6 868 875.3333
69 911.4 902.46155 833 875.4286 722.8 934 858.5714 797.875
70 983.5 918.6667 840.875 987.625 943.4286 681 843.25 839.125
71 964.6667 938.3333 858 944.625 929.2857 714 694.75 825
72 960.4 987.625 987.625 962.875 912 683.2 760.75 868
73 851.5 934 1000 980.2 983.5 967 807.5 1000
74 1000 967 956 972.5 1000 915.1429 868 1000
75 815.2 934 894.4 874.6 1000 925 1000 945
76 926.6667 799.2857 849.125 971.125 956 950.5 967 908.3333
77 835 934 923 890 985.8571 901 917.5 843.25
78 858.6 953.2308 884.8571 955.5714 1000 983.5 915.1429 973.5
79 911.625 769 792.5714 946.1429 1000 980.2 980.2 916.3333
80 987.625 983.5 980.2 821.8 967 983.5 971.7143 907.6
81 877.9 951.7692 771.75 881.75 818.5 872.125 980.2 805.61536
82 841.6 961.9231 915.1429 1000 1000 917.5 759.5714 962.875
83 929.2857 961.5 974.3333 952.3333 1000 868 975.25 884.5
84 980.2 982.2308 896.2857 882.1429 1000 917.5 957.5714 950.5
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9 10 11 12 13 14 15 16

0
925.75 0

783.1429 807.5 0
945 706.6667 868 0

931.46155 513.25 741.5 591.625 0
931.25 929.2857 802 1000 937 0
942.25 954.625 967 1000 917.5 862 0
763.5 923 884.5 980.2 960.4 719.5 808.6 0

967 910.44446 901 899 917.5 901 887.8 934
813 540.375 574.3 734.25 665.875 987.625 975.25 912

985.8571 593 561.5714 557.8 802 861.4 787.8571 928.5
871.3 667.25 807.5 475.66666 745.9 990.1 901 846

870.53845 721.8571 554.5 772.6667 683.75 983.5 917.5 960.4
835 990.1 730.5 961 980.2 631.5 907.6 769

851.5 872.125 879 760.75 980.2 956 861.4 863.875
963.3333 924 884.5 866 938.125 967 943.4286 775.6
858.5714 818.5 915.1429 736 967 953.8 917.5 646.4286

923 938.125 983.5 975.25 975.25 946 926.38464 914.2
868 906.5 882.1429 980.2 967 967 907.6 940.6

895.5 847.375 950.5 905.125 958.75 970 911.1539 980.2
835 901 883 901 920.8 957.5714 967 896.2857
472 924 798.3333 862.125 881.2 934 960.4 874.6
901 517.6923 857 703 608.125 985.8571 868 901

808.6 870.375 617.2 795.2857 940.6 874.6 907.6 910.4286
694.75 594.5714 844.4286 611.3333 805 954.3077 973 857

901 799.2 648 871.8 498.4 960.4 945 879
901 971.7273 813 953.7273 987.625 387.66666 855.625 782.2

936.53845 967 962.875 857 934 880.6923 376 773.7143
950.5 961.5 1000 907 967 952.3333 826.75 725

952.8571 948.1667 943.4286 871.8 957.5714 953.8 830.2857 758
901 857 769 716.2 709.6 983.5 887.8 961
868 826.75 653.5 975.25 947.75 901 845.1539 848.2
868 571 766 465.4 626 950.5 901 943.4286

884.5 692 707.125 729.4 445.6 851.5 940.6 943
844 982 967 980.2 1000 772 989 901

992.38464 913.375 950.5 806.125 868 973 950.5 1000
990.1 819.6667 967 840.2222 917.5 927.4 980.2 1000
712.9 914.75 983.5 945 930.7 947.2 970.3 807.5

967 980.2 967 920.8 835 980.2 983.5 950.5
972.5 800.25 967 948.75 1000 983.5 980.2 1000

934 983.5 925 960.4 967 917.5 983.5 882.1429
983.5 821.8 967 960.4 1000 901 978 934

751 982 967 940.6 980.2 910 985.3333 851.5
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

