Model repair and editing tools
by

Vladislav Kraevoy

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy
in
The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia
June, 2007
(© Vladislav Kraevoy 2007

ii

iii

Abstract

With the declining production cost and improvement of scanning technology, three-
dimensional model acquisition systems are rapidly becoming more affordable. At the
same time, personal computers with graphics hardware capable of displaying complex
3D models have become inexpensive enough to be available to a large population. As
a result, there is, potentially, an opportunity to consider new virtual reality uses from
areas as diverse as cultural heritage exploration and retail sales applications that will
allow people to view associated large classes of realistic 3D objects on home computers
and media devices. Although there are many physical techniques for acquiring 3D data,
including laser scanners, CT or MRI scans, the basic pipeline of operations (Figure 1.1)
lacks a sufficient set of tools to take the acquired data and produce a usable 3D model.

This dissertation proposes a set of efficient and robust 3D data reconstruction and
editing tools for such a pipeline. We look at the fundamental problems of range
scan data completion, modeling, and parameterization. We propose a new cross-
parameterization method for efficient calculation of a low-distortion bijective mapping
between models. Recent research in digital geometry processing suggests multiple new
applications for such a mapping, including pair-wise model editing [11] transferring
texture and surface properties (BRDFs, normal maps, etc) [61], and fitting template
meshes to multiple data sets [7, 55]. We also extend our cross-parameterization tech-
nique to support models with gaps and holes. This allows us to develop a new and
robust method for template-based range scan data completion.

One of the most significant obstacles in computer graphics is providing easy-to-
use tools for creating and editing detailed 3D models. To this end, we present a new
set of tools with which non-expert user can create detailed geometric models quickly

and easily. In particular, we propose a new modeling system for creating new, original

iv Abstract

models by mixing and matching parts of pre-existing models. In this way, we eliminate
the need for a user to perform complex geometric operations, and thereby reduce the
modeling process to that of part selection.

This dissertation also proposes a new technique for image-based modeling that al-
lows a user to easily transform a sketch or picture into a 3D model using a 3D template
model. The 3D template provides the geometric detail that cannot be inferred from an
image alone. This allows the user to create detailed geometric models from pictures
alone.

We also introduce a real-time editing algorithm that allows the creation of new
models through the deformation of existing ones. Our proposed editing algorithm has
applications in such common geometric operations as mesh deformation, morphing,
and blending. Thus, we propose contributions to the model repair and editing pipeline

that simplifies the task of creating and repairing detailed 3D models.

Contents

Abstract iii
Contents v
Listof Tables ix
Listof Figures xi
Acknowledgements L L xiii
1 Introduction 1
1.1 Parameterization 1

1.2 Modeling 3

2 Related Work 7
2.1 Cross-parameterization 7

2.2 Compatible Remeshing 9

2.3 Model Completion 9

24 Model Editing 11
2.4.1 Modeling by Composition 12

2.5 Sketch-based Modeling, 14

3 Cross-Parameterization and Compatible Remeshing of 3D Models . . . 17
3.1 Algorithm 18
3.1.1 Common base domain construction 18

3.1.2 Cross-parameterization 19

vi Contents
3.1.3 Compatible remeshing 21
3.2 Experimental Results 24
33 Conclusions 25
4 Template-Based Mesh Completion 27
4.1 Algorithm 27
4.1.1 Pre-processing 29
4.1.2 Segmentation and base-mesh construction 29
4.1.3 Base-mesh parameterization 30
414 Blending 32
42 Experimental Results, 33
43 Conclusions L 33
5 Pyramid Coordinates for Morphing and Deformation 37
5.1 Algorithm 38
5.2 Experimental Results, 41
53 Conclusions 42
6 Mean-Value Geometry Encoding 45
6.1 Algorithm 45
6.2 Conclusion 54
7 Shuffler: Modeling with Interchangeable Parts 55
7.1 Algorithm 56
7.1.1 Convex Segmentation 57
7.1.2 Intelligent Part Composition 61
7.2 Conclusion e 64
8 Contour-based Modeling Using Deformable 3D Templates 65
8.1 Algorithm 66
8.1.1 Initial Registration 68
8.1.2 Correspondenceso 68

8.1.3 Deformation 71

Contents vii

8.2 Experimental Results 71
83 Conclusions e 73
9 Conclusions 75

Bibliography 79

viii Contents

ix

List of Tables

5.1 Deformation statistics. Lo 41
6.1 General comparisons of deformation techniques. 51
6.2 Feline deformation statistics. 52

6.3 Dolphin deformation statistics. 53

List of Tables

X1

List of Figures

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
43
4.4
45

5.1
5.2
53
54

6.1
6.2
6.3
6.4

General overview of model repair and editing pipeline. 2
Base domains construction oL 19
Parameterizationonabasemesh. 0L 20
Relocating verticesonbasemesh. 21
Compatible remeshing. 23
Texture transfer and morphing; 24
Three-sided blending. 25
Anexampleofaswirl. o L. 25
Template-based mesh completion. 28
Template and markers used to complete the female model. 28
Algorithm stages. L L. 29
ompleting a head from 3 fragments. 32
Completing teddy. L oo 34
Pyramid coordinates. oL 38
Examples of model editing. 40
Deformation of felinemodel. 42
Turningacowintoabull. oL 42
Mean-value encoding. 46
Deformation using mean-value encoding and decoding. 48
Deformations performed with and without multiresolution 49
Comparison of deformation methods, with details. 50

Xii List of Figures
6.5 Reconstruction of fully realistic complex motion from Mocap data. . . 53
6.6 Reconstruction of more complex sitting motion from Mocap data. 54
7.1 Shufflersystem. 56
7.2 Segmentation Stages. u oo 58
7.3 Mesh decomposition into meaningful components. 60
74 Chairseatswap.t e 60
7.5 Componentshuffle. L. 62
7.6 Shufflingexamples. 63
8.1 Image-based modeling. 66
8.2 Algorithm Overview. v 67
8.3 Establishment of Correspondences. 70
84 Teddybearexample. 72
85 Gymnast. 73
86 Hercules. 74

xiii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Assist. Prof. Alla Shef-
fer, whose expertise, understanding, and patience added considerably to my graduate
experience. I also thank the members of my supervisory and examining committees
Assoc. Prof. Wolfgang Heidrich, Assoc. Prof. Michiel van de Panne, Prof. Yusuf
Altintas, Prof. Uri Ascher and Prof. Markus Gross for taking time out from their busy
schedules to review this thesis and for their valuable suggestions.

A special thanks goes out to Prof. Craig Gotsman , without whose motivation and
encouragement I would not have considered a graduate career in computer graphics.

My thanks to my friends and colleagues for the great time I had at UBC. I enjoyed
the atmosphere, their friendship, and their support. Abhijeet Ghosh, David Burke, Kris-
tian Hildebrand, Ciaran Llachlan Leavitt, Fred Kimberley, James Slack, Chen Yang,
Matthew Trentacoste, Cheryl Lau, Dan Julius, Kenneth Rose and Tiberiu Popa made
Imager a really fun place to be.

My thanks to Abhijeet Ghosh for his collaboration while writing his own doctoral
thesis.

My thanks to Dan Julius for the collaboration on several papers.

My thanks to Ciaran Llachlan Leavitt for proof-reading several papers and for pro-
viding helpful suggestions for improving this manuscript. Any ’linguistic crimes’ are
mine alone.

I recognize that this research would not have been possible without the financial
assistance. This dissertation work was supported by a UBC University Graduate En-
trance Scholarship (2003-04) and a UBC University Graduate Fellowship (2005-07).

Last but not least, I wish to thank my parents Grigory and Galina Kraevoy who have
always supported me, and without whom none of this would have been even possible.

This thesis is dedicated to them.

Xiv Acknowledgements

Chapter 1

Introduction

One of the major challenges in geometry processing is to provide easy-to-use tools
for the creation and manipulation of digital models. Although there are many phys-
ical techniques for acquiring 3D data, including laser scanners, CT and MRI scans,
the basic pipeline of operations lacks a sufficient set of tools to take the acquired data
and produce a complete animated surface model ready for rendering. This dissertation
proposes a set of efficient and robust 3D data parameterization and editing tools for
such a pipeline (Figure 1.1). We investigate different algorithms, and applications of
mesh parameterization such as: morphing; shape blending; texture and material prop-
erties transfer; and fitting template meshes to scan data. We also present a set of new
modeling tools for novel 3D content creation through the manipulation of one or more
pre-existing models. These tools include techniques for model deformation along with
model composition and image-based modeling, among others that will be discussed in

the following sections in greater detail.

1.1 Parameterization

Many geometry processing applications, such as morphing, shape blending, transfer-
ring texture or material properties, and fitting template meshes to scan data, require a
bijective mapping between two or more models. The models that need to be mapped,
that is cross-parameterized, usually have similar features (there is little use for mapping
a phone onto a cow) and the mapping must respect those. For example, when mapping
between two humans, the legs must map to the legs, the ears to the ears, and so on.
This is typically achieved by enforcing the correspondence for a small set of feature

vertices and using a cross-parameterization that preserves the shape of the models as

2 Chapter 1. Introduction

/ Repair and Editing Tools

' A
tr E ﬂ i

Completion [Ch 4] Composition [Ch 7]

CAD Tools %

3D Geometric
Models

e BNE

Properties Deformation [Ch 5,6,8]

h Transfer [Ch 7]

; - Image-based
3D Scan Data Modeling [ch 8]

Figure 1.1: General overview of model repair and editing pipeline.

much as possible.Most of the applications, such as blending and morphing, require
compatible meshes, i.e. meshes with identical connectivity. Therefore, given the cross-

parameterization, the models need to be remeshed with a common connectivity.

In this dissertation we propose new methods for cross-parameterization and com-
patible remeshing. Our cross-parameterization method [42] is the first one guaran-
teed to find a bijective parameterization that satisfies the feature vertex correspon-
dence between any number of models without additional user input. We propose a
novel local framework for mesh parameterization over a base mesh domain. Our al-
gorithm uses this framework to compute both shape-preserving and adaptive cross-
parameterizations. The framework can be used to optimize other criteria, providing a
powerful stand-alone parameterization tool. After the cross-parameterization is com-
puted, a novel adaptive method for compatible remeshing is applied. It generates
meshes that accurately approximate the input geometry with significantly fewer ele-

ments than those generated by previous techniques. As a consequence, the method can

1.2. Modeling 3

be applied to generate compatible meshes for any number of models. Thanks to the
combination of shape preservation and good approximation, the resulting compatible
meshes are well-suited for morphing and other geometry processing applications.
Models generated by range scanners and other acquisition tools are often incom-
plete and typically contain multiple connected components with irregular boundaries
and complex holes. Readily available commercial software is used to merge multiple
scans. Unfortunately, the resulting merged scans remain incomplete because of oc-
clusions and grazing angle views. Scanners also often fail to capture complex model
features such as toes or ears. When performing scan completion, the difficulty is to
correctly reconstruct the connectivity and the topology as well as to complete the miss-
ing geometric details. To correctly repair such models global shape information, such
as the one provided by a template, is necessary. We extend our cross-parameterization
technique to support models with gaps and holes. This allows us to develop a new
and robust method for template-based range scan data reconstruction [43]. Our new
work introduces a robust algorithm for completion of such data by using a cross-
parameterization between the incomplete model and a template model provided by the
user. We employ this parameterization to correctly glue together the parts of the input
model and to close the holes. The template model is also used to fill in the topological
and geometric information missing in the input. This extended cross-parameterization
mechanism is more generic than previous techniques; it guarantees bijectivity and in-

troduces less distortion.

1.2 Modeling

The creation of novel 3D content is one of the major bottlenecks of modern computer
graphics. Good modeling tools must be intuitive, easy to use, robust and efficient. Most
importantly, they should provide natural looking resultant models while requiring only
minimal user interaction. Despite recent advances in geometry processing, modeling
remains time consuming and requires both technical and artistic expertise. Hence,
much of the emphasis in recent research is on simplifying the creation of new models.

One of the quickest ways to create a new model is simply by deforming an existing

4 Chapter 1. Introduction

one. Here, we propose an efficient algorithm for interactive model deformation in re-
sponse to a simple user control mechanism in order to create a new model or animate
an existing one. For example, given the user-prescribed positions for a set of control
points on the surface of the model, the algorithm should compute the positions of the
rest of the points in a manner that best preserves the original shape of the model. The
method we propose is based on our novel local geometry representation, pyramid co-
ordinates [70]. This representation captures the local shape properties of the model
and is invariant under rigid transformations. Using this representation, we developed
mesh editing operations that preserve the shape properties of the input models. As a
result, our deformation method generates well-shaped models even under severe de-
formations. This dissertation also proposes an extension to pyramid coordinates called
mean-value encoding [44]. Like pyramid coordinates, mean-value encoding is based
on a set of angles and lengths describing the position of a vertex with respect to its
neighbors. However, in contrast to pyramid coordinates, it uses a different local frame
definition, which leads to a closed-form formulation. This enables us to achieve better
results in terms of stability, speed, and shape preservation as compared to pyramid co-
ordinates. Here, we also propose a new application, namely the realistic reconstruction
of complex human motion based on motion capture (Mocap) data alone. We demon-
strate that our algorithm constructs natural looking animated models and preserves the
shape properties of the input models.

Another approach to simplify the creation of new models is to provide a simpler
interface, for example a sketching tool [31]. Existing sketching tools are good for
novices, but practical for creating only simple shapes. Our goal is to provide a tool
with which almost anybody can create detailed geometric models quickly and easily.
In particular, we propose a new technique for image-based modeling that allows a user
to easily transform image contours into a 3D model with the help of a deformable 3D
template. The image contours help inform the pose and proportions of the new shape,
while the template model helps inform its full 3D shape and surface detail. The user
input consists of tracing the image contours, as well as specifying a small number of
point correspondences between the template model and the image. With this input,

our proposed technique gradually deforms the template to fit the image contours. At

1.2. Modeling 5

the heart of this process is the need to provide a good correspondence between points
on image contours and vertices on the model. We propose the use of a hidden Markov
model for efficiently computing an optimal set of correspondences. An iterative match-
and-deform process then progressively deforms the 3D template to match the image
contours. The technique can successfully deform the template model to match con-
tours that represent significant changes in shape and pose. Our algorithm provides a
powerful framework for developing detailed 3D models from images using only con-
tour information and a flexible process for deforming 3D template models.

Many man-made and natural objects are easily classified into families of models
with a similar part-based structure. Example families include quadrupeds, humans,
chairs, and airplanes. This dissertation proposes a new method called Shuffler [41]
which is a modeling system that automates the process of creating new models by
composing interchangeable parts from different existing models within each family.
Our system does not require the users to perform any geometric operations; they sim-
ply select which parts should come from which input model, and the system composes
the parts together. To enable this modeling paradigm, Shuffler precomputes the inter-
changeable parts across each input family of models by first segmenting the models
into meaningful components and then computing correspondences between them. We
introduce two new algorithms to perform the segmentation and to establish intelligent
part composition. By combining the two techniques we are able to identify and com-
pose the interchangeable parts for a large variety of models. We provide a simple to
use, and robust model composition system. Our approach significantly simplifies the
generation of 3D content, making modeling faster, more accessible, and less expert
driven.

