
Developable Surface Processing Methods for 3D Meshes

by

Dan Natan Julius

B.Sc., Tel Aviv University, 2002

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

April 10, 2006

c© Dan Natan Julius 2006

ii

Abstract
Developable surfaces are of great significance in computer graphics as they play a key

role in many applications involving planar surface parameterization. Industries where

3D objects are constructed from sheets of material such as fabric or metal typically

employ these surfaces throughout their design processes. This work introduces a new

descriptor for developable mesh surfaces, which provides the means for creating sim-

ple and robust tools for detecting, measuring, and approximating developable surface

charts in meshes. Based on this descriptor two novel algorithms are proposed.D-

Charts, an algorithm for mesh segmentation into (nearly) developable charts, andDCS

approximationan algorithm for approximation of meshes with developable surfaces.

D-Chartsuses the proposed descriptor to segment meshing into nearly developable

charts for texture atlas generation. By bounding the distortion directly during the seg-

mentation stage, the generated atlases exhibit less distortion for the same number of

charts compared to those created using state-of-the-art techniques. In addition to tex-

ture atlases, we demonstrate the practicality of this method for industrial applications

using the patterns produced by the algorithm to make fabric and paper copies of popular

computer graphics models.

TheDCS approximationmethod proposed increases surface developability by mod-

ifying the geometry, while at the same time keeping the deformed surface as close as

possible to the input surface. The method was developed in the context of virtual fabric

design, and was combined with a sketching interface to provide a novel design system.

The algorithm modifies non-developable meshes generated from sketches into piece-

wise developable surfaces. These allow straightforward computation of distortion-free

texture mapping and automatic generation of 2D patterns for sewing real replicas of

the designed garments.