9 10 11 12 13 14 15 16
1000 950.5 797.2857 894.4 971.7143 881.2 967 846
945 950.5 802 886.8571 975.25 839.7143 967 901

940.6 772.9167 884.5 631.2222 805.3 930.7 950.5 972.5
957.1 934 901 923 877.9 960.4 970.3 868

989 1000 946 980.2 962.875 600.3333 975.25 971.7143
901 917.5 971.7143 1000 943.4286 1000 698.2857 950.5

906.5 918 983.5 911.4 802 894.4 950.5 664.5
1000 901 985.8571 934 985.8571 1000 985.8571 939.5
930.7 894.4 773.7143 934 886.3333 967 979.375 972.5

944.1539 919.8571 868 978 909.25 865.25 969.75 887.8
961.5 825.55554 818.5 771 956 1000 980.2 987.625

975.25 847.6923 802 794.6667 830.875 924.5714 962.875 884.5
917.5 847.375 868 876.25 940.6 956 960.4 975.25

958.75 962.2857 943.4286 831.3333 895 931.46155 928 934
1000 980.2 858.1 782.2 975.25 945 877.4286 846
868 975.25 967 907.6 950.5 946.375 896.2857 868
879 898.2 851.5 871.8 980.2 953.8 934 967

971.7143 884.5 915.1429 1000 1000 1000 981.1429 1000
952.8571 717.1667 985.8571 957.6 1000 973.6 1000 983.5
814.375 920.8 901 894.4 971.7143 967 971.125 1000

858.5714 1000 915.1429 1000 934 901 1000 868
934 956 814.375 980.2 960.4 901 967 904

983.5 881.2 802 796.5 920.8 825.5714 983.5 853.8571
983.5 912 857 726.5714 901 854.8 1000 1000
1000 879 686.5 689.8 828.4 983.5 947.2 976
983.5 957.6 983.5 957.6 1000 557.8 862.5 983.5
1000 858 848.2 818.8571 749.2 940.6 907.6 915.1429

848.75 1000 1000 967 881.75 955 969.53845 716.2
955 907.6 956 952.3333 851.5 960.4 990.1 901

884.5 920.8 769 960.4 980.2 1000 961.5 1000
855.3077 985.8571 802 956 950.5 947.75 983.5 901

912 874.6 884.5 795.4 940.6 874.6 1000 884.5
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3
4
5
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8
9

10
11
12
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14
15
16
17
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22
23
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37
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40
41
42
43
44
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46
47
48
49
50
51

17 18 19 20 21 22 23 24

0
944.625 0

917.7778 597.3333 0
907.5 797.7273 575.125 0
907.6 463.75 763.5 864.3333 0

896.875 934 825.5714 913.6923 973 0
906.5 793.75 855.625 868 769 648 0
752.5 888.2143 893.7273 817.1 909.25 854.8 707.125 0

820.875 946.5833 852.7692 723.625 967 651.1429 847.375 836.5833
326.8 987.625 943.4286 920.8 983.5 917.5 907.6 726.5714

934 755.8 862.5 802 835 960.4 930.3333 912
874.6 896.875 943.4286 920.8 763.5 957.1 920.8 952.8571

802 879 983.5 874.6 818.5 967 901 901
943.44446 851.7273 919.875 870.7143 818.5 824 825.1 833.7273
914.1111 577.5 543.5 573.75 660.5714 920.8 913.375 899.25

835 677.4286 606.375 781.1429 643.6 814.375 785.5 622.8571
894.4 760.75 973.6 363.1 802 983.5 818.5 985.8571

823.5714 794.7273 828.3333 781.1429 554.5 769 855.625 767.7273
965.44446 961.125 957.6 899.6 989 749.75 953.8 899.25

840.5 989 901 898 909.25 887.25 769 810.25
838.3 963.3333 895.5 859 978 813 808.6 798.3333

365.66666 888.8333 918.8571 858 950.5 891.5714 896.875 634
888.625 576.5 543.5 670 920.8 947.2 950.5 960.4

907.6 711.25 340 808.6 700.25 841.6 914.2 957.5714
934 505 637 444.5 861.4 960.4 736 915.1429