Before we present our proposed algorithms for the cross-parameterization, model
completion and model editing, we give an overview of the relevant previous work in

the next chapter.

Chapter 1. Introduction

Chapter 2

Related Work

This section starts with a review of various cross-parameterization techniques used for
morphing, shape blending, and transfer of texture or material properties. We then re-
view various techniques for compatible remeshing required by morphing and blend-
ing applications. Next, we discuss several methods for model completion that are
used to obtain a complete and consistent 3D model representation from incomplete
range scan data. Finally, we review various techniques for novel 3D content creation
through model deformation or the reuse of existing models, such as model composition

or image-based modeling techniques.

2.1 Cross-parameterization

The ability to bijectively map one surface model to another is useful for many com-
puter graphics applications. Recent research in digital geometry processing suggests
multiple new applications for such a mapping, including pair-wise model editing [11],
transferring texture and surface properties (BRDFs, normal maps, etc) [61], fitting tem-
plate meshes to multiple data sets [7, 55]. Sheffer at al. [69] provide a review of cross-
parameterization techniques developed for aforementioned applications.
Cross-parameterization typically needs to preserve the shape and features of the
parameterized models, mapping legs to legs, ears to ears, and so on. The cross-
parameterization is often computed by parameterizing the models on a common base
domain. One popular choice for the base domain is the sphere. Number of algorithms
exists for spherical parameterization, e.g. Alexa [3], Gotsman et al. [23], Praun and
Hoppe [60]. Of those, only Alexa’s method addresses feature correspondence. How-

ever, it does not guarantee a bijective mapping and is not always capable of matching

8 Chapter 2. Related Work

the features. An inherent limitation of a spherical parameterization is that it can only

be applied to closed, genus zero surfaces.

A more general approach is to parameterize the models over a common base mesh
[46, 52, 56, 61]. This approach splits the meshes into matching patches with an iden-
tical inter-patch connectivity. After the split, each set of matching patches is param-
eterized on a common convex planar domain. One advantage of this approach is that
it naturally supports feature correspondence by using feature vertices as corners of the
matching patches. The main challenge in mapping the models to a single base mesh
is to construct identical inter-patch connectivities. The vast majority of the methods
use heuristic techniques that work only when the models have nearly identical shape.
Praun et al. [61] provide a robust method for partitioning both meshes into patches

given user-supplied base mesh connectivity.

Template-based completion techniques, such as [6-8, 28, 34], compute cross-param
eterization between the incomplete input mesh and the template to correctly close the
gaps and holes. These techniques were tailored for reconstructing particular families
of models. Most methods assume that the templates are geometrically very similar to

the input meshes, in terms of shape [6, 34] or pose [7, 28].

Kraevoy et al. [45] introduce an algorithm that, given a mesh, a set of feature ver-
tices, and a set of corresponding positions in the plane computes a patch layout and a
triangulation of the points that have identical connectivity. Since the method operates
in 2D, the authors were able to use standard parameterization techniques to achieve low
distortion. Our work extends this general framework to partition meshes into patches

with identical connectivity.

A concurrent work by Schreiner et at. [64] uses a similar procedure for base mesh
construction, however, handling models of arbitrary genus more robustly. To generate
a smooth cross-parameterization, they use a symmetric, stretch based relaxation proce-
dure, which trades high computational complexity for quality of the mapping. To avoid

artifacts, the method has to relax feature vertex correspondence in some cases.

2.2. Compatible Remeshing 9

2.2 Compatible Remeshing

Much of the previous work done in the area of cross-parameterization focuses on mor-
phing and blending as target applications. Both morphing and blending require mod-
els to be represented by compatible meshes, i.e. meshes with identical connectivity.
Alexa [2] gives a good review of cross-parameterization and compatible remeshing
techniques developed for morphing.

Given the cross-parameterization, many techniques [3, 35] generate the common
connectivity for the models by overlaying the meshes in the parameter domain and
computing a common intersection mesh. The new mesh captures the geometry of the
models. However, typically the new mesh is a factor of ten larger than the input meshes
and contains poorly shaped triangles. Another alternative is to remesh the models
using a regular subdivision connectivity derived from the base mesh [46, 56, 61]. Due
to the rigid connectivity structure, the shape of the mesh triangles reflects the shape
of the base mesh. Hence, if the shape of the triangles is poor, for example, if the user
picked unevenly spaced feature vertices, the shape of the mesh triangles will reflect this.
More importantly, a model that contains features interior to the base mesh triangles
will require a very dense subdivision mesh over the entire model. Lin et al. [52] partly
rectify this by introducing adaptive subdivision. However, their meshes still contain a
very large number of elements.

Allen et al. [7] use the connectivity of one mesh to approximate the geometry of
another, avoiding explicit parameterization. Their solution is limited to very specific
inputs and can introduce severe approximation errors when the input models have sig-

nificantly different geometry.

2.3 Model Completion

Modern commercial scanners, such as Cyberware [32], are becoming more robust and
are capable of merging multiple scans using registration information. However, due
to occlusions, the output meshes remain incomplete, containing numerous holes and

multiple components. Several methods for closing holes were proposed recently [17,

10 Chapter 2. Related Work

48, 50, 59]. Davis et al. [17] successfully close holes in large meshes using volumetric
techniques, but do not always preserve the topology of the mesh, generating spuri-
ous handles. Liepa [50] triangulates the holes using a method with O(n?) complexity,
which can become unpractical for large meshes. Levy [48] uses 2D parameterization
to efficiently close holes of any size. The technique requires manual alignment of the
components in 2D to close gaps. Since the completion is performed in the plane, the
method cannot generate closed models. Podolak and Rusinkiewicz [59] decompose the
space into atomic volumes, and utilized the graph cuts to determine the individual vol-
umes to be inside or outside. All four methods close the holes as smoothly as possible,
without attempting to reconstruct the missing geometry. Sharf et al. [66], reproduce
missing geometry by copying patches from other regions of the same model. How-
ever, they cannot generate missing features out of nowhere. Hence their methods are
inadequate in the common case of scanned meshes missing complex features. None
of the above methods uses global shape information. Therefore, they are unlikely to
reconstruct correctly the connectivity for complex holes.

Template-based completion techniques, such as [6-8, 28, 34, 58], fill in the missing
information using template geometry. These methods compute a cross-parameterization
between the incomplete input mesh and the template to correctly close the gaps and
holes. These techniques were tailored for reconstructing particular families of models.
Most methods assume that the templates are geometrically very similar to the input
meshes, in terms of shape [6, 34] or pose [7, 28] and the gaps and holes in the data are
relatively small.

The method of Allen et al. [7] is one of the most robust. It uses user-specified
correspondence between a small set of feature vertices, or markers, on the input and
template meshes to align them with one another. The method has problems converging
when the input models have significantly different geometry. The method of Pauly
at al. [58] uses a database of 3D shapes to find a suitable template, it than warps the
template to conform with the incomplete scanned data. The new method of Anguelov
et al. [8] relies on the existence of an underlying skeleton to reconstruct models with
major pose variations. As such the method is limited to human or animal models.

Sumner and Popovic [74] used a variation of the method in Allen et al. [7] to com-

2.4. Model Editing 11

pute mappings between models with significant shape variation. As they note, this

often required specifying a very large number of marker correspondences.

2.4 Model Editing

Due to recent developments in digital geometry processing, mesh editing has been the
subject of increasing attention in recent years. Geometry editing operations commonly
use mesh encodings which capture the shape properties of the models. Given modified
positions for a set of anchor vertices, the encoding is used to compute the positions for
the rest of the mesh vertices, preserving the model shape as much as possible.

Much of the research in this area has focused on subdivision and multi-resolution
editing techniques (e.g. Zorin et al. [82], Kobbelt et al. [40]). The idea is to decompose
the mesh into two or more levels of detail, such that each level is encoded with respect
to the previous one. The editing is performed on the coarsest level and then propagated
to higher levels. Guskov et al. [25] develop an encoding where a vertex is encoded
as a distance in the normal direction, from the average of the neighbor vertices. This
provides a rotation-invariant representation of details. In order to use the encoding for
editing purposes, most of these methods use a smooth base mesh as the coarsest level of
the hierarchy. Thus, the general editing problem is reduced to the challenge of editing
the smooth base mesh. Recent methods, such as Bischoff and Kobbelt [12], propose
linear techniques for modifying the base mesh. However, since simple linear formu-
lations are unable to distinguish between rotational and other linear transformations
(Sorkine et al. [72]) the editing can lead to undesired artifacts.

A skeleton based encoding is an encoding where the position of each vertex is de-
fined with respect to the links of the models skeleton. This encoding can facilitate
simple editing operations. Although skeletons exist for any model in theory, they are
generally hard to compute (e.g. Yoshizawa et al. [78]). Moreover, binary editing oper-
ations usually require skeletons with identical connectivity. The construction of such
skeletons in 3D remains, to our knowledge, an open problem.

At the core of a surface-based mesh editing system lies a geometry encoding based

on differential coordinates, such as Laplacian or gradient coordinates. Such systems

12 Chapter 2. Related Work

typically manipulate the differential coordinates of the undeformed mesh first, followed
by a reconstruction of the deformed mesh from the modified differential coordinates.
The Laplacian coordinates of each vertex are defined as a displacement vector between
the average of the neighbor vertices and the actual 3D position of the vertex. Using
this encoding, mesh editing becomes extremely efficient, since the decoding procedure
only requires solving a simple linear system. Regrettably, since these coordinates are
not invariant under rotation and scaling, the technique introduces visible artifacts for
large deformations. Sorkine et al. [72] extend the use of Laplacian coordinates by lin-
early approximating local rotation and solving repeatedly for small rotational updates.
Yu et al. [79] and Zhou et al. [81] combine Laplacian coordinates with a different ro-
tation approximation mechanism. Zhou et al. [81], extends the Laplacian technique by
constructing a volume graph at the interior of a closed mesh to prevent volume loss dur-
ing excessive bending and twisting. Recently, Huang et al. [30] and Botsch et al. [14]
have successfully introduced algorithms based on nonlinear formulations which also
employ rotation estimation. Huang et al. [30] used a subspace domain to reduce the
problem dimensionality via mean value coordinates [19, 33]. Botsch et al. [14] intro-
duced a local shape representation based on prisms and used a hierarchial multigrid
solver to reduce the problem complexity. Since all the above mentioned techniques use
only an estimations of rotations the results are still suboptimal.

Lipman et al. [53] propose to split the editing problem into two separate linear
systems. They first solve a linear system for per-vertex orientations, and from those
reconstruct vertex positions in a second step. Since the first system does not consider
position constraints, their technique neglects the connection between translations and
rotations. While their method works very well even for large rotations, it exhibits

shearing artifacts while performing large translations.

2.4.1 Modeling by Composition

Commercial modeling and design tools geared toward non-expert users typical utilize a
procedural modeling approach where users can select shape components or properties

from a restricted pre-processed dataset [51, 73]. Sketch based modeling interfaces [36]

2.4. Model Editing 13

allow users to create more diverse content, but are so far useful mostly for creating
relatively simple shapes.

Mesh composition is emerging as an alternative simple modeling metaphor that
allows even non-expert users to create complex models within a reasonable timeframe
[20, 67]. In a typical composition setup, users first cut the two composed components
from their respective input models and then align them such that the corresponding cut
boundaries match reasonably well. The composition software is then used to connect
the two components into a single model and define the geometry in the boundary region
using a blending mechanism.

Several researchers proposed ways to simplify the user interaction during the bound-
ary cutting and alignment [20, 26, 47, 67]. Smart scissoring methods [20, 47, 67] sim-
plify the specification of the cut boundaries. Sharf et al. [67] require the user to provide
only a coarse alignment and then improve the alignment further using a variation of de-
formable ICP. Funkhouser et al. [20] use the correspondence between the shuffled-in
and out components to compute the alignment. This approach can lead to unintuitive
alignment if the shuffled-in and out components differ significantly.

Our proposed modeling system combines new algorithms for meaningful mesh seg-
mentation, part matching and intelligent part composition. This dissertation concen-
trates on the algorithms for meaningful mesh segmentation and intelligent part compo-
sition. Part matching algorithm was developed in a joint work with D. Julius and is not
a part of this thesis.

We now review relevant existing methods in these categories.

Meaningful Segmentation: There is a large number of methods for meaningful
segmentation of individual meshes, surveyed by Shamir [65] and Attene et al. [9]. Most
methods rely on definitions of meaningful parts based on a study showing that humans
segment models in regions of high negative curvature [29]. Geodesic distances are
commonly used to steer the segmentation and negative curvature is taken into account
when generating the actual cuts [37, 38, 80]. Amato et al. [49] consider the depth of
the concave, negative curvature, regions on the model to determine where to generate
the cuts between the components. Chaselle et al. [15] use a dual approach, where

instead of generating cuts in concave regions they generate parts which correspond to

14 Chapter 2. Related Work

convex regions. The method searches for exact convex decomposition and shows that
this problem is NP-hard.

Part Composition: Most composition tools focus on correct ways to combine the
geometries of the parts in order to generate a smooth transition between them [72,
79], and rely on the user to specify the part boundaries on the input models and to
align the parts with respect to one another. Recent approaches for simplifying the
boundary specification process include intelligent scissoring [20, 47], which optimizes
approximate boundaries generated by the user, and boundary computation based on

part alignment [26, 67].

2.5 Sketch-based Modeling

Most commercial modeling systems, such as Maya [5] and 3D Studio Max [1], are
targeted toward expert users and require significant time, expertise and artistic talent to
generate complex models. Sketch based modeling interfaces [31] are much easier to
manipulate and are successfully used to create new geometric models. Sketch-based
modeling work has a strong connection with both image-based modeling and model-
based vision, given that the types of contours that are useful to sketch are also often
the same ones that are useful when attempting to infer geometric models from single
images. The use of user drawing coupled with strong a priori knowledge about ob-
ject classes has been used in [62] for modeling plants from a single photograph and
in [76] for modeling airplanes, cups, and fish from sketched or traced contour lines.
Earlier work [18] supports fast architectural reconstruction from images using a priori
knowledge of typical shapes and user-driven selection of key image points. Model-
based vision has a long history in computer vision. A prime example is [54], which
uses matches between the silhouette edges of the known 3D model and edges extracted
from the image in order to determine the 3D pose of the model.

Recently, two new papers introduce sketch-based deformation interfaces [39, 57].
The method of [39] uses as input a reference stroke on the model and a target stroke,
indicating the deformed shape of the reference. Nealen et al. [57] infer the reference

stroke from the target stroke, using a set of assumptions. The method computes sil-

2.5. Sketch-based Modeling 15

houette edges or a suggestive silhouette within a user specified region and uses the
silhouette as the reference stroke. User assistance is required if the silhouette needs
to be trimmed or if more then one silhouette exists inside the region. Both methods
assume arc-length correspondences between the points within each stroke, e.g., the
half-way point of the reference stroke is chosen to correspond to the half-way point on
the target stroke.