872.125 510.5 725 697.5 505 980.2 896.875 920.8
975.25 964 1000 985.8571 950.5 768 940.5 979
983.5 888.625 971.7143 927.4 945 990.1 934 975.25

938.125 901 865.625 860.13336 915.6667 950.6923 922.5714 722.8
987.625 937 962.875 927.4 978 869.46155 894.2857 967

747.4286 970 980.75 910.4286 846 955.5714 936.375 848.2727
913.5833 936.375 961.125 814.1429 983.5 959.6667 977.1539 961.125

983.5 941.3333 952.8571 1000 881.2 914.2 894.4 924.5714
896.2857 892 983.5 971.7143 1000 957.5714 975.25 973
938.125 991 872.7143 922.2143 980.2 910.4286 950.5 1000

210



53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

17 18 19 20 21 22 23 24
890 832.25 856.2143 863.875 983.5 844.4286 946.375 889

863.875 865.6429 892 920.8 938.125 990.1 950.5 960.4
987.625 844 890.375 811.73334 937.6667 984.7692 1000 960.4
938.125 895 868 916.4 791 941.61536 952.8571 877.9

967 1000 945 1000 987.625 754.3333 1000 1000
978 811.4167 992.9286 1000 934 969.7143 961.125 973

922.5714 869.7273 946.5833 880.1429 917.5 948.1429 896.875 920.7273
777.8889 964.25 955.2143 946.375 983.5 936.7143 932.25 854.2727
938.125 704.55554 895.5 910.9 846 955 975.25 962.875

1000 851.5 829.5 967 901 982 1000 987.625
911.1539 835 788.8889 779 980.2 921.625 964.25 934

835 626.375 945 851.5 839.7143 934 942.25 934
916.3333 886.875 802 858.5714 934 941.3333 941.61536 961.125

967 938.125 920.8 953.8 947.75 947.75 983.5 929.2857
983.5 906.5 921.625 938.125 975.25 1000 862.5 691

952.3333 946.375 934 979 975.25 935.7273 928.7778 952.3333
726.5714 887.7273 921.8333 894.2857 983.5 877.4286 921.625 778

802 869.1667 964.6429 987.625 950.5 971.7143 987.625 991
965.44446 866.8333 984.8571 911.625 934 967 975.25 887.7273

815.2 901 987.625 934 913.375 919.3333 934 980.2
967 901 1000 1000 1000 861.4 1000 950.5

987.625 686.5 763.5 901 940.6 960.4 962.875 980.2
980.2 780 785.5 874.6 785.5 983.5 1000 957.5714
924.1 782.2727 809.3333 835 940.6 929.875 930.3333 943

913.375 785.5 802 923 927.4 914.2 987.625 901
941.4286 935.7273 949.3333 955.5714 1000 844.4286 938.125 953.7273
949.3333 797.2857 858 875.4286 927.4 1000 906.5 908.4286

967 921.625 868 976.9 958.75 980.2 1000 971.7143
785.3077 888.3077 938.7143 920.25 976.9 946.5833 872 792.1667
915.1429 811 865.25 1000 917.5 1000 962.875 955

1000 641.125 681 967 832.46155 910 884.5 971.125
924.5714 856 901 872.7143 1000 952.8571 1000 979
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

25 26 27 28 29 30 31 32

0
730.5 0

957.5714 940.6 0
846 878.1539 531.4 0
802 609.5 752.5 554.5 0

787.875 940.6 846 920.8 901 0
818.5 892.75 780 661.75 841.6 924 0

823.5714 927.4 909.25 828.4 920.8 719.7778 808.5 0
901 961 851.5 856 740.7143 818.5 717.1429 920.8
806 917.5 747 868 785.5 684.75 819 649.1429

858.6 954.625 967 975.25 967 810.5 953.7273 888.44446
928.5 892 948.1429 892 910.4286 983.5 830.875 848.2

582 752.5 948.1429 950.5 895.5 851.5 958.75 820.3333
811.0769 500.2857 950.5 952.8571 934 936.375 931.6667 797.875
985.8571 947.2 907.6 861.4 811.4286 1000 582 698.2857

967 926.38464 670 819.7692 884.5 881.2 855.625 663.4
950.5 950.5 934 829.5 881.2 674.125 521.5 762.4

985.8571 980.2 851.5 920.8 783.1429 821.8 708.5 754.8571
938.125 945 868 893.6667 980.2 901 877 929.2857

1000 967 967 958.75 1000 980.2 962.875 953.8
890.375 990.1 881.2 980.2 1000 971.7143 866.4167 896.2857
698.875 887.8 960.4 877.9 920.8 901 961.5 929.2857

954.3077 730.5 917.5 917.5 747 962.875 980.2 860.5714
948.75 980.2 750.6667 861.4 934 909.5 891 952.0833

901 934 582 796.5 901 921.625 862.5 914.2
961.9231 813 934 818.5 763.5 962.875 861.4 985.8571

950.5 967 846 901 980.2 766.625 976 919.8571
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55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

25 26 27 28 29 30 31 32
954.3077 1000 928.5 929.2857 950.5 835 851.5 785.5

917.5 985.8571 983.5 985.8571 929.2857 982 975.25 844.4286
853.25 950.5 947.2 868 960.4 957.5714 800.4167 1000

934 950.5 841.6 782.2 901 957.5714 829.5 967
989 987.625 950.5 950.5 990.1 967 945 1000

984.7692 1000 917.5 1000 983.5 950.5 934 975.25
818.6923 978 901 978 1000 936.375 838.8 922.5714

959.38464 971.7143 950.5 957.5714 983.5 987.625 901 873.875
1000 975.25 697.5 876.25 917.5 851.5 901 971.7143
950.5 1000 873.5 956 1000 967 924.5714 881.2
861.5 980.2 879 815.2 980.2 890 843.8889 865.25
928.5 925.75 967 905.125 1000 962.875 868 942.25
851.5 868 915.6667 940.6 934 869.9 806.125 941.0833
1000 955 967 940 985.8571 983.5 924.5714 980.2

975.25 985.8571 895.5 985.8571 978 963.3333 960.4 934
604 971.7143 1000 985.8571 980.2 901 936.75 909.25

894.8461 730.5 950.5 895.5 884.5 911.625 878.4 740.7143
946.6923 901 802 769 769 987.625 868 987.625
950.6923 882.1429 719.5 679.4286 835 886.875 865.6667 961.125

975.25 851.5 861.4 715.375 752.5 956 835 901
943.4286 1000 898 1000 1000 785.5 917.5 917.5

1000 940.6 887.8 960.4 971.7143 980.2 868 872.7143
950.5 1000 967 1000 970 945 841.6 841.6

958.75 1000 950.5 1000 987.625 975.25 842.3333 853.3333
844.4286 940.6 963.7 881.2 915.1429 940.6 912 787.8571

968.46155 983.5 884.5 983.5 1000 948.75 957.6 969.7143
969.7143 1000 901 980.2 1000 917.7778 948.75 930.0833

785.5 984.7692 1000 972.0769 967 762.4 987.625 980.2
948.1429 910.9 982 1000 921.625 950.5 990.1 880.1667

1000 1000 983.5 1000 983.5 876.25 881.2 886.8571
978 989 824 972.5 901 868 976.4286 907.6

951.7692 961.5 967 928.5 967 962.875 835 929.2857
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47
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49
50
51

33 34 35 36 37 38 39 40

0
901 0
989 838.8 0

959.38464 960.4 827.6667 0
952.3333 775.6 883.2308 808.6 0

980.2 864.0833 937.8 780 769 0
725 752.5 980.2 858.5714 945 846 0
889 934 962.875 862 954.625 957.5714 947.2 0

554.5 663.4 980.2 957.5714 967 886.8571 566.2857 967
725 752.5 980.2 924.5714 928.5 796.5 673 854.8
991 985.8571 814 939.5 967 967 945 923
943 1000 938.125 876.25 978 985.8571 881.2 939.5

897.7 1000 950.5 946 982 851.5 983.5 907.6
901 985.8571 930.7 934 871 888.625 972.5 907.6
934 901 1000 960.4 980.2 811.4167 1000 961.5

851.5 961.125 949.1 983.5 980.2 907.5 938.125 901
967 894.4 901 929.2857 967 957.5714 1000 917.5