A key step of our proposed work is the automatic computation of optimal corre-
spondences between points on the 2D target contours and the vertices on the 3D model
that form its silhouette. It is related to the problem of computing optimal matches
between 2D open curves. Hidden Markov models (HMMs) have been proposed as a
technique for 2D shape classification using silhouette edges [10, 22, 27]. Typically,
these models assume the existence of a significant number of training examples in or-
der to learn the HMM parameters, and are commonly demonstrated working on closed

silhouette curves only.

16

Chapter 2. Related Work

17

Chapter 3

Cross-Parameterization and
Compatible Remeshing of 3D
Models

The ability to bijectively map one surface model to another is useful for many appli-
cations. Smooth morphing of one geometric shape into another is one of the oldest
and most popular special effects in movies. The first stage of most morphing algo-
rithms is the establishment of a bijective mapping between the models [3, 35, 46].
Recent research in digital geometry processing suggests multiple applications for such
a mapping, including pair-wise model editing [11], transferring texture and surface
properties (BRDFs, normal maps, etc) [61], fitting template meshes to multiple data
sets [7, 55], and morphing of one geometry into another [3, 35, 46]. Many of these
applications, such as blending and morphing, require compatible input meshes, i.e.
meshes with identical connectivity. Therefore, given the cross-parameterization, the

models must be remeshed with a common connectivity.

The models which need to be cross-parameterized usually have similar features
(there is little use for mapping a phone onto a cow) and the parameterization must
respect those. For example, when mapping between two humans, the legs must map
to the legs, the ears to the ears, and so on. This is typically achieved by enforcing the
correspondence for a small set of feature vertices and using a cross-parameterization
that preserves the shape of the models as much as possible (in terms of angles and

area).

18 Chapter 3. Cross-Parameterization and Compatible Remeshing of 3D Models

3.1 Algorithm

The input to the algorithm consists of two closed manifold meshes M; and M; and
the corresponding sets of matching feature vertices V; and V;, typically selected by the
user. The algorithm has three main stages. First, we construct a common base domain.
Second, a low distortion cross-parameterization is computed. The final stage remeshes

the input models in the mutually compatible way using the parameterization.

3.1.1 Common base domain construction

The goal of this stage is to construct a common base mesh domain for M and M, based
on the matching feature vertices V; and V;. To construct it, we compute topologically
identical triangular layouts of the two meshes. The layouts are constructed incremen-
tally by adding pairs of matching paths between feature vertices. Edge paths match if
both their start and end vertices correspond to one another. When adding each pair of

matching paths, the following conditions have to be satisfied:

1. Intersection: The new paths must not intersect existing paths in either of the

mesh layouts Ps and P,.

2. Cyclical Order: The paths must have the same cyclical order around the end

vertices.

3. Blocking: The new paths must not block necessary future paths. Blocking hap-
pens when a path splits a patch in two and the corresponding feature vertices
are placed in topologically different patches. Blocking is tested by propagating
fronts from the same side of both paths (as determined by mesh orientation) and

comparing the feature vertices encountered by the front.

The common base domain is constructed by incrementally introducing pairs of
matching paths between marker vertices, pair-by-pair. At each point, the algorithm
selects the pair of paths with the smallest length sum that satisfies the conditions de-
scribed above. Cases exists in which its impossible to trace an edge path between fea-

ture vertices due to the mesh connectivity restrictions. Similar to Kraevoy et al. [45],

3.1. Algorithm 19

3
2
W

Py S
KIARANER
Wit
NS
SNy
mmmvv
i

SRR

=\

=

(d

o
A

o
e
PR

“Vb

Figure 3.1: Base domains construction (feature vertices are dark green): (a),(b) simple
paths; (c),(d) paths with additional vertices, new vertices are highlighted (turquoise);

(e),(f) base meshes.

our algorithm adds extra, Steiner, vertices as necessary to resolve this problem (Fig-
ure 3.1 (¢),(d)). The construction method is guaranteed to terminate and to compute
topologically identical triangular layouts. The computed layouts are used to generate

the cross-parameterization as explained in the next section.

3.1.2 Cross-parameterization

After the base mesh domain is constructed, each patch is mapped to the correspond-
ing base mesh triangle using mean value parameterization [19]. This provides two
parameterizations Fy and F; between the meshes M, and M, and their corresponding
base domains B and B; (Figure 3.1 (e),(f)). By mapping each triangle in B, to the
matching triangle in B, we obtain the initial cross-parameterization F. Since each
component of the mapping is bijective, the combined parameterization is bijective as
well. Mean value parameterization computes a shape preserving (conformal) parame-

terization. However if the patches are not well shaped the resulting mapping can still

20 Chapter 3. Cross-Parameterization and Compatible Remeshing of 3D Models

Figure 3.2: Parameterization on a base mesh: zoom-in on patches (a) and mapping to
base mesh (c) before and after smoothing (b) and (d).

be quite distorted (Figure 3.2 (c)). To reduce the parameterization distortion we apply

a smoothing procedure.

Our smoothing algorithm reduces the parametric distortion by allowing vertex mi-
gration from one patch to another, improving the patch shape (Figure 3.2 (a), (b)). To
guarantee a bijective mapping, the smoothing procedure requires an adjacency con-
straint to be satisfied for all edges in the mesh. An edge satisfies the adjacency con-
straint if its end vertices belong to the same patch or to two adjacent patches that share
a common boundary path. After the initial cross-parameterization the paths are aligned
with the edges of the base mesh (Figure 3.2 (c)). Hence, the only edges that violate the
adjacency constraint at this stage are edges whose vertices lie on two bounding paths
of a single patch. Prior to running the smoothing procedure, each such edge is split
into two. During smoothing, vertices are prevented from migrating from one patch to

another if one of their edges will violate the adjacency constraint (Figure 3.3).

The smoothing is performed independently for M, and M,, modifying the current
mapping from the mesh to the base domain. The smoothing procedure iterates over the
mesh vertices, repeatedly modifying their locations on the base mesh. Given a vertex v
located at the base triangle b, we map b and the three adjacent triangles (b1, b2 and b3)

to a planar equilateral triangle E (Figure 3.3). We also map each neighbor of vertex v to

3.1. Algorithm 21

Figure 3.3: Relocating vertices on base mesh (v3 violates the adjacency constraint).

E. Due to the adjacency constraint, each neighbor of v is located on one of the four base
triangles b, bl, b2 and b3. Hence, this mapping is well defined. Given the locations
of the neighbor vertices, we compute a new location v, based on the locations of the
neighboring vertices using the mean value parameterization Floater [19]. If moving
the vertex to the new location v, flips any triangles, we restore vertex to its original
position v. The smoothing is repeated until the vertices no longer move or until a
fixed number of iterations is reached. The procedure redistributes the vertices between
patches, straightening the patch boundaries and significantly reducing the parametric
distortion.

The parameterization framework introduced here is used in the following section

to remesh the models in a compatible fashion.

3.1.3 Compatible remeshing

The remeshing algorithm constructs compatible meshes for the two models. The al-
gorithm first remeshes the target model with the connectivity of the source mesh. The
algorithm uses the cross-parameterization to map the vertices of the source mesh M
to the target model M;, creating a mesh My with the same connectivity as M. This
yields compatible meshes for both models. However the mesh My may be a very poor
approximation of the target geometry (Figure 3.4 (b)) in curved regions. The algorithm
than improves the geometry approximation by vertex relocation and refinement. Since
we want to minimize the final vertex count, refinement is performed only when strictly

necessary.

22 Chapter 3. Cross-Parameterization and Compatible Remeshing of 3D Models

The stages of the remeshing algorithm are as follows:
1. Compute the distance approximation error across the surface.
2. While error is above a given threshold:

(a) Relocate the vertices of My on the target model using a smoothing proce-

dure. Recompute the distance approximation error.

(b) Refine the meshes where necessary using edge splits.

Error Computation

At each stage of the remeshing we need to calculate the approximation error between
the target model M, and its approximation My,. Such error is typically computed using a
discrete Hausdorff metric, which measures the distance from the vertices of one surface
to the other surface. In our case, the vertices of My, lie on the surface of M, so the one-
sided error is zero. We therefore need to measure only the distance between the vertices
of the target mesh M; and the approximation surface.

We define the mapping F’ between M, and My, by mapping each vertex of M; to
the corresponding vertex of M. The distance error e(v) at each vertex v of mesh M; is
defined as:

e(v) = (F/F_l(v) —v)

The error inside each triangle of M, is computed by interpolating the error of each
vertex using barycentric weights. For any point p on the new mesh My, we map p to
the target mesh using F(F’)~! and use the error at that location. The face coloring in
Figure 3.4 shows the approximation error throughout the remeshing procedure, with

red denoting areas of higher error.

Adaptive Smoothing

The adaptive smoothing procedure modifies the parameterization of M, on the base
mesh By. This modifies the mapping F and as a consequence moves the vertices of the
projected mesh My, along the target mesh M;. We apply the same smoothing procedure

as in Section 3.1.2. The only difference between the two procedures is the choice of

3.1. Algorithm 23

Figure 3.4: Compatible remeshing: (a) source mesh. (b) My, after initial projection.
(c) My after smoothing. (d) final mesh (after smoothing and refinement). There are no
features on the camel corresponding to the cow’s ears (mapping the camel’s ears to the

cow’s horns provides a more natural morphing sequence).

weights. The adaptive smoothing algorithm assigns weights w,, to the edges (u,v)

using the following formula.

Cyy = (e(u) +e(v))/2

Wyy = (euv +Wuv)/2

The edge error e, is based on a combination of the errors at the end vertices. The
weight is the combination of the current error with the previous weight. This choice
of weights attracts vertices to areas of higher error. The averaging with previous value
of wy, is used to avoid high weight fluctuations. The result is gradual mesh smoothing
which prevents vertices from jumping back and forth when the error increases in one
location and decreases in another. After each smoothing iteration, the positions of the

vertices of My, are recomputed.

Refinement

Adaptive smoothing goes a long way towards accurately approximating the target mesh
with the projected mesh My,. Clearly, however, if the target contains complex features
not available in the source model (e.g. the cow’s ears in Figure 3.4), they cannot be
captured by the source connectivity. Therefore, when smoothing alone can not approx-
imate the geometry accurately, the local mesh needs to be refined. This is done by

performing edge split operations. The refinement uses the same error function e, as

24 Chapter 3. Cross-Parameterization and Compatible Remeshing of 3D Models

mhmhm

Figure 3.5: Texture transfer and morphing;

the smoothing. An edge is refined if
eyy > max(g}%(ew),?«)

where € is the user-defined approximation error threshold. We found that refining only
the edges with error larger than half of the current maximal error provides sufficient
approximation accuracy without adding too many vertices to the final mesh. When the
computed error exceeds the current threshold, the edge is split by placing a vertex at its
mid-point. The split is performed simultaneously on My, and M, thus preserving the
mesh compatibility. To avoid unnecessary refinement edge splitting is performed only
when smoothing alone no longer decreases the global error.

The result of the presented algorithm is a shape-preserving cross-parameterization
between two compatible meshes Ms and My where M,, closely approximates the ge-
ometry of the target mesh M,. The cross-parameterization maps the feature vertices of

one model to the corresponding ones on the other and is guaranteed to be bijective.

3.2 Experimental Results

Figures 3.5 and 3.6 demonstrate the applications of the algorithm. Figure 3.5 demon-
strates texture transfer performed using the cross-parameterization. By texturing the
compatible meshes the texture can be used throughout a morphing sequence.

Figures 3.6 and 3.5 showcase the use of the computed compatible meshes for blend-

ing and morphing. The three-sided blends of a cow, rhinoceros and triceratops highlight

3.3. Conclusions 25

Figure 3.7: An example of a swirl: b turns around a pushing patch boundaries ahead
of itself until b comes back to its original position (Praun et al. [61]).

the methods ability to simultaneously cross-parameterize and remesh multiple models.
The algorithm takes about two minutes to run on models of up to 10K triangles on a

3GHz Pentium IV.

3.3 Conclusions

In this chapter, we have introduced new methods for computing shape preserving cross-
parameterizations and compatible remeshing. The parameterization method is guaran-
teed to find a bijective, feature-preserving parameterization for any set of models. The
smoothing mechanism we propose significantly reduces the mapping distortion com-
pared to other parameterization methods. Our remeshing method generates compatible
meshes for both models with fewer vertices than previous methods while accurately

approximating the input geometry.

26 Chapter 3. Cross-Parameterization and Compatible Remeshing of 3D Models

Limitations and Future Work

Compared to previous techniques, this method is significantly less dependent on the
shape of the patches. However, visible artifacts can still occur when patch vertices
have very high valence. The user can avoid these artifacts by specifying additional
feature vertices.

In this work, we primarily focus on genus zero models. Although our technique
carries over to higher-genus models it is not guaranteed to find a solution. Another
problem may arise when paths between feature vertices take unnecessarily long routes
around other existing paths. This swirling or winding phenomenon (Figure 3.7) leads
to particularly badly shaped patches that cannot be fixed using local continuous re-
laxation [61]. Schreiner et al. [64] introduced a set of heuristics to change the order
of path introduction to avoid the creation of swirls and to handle higher-genus mod-
els. To generate a smooth cross-parameterization, they use a symmetric, stretch based
relaxation procedure, which trades high computational complexity for quality of the
mapping. To avoid artifacts, their method has to relax feature vertex correspondences.
An interesting topic for future research would be to explore different methods to avoid

the creation of swirls completely and to handle models of arbitrary genus.

27

Chapter 4

Template-Based Mesh

Completion

In this chapter, we extend our cross-parameterization technique to support models
with multiple gaps and holes. This allows us to develop a new and robust method

for template-based range scan data reconstruction.

Meshes generated by range scanners and other acquisition tools are often incom-
plete and typically contain multiple connected components with irregular boundaries
and complex holes. We propose a robust algorithm for completion of such meshes us-
ing a cross-parameterization between the incomplete mesh and a template model. We
employ this cross-parameterization to correctly glue together the components of the
input mesh and to close the holes. The template is used to fill in the topological and
geometric information missing in the input. The completed models are guaranteed to

have the same topology as the template.

4.1 Algorithm

Our proposed algorithm operates on two meshes: input and template. Like previous
template-based techniques, we use a small set of markers to provide a coarse align-
ment between features on the input and template meshes (Figure 4.3 (a) and (b)). The

markers are specified either manually or provided as part of the data [7].

Our algorithm has four main stages, visualized in Figure 4.3:

Chapter 4. Template-Based Mesh Completion

Figure 4.1: Template-based mesh completion: (top) incomplete scan input the semi-
transparent grey image shows the multiple complex holes in the input; (bottom) recon-
structed model.

g

Figure 4.2: Template and markers used to complete the female model in Figure 4.1.