980.2 922.38464 960.4 920.8 937.8 890 879 1000
955 981.1429 892 917.5 932.8333 929.2857 956 776.3333
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

33 34 35 36 37 38 39 40
854.8 821.25 901 983.5 882.1667 985.8571 730.5 901

929.2857 907 938.125 839.125 921.44446 1000 821.8 858.5714
765.7 910.4286 970.3 913 965.7273 1000 835 953.8
957.1 839.7143 960.4 955 923.7273 958.75 912 907.6
1000 950.5 703 950.5 957.5714 967 1000 1000
1000 967 920.8 538 983.5 964.6429 1000 985.8571
940.6 905 957.6 854.8 835 927.3333 934 983.5
1000 980.75 1000 967 851.5 786.5 967 985.8571
846 901 946 953.8 935.5833 983.5 901 764.875

917.5 1000 890 895.5 970.6667 983.5 755.8 802
887.8 797.2857 989 983.5 896.3 926.6667 806.125 901

849.1429 953.8 973 925.75 963.0833 879 967 859.75
934 874.5 932.6 967 970.3 973.5 938.125 1000

979.6923 1000 923 855.3077 912 980.2 868 973
967 919.8571 829.5 877.9 915.1429 938.125 950.5 971.7143

987.625 934 923 919.3333 837.53845 934 939.5 985.8571
960.4 935.46155 937.8 934 894.4 694.75 983.5 983.5
980.2 989 960.4 1000 964.6667 992.9286 967 957.5714
980.2 941.0833 957.6 928.5 1000 961.2857 967 957.5714

897.3333 983.5 967 1000 983.5 884.5 879 901
950.5 1000 917.5 915.1429 985.8571 983.5 924.1 1000

901 868 960.4 905.7143 972.5 1000 838 881.2
835 835 967 825.5714 879 1000 764.2857 620.5

841.6 868 945 934 945.8 926.6667 755.8 980.2
890 818.5 980.2 863.2857 923 983.5 820 907.6

980.2 973.53845 478.6 940.6 1000 965.8333 1000 950.5
927.4 922.5714 895.7778 769 959.6667 911.625 957.5714 947.2

961 950.5 888.625 937 731.875 985.8571 901 982.2308
877.9 868 980.2 934 844 694.5714 952 934
861.4 906.0769 920.8 980.2 957.6 991.75 752.5 829.5
851.5 884.5 923 931.25 989 961.5 868 615
676.6 946.6923 980.2 894.4 957.6 961.5 692 1000
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28
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30
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33
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46
47
48
49
50
51

41 42 43 44 45 46 47 48

0
693.5714 0

1000 983.5 0
983.5 729.4 940.6 0

967 857 881.1429 607.3 0
1000 961.5 883.5 874.6 869.26666 0
835 967 955.5714 980.2 795.2857 866 0
901 934 791.375 960.4 915.1429 830.2857 863.875 0
982 915.1429 676.6 846 846 813 683.2 465.4

960.4 895.5 938.7143 841.6 929.2857 957.5714 829.9231 769
1000 1000 775.6 901 922.2143 787.8571 985.8571 637
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53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

41 42 43 44 45 46 47 48
830.2857 884.5 714.4286 679.4286 880.375 987.625 950.5 725.375
872.7143 901 779.2727 744.25 811.9 901 973 774.875

747 807.5 934 719.5 833.73334 920.8 929.2857 863.2857
917.5 934 836 782.2 808.6 925.2 967 723.8571
1000 1000 574.6667 872.125 846 923 901 950.5

943.4286 901 927.2857 882.1429 841.5 870.375 847.5833 888.625
1000 884.5 728.5714 940.6 971.7143 811.4286 893.38464 814.375

952.8571 983.5 870.7143 783.1429 672.375 853.875 741.5 950.5
934 917.5 883 849.6667 894.4 891.1 980.2 612.25

1000 1000 818.5 881.75 871.6667 879 1000 791
752.5 863.875 876.25 697.5 762.5 934 957.5714 766.25

868 884.5 877 682.375 807.5 939.5 960.4 925.75
841.6 901 868 881.2 813.4286 943.4286 962.875 854.2308
983.5 873.5 907 391 739.3 868 901 967

945 884.5 934 719.5 496.75 884.5 915.1429 895.5
1000 917.5 919.0833 962.875 899.7273 562 799.2 948.6667
914.2 901 981.1429 980.2 929.2857 811.4286 579.6923 862.125

971.7143 884.5 910.4286 886.8571 950.5 987.625 876.25 637
886.8571 967 808.7143 858.5714 925.75 958.75 851.5 513.25

967 895.5 810.25 985.8571 909.25 925.75 901 780
1000 910.9 802 884.5 934 947.2 967 805.6667

844.4286 892 923 868 939.5 895.5 901 773.125
891.1 783.1429 854.8 920.8 874.6 960.4 1000 884.5

835 716.2 830.875 774.5 760.75 913.375 915.1429 765.3333
750.1429 868 895.5 696.4 824 917.5 846 962.875

1000 868 844.4286 980.2 985.8571 985.8571 984.7692 936.375
1000 891.5714 943.4286 769 934 985.8571 943.4286 932.8333
983.5 1000 945 865.25 950.5 633.7 912 1000

975.25 898 974.0833 772.3 677.0833 883.3333 730.9231 992.38464
821.8 769 643.7143 920.8 971.7143 985.8571 984.7692 713
960.4 920.8 821.8 843.25 901 857 950.5 758
881.2 747 841.7143 722.8 830.2857 868 916.2308 675.875
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50 51 52 53 54 55 56 57

0
861.4 0
630.4 705.7143 0
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55
56
57
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59
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65
66
67
68
69
70
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72
73
74
75
76
77
78
79
80
81
82
83
84

50 51 52 53 54 55 56 57
769 869.5833 762.2857 0

915.1429 785.7273 749.7273 628 0
934 677.4286 815.1429 684.75 807.2 0
692 870.7143 852.8571 595.75 805.3 710.86664 0
868 938.125 835 824 796 967 864.3333 0

943.4286 967 985.8571 936.3571 943 938.125 962.875 739.6667
841.6 946.6923 858.5714 852.6667 866.2727 901 813.4286 925.75

971.7143 851.5 943.4286 879.7857 982 938.125 822.625 930.3333
851.5 673.8 716.7273 585.1667 738.375 751.1 787.4 868

901 917.5 805.3 901 488.5 860.6667 857 756.625
917.5 837.7143 874.5 562.1111 717.75 533.875 602.25 950.5

912 759.6 926.7273 557.6667 787.875 641.3333 635.8333 857
914.2 1000 802 925.75 888.625 841.7143 901 697.5
807.5 881.2 901 901 745.4286 854.8 749.2 860.6667

908.3333 896.2857 937.6667 872.125 784 888.625 843.25 954.3077
841.6 960.4 912 960.4 956 964 961 950.5
920.8 832.46155 985.8571 991.75 982 830.2857 896.2857 1000

646.4286 721.0833 696.2857 739.7143 656.7273 717.75 825 842.3333
533.2857 683.75 816.1429 800.6429 701.2727 909.25 853.25 989
743.3333 583.375 872.125 847.375 868 847.375 773.125 921.3077

901 901 565.5 901 862.5 815.2 782.2 824
943.4286 851.5 681 527 584.2 543.5 400.5 910.4286

841.6 901 861.4 730.5 542.7143 901 821.8 917.5
721.3333 767 849.75 694.1111 746.7273 519.75 697.125 860.6667
938.7143 917.5 983.5 642.5 551.2 604 653.5 938.7143

980.2 906.0769 868 956 841 967 1000 562.75
854.8 886.8571 943.4286 884.5 901 797.2857 957.5714 901

714 983.5 846 971.7143 943.4286 960.4 808.6 839.125
962.875 817.2308 958.75 901 917.5 958.75 928.5 937

1000 932.9231 903.7143 689.25 487 818.8571 816.1429 797.875
901 983.5 683.2 752.5 628.75 919.3333 915.6667 814.375
901 714.61536 715.1429 749.75 649 587.8571 688.8571 888.625
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70
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79
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84