4.1. Algorithm 29

h
N/

[N

il

L TR

SRR
N

=
2
<]

0y

Figure 4.3: Algorithm stages. (a,b) Input and template meshes with markers (c-e)
Segmentation: (c) template, (d) base mesh, (e) input segmentation and virtual triangu-
lation (virtual triangles shown in lighter color). (f-i) Parameterization: (f) template; (g)
input mapped to base; (h) closed input mesh; (i) input mesh mapped to template; (j)
completed model. Note that the shape of the sides and the bottom comes from the mug
and hence differs from that of the traditional teapot.

4.1.1 Pre-processing

In this stage the algorithm prepares the input mesh for cross-parameterization by edit-
ing mesh components with multiple boundary loops. The algorithm unites the bound-
ary loops into one. Using the face graph of the mesh, it first computes a shortest path
tree connecting the loops. Then it merges the loops by removing the faces in the tree
from the mesh. The purpose of pre-processing is to avoid ambiguities in gap clo-
sure, as it is often difficult to classify which boundary loop on one mesh component
corresponds to a boundary loop on another. Generating a single boundary for each
component eliminates this ambiguity.

Next, the algorithm segments the pre-processed meshes into patches.

4.1.2 Segmentation and base-mesh construction

A consistent mesh segmentation for closed meshes is typically constructed by incre-
mentally introducing paths between marker vertices [42, 61, 64]. First, similar to
Kraevoy and Sheffer [42], the template mesh is segmented by introducing legal edge
paths between marker vertices, one-by-one (Figure 4.3 (c)). Given the segmentation,

the algorithm constructs the corresponding base-mesh by generating straight edges be-

30 Chapter 4. Template-Based Mesh Completion

tween the corner vertices of the patches (Figure 4.3 (d)).

To generate the input mesh segmentation consistent with the template mesh seg-
mentation, the algorithm introduces paths between marker vertices one-by-one, based
on the base-mesh connectivity. When introducing each path we must make sure that
it does not block future paths [61]. Regrettably, in a multi-component setting path
blocking cannot be tested as described in Kraevoy and Sheffer [42]. Therefore we
specify a particular order of adding paths in which blocking cannot occur. Our method
introduces paths that correspond to base mesh edges in a specified order.

First, for each connected component, the method constructs a Steiner tree of the
markers in this component using only interior paths. Next, it proceeds to generate a
Steiner tree of the connected components, by adding cross-gap paths between markers
in different components. At the end of this stage, all the markers are connected into a
single tree, while the paths constructed so far do not block any future paths between
markers inside any component or between markers in different components. At the
same time, from now on, new paths will not cause blocking, as all the markers are
connected. Finally, the algorithm completes the segmentation by introducing the rest
of the paths, each time adding the shortest path that corresponds to a base-mesh edge.

The input and template meshes are now parameterized onto the base mesh, using

the computed segmentation.

4.1.3 Base-mesh parameterization

This section presents a framework for mapping meshes with multiple components and
holes onto a base mesh. The framework enforces the mapping of markers on the input
and template meshes to the vertices of the base mesh. To correctly parameterize gaps
and holes we use virtual triangulation. In the past, virtual triangulation was used as
pre-processing for planar parameterization, to enable parameterization of meshes with
holes [68] and to reduce parameterization distortion. Our work further develops this
idea using iterative Delaunay triangulation to improve the quality of parameterization
and facilitate automatic gap and hole closure.

The mapping is computed in two steps. An initial one-to-one embedding from the

4.1. Algorithm 31

mesh to the base domain is computed by mapping each patch onto the corresponding
base-mesh face. The method applies uniform embedding [75] to parameterize each
patch onto the base triangle. Note that a region of a gap or a hole, that is associated
with each patch, is by construction a simple polygon, hence, the mapping is guaranteed
to be bijective. Next, the algorithm uses the mapping to triangulate the gaps and holes
in the patch, enforcing base-mesh topology. The mapping and the virtual triangulation
are then improved using a combined smoothing and re-triangulation procedure (Figure
3 (f-i)). It iterates over all the pairs of adjacent faces in the base mesh, applying the

following steps:

1. Parameterization: For each pair of adjacent base-mesh triangles, Step 1 con-
structs the quadrilateral domain and parameterizes the corresponding mesh patches
in this domain, using the parameterization method proposed by Yoshizawa et

al. [77].

2. Remeshing and projection to 3D: This step re-triangulates the holes and gaps
contained in the two parameterized patches using Delaunay triangulation. Ex-
tra vertices are added as necessary to improve the triangulation quality [71]. To
compute the 3D positions for the new virtual vertices, we use mean value em-
bedding [19] in 3D with the weights computed in the plane (Figure 4.3 (h)). The

re-triangulation improves both the parameterization and the gap and hole closure.

The smoothing and triangulation procedure is repeated until both the parameteri-
zation and the triangulation no longer change. By repeatedly smoothing pairs of mesh
patches, we allow vertices to move freely all across the base. Figure 4.3 (g, h) shows
the result of applying our algorithm to parameterize and triangulate the broken teapot
model. The parameterization preserves the shape of the input mesh and in particular
the outline of the boundaries. The gap closure is close to optimal, with the correct

components connected to each other.

32 Chapter 4. Template-Based Mesh Completion

4.1.4 Blending

For template-based completion we use the mapping computed by the previous stage
to construct a complete geometric model (Figure 4.3 (j)) by blending the input and
template meshes.

To facilitate blending we establish common connectivity for the input meshes. We
use the connectivity of the closed input mesh (Figure 4.3) or the template (Figure 4.1)
as the basis for common connectivity. The choice depends on the complexity and
resolution of the two meshes. Using the finer, more detailed mesh provides a better
approximation. Similar to Kraevoy and Sheffer [42] the algorithm refines the connec-
tivity if it fails to capture all the details on one of the models. Since the input and
template models often have very different shape, we cannot blend the 3D coordinates
directly. To provide intuitive results we blend local shape descriptors instead. In our
examples we used the blending scheme of Sheffer and Kraevoy [70] to generate the

completed models.

(H

Figure 4.4: Completing a head from 3 fragments: (a,d) the input mesh, (b,e) the tem-

plate, (d,f) the completed model. Features, such as nostrils and mouth, not available in
the input mesh were taken from the template.

4.2. Experimental Results 33

4.2 Experimental Results

Here, we demonstrate several models constructed using our scheme. Global comple-
tion took from 20 seconds to 8 minutes for models of 10K to 200K triangles. The times
were measured on a 3GHz P4. These times are comparable with those we attained from
the authors of [7]. However, our method is significantly more robust, succeeding on
models, such as Figure 4.1.0ur parameterization algorithm is significantly faster than
previous cross-parameterization techniques [42, 64].

Figure 4.1 demonstrates the results of using our method for completion of large and
complex holes. The scanned female model in Figure 4.1 differs significantly in terms
of pose and body proportions from the canonical template that we used (Figure 4.2).
Despite these differences the completion algorithm correctly reconstructs the cross-
hole connectivity and accurately completes the missing features based on the template.

Figure 4.4 shows the reconstruction of a head from several components. Thanks
to the near-perfect alignment achieved by our mapping, the method seamlessly blends
partial features from the template and input meshes. In this example the upper half of
the nose comes from the input while the lower half comes from the template, yet the
two are blended seamlessly and the original geometry of both is clearly preserved.

There are many models for which no standard template exists. Such is the case
for the teddy bear model generated from merged Z-camera scans (Figure 4.5). Nev-
ertheless, the model is successfully completed using a simple sphere as a template.
The markers are placed automatically at four roughly equidistant (in Euclidean space)
points on the model and the sphere. The method robustly parameterizes and completes
the model from eleven connected components, most of which have no markers. The
spherical parameterization (Figure 4.5 (b)) is globally continuous and has low distor-

tion.

4.3 Conclusions

We proposed a robust new method for template-based mesh completion. As demon-

strated by the examples, our new method is robust in the face of incomplete input

34 Chapter 4. Template-Based Mesh Completion

— -
(b) (c)
Figure 4.5: Completing teddy from 11 components using the sphere as a template

and 4 markers: (a) input, (b) teddy mapped to the sphere (normal map), (c) completed

model.

meshes with multiple components and holes. It can successfully complete models on
which previous methods are likely to fail. It is very efficient and requires only a small
amount of user interaction to specify the marker vertices. Our parameterization mecha-
nism is more generic than previous techniques; it guarantees bijectivity and introduces

less distortion.

Limitations and Future Work

Due to noise, self-occlusions and collisions in the scanned data, the input mesh can
have a different genus compared to that of the template mesh provided by the user.
Since bijective mapping between surfaces of different genus is mathematically impos-
sible, differences in genus will lead to algorithm failure. An interesting topic for future
research would be to explore automatic ways of detecting genus inconsistences in the
input data based on the user provided template model and a set of markers specifying
the correspondence between the two.

The scan data can also be extremely noisy due to scanning system errors.Our blend-
ing procedure uses information from the template in areas where the input geometry is
missing or unreliable, and the input geometry where it is available, thus carrying the
noise over to the final model. It is possible to reduce the amount of noise by marking

the noisy regions as unreliable. This will result in partial blending between the noisy

4.3. Conclusions 35

regions and the template reducing the amount of noise. Automatically detecting the
locations of noisy regions and the amount of blending required might also be a new

interesting research topic for investigation.

36

Chapter 4. Template-Based Mesh Completion

37

Chapter 5

Pyramid Coordinates for

Morphing and Deformation

In previous chapters we introduced new methods for computing shape preserving cross-
parameterizations and compatible remeshing, which are suitable for novel 3D content
creation through reuse of existing models by transferring surface properties from one
model to another.

Another means by which we can create novel 3D content is through geometry ma-
nipulation. Mesh editing operations such as deformation, morphing and blending are
useful extensions to our modeling pipeline, and are powerful editing tools that lie at the
heart of many geometry processing applications in computer graphics and geometric
modeling. Good editing tools must be intuitive, easy to use, robust and efficient. Most
importantly, they should provide natural looking resultant models while requiring only
minimal user interaction. While it is somewhat difficult to quantify the intuitiveness
or natural look of edited models, the consensus seems to be that the models should
preserve as much as possible their local and global shape properties (distances, angles,
etc.) [2].

This chapter focuses on two types of editing operations:

Deformation: Mesh deformation is the process of interactively transforming the
surface of a model in response to some control mechanism. It is commonly used for
model editing and animation. Typically, mesh deformation techniques require global
knowledge of the model structure (such as a skeleton) which are quite time consuming
to compute. We propose a new approach for 3D mesh deformation based on a small

number of user-specified control vertices. Given the positions of the control vertices,

38 Chapter 5. Pyramid Coordinates for Morphing and Deformation

(a) (b) (c)

Figure 5.1: (a) Pyramid coordinates: (b) tangential components in the projection plane
P; (¢) normal component 3.

our method computes the positions of the rest of the vertices, in a manner that best
preserves the shape parameters of the source model. As demonstrated by Figure 5.2,
we generate natural looking deformations in seconds with minimal user interaction.
Morphing: Morphing is one of the basic and most popular computer graphics
applications. Morphing algorithms create a smooth transition in time between mul-
tiple input models. The primary challenge of all morphing algorithms is to generate
intermediate models that retain the appearance and properties of the source models.
The proposed morphing procedure generates intermediate models which interpolate
the shape properties of the input models. The algorithm also supports introduction of

user defined trajectories for a number of control vertices.

5.1 Algorithm

The basic idea behind our algorithm is to describe the position of each vertex with
respect to its neighbors in the mesh, rather than with respect to a global coordinate
system. We would like the description to be invariant under rigid transformations in
order to be able to move, bend or rotate parts of the model, such as limbs. Our repre-
sentation, pyramid coordinates, is based on a set of angles and lengths relating a vertex

to its immediate neighbors (Figure 5.1).

5.1. Algorithm 39

Pyramid coordinates: Let v be a mesh vertex in 3D and let vq,v;,...,v,, be its

neighboring vertices. We define the projection plane
P=nx+ny+nz+d

using the normal at v, n = (ny,ny,n;), and d = —Y.7* | n-v;. We define the projections
of v and v; to P as V' and v} respectively. The description of the vertex with respect to
the neighbors consists of: a set of angles o; between the projected edges (V/,v;) and
<v’ Vi >; a set of angles B; between n and the edges (v,v;); and, a set of projected edge
lengths [; = ||/ —v}|.

Reconstruction: Given those values we can uniquely define the vertex position
given the neighbor vertices. We derive v/ from v} using the reproduction property of

the mean value coordinates [19]:
m
V= Zw,-v;, 5.1

where the barycentric weights w; are derived from o; and /;. To derive the position of
v given v/, we calculate a set of offsets along n, h; = ||/ — vi||cot(B;) + (vi —V}) - n.

Finally we obtain v by offsetting v/ by the average of &; along n as follows:
1 m
v="v-+n—Y b (5.2)
miz

The presented shape description is invariant under rigid transformations. Given a 3D
model, the angles and lengths are uniquely defined, though more than one model can
fit a given combination. We use this redundancy to facilitate the deformation process,
generating models which closely preserve the shape of the input models, subject to
deformation.

Deformation: Given user prescribed positions for a set of control vertices V., the

positions of the rest of the vertices are computed by iterating the following scheme:

1. For each vertex v, if v is not in V., update the position of v using the shape de-

scription in Equations 5.1 and 5.2.

2. For each control vertex v in V,, compute the height offsets /; and update the po-

sitions of the neighbor vertices:

40 Chapter 5. Pyramid Coordinates for Morphing and Deformation

NN NP V)

{ (] 1! \ { .”' \‘ 1‘\7@'
)\ W .. .Y

(a) (b) (©)
Figure 5.2: Examples of model editing; (a) source model (4884 faces); (b) walking

camel - moderate deformation (10 control vertices, 3 sec); (c) dancing camel - extreme
deformation (16 control vertices, 6 sec). Computations were done on P4 2.4 Ghz com-

puter.

1 m
/
vi=Vi+n— E h;.
ome

This sets the distance between v and the projection plane P to the average of the

h; values.

3. Repeat until convergence.

The shape preservation metrics that we use focus on angles. However, under defor-

mation, the angles are sometimes preserved at the expense of stretch. To account for
vl ..

stretch we use a simple strategy of scaling the edge weights w; by Hvlilv,ll In addition

to better length preservation, the use of a stretch component during vertex placement

drastically speeds up the convergence of the reconstruction procedure.

Morphing: Our method generates intermediate models based on interpolated pyra-
mid coordinates. It can also take into account user-prescribed trajectories of a number
of control vertices. The prescribed trajectory of a control vertex is a curve in space-time
defined over [0,1].

Given source and target meshes S and T sharing a common connectivity, the al-
gorithm computes the pyramid coordinates of S and T: projected face angles o and
ol , normal-edge angles B° and B’ , and projected edge lengths /5 and /7. For each

time-frame, the algorithm computes the pyramid coordinates given the frames time ¢

5.2. Experimental Results 41

(in [0,1]) by linearly interpolating between source and target values:
a=0a5(1—1)+alt,

(X:BS(I—Z)—FBTI,
a=0501-1)+I"t,

The control vertex positions are now set as defined by the trajectories. The remain-
ing vertex positions are computed by the controlled reconstruction procedure using the
pyramid coordinates. The initial guess for the placement is the vertex positions from
the previous time-frame. Those positions are typically close to the expected positions
in the current time step. Therefore, the reconstruction procedure converges very fast

for each time-frame.