58 59 60 61 62 63 64 65

0
868 0

918.8571 906.5 0
771.3333 920.8 884.5 0

714 851.5 961.5 717.6667 0
945 924.5714 941.3333 709.5 861.4 0

787.8333 894.4 879 637 825.5714 668.44446 0
925.75 837.375 987.625 839.125 758 781.1667 835 0
815.2 901 716.2 890 815.75 960.4 877.4286 846

987.625 957.5714 715.375 840.5 913.375 802 788.8 983.5
918 696.4 832.2 937 925.75 941.3333 947.75 934
934 925.3077 695.9167 920.8 1000 882.1429 874.6 948.75

850.1429 950.5 886.8571 532.5 884.5 932.44446 769 950.5
971.7143 840.5 893.9286 813 884.5 769 785.5 911.625

1000 987.625 863.875 881.2 925.75 835 736 895.5
796.5 615 967 703 642.5 838.6667 697.5 820.3333

813 752.5 967 494 630.4 632.875 675.5 863.875
983.5 917.5 983.5 637 697.5 742.6 617.2 829.5

869.55554 910.4286 908.3333 657.625 795.4 569.6 519.6667 787.3333
967 884.5 928.5 747 769 719.5 642.5 896.875
824 877.0769 958.75 881.2 835 985.8571 1000 800.25

593.375 800 962.875 851.1429 808.6 958.75 758.375 792.5833
915.1429 384 858.5714 863.875 909.25 980.2 929.875 821.8

949.5 913.6923 644.0714 970.3 960.4 908.61536 934 944.1539
906.5 818.3077 925.75 627.6 598.5 771.7143 858.6 839.125

901 846 983.5 655.3333 619.2308 729.4 773.7143 571
958.75 800.53845 925.75 680.4 736 682.1429 799.2 872.125
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84

66 67 68 69 70 71 72 73

0
824 0

946.375 730.5 0
821.8 886.8571 914.2 0
940.6 946.375 1000 901 0
821.8 913.375 960.4 897.0833 637 0

908.3333 857 940.6 925.75 698.875 641.125 0
829.5 983.5 877.4286 917.5 851.5 840.5 795.4 0

736 851.5 967 950.5 846 950.5 785.5 600.7
844.4286 901 841.6 1000 884.5 884.5 881.2 868

854.8 871.6667 886.3333 882.1429 758 769 818.5 846
714 675.5 862.5 928.5 901 934 912 897.7

980.2 839.7143 980.2 976.0769 879 891.5833 896.875 796.5
782.2 874.6 934 955.5714 840.875 936.375 841.6 901

763 844.4286 457.85715 917.5 915.1429 971.7143 987.625 775.6
930.7 811.9 846.8 744.6923 957.5714 950.5 930.7 973
841.6 896.2857 980.2 961.9231 743.0833 767.4167 822.625 829.5

909.25 913.375 905.125 978 967 796.5 863.875 642.5
881.2 858.5714 940.6 913.6923 734.8333 775.6667 896.875 835
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700 787.8571 604 0
813 884.5 985.8571 983.5 0

891.5714 960.4 781.55554 721.8571 743.4286 0
901 917.5 920.8 874.6 983.5 894.4 0
973 756.625 917.5 901 977.1539 958.75 848.2 0
692 901 856.5714 769 903.53845 943.4286 934 946.6923

696.4 785.5 782.2 901 884.5 802 884.5 901
703 697.5 625.5714 785.5 939.0769 971.7143 802 817.2308
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Appendix B: Individual MDS Plots 
 

 
Figure 1. MDS plot for subject 1 of subset study. Axes labeled accordingly. Stimuli 
numbers as in Table 3.4. Colours are to help distinguish between rhythms. All proceeding 
figures are presented in the same manner, for the next 14 subjects. 
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Figure 2. MDS plot for subject 2 of subset study. 
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Figure 3. MDS plot for subject 3 of subset study. 
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Figure 4. MDS plot for subject 4 of subset study. 
 



 232

 
Figure 5. MDS plot for subject 5 of subset study. 
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Figure 6. MDS plot for subject 6 of subset study. 
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Figure 7. MDS plot for subject 7 of subset study. 
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Figure 8. MDS plot for subject 8 of subset study. 
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Figure 9. MDS plot for subject 9 of subset study. 
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Figure 10. MDS plot for subject 10 of subset study. 
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Figure 11. MDS plot for subject 11 of subset study. 
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Figure 12. MDS plot for subject 12 of subset study. 
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Figure 13. MDS plot for subject 13 of subset study. 
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Figure 14. MDS plot for subject 14 of subset study. 
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Figure 15. MDS plot for subject 15 of subset study. 
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Appendix C: Subsets 
Table 1. Subsets Used in First Part of Subset Study. Listed are the numbers of all the 
stimuli used in each of the 5 subsets given to participants in the study described in 
Section 7.2.1 
Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 

1 2 2 1 1
3 5 3 3 2
4 6 4 4 3
8 7 7 5 4
9 8 9 6 8

10 11 13 7 10
12 16 14 9 12
13 17 15 10 17
14 18 18 11 18
15 19 19 12 19
16 23 20 13 20
17 24 21 14 22
20 25 22 15 23
21 27 24 18 24
22 29 25 20 25
23 30 26 21 30
26 32 28 22 31
27 34 33 24 32
28 38 34 26 34
31 39 36 28 35
32 41 38 29 37
33 42 40 30 38
35 47 43 31 43
36 48 44 33 45
37 49 45 35 46
39 50 46 36 47
40 52 47 37 48
42 53 50 40 50
43 56 51 41 51
44 57 52 43 52
45 58 53 44 53
46 59 54 45 54
48 62 55 46 55
51 64 56 49 57
54 66 57 51 58
55 68 58 53 59
60 69 59 54 60
61 70 61 55 62
62 71 65 56 63
63 72 66 60 64
64 73 68 61 67
65 74 69 63 68



 244

67 75 70 65 69
72 76 71 66 70
73 77 77 67 75
76 78 79 71 77
78 80 80 74 78
79 81 81 75 80
80 83 82 79 81
82 84 83 82 83

 
 
Table 2. Subsets Used in Second Part of Subset Study. Listed are the numbers of all the 
stimuli used in each of the 7 additional subsets given to participants in the second part of 
the subset study described in Section 7.2.4 
Subset 6 Subset 7 Subset 8 Subset 9 Subset 10 Subset 11 Subset 12 

2 1 1 2 1 5 1
5 3 2 6 2 6 3
6 4 8 7 3 7 4
9 5 9 8 4 8 5

11 6 10 9 5 9 7
12 7 13 11 6 11 9
13 8 15 12 10 12 10
14 10 17 14 11 13 11
15 11 19 16 15 14 13
16 14 21 18 16 15 16
19 16 23 21 18 17 17
21 17 24 22 19 18 18
25 20 25 23 20 19 19
26 22 26 24 25 21 20
27 23 27 25 26 22 24
28 27 28 27 28 23 25
29 29 30 29 29 26 27
33 30 31 30 31 28 31
34 31 32 33 34 29 36
36 32 34 34 38 30 37
38 33 35 35 39 32 38
39 35 37 36 40 33 39
40 36 38 37 41 35 41
41 37 40 39 42 36 42
42 39 44 42 45 37 43
44 41 47 43 46 38 44
47 42 48 47 47 40 45
49 43 50 48 49 41 46
50 45 52 50 50 44 49
52 46 53 51 52 48 51
57 48 57 53 54 49 52
58 49 58 56 55 52 53
59 51 59 58 56 56 54
60 54 61 60 57 57 55
61 55 62 61 58 59 56
65 56 63 64 59 60 57
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68 62 64 65 63 61 59
69 63 67 66 68 62 60
70 64 68 67 69 64 62
72 65 69 68 70 65 63
73 66 70 71 71 66 66
74 67 72 72 73 69 67
76 71 75 73 74 70 69
77 72 77 74 76 71 70
79 73 78 76 77 74 72
80 74 79 77 79 75 73
81 75 80 80 80 78 75
82 76 81 81 81 79 76
83 78 82 82 83 80 80
84 80 83 83 84 82 84
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Appendix D: Experiment Materials 
Figure 1. Pilot Study Consent Form 
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Figure 2. Full-Set Study Consent Form 
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Figure 3. Subset Study Consent Form 
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Figure 4. Ethics Approval Form 
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