5.2 Experimental Results

The figures presented in this chapter demonstrate the results of applying our technique
for different editing operations. Figures 5.2 and 5.3 showcase our deformation algo-
rithm on the camel and feline models. Both models undergo large deformations using
only a small number of control vertices. The resulting models closely preserve the
shape of the original models. Figure 5.4 shows a morphing example where a cow is
morphed into a bull. The morphing uses 8 trajectories to define the transition for the
legs, tail, horns, and nose. Our morphing procedure generates intermediate models that
retain the appearance and properties of the source models. Table 5.1 provides statistics

and runtime results for the examples described above.

Model Size Control Runtime
#vert. #anchors (sec.)

Walking camel 4884 10 3
Dancing camel 4884 16 6
Feline 49,864 9 161

Cow/bull 21,610 8 -

Table 5.1: Deformation statistics.

42 Chapter 5. Pyramid Coordinates for Morphing and Deformation

%
VY =\
4 4
ix\‘\“\f\\l Y\ﬁ}
q
(

a) (b)
Figure 5.3: Deformation of feline model (a) source model (49,864 vertices) (b) jump-

ing feline (9 control vertices).

Figure 5.4: Turning a cow into a bull. Note the preservation of local details and the

smooth rotation of the head and tail.

5.3 Conclusions

We introduce a new, robust method for mesh editing based on a local shape represen-
tation, which is invariant under rigid transformations. The sole input from the user
consists of a number of control vertices defining the deformation. Given the input,
our method provides natural deformations that include scaling, bending, and rotation
of mesh parts, providing an effective tool for model editing, morphing and character

animation.

Limitations and Future Work

Our method relies on tangential plane calculation for establishing a local coordinate
frame. Computation of the tangential planes can be unstable on meshes with irregular
connectivities. In the next chapter we propose an extension to pyramid coordinates

called mean-value encoding. In contrast to pyramid, it uses a different local frame

5.3. Conclusions 43

definition, leading to a more stable closed form formulation. To improve performance
even further, we introduce a multiresolution structure into the reconstruction proce-
dure, interleaving it with the numerical minimization. This enables us to achieve much
better results in terms of stability, speed, and shape preservation compared to pyramid

coordinates.

44 Chapter 5. Pyramid Coordinates for Morphing and Deformation

45

Chapter 6

Mean-Value Geometry

Encoding

In this chapter we propose an extension to pyramid coordinates called mean-value en-
coding. Like the pyramid coordinates, mean-value encoding is based on a set of angles
and lengths describing the position of a vertex with respect to its neighbors. However,
in contrast to pyramid, it uses a different local frame definition, leading to a closed form
formulation. This enables us to achieve much better results in terms of stability, speed,
and shape preservation compared to pyramid coordinates. Here, we also propose a new
application namely the realistic reconstruction of the animated geometry of the human
form based on motion capture (Mocap) marker information alone.

With the improvement and declining costs of motion capture technology, modern
computer graphics increasingly uses it as a major source of data for character anima-
tion. Mocap data provides trajectories for character animation by tracing the motion
of a set of markers on moving subjects. Standard techniques for motion data recon-
struction from such data require global knowledge of the model structure, such as a
skeleton. Skeletons are difficult and quite time consuming to construct. We propose
the first, to our knowledge, automated technique that can realistically reconstruct char-

acter animation based on Mocap data alone (Figure 6.5(b)).

6.1 Algorithm

Given a mesh model and Mocap data, the sole input required from the user is a cor-

respondence between markers in the Mocap data and vertices on the model (Fig-

46 Chapter 6. Mean-Value Geometry Encoding

Figure 6.1: Mean-value encoding: The 3D mesh is shown in black, the normal »; is

shown as a vertical vector, the projected mesh in the local projection plane is shown in

gray.

ure 6.5(a)). The correspondence provides the positions for a subset of the model’s
vertices for each frame in the animation sequence. Our goal is to find the positions for
the remaining vertices in a manner that best preserves the shape of the source model.
Model editing addresses a similar problem where the surface of the model is modified
in response to some control mechanism, preserving the shape of the surface as much
as possible. Recent methods for model editing, e.g. [79], require both the positions of
the control vertices and their orientations, which are not available in the Mocap data.
We introduce a new method for motion reconstruction using an editing approach that
does not require orientation information. Given the positions defined by the Mocap
data for a subset of vertices we use a new local shape representation to compute the
positions for the remaining vertices. Our geometry representation stores the position
of each vertex, with respect to its neighbors in the mesh, using a local projection plane,
similar to [70].

Given a mesh with vertices V and edges E the projection plane corresponding to the
mesh vertex v; € V is defined in terms of a normal n; and an offset d; from the origin.

We define a projection plane normal (Figure 6.1) as

m

ni = Z (ij+1 1) x (V/k _l)/HIil (V/'k+1 —1)x (ij sl 6.1)

k=1

where v;,,...,v;, are the neighbor vertices of v;, and [= %Z(i_’j)eE v;. In other words,

6.1. Algorithm 47

we use an area averaged normal to a local Laplacian mesh as the normal of the pro-
jection plane. This enables us to achieve much better results in terms of stability and
shape preservation compared to [70], where the normal estimate was based on the cur-
rent position of v;. The local representation of each vertex with respect to its neighbors
consists of: a set of mean-value coordinates w;;, describing the vertex position in the
projection plane relative to its neighbors; and, an offset 4;, describing the vertex offset
above the projection plane. Unlike [70], we use a normal formulation based solely on
the neighbor vertex positions v;. Therefore, we are able to obtain an explicit formula
for reconstructing v;
vi=F(V)= Z wij(vj— (di+vj-ni)n;) + hin;, (6.2)
(i.J)€E
which leads to a closed form global reconstruction formulation
. 1 2
argmin G(V) = 5 _Z (vi—Fi(V))*. (6.3)
eV
We solve this minimization problem using the Gauss-Newton method.

To enable near real time performance, we incorporate a multiresolution structure
into the reconstruction procedure (Figure 6.2), interleaving it with the numerical min-
imization. The multi-resolution hierarchy is constructed using a simplification proce-
dure that removes the non-marker vertices one by one, until only a base mesh connect-
ing the markers remains. The simplification is performed using a sequence of half-edge
collapse operations. A mesh hierarchy is constructed, keeping track of all the individ-
ual edge collapse operations. Before each collapsed vertex is removed, the mean-value
encoding of the vertex in the current mesh is computed and stored for reconstruction
purposes. The mesh is reconstructed by first placing the marker vertices at the speci-
fied locations (e.g., Figure 6.2 (c)). The subsequent reconstruction involves two major
operations: vertex split and optimization.

Vertex split: Reversing the simplification order, collapsed vertices are added to the
mesh one at a time. We use Equation 6.2 to obtain the position for each new vertex.
Note that at the time of insertion, the positions of adjacent vertices in the current mesh
are well defined. If the marker positions are unchanged or a rigid transformation of the

original position, this placement gives the exact desired position of the vertex in 3D.

48

Chapter 6. Mean-Value Geometry Encoding

Figure 6.2: Deformation using mean-value encoding and decoding: (a) Original
model. (b) Final mesh. (c) Base mesh (markers and vertices not affected by the defor-
mation) with modified marker positions. (d) Intermediate mesh after several edgesplits.

(e) Intermediate mesh after relaxation. Note the smoothing effect on the legs and the
wings.

6.1. Algorithm 49

i L V < N\ Al
§ \‘. .‘\ - [/) _ K‘
(j '}\.) - ;C & : '(///,’/7\\ N Ky
» , (N f’ D /””/ INH 7/ NN
;ff"\‘ ‘ NN] V;L:\:, 213 o { b S
@ ® ©

Figure 6.3: Comparison of deformations performed with and without multiresolution.
(a) Original model. (b) Deformation with multiresolution. (c) Deformation without

multiresolution.

Optimization: If the anchor positions are modified, each split introduces some
error. While after each vertex split operation, v; — F;(V) equals 0 at the inserted vertex
v;, this is not necessarily the case for the adjacent vertices. Hence G(V') (Equation 6.3)
is not optimized. To find the minimizer of G(V), after performing a sequence of vertex
splits, we use a Gauss-Newton minimization procedure combined with line-search. For
the models we edited, we found it is sufficient to perform optimization only once during

the reconstruction procedure for an intermediate mesh with about 3% of the vertices.

Figure 6.2 shows the reconstruction stages for a deformed feline model. The parts
of the model that remain fixed, such as the head, are treated as markers. The error
introduced by performing edge-splits alone is clearly visible on the intermediate mesh

(Figure 6.2(d)). For this 100K triangle model the reconstruction took 0.86 seconds.

Figure 6.3 demonstrates the difference between the deformations performed with
and without the multiresolution structure. The local details are nicely preserved in both
cases. However, due to relaxation of the intermediate mesh, the global shape preser-
vation is significantly better on the model deformed using multiresolution structure
(Figure 6.3 (b)) . Not only is the global shape of the wings of the multiresolution ex-
ample much closer to the shape of the original feline wings, but the deformation itself
is evenly spread out over entire wing span. In contrast, the deformation without the
multiresolution setup concentrates most of the change at the tips of the wings and as a

result they become overstretched.

50 Chapter 6. Mean-Value Geometry Encoding

y / ’. ﬁ # 7
)

(d

Figure 6.4: Comparison of deformation methods, with details (zoom in on the tail): (a)
Original model. (b) Laplacian coordinates; (c¢) Extended Laplacian coordinates [72];
(d) Pyramid coordinates [70]; (¢) Mean-Value encoding. Note that only the last exam-

ple preserves the original shape of the tail fins.

The multiresolution approach makes the shape representation computation slightly
more time consuming, but dramatically speeds up the reconstruction. The reconstruc-
tion takes less than a second for models of up to 100K faces. In case of Mocap data
reconstruction the representation computation can be done once as a pre-processing
step, while reconstruction is performed repeatedly and ideally should be done in real-

time. Therefore, the hierarchical approach is very suitable for our scenario.

Figure 6.4 uses a simple example to compare our deformation technique to the de-
formations generated by several existing techniques. The deformation was performed
using one control vertex at the tip of the dolphin’s tail. The region of influenced used
in the examples is marked by the blue dots (Figure 6.4 (a)). In all the examples the
control vertices positions are identical and the regions of influence are the same. As
expected, a purely linear deformation technique, such as Laplacian coordinates [4]
(Figure 6.4 (b)), leads to extreme shear when the anchor position undergoes rotational
displacement. The method of Sorkine et. al [72] (Figure 6.4 (c¢)) significantly reduces
the distortion, but still leads to visible shearing artifacts near the tail fins. The Pyra-
mid coordinates method, described in Chapter 5, (Figure 6.4 (d)) causes less shearing,
but exhibits discontinuities near the anchor and along the boundaries of the region of

influence. In contrast, our mean-value encoding and decoding mechanism produces a

6.1. Algorithm 51

smooth and intuitive deformation with no undesirable artifacts (Figure 6.4 (e)).

Approach Translation Small Rotation Large Rotation Complexity
Mean-Value Encoding + + + Non-linear
PriMo[14] + + + Non-linear
Botsch et al. [13] + + — Linear
Sorkine et al.[72] + + — Linear
Lipman et al.[53] — + + Linear

Table 6.1: General comparisons of deformation techniques under various types of de-
formations. Pluses indicate the techniques produce well defined intuitive deformations

and minuses indicate that the technique fails and produces artifacts.

In table 6.1 we compare different mesh editing techniques in terms of general per-
formance under various types of deformations. Note that our goal is to show under
which circumstances each individual method fails.

The first two deformation techniques we examine are Mean-Value Encoding and
the recently introduced PriMo [14]. Both are non-linear surface deformation tech-
niques and, as a result, do not suffer from any linearization artifacts. However, non-
linear techniques are computationally and implementation-wise more involved than
their linear counterparts.

Another common approach for mesh deformation is to use physical simulation [21,
24]. The surface is assumed to behave like a physical skin, a thin shell, which stretches
and bends as forces are acting on it. Mathematically, this behavior can be captured by
an energy functional which penalizes stretch or bending. Physics based methods pro-
vide accurate model behavior, but they are often not intuitive to control and are usually
relatively slow. Botsch et al. [13] introduced a new method where the optimal sur-
face is the one that minimizes the energy functional while satisfying all the prescribed
boundary conditions. The method work fine for pure translations (Table 6.1), i.e., it
yields a smooth deformation and locally rotates the geometric details. However, due
to linearization the method has problems with large rotations, such that the deformed
surfaces exhibit loss of details specially in the regions with large protruding features.

Laplacian surface editing [72] implicitly determines the per-vertex rotations, and

hence works similarly well for translations and small rotations. Its main drawback is

52 Chapter 6. Mean-Value Geometry Encoding

the required linearization of rotations, which yields artifacts for large local rotations.

Lipman et al. [53] solves a linear system to preserve the relative orientation of the
local frames, which works well for any kind of rotations. However, since this linear
system does not consider positional constraints, this method exhibits shearing artifacts
under large translations.

The following guidelines for picking the ’correct’ deformation can be derived from
the above discussion:

In technical, CAD-like engineering applications required deformations are typi-
cally small, since the existing prototype only has to be adjusted slightly, but there are
high requirements on surface fairness, boundary continuity and the precise control. For
such kind of problems a linearized shell model [13] is a good choice. For applications
like character animation that mostly involve large rotations of limbs, methods that are
based on local coordinates are clearly the best. If the required rotations are available
from, e.g., a sketch interface, the method of Lipman et al. [53] might be the better
choice. In cases when the rotation information is not available, e.g., Mocap data, or the
application requires both large-scale rotations and translations the non-linear methods
are the only choice.

Tables 6.2 and 6.3 provide statistics and runtime results for the examples described
above. All runs were performed on a P4 3GHz machine. We use G(V) to measure
the difference in shape between the original and deformed models. The value of G(V)
for all the models deformed using mean-value encoding is less than le=3 (Tables 6.2
and 6.3). We thus have a numerical indicator that our deformation procedure preserves
the local shape of the models. In contrast, when using other methods for the dolphin

deformation the error is one or more orders of magnitude larger.

Approach G(V) Encoding(sec.) Decoding(sec.)
Mean Value Encoding 0.000232 6.65 0.863
Sheffer and Kraevoy[70] 0.001342 0.455 159551

Table 6.2: Feline deformation statistics (34759 ROI vertices, 9 anchors). G(V) mea-
sures the value of the function on the deformed model, given the original mean-value

encoding.

6.1. Algorithm

53

Approach G(V) Encoding(sec.) Decoding(sec.)
Mean Value Encoding 0.000146 0.190 0.054
Sheffer and Kraevoy[70] 0.001061 0.052 16173
Sorkine et al.[72] 0.006401

Alexa[4] 0.011042

Table 6.3: Dolphin deformation statistics (1156 ROI vertices, 1 anchor). G(V) mea-

sures the value of the function on the deformed model.

Figure 6.5: Reconstruction of fully realistic complex motion from Mocap data. (a)
Marker placement on the surface of the model. (b) (top) Animation sequence. (bottom)
Original Mocap data.

54 Chapter 6. Mean-Value Geometry Encoding

Figure 6.6: Reconstruction of more complex sitting motion from Mocap data. (top)
Original Mocap data. (bottom) Animation sequence.

6.2 Conclusion

We introduce a new, robust method for motion reconstruction from Mocap data based
on a novel shape representation. Our representation captures the local shape properties
of the model and is invariant under rigid transformations, allowing parts of the model
to be bent or to rotate during animation. In contrast to standard methods for motion
reconstruction, our technique does not require any additional global knowledge of the
model structure such as skeleton. Given the input, our technique provides an effective

tool for Mocap data reconstruction (Figure 6.5(b)).

55

Chapter 7

Shuffler: Modeling with

Interchangeable Parts

Here we present Shuffler a modeling system for composition from interchangeable
parts. Shuffler provides a simple and intuitive composition interface that allows even
novice users can create sophisticated models in minutes. Our approach is based on
the observation that in many modeling settings users create models which belong to a
small set of model classes, such as humans or quadrupeds. The models within each
class typically share a common component structure. Following this observation, we
introduce a modeling system which utilizes this common component structure allowing
users to create new models by shuffling interchangeable components between existing
models. To generate new models users simply select which part should come from
which input model. As opposed to existing composition tools, Shuffler automatically
performs both the boundary specification and the positioning of the parts. For example,
the alien in Figure 7.1 was created using just a few part selection choices to combine the
body and arm of the standing woman, with the head and feet of the dinopet, the mans
legs, and an arm of the sitting woman. The whole process took less than a minute.
Our proposed modeling system combines new algorithms for meaningful mesh seg-
mentation, part matching and intelligent part composition. This dissertation concen-
trates on the algorithms for meaningful mesh segmentation and intelligent part compo-
sition. We consider a perception based definition of meaningful parts [29] and develop
a number of quantifiable metrics based on this definition. Our decomposition algo-
rithm uses these metrics to automatically segment 3D models into meaningful parts.

We also provide a simple to use, and robust part composition system. Our approach

56 Chapter 7. Shuffler: Modeling with Interchangeable Parts

T £ b it
IS T S)

3
A

- oo B
Fie G v At W
Br o a-eeatwet

(c)

Figure 7.1: Shuffler: (a) Model decompositions computed using our segmentation
algorithm. (b) Part correspondences computed using our matching algorithm. (c) An
alien and a flying cow generated by shuffling the parts.

significantly simplifies the generation of 3D content, making modeling faster, more

accessible, and less expert driven.

7.1 Algorithm

The Shuffler editing system operates on commonly used classes of both natural and
man-made objects. It works on both watertight and non-watertight meshes including
models with any number of connected components, which are quite common in on-
line databases. The system consists of a modeling interface and a pre-processor that
segments the input meshes into meaningful interchangeable components. The pre-

processing can be performed on the fly once the user selects the set of models they

7.1. Algorithm 57

want to work with or can be carried out beforehand for a database of models.

The accepted notion of meaningful parts relies on human perception, and is based
on the observation that human vision defines part boundaries along negative minima
of principal curvatures. This definition implies that the meaningful parts are, in some

sense, convex.

7.1.1 Convex Segmentation

The goal of our decomposition algorithm is to segment the model into a small number
of nearly convex, compact parts. Given a 3D model, the sole input required from the
user is a threshold value specifying the convexity of each generated part. In contrast to
previous methods we do not expect the user to provide an estimated number of parts
for the decomposition.

Metrics: We base our algorithm on a convexity metric that measures the distance
between a mesh part P and its convex hull C(P). The distance is defined as an area
weighted average of the distances from the part triangles ¢ to the convex hull:

_ Y cpdist(t,C(P))-area(t)

dist(P,C(P)) Y cparea(t)

) (1.1)

where area(t) is the area of the triangle ¢, and dist(¢,C(P)) is the distance from the
triangle ¢ to the convex hull C(P) along the direction of the triangle’s normal. To
achieve a useful decomposition, it is not enough for the parts to be nearly convex, they
must also be compact. We calculate the compactness as an area to volume ratio of the

2/3. We combine the convexity metric

convex hull C: comp(C) = area(C) /volume(C)
with a volumetric measure of compactness to define a cost function for a potential part
as

cost(P) = (1+dist(P,C(P))) - (1+comp(C(P)))%, (7.2)

where o controls the trade-off between the two and is a constant for all our examples.
Part Formation: Given these metrics, the goal of our decomposition algorithm is

to segment the model into a small number of nearly convex, compact parts such that

the convexity error for each part is below the specified threshold D,,,,. To generate the

parts we use a modified Lloyd iteration scheme. In contrast to Cohen-Steiner et al. [16]

58 Chapter 7. Shuffler: Modeling with Interchangeable Parts

(a) (b) (C)

ﬁ | :,‘ -‘.

I

(d) (€) ()

Figure 7.2: Segmentation stages: (a) the hull of the first potential part (the entire
model) and its center; (b) first seed triangle; (c) first part after convergence; (d) hulls of

the existing part and the new potential parts; (e) new seed triangles; (f) final result.

we do not expect the user to provide an estimate number of parts for the segmentation.
Instead we use the threshold to control the number of parts. Starting with zero parts, our
algorithm generates the parts incrementally using the following four step procedure.

1. Potential part generation: The method collects the unassigned triangles, which
do not belong to any part, into connected components and classifies each component
as a potential new part. A triangle can be unassigned either at the beginning of the
algorithm or during part growing when all parts have reached the convexity bound D,
(Figure 7.2 (c)). Both possibilities are a good indication that a new part is required in
the unassigned region. This method of formation of new parts allows us to implicitly
handle models with multiple components. After forming the potential parts, the method
computes the convex hull for each of them (Figure 7.2 (a) and (d)).

2. Seed generation: This stage finds seeds for re-growing existing and potential
parts. A seed consists of a seed triangle and a seed convex hull (Figure7.2 (b) and (e)).
We define the seed convex hull as the tetrahedron formed by the seed triangle and the

center point of the current convex hull. This selection reduces the difference between

7.1. Algorithm 59

the proxies obtained at consecutive iterations. To further minimize the difference we
select a seed triangle which fits well the current proxy, namely one that is close to the
current convex hull. After the seeds have been selected, we reset the parts by marking

the rest of the triangles as unassigned.

3. Part growing: For each vertex v that shares an edge with a current part, the
algorithm computes the insertion cost to be the cost of the updated part formed by
adding v to P, cost(P+v). At each growth step, the algorithm uses the cost function to
find the best adjacent vertex to add to one of the parts. If the convexity error dist(P +
v,C(P+v)) of the updated part is below the threshold, the vertex is added to the part.

If no such vertex is found growth is terminated and the algorithm proceeds to Stage 4.

4. Termination: The algorithm now tests for termination conditions. If the new
parts differ from the ones grown in the previous iteration, the algorithm repeats the
reseeding and growing loop, Stages 2 and 3. Once the parts no longer change, we
check if the parts cover the entire model. If not, the algorithm returns to Stage 1,

otherwise the algorithm terminates.

Figure 7.3 shows a number of decompositions generated using our method. The
algorithm correctly detects the perceptually meaningful parts of the models, identifying
features like ears and horns, the crown of the triceratops, and the fists of the two women.
Our method correctly handles high genus models such as the feline and the fishing reel,

which cause problems to many previous methods.

We now establish the correspondences between the parts computed by the segmen-
tation. As noted, since input models may have distinct shapes, their segmentations may
differ in terms of the number of parts, the part shape, and the connectivity between the
parts. Thus we are unlikely to have a perceptually correct one-to-one correspondence
between individual parts. Instead we search to establish a one-to-one correspondence
between groups of parts. With the group correspondence defined, the user can start

shuffling model parts.

60

Chapter 7. Shuffler: Modeling with Interchangeable Parts

@
@
@)
@

Figure 7.3: Mesh decomposition into meaningful components.

()] &) D)

() (b) (© (d)

Figure 7.4: Chair seat swap: (a) source (top) and target (bottom) chairs showing the
group to be replaced and the replacement in dark blue; (b) a common adjacency graph
for both chair models constructed by our algorithm; (c) initial part positioning; (d)
positioning of the parts after the automatic alignment.

7.1. Algorithm 61

7.1.2 Intelligent Part Composition

The shuffling interface utilized the component correspondences to provide a mouse-
click based composition interface. After a user loads the models of interest, they select
a target model from which to start the processing. They can subsequently shuffle-in
components from the other source models by simply clicking on them. As the compo-
nents are swapped, the system automatically aligns each shuffled-in component with
the rest of the target model. If desired, it then blends the composed components to-

gether to create a watertight output model.

Alignment: Once the target model is selected, the system automatically aligns the
rest of the models with respect to the target model using part correspondence informa-
tion. The global alignment of source and target models establishes a fixed common
frame which can be used as-is to specify the rotation and scale for the shuffled-in com-
ponent. Alternatively, rotation and scaling can be performed when individual compo-
nents are shuffled in and out, optimally aligning the convex hulls of the shuffled in and
out components using geometric moments. Since the components are nearly convex,
the hulls provide a good approximation of their shape. We observe that using the global
alignment better preserves the pose of the models typically leading to more visually in-
tuitive results. Shuffler supports both alternatives, using the global alignment as the

default.

Shuffler adjusts the translational alignment for each individual shuffling operation
to ensure that the constructed model remains connected despite differences in individ-
ual component sizes. The alignment is computed using the common adjacency graph
of the source and target models (Figure 7.4 (b)), which has a node for each pair of
corresponding components. The graph has an edge between two nodes if and only if
the corresponding components are adjacent on both models. We define two groups to
be adjacent if the convex hulls of those groups intersect. We define the midpoint of
two groups to be the center of the intersection between their convex hulls. Each edge
of the graph is associated with a pair of midpoints. The midpoints serve as the con-
nection points between neighbouring components. We observe that removing the node

that corresponds to the shuffled-out component from the adjacency graph can break it

62 Chapter 7. Shuffler: Modeling with Interchangeable Parts

i
- =1 WF@

(c) (d) (e)

Figure 7.5: Component shuffle: (a) initial position of the shuffled-in component; (b)
position after automatic midpoint alignment; (c) and (d) zoom in onto the boundary
region; (e) formation of overlap region for blending; (f) final result.

into multiple connected components or branches (Figure 7.4). The algorithm translates
each individual branch of the target model to align the shared midpoints between the
branch and the shuffled-in component (Figure 7.4 (¢) and (d)). In case there is more
than one midpoint between the branch and the shuffled-in component it uses the aver-
age of the midpoints to calculate the translation. For additional user control we provide
an interface to manually adjust the alignment if desired. We observe that using the
common adjacency graph Shuffler can compose multiple mesh components in a sin-
gle operation, something other existing composition algorithms do not support. For
models which do not need to be watertight, such as tables or chairs, the process ends
here. For watertight models we use a method similar to Sharf et al. [67] to blend the
components along shared boundaries. We first extend each boundary by a few layers
of triangles (Figure 8) forming an overlap region and then use a variant of soft ICP to

snap the two meshes together and generate a common connectivity.

7.1. Algorithm 63

P.
G

~(C)
| i ®

Figure 7.6: Shuffling: (a) cambuliot; (b) camow; (c) triceradog; (d) dinowoman; (e)

shelion; (f) a table; (g) a stealth-jet; (h) a six engine super-jumbo; (i) a bunch of chairs.

64 Chapter 7. Shuffler: Modeling with Interchangeable Parts

7.2 Conclusion

We presented a prototype modeling system, Shuffler, which allows users to generate
detailed geometric models with a few mouse clicks. As part of the system we devel-
oped a method for automatically computing compatible segmentation of models into
interchangeable components. We believe such segmentation can be used by many other
modeling operations, beyond shuffling. We plan to investigate using the established
correspondences to compute cross-parameterization between the components enabling
local blending and morphing, as well as transfer of skeletons and associated anima-

tions.

Limitations and Future Work

We observe that our definition of parts is purely geometric and does not account for
semantics, thus it is not suitable for processing shapes such as faces where some parts
(cheeks, forehead, chin) have no clear geometric boundaries in the sense defined by
Hoffman and Richards [29]. In our work we did not explicitly consider symmetry,
thus the computed segmentations are not necessarily symmetric. Given the recent ad-
vances in detecting symmetries in 3D, it would be interesting to introduce symmetry

constraints into our system.

65

Chapter 8

Contour-based Modeling Using
Deformable 3D Templates

Another approach to simplify the creation of new models is to provide a simpler inter-
face, for example a sketching tool [31]. Existing sketching tools are good for novices,
but practical for creating only simple shapes. We present a new technique for image-
based modeling using as input image contours and a deformable 3D template. Our
goal is to be able to create new detailed model geometry using information derived
from images or drawings. Our work explores how image-based information can be
used to produce matching geometry with the help of a 3D template. Figure 8.1 illus-
trates an example result of our system. The user input consists of tracing the image
contours that define the desired proportions and pose of the lion, as well as specifying
a small number of point correspondences between the template model and the image.
With this input, the output geometry is automatically generated through an iterative

match-and-deform process.

Making this type of contour-driven deformation work well requires solving two
problems. First, robust correspondences are needed between silhouette vertices on the
3D model and points on the 2D image contours. This is a hard problem because any
given silhouette vertex could plausibly match multiple image contour points, or perhaps
none, and vice versa. The target contours may also represent a highly deformed version
of the template object and thus the silhouette and the contours may differ significantly.
Original silhouette vertices may not even be silhouette vertices of the final deformed
model. Second, an appropriate deformation model needs to be developed for the 3D

template geometry. The template should support a preferred shape, coupled with flex-

66 Chapter 8. Contour-based Modeling Using Deformable 3D Templates

Figure 8.1: Image contours are used to automatically construct a corresponding 3D

model with the help of a 3D template. The image contours help inform the pose and
proportions of the new shape while the template model helps inform its full 3D shape
and surface detail.

ible control of the constraints that will drive the deformation process. It should also
support the addition of further knowledge, such as material-like information indicating
where the model may prefer to bend, as well as symmetry information.

First, we propose a robust solution to the optimal-correspondence problem by mod-
eling it as a hidden Markov model (HMM). Second, we develop an iterative defor-
mation framework that interleaves finding correspondences with the application of a
flexible deformation scheme tailored to our problem domain. The iterative scheme is
analogous to iterative closest point (ICP) methods, with the closest point step and the
alignment (deformation) step being replaced by methods of appropriate sophistication
for the problem at hand. Finally we demonstrate that these techniques can be used to
synthesize 3D geometry from 2D images in a way that blurs the distinction between
prior work on sketch-based modeling of local deformations and model-based computer

vision techniques.

8.1 Algorithm

Our modeling process can be described in terms of a number of steps, as illustrated
in Figure 8.2. The first step is the extraction of the input contours, which are cre-
ated as hand-drawn curves traced over an image or, alternatively, obtained using image
processing algorithms. Each contour consists of a sequence of points with associated
outward pointing normals. Contour lines are represented as open curves and it is not

necessary to provide full coverage of all the silhouette edges in the model.

8.1. Algorithm 67

(d)

Figure 8.2: Algorithm Overview. (a) Contours obtained from image; (b) Unregistered
template model; (c) Initial registration of template model; (d) Initial correspondences;
(e) Final deformed model; (f) Final model with extra constraints to enforce the correct
mapping of the left and right legs (shown in green).

68 Chapter 8. Contour-based Modeling Using Deformable 3D Templates

8.1.1 Initial Registration

Given the input contours and a 3D template, an initial coarse registration needs to be
established. This is accomplished using three user-selected contour-to-template (2D
point to 3D vertex) correspondences. These points are marked in red in Figure 8.2(a)
and the resulting template alignment is shown in Figure 8.2(c). The template is simul-
taneously rotated and deformed by enforcing the correspondences as hard positional
constraints, using the deformation framework to be described in Section 8.1.3. Users
can specify additional constraints to resolve ambiguities that arise, such as the left-right
reversal that occurs for the solution shown in Figure 8.2(e). The additional constraints

can also be used to enforce exact feature correspondences.

8.1.2 Correspondences

After initial registration, we can expect that good correspondences can be established
for at least a subset of the contour points and the template vertices. At this point, one
could choose to match contour points to template silhouette vertices, or vice-versa,
as illustrated in Figure 8.3 (a). We note that both contour points and template model
silhouette vertices may not always have a match. Contours may come from an edge-
detection algorithm that produces spurious edges, while the template model may con-
tain silhouettes that have no corresponding contour. We choose to look for template
silhouette vertices for every contour point. This exploits the strong continuity found in
the contour, namely the set of ordered points that comprise the polyline.

Match Criteria: In searching for a mesh silhouette vertex v to correspond to a

given contour point p, we wish to optimize proximity and normal difference metrics.

e Proximity is measured as dp = (p* —v*)% + (p¥ —*)? and is optimal when the
metric is zero. Note that proximity is measured only in the xy plane, as depth

information for the contours is not available.

e Normal Difference is measured as the 3D dot product dy = n” -n*, where n? is
the normal to the contour at p (lifted to 3D using z = 0) and n” the mesh normal

at v. The metric is optimal when the dot product is equal to one.

8.1. Algorithm 69

Considering these two metrics alone, however, neglects the expectation that con-
tours should map to continuous silhouettes. Since each contour is a directed one-
dimensional polyline, the points on it can be ordered as p1, p2, ..., p,- We found that
a simple but effective metric of Continuity is the ratio d¢ = ||v; —vi_1||* / | pi — pi—1|*
where v; and v;_; are the matching vertices of p; and p;_| respectively, with the dis-
tances between the mesh vertices measured in 3D and distances between contour points
measured in 2D. The optimal ratio is one, which captures the notion that traveling a
given distance along the contour should correspond to traveling a similar distance on
the model mesh.

HMM model: To combine the point-to-vertex metric with the continuity metric in
a principled way, we cast the problem in terms of a hidden Markov model (HMM). In
this framework, contour points are treated as observations and mesh vertices are treated
as hidden states, as shown in Figure 8.3(c). The goal is to find the most-likely left-to-
right path through the trellis, i.e., the most likely sequence of vertices (hidden states)
that could have produced the given contour points (observations). An example solution
is illustrated on the trellis, and the induced correspondences are shown in Figure 8.3(d).

The HMM requires emission probabilities, i.e., the likelihood that a given hidden
state will produce a given output, and transition probabilities, i.e., the likelihood of a
transition from one hidden state to another. The proximity and normal metrics are used

to compute the emission probabilities as follows:

P(pj|Vz) o< e_%(gfl;>ze_%(d%,;/])2

The continuity metric is used to compute the transition probability:

,l(dC*I)Z
P(vi|vi—1)ece 2\ °C

We use values of 6p = 0:25D, oy = 1, and 6¢ = 0.05 for all our examples, where
D is the maximum dimension of an input image. The HMM problem is solved using
the well-known Viterbi algorithm [63]. User-specified point-to-vertex correspondences
force the HMM solution to pass through a given point in the trellis.

The HMM solution may result in several contour points corresponding to the same

mesh vertex. A post processing pass remedies this by uniquely assigning them to the

Chapter 8. Contour-based Modeling Using Deformable 3D Templates

image contours

A .y
Ya

Vg o o0 O o O 0
Vo 0o 0 0 O O O
Vv) O«
. c @e—a O O O O
hidden \
Vi o o\ o o eo—e
state. v, o0 ol\o o/a o
¥ o olo & o o
Vg o Q b" o QO)
1»;:, o o o o))
‘li. o 9O o Q e e
(c) P,

(d) (e)

Figure 8.3: Establishment of Correspondences. (a) Input contours and mesh. (b) Each
contour point needs to find a best-match vertex. Vertex connectivity is ignored, but
taken into account by the transition cost. (c) The problem cast as a hidden Markov
model, with the solution path illustrated. (d) Best matches found by the solution path.
(e) Elimination of many-to-one matches (dashed lines).

8.2. Experimental Results 71

most likely contour point as determined by the proximity and normal difference (Figure

8.3(e)).

8.1.3 Deformation

Given the computed correspondences, we apply a deformation mechanism that attracts
the matched vertices to their contour counterparts. To generate the required large de-
formations, it is necessary not only to pull the vertices towards their corresponding
contour points, but to also attract the normals at these vertices towards the correspond-
ing contour point normals. Furthermore, soft rather than hard constraints must be used
when attracting the vertices and their normals towards the contours in order to maintain
the tradeoff between shape preservation and contour matching, particularly as some of
the matches may be inaccurate. The mean-value encoding [44] provides a closed form
formulation which can be augmented to support the required types of constraints and
therefore it forms the basis of our deformation approach. We note that other non-linear
formulations could also potentially be used.

Our algorithm applies an iterative correspond-and-deform approach. At each it-
eration a set of optimal correspondences is established between the contours and the
deforming template model. These are then used in a subsequent deformation step by
attracting the model towards the contours. Figure 8.2(d) shows the set of correspon-
dences used for the first iteration of deformation, while Figure 8.2(e) shows the final

deformation after a number of correspond-and-deform iterations.

8.2 Experimental Results

Contours do not provide depth or occlusion information, allowing ambiguous inter-
pretation of the described shape. The result of Figure 8.2(e) shows the existence of
a left-right ambiguity in that the left legs of the template lion have been matched to
the right legs of the image contours, and vice-versa. We introduce several mechanisms
that allow the user to introduce additional information into the process for cases where

the template shape provides insufficient information to resolve such ambiguities. These

72 Chapter 8. Contour-based Modeling Using Deformable 3D Templates

include reconstruction using image contours from multiple viewpoints (Figure 8.4), ad-
ditional 2D constraints (Figure 8.2(f)), and directly fixing the depth of specific template

mesh vertices (Figure 8.6).

(i

Figure 8.4: Teddy bear: (a) View A; (b) Template model; (c) Initial registration to
view A; (d) Final fit to view A; (e) View B; (f) Iniital registration to view B; (g) Final
fit to view B; (h) Initial reregistration to view A; (i) Final fit to view A; (j) 3D model.

For multiple views reconstruction we adopt a sequential strategy. In the given ex-
ample, we deform the template using the contours from view A, then view B, and once
again for view A. The image teddy differs from the template teddy in pose as well as
the shape of the nose, ears, and feet. These differences are successfully recovered from

the contour information.
Achieving correct poses and proportions is a challenging problem for image-based
modeling of human figures. To demonstrate that contour based modeling is an effective

tool for this task, we apply it to create models from a gymnast drawing and photograph

8.3. Conclusions 73

of a the statue of Hercules. Figure 8.5 shows the results for the female gymnast. Note
that the arms are posed using incomplete contours. The correct correspondences are
established on the head and result in it facing upwards as in the drawing. Our last
example is constructed from photograph of statue. Figure 8.6 shows a muscle-bound
Hercules recreated from image contour information. The final model is different from
the template in both pose and proportions. In particular, the Hercules statue has large
muscle-bound arms and legs as reflected in the final model. The default solution places
Hercules right arm slightly in front of the body in a statuesque pose (Figure 8.6(e)). A
further constraint placed on the depth value of one hand vertex drives the arm to the

correct position behind the body (Figure 8.6(g)).

(a) Image (b) Con- (c) Template (d) Final (e) 3D model
tours fit

Figure 8.5: Gymnast.

8.3 Conclusions

The algorithms presented provide a powerful framework for developing tailored 3D
models from images using only contour information and a flexible process for deform-
ing 3D template models. This is a challenging problem because of the limited and
ambiguous nature of the contour information. The HMM-based correspondence model
provides the reliable correspondence information that is at the heart of each iteration
of the deformation process. The template model itself also includes information that

supports reliable model construction, including symmetry information and material

74

Chapter 8. Contour-based Modeling Using Deformable 3D Templates

(b) Con- (c) Template (d) Registration

(e) Fit, mno () Fit with (g) 3D model, added hand
symmetry — symmetry constraints

Figure 8.6: Hercules.

stiffness properties.

Limitations and Future Work

One way of improving our algorithm is to include additional information into the tem-
plate. For humans and animals, their known skeletal structure could be used to index
into a pose-likelihood model, which would help with the process of disambiguating
contours or finding sets of likely solutions. Templates could be made to contain infor-
mation about parts that could be instanced on demand. Templates for more geometric

objects could contain information about the precise ways in which their shape can be

expected to parameterize.

75

Chapter 9

Conclusions

In this dissertation, we introduced several efficient and robust 3D data reconstruction
and editing tools for model repair and editing pipeline. These tools include techniques
for mesh cross-parameterization, model deformation along with model composition

and image-based modeling.

We have introduced new methods for computing shape preserving cross-parameter
izations and compatible remeshing. Our parameterization method is guaranteed to find
a bijective, feature-preserving parameterization for any set of models. The smoothing
mechanism we propose significantly reduces the mapping distortion compared to other
parameterization methods. Our remeshing method generates compatible meshes for
both models with fewer vertices than previous methods while accurately approximating
the input geometry. There are multiple applications for the proposed method, includ-
ing pair-wise model editing [11] transferring texture and surface properties (BRDFs,

normal maps, etc) [61], and fitting template meshes to multiple data sets [7, 55].

We extend our cross-parameterization technique to support models with gaps and
holes. This allowed us to develop a new and robust method for template-based range
scan data completion. Our method is robust in the face of incomplete input meshes with
multiple components and holes. Our parameterization mechanism is more generic than
previous techniques; it guarantees bijectivity and introduces less distortion. We ob-
serve that for models with genus greater than zero, the method may require additional
markers, if the resulting patches contain handles. The computed bijective parameteri-
zation between the completed model, the template and the base mesh can be used in a
variety of applications. An important application of template-based completion is the

construction of parameterized shape spaces. Such spaces are useful for both statisti-

76 Chapter 9. Conclusions

cal analysis and the synthesis of new shapes. Our current method requires the user to
specify marker vertex correspondences between the input meshes and the template. To
parameterize large families of models, such manual selection is impractical. In some
cases the markers can be computed from the scan data. In general cases, however,
the automation of marker selection requires robust feature-matching techniques. An
interesting problem to explore would be an automatic detection of matching features
eliminating the need for manual selection.

The creation of novel 3D content is one of the major bottlenecks of modern com-
puter graphics. We proposed various techniques for novel 3D content creation through
model deformation or the reuse of existing models, such as model composition or
image-based modeling techniques. We introduced a robust method for mesh editing
based on a novel local representation, the pyramid coordinates. Our representation cap-
tures the local shape properties of the mesh and is invariant under rigid transformations.
Using the pyramid coordinates, we developed mesh editing operations which preserve
the shape properties of the input models. As a result, our deformation method generates
well shaped models even under extremely severe deformations. Our morphing proce-
dure generates intermediate models which interpolate the shape properties of the input
meshes. All of the proposed editing operations require minimal user interaction. The
method is fast and simple to implement. These properties make pyramid coordinates
based editing an effective tool for geometry processing and animation. This disserta-
tion also proposed an extension to pyramid coordinates called mean-value encoding.
Like the pyramid coordinates, mean-value encoding is based on a set of angles and
lengths describing the position of a vertex with respect to its neighbors. However, in
contrast to pyramid, it uses a different local frame definition, leading to a closed form
formulation. This enables us to achieve much better results in terms of stability, speed,
and shape preservation compared to pyramid coordinates. Here, we also proposed a
new application for realistic reconstruction of complex human motion based on Mocap
data alone.

Many man-made and natural objects are easily classified into families of models
with a similar part-based structure. Example families include quadrupeds, humans,

chairs, and airplanes. This dissertation proposes a new method called Shuffler a mod-

77

eling system that automates the process of creating new models by composing inter-
changeable parts from different existing models within each family. Our system does
not require the users to perform any geometric operations; they simply select which
parts should come from which input model, and the system composes the parts to-
gether. Our proposed modeling system combines new algorithms for meaningful mesh
segmentation, part matching and intelligent part composition. We observe that our def-
inition of parts is purely geometric and does not account for semantics, thus it is not
suitable for processing shapes such as faces where some parts (cheeks, forehead, chin)
have no clear geometric boundaries in the sense defined by Hoffman and Richards [29].
In our work we did not explicitly consider symmetry, thus the computed segmentations
are not necessarily symmetric. Given the recent advances in detecting symmetries in
3D, it would be interesting to introduce symmetry constraints into our system.

Another approach to simplify the creation of new models is to provide a simpler
interface. This dissertation also proposed a new technique for image-based modeling
that allows a user to easily transform a sketch or picture into a 3D model using a 3D
template model. The image contours help inform the pose and proportions of the new
shape while the template model helps inform its full 3D shape and surface detail. There
are two general directions for improving on this kind of image-based modeling work.
One direction looks towards extracting more information from images. Shading or
other information could be used to help inform the shape. Additional correspondences
could perhaps be automatically identified. It may be possible to combine our work with
recent work on object-classification in order to automatically identify the right template
model. Another direction looks are including more information into the template. For
humans and animals, their known skeletal structure could be used to index into a pose-
likelihood model, which would help with the process of disambiguating contours or
finding sets of likely solutions. Templates could be made to contain information about
parts that could be instanced on demand.

To conclude, this dissertation introduced new methods for mesh cross-parameterization,
model deformation along with model composition and image-based modeling. Pro-
posed tools contribute to the model repair and editing pipeline and simplify the task of

creating and repairing detailed 3D models.

78

Chapter 9. Conclusions

79

Bibliography

[1] 3DMax. www.3dmax.com/.

[2] M. Alexa. Recent advances in mesh morphing, 2002.

[3] Marc Alexa. Merging polyhedral shapes with scattered features. The Visual Com-

[4]

(5]

(6]

(8]

puter, 16(1):26-37, 2000.

Marc Alexa. Local control for mesh morphing. In Proceedings of the Interna-
tional Conference on Shape Modeling & Applications, page 209. IEEE Computer
Society, 2001.

Alias. Wavefront, www.alias.com/.

Brett Allen, Brian Curless, and Zoran Popovié. Articulated body deformation

from range scan data. 21(3):612-619, 2002.

Brett Allen, Brian Curless, and Zoran Popovic. The space of human body shapes:

reconstruction and parameterization from range scans. ACM Trans. Graph.,

22(3):587-594, 2003.

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim
Rodgers, and James Davis. Scape: shape completion and animation of people.

ACM Trans. Graph., 24(3):408-416, 2005.

Marco Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal. Mesh
segmentation - a comparative study. In SMI ’06: Proceedings of the Shape Mod-
eling International 2006. IEEE Computer Society, 2006.

80

Bibliography

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Manuele Bicego and Vittorio Murino. Investigating hidden markov models’ ca-
pabilities in 2d shape classification. IEEE Trans. Pattern Anal. Mach. Intell.,
26(2):281-286, 2004.

Henning Biermann, Ioana Martin, Fausto Bernardini, and Denis Zorin. Cut-and-
paste editing of multiresolution surfaces. ACM Trans. Graph., 21(3):312-321,
2002.

S. Bischoff and L. Kobbelt. Sub-voxel topology control for level-set surfaces.
Computer Graphics Forum, 22(3):273-280, September 2003.

Mario Botsch and Leif Kobbelt. An intuitive framework for real-time freeform
modeling. In SIGGRAPH '04: ACM SIGGRAPH 2004 Papers, pages 630-634,
New York, NY, USA, 2004. ACM Press.

Mario Botsch, Mark Pauly, Markus Gross, and Leif Kobbelt. Primo: Coupled
prisms for intuitive surface modeling. In Fourth Eurographics Symposium on

Geometry Processing, pages 11-20, June 2006.

Bernard Chazelle, David P. Dobkin, Nadia Shouraboura, and Ayellet Tal. Strate-
gies for polyhedral surface decomposition: An experimental study. In Symposium

on Computational Geometry, pages 297-305, 1995.

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape ap-

proximation. ACM Trans. Graph., 23(3):905-914, 2004.

James Davis, Stephen R. Marschner, Matt Garr, and Marc Levoy. Filling holes in

complex surfaces using volumetric diffusion. 3dpvt, 00:428, 2002.

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering
architecture from photographs: a hybrid geometry- and image-based approach.
In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 11-20, New York, NY, USA, 1996.
ACM Press.

Bibliography 81

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

Michael S. Floater. Mean value coordinates. Comput. Aided Geom. Des.,

20(1):19-27, 2003.

Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William
Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. Modeling by ex-
ample. ACM Trans. Graph., 23(3):652—-663, 2004.

Akash Garg, Eitan Grinspun, Max Wardetzky, and Denis Zorin. Cubic Shells. In

Symposium on Computer Animation, 2007.

J. W. Gorman, O. R. Mitchell, and F. P. Kuhl. Partial shape recognition using
dynamic programming. [EEE Trans. Pattern Anal. Mach. Intell., 10(2):257-266,
1988.

Craig Gotsman, Xianfeng Gu, and Alla Sheffer. Fundamentals of spherical pa-
rameterization for 3d meshes. ACM Trans. Graph., 22(3):358-363, 2003.

Eitan Grinspun, Anil Hirani, Mathieu Desbrun, and Peter Schroder. Discrete

Shells. In Symposium on Computer Animation, 2003.

I. Guskov, W. Sweldens, and P. Schroder. Multiresolution signal processing
for meshes. Computer Graphics Proceedings (SIGGRAPH 99), pages 325-334,
1999.

T. Hassner, L. Zelnik-Manor, G. Leifman, and R. Basri. Minimal-cut model com-
position. In International Conference on Shape Modeling and Applications (SMI’
05), pages 72-81. IEEE Computer Society, June 2005.

Yang He and Amlan Kundu. 2-d shape classification using hidden markov model.

IEEE Trans. Pattern Anal. Mach. Intell., 13(11):1172-1184, 1991.

Adrian Hilton, Jonathan Starck, and Gordon Collins. From 3d shape capture to
animated models. 3dpvt, 00:246, 2002.

D. D. Hoffman and W. A. Richards. Parts of recognition. ACM Trans. Graph.,
18(1-3):65-96, 1984.

82

Bibliography

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shang-Hua Teng,
Hujun Bao, Baining Guo, and Heung-Yeung Shum. Subspace gradient domain
mesh deformation. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages
1126-1134, New York, NY, USA, 2006. ACM Press.

Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: a sketching
interface for 3d freeform design. In SIGGRAPH ’99: Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, pages 409—

416, New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.
CYBERWARE INC. http://www.cyberware.com/.

Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed tri-
angular meshes. In SSIGGRAPH "05: ACM SIGGRAPH 2005 Papers, pages 561—
566, New York, NY, USA, 2005. ACM Press.

Kolja Kahler, Jorg Haber, Hitoshi Yamauchi, and Hans-Peter Seidel. Head shop:
generating animated head models with anatomical structure. In SCA ’02: Pro-
ceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 55-63, New York, NY, USA, 2002. ACM Press.

Takashi Kanai, Hiromasa Suzuki, and Fumihiko Kimura. Metamorphosis of ar-

bitrary triangular meshes. IEEE Comput. Graph. Appl., 20(2):62-75, 2000.

Olga A. Karpenko and John F. Hughes. Smoothsketch: 3d free-form shapes from
complex sketches. ACM Transactions on Graphics, 25(3):589-598, July 2006.

Sagi Katz, George Leifman, and Ayellet Tal. Segmentation using feature point

and core extraction. The Visual Computer, 21(8-10):865-875, 2005.

Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy cluster-

ing and cuts. ACM Trans. Graph., 22(3):954-961, 2003.

Youngihn Kho and Michael Garland. Sketching mesh deformations. In I3D ’05:
Proceedings of the 2005 symposium on Interactive 3D graphics and games, pages

147-154, New York, NY, USA, 2005. ACM Press.

Bibliography 83

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

Leif Kobbelt, Jens Vorsatz, and Hans-Peter Seidel. Multiresolution hierarchies on

unstructured triangle meshes. Comput. Geom. Theory Appl., 14(1-3):5-24, 1999.

Vladislav Kraevoy, Dan Julius, and Alla Sheffer. Model composition from inter-

changeable components. The Visual Computer, 2007.

Vladislav Kraevoy and Alla Sheffer. Cross-parameterization and compatible

remeshing of 3d models. ACM Trans. Graph., 23(3):861-869, 2004.

Vladislav Kraevoy and Alla Sheffer. Template-based mesh completion. In Sym-

posium on Geometry Processing, pages 13-22, 2005.

Vladislav Kraevoy and Alla Sheffer. Mean-value geometry encoding. Interna-

tional Journal of Shape Modeling, 12(1):29-46, 2006.

Vladislav Kraevoy, Alla Sheffer, and Craig Gotsman. Matchmaker: constructing
constrained texture maps. ACM Trans. Graph., 22(3):326-333, 2003.

A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Schroder. Multiresolution mesh
morphing. Computer Graphics Proceedings (SIGGRAPH 99), pages 343-350,
1999.

Yunjin Lee, Seungyong Lee, Ariel Shamir, Daniel Cohen-Or, and Hans-Peter
Seidel. Mesh scissoring with minima rule and part salience. Comput. Aided

Geom. Des., 22(5):444-465, 2005.

Bruno Levy. Dual domain extrapolation. ACM Trans. Graph., 22(3):364-369,
2003.

Jyh-Ming Lien and Nancy M. Amato. Approximate convex decomposition of
polyhedra. Technical Report TR06-002, Parasol Lab, Department of Computer
Science,Texas A&M University, 2006.

Peter Liepa. Filling holes in meshes. In SGP ’03: Proceedings of the 2003
Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 200—

205, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics Association.

84

Bibliography

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

Second Life. http://secondlife.com/.

Jian Liang Lin, Jung Hong Chuang, Cheng Chung Lin, and Chih Chun Chen.
Consistent parametrization by quinary subdivision for remeshing and mesh meta-
morphosis. In GRAPHITE ’03: Proceedings of the 1st international conference
on Computer graphics and interactive techniques in Australasia and South East

Asia, pages 151-158, New York, NY, USA, 2003. ACM Press.

Yaron Lipman, Olga Sorkine, David Levin, and Daniel Cohen-Or. Linear
rotation-invariant coordinates for meshes. ACM Trans. Graph., 24(3):479-487,
2005.

David G. Lowe. Fitting parameterized three-dimensional models to images. [EEE

Trans. Pattern Anal. Mach. Intell., 13(5):441-450, 1991.

Stephen R. Marschner, Brian K. Guenter, and Sashi Raghupathy. Modeling and
rendering for realistic facial animation. In Proceedings of the Eurographics
Workshop on Rendering Techniques 2000, pages 231-242, London, UK, 2000.
Springer-Verlag.

Takashi Michikawa, Takashi Kanai, Masahiro Fujita, and Hiroaki Chiyokura.
Multiresolution interpolation meshes. In PG ’01: Proceedings of the 9th Pa-
cific Conference on Computer Graphics and Applications, page 60, Washington,
DC, USA, 2001. IEEE Computer Society.

Andrew Nealen, Olga Sorkine, Marc Alexa, and Daniel Cohen-Or. A sketch-
based interface for detail-preserving mesh editing. ACM Trans. Graph.,
24(3):1142-1147, 2005.

M. Pauly, N. J. Mitra, J. Giesen, L. Guibas, and M. Gross. Example-based 3d

scan completion. Symposium on Geometry Processing, 2005.

Joshua Podolak and Szymon Rusinkiewicz. Robust hole filling using atomic vol-

umes. Symposium on Geometry Processing, 2005.

Bibliography 85

[60] Emil Praun and Hugues Hoppe. Spherical parametrization and remeshing. ACM
Trans. Graph., 22(3):340-349, 2003.

[61] Emil Praun, Wim Sweldens, and Peter Schroder. Consistent mesh parameteriza-
tions. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, pages 179—-184, New York, NY, USA,
2001. ACM Press.

[62] Long Quan, Ping Tan, Gang Zeng, Lu Yuan, Jingdong Wang, and Sing Bing
Kang. Image-based plant modeling. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Papers, pages 599-604, New York, NY, USA, 2006. ACM Press.

[63] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applica-

tions in speech recognition. pages 267-296, 1989.

[64] John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. Inter-surface

mapping. ACM Trans. Graph., 23(3):870-877, 2004.

[65] Ariel Shamir. Segmentation and shape extraction of 3d boundary meshes. In

State-of-the-Art Report, Proceedings Eurographics, 2006.

[66] Andrei Sharf, Marc Alexa, and Daniel Cohen-Or. Context-based surface comple-
tion. ACM Trans. Graph., 23(3):878-887, 2004.

[67] Andrei Sharf, Marina Blumenkrants, Ariel Shamir, and Daniel Cohen-Or. Snap-
paste: an interactive technique for easy mesh composition. Vis. Comput.,

22(9):835-844, 2006.

[68] A. Sheffer and E. de Sturler. Surface parameterization for meshing by triangula-

tion flattening. International Meshing Roundtable, 9:161-172, 2000.

[69] A. Sheffer, E. Praun, and K. Rose. Mesh parameterization methods and their

applications, 2007.

[70] Alla Sheffer and Vladislav Kraevoy. Pyramid coordinates for morphing and de-
formation. In 3DPVT ’04: Proceedings of the 3D Data Processing, Visualization,

86

Bibliography

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

and Transmission, 2nd International Symposium on (3DPVT’04), pages 68-75.
IEEE Computer Society, 2004.

Jonathan Richard Shewchuk. Triangle: Engineering a 2D Quality Mesh Genera-
tor and Delaunay Triangulator. In Ming C. Lin and Dinesh Manocha, editors, Ap-
plied Computational Geometry: Towards Geometric Engineering, volume 1148
of Lecture Notes in Computer Science, pages 203-222. Springer-Verlag, May
1996. From the First ACM Workshop on Applied Computational Geometry.

Olga Sorkine, Yaron Lipman, Daniel Cohen-Or, Marc Alexa, Christian Rossl,
and Hans-Peter Seidel. Laplacian surface editing. In Proceedings of the Euro-
graphics/ACM SIGGRAPH symposium on Geometry processing, pages 179-188.
Eurographics Association, 2004.

Spore. http://www.spore.com/.

Robert W. Sumner and Jovan Popovic. Deformation transfer for triangle meshes.

ACM Trans. Graph., 23(3):399-405, 2004.

William Tutte. Convex representation of graphs. Proc. London Math. Soc., 10,

1960.

Chen Yang, Dana Sharon, and Michiel van de Panne. Sketch-based modeling
of parameterized objects. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Sketches,
page 89, New York, NY, USA, 2005. ACM Press.

Shin Yoshizawa, Alexander Belyaev, and Hans-Peter Seidel. A fast and simple

stretch-minimizing mesh parameterization. smi, 00:200-208, 2004.

Shin Yoshizawa, Alexander G. Belyaev, and Hans-Peter Seidel. Free-form
skeleton-driven mesh deformations. In SM ’03: Proceedings of the eighth ACM
symposium on Solid modeling and applications, pages 247-253, New York, NY,
USA, 2003. ACM Press.

Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and
Heung-Yeung Shum. Mesh editing with poisson-based gradient field manipula-
tion. ACM Trans. Graph., 23(3):644-651, 2004.

Bibliography 87

[80] H.Zhang and R. Liu. Mesh segmentation via recursive and visually salient spec-
tral cuts. In Proceedings of Vision, Modeling and Visualization, pages 429—436,
2005.

[81] Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo, and
Heung-Yeung Shum. Large mesh deformation using the volumetric graph lapla-

cian. ACM Trans. Graph., 24(3):496-503, 2005.

[82] Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive multireso-
lution mesh editing. In SIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, pages 259-268, New

York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	Parameterization
	Modeling

	Related Work
	Cross-parameterization
	Compatible Remeshing
	Model Completion
	Model Editing
	Modeling by Composition

	Sketch-based Modeling

	Cross-Parameterization and Compatible Remeshing of 3D Models
	Algorithm
	Common base domain construction
	Cross-parameterization
	Compatible remeshing

	Experimental Results
	Conclusions

	Template-Based Mesh Completion
	Algorithm
	Pre-processing
	Segmentation and base-mesh construction
	Base-mesh parameterization
	Blending

	Experimental Results
	Conclusions

	Pyramid Coordinates for Morphing and Deformation
	Algorithm
	Experimental Results
	Conclusions

	Mean-Value Geometry Encoding
	Algorithm
	Conclusion

	Shuffler: Modeling with Interchangeable Parts
	Algorithm
	Convex Segmentation
	Intelligent Part Composition

	Conclusion

	Contour-based Modeling Using Deformable 3D Templates
	Algorithm
	Initial Registration
	Correspondences
	Deformation

	Experimental Results
	Conclusions

	Conclusions
	Bibliography