iii

Contents

Abstract . ii

Contents . iii

List of Tables . vi

List of Figures . vii

Preface . ix

Acknowledgements . x

Co-Authorship statement . xi

1 Introduction . 1

1.1 Developable surfaces. 1

1.2 Applications. 2

1.3 Mesh segmentation. 5

1.4 Developable approximation. 6

2 Background . 8

2.1 Definition . 8

2.2 Developable surfaces as ruled surfaces. 9

2.3 Dual representation. 10

2.4 Non-smooth developable surfaces. 12

2.5 Developability and distortion metrics. 12

Contents iv

3 Related work . 14

3.1 Mesh segmentation. 14

3.1.1 Texture atlas generation. 14

3.1.2 Pattern design. 17

3.2 Surface approximation with developables. 18

4 Research contribution . 21

4.1 Mesh segmentation into developable charts. 21

4.2 Mesh approximation with developable surfaces. 23

4.3 Developability and the DCS descriptor. 24

5 Mesh segmentation into developable charts. 26

5.1 D-Charts algorithm overview. 26

5.1.1 Cost function. 27

5.2 Algorithm stages . 30

5.2.1 Modified Lloyd Iterations 30

5.2.2 Filling holes . 32

5.2.3 Post-processing. 33

5.3 Pattern design. 35

5.4 D-Charts results. 37

5.4.1 Texture atlases. 37

5.4.2 Soft toys . 39

6 Developable approximation . 43

6.1 DCS approximation method overview. 43

6.2 Algorithm stages . 45

6.2.1 Local approximation. 45

6.2.2 Triangle Transformation. 46

6.2.3 Gluing . 47

6.2.4 Unfolding. 48

6.3 DCS approximation results. 48

Contents v

7 Summary and conclusions. 52

8 Future work . 54

Bibliography . 56

vi

List of Tables

5.1 D-Charts segmentation statistics. 41

6.1 DCS approximation statistics. 51

vii

List of Figures

1.1 Sample developable surfaces. 1

1.2 Piecewise developable surfaces. 1

1.3 Applications of developable surfaces. 3

2.1 sufficiently smooth developable surface types. 9

2.2 Developable surface normal maps. 11

2.3 Self overlapping normal map. 11

3.1 Texture atlases. 15

3.2 Pattern generation: Papercraft toys. 18

3.3 Surface approximation based on the normal map. 19

4.1 Mesh segmentation. 21

4.2 Mesh segmentation into triangle strips. 22

4.3 Surfaces and the corresponding normal maps. 24

4.4 Developable surfaces of constant slope. 25

5.1 Compactness metric. 28

5.2 Segmentation of the sphere. 29

5.3 D-Charts segmentation stages. 30

5.4 Merging charts . 34

5.5 Darts and gussets. 35

5.6 Sewing patterns. 36

5.7 Model segmentation and atlas generation. 38

5.8 Segmentation of mechanical models. 39

List of Figures viii

5.9 Creating stuffed toys using D-Charts generated patterns. 40

5.10 Texture atlases and stuffed toys generated using D-Charts. 42

5.11 Papercraft bishop and Fandisk.. 42

6.1 Surface and corresponding normal maps. 45

6.2 Local neighborhood approximation. 45

6.3 Developable approximation: mesh connectivity is broken. 47

6.4 Panel unfolding using ABF++[38] 48

6.5 Texture mapped garments and corresponding patterns. 49

6.6 From sketch to garment — Shirt. 49

6.7 From sketch to garment — Skirt. 50

6.8 Mean curvature comparison with Wang et al. [44] 51

ix

Preface

Parts of this work have been published, presented or submitted for publication in the

following papers and sketches.

• Julius, D., Kraevoy, V. and Sheffer, A. (2005). D-Charts: Quasi-Developable

Mesh Segmentation. Computer Graphics Forum, Proceedings of Eurographics

2005, Volume 24, Pages 581-590, Dublin, Ireland, 2005. Eurographics, Black-

well.

• Julius, D., Kraevoy, V. and Sheffer, A. (2005). Real Toys from Virtual Models,

SIGGRAPH 2005 Sketch session.

• Decaudin, P., Julius, D., Wither, J., Boissieux, L., Sheffer, A. and Cani, M.P.

(2006). Virtual garments: A fully geometric approach for clothing design. Sub-

mitted.

x

Acknowledgements

xi

Co-Authorship statement

Much of this research has been made possible due to the help of others. I am very

grateful for their assistance.

TheD-Chartsalgorithm described in Chapter5was developed together with Vladislav

Kraevoy and Dr. Alla Sheffer. Both Mr. Kraevoy and Dr. Sheffer provided substantial

input and guidance in means of discussions. Together, they supervised this project,

while I performed the actual research and implementation. TheD-Chartspaper pub-

lished [14] was prepared by Alla Sheffer and myself.

TheDCS approximationalgorithm described in Chapter6 was developed together

with Dr. Alla Sheffer. Dr. Sheffer supervised the project, while I performed the ac-

tual research and implementation. The algorithm was then combined with a sketching

and fold modeling system developed by Philippe Decaudin, Jamie Wither, Laurence

Boissieux, and Prof. Marie-Paule Cani. A paper describing this unified design system

was prepared cooperatively and submitted for publication [5].

1

Chapter 1

Introduction

1.1 Developable surfaces

Developable surfaces are surfaces which can be unfolded (developed) into a plane with-

out introducing any distortion such as stretching or shearing. Simple examples for such

surfaces are cylinders and cones (Figure1.1), while more complex examples of piece-

wise developable surfaces are shown in Figure1.2. A sphere is an example of a non-

developable surface. These developable surfaces are of great significance in computer

graphics, CAD, and manufacturing as illustrated in the following section.

Figure 1.1: Examples of simple developable surfaces and their corresponding patterns.

Figure 1.2: Piecewise developable surfaces.

Chapter 1. Introduction 2

1.2 Applications

In computer graphics developable surfaces play a key role in almost every application

involving planar surface parameterization. A planar parameterization of a surface is a

bijective mapping from the 3D surface to the 2D plane, which is equivalent to develop-

ing the surface into the plane. One of the oldest applications involving surface param-

eterization is that of texture atlas generation, in which the mesh is first segmented into

charts, and then each chart is parameterized onto the plane. When mapping textures,

the parameter space is covered with an image, which is then mapped onto the model

using the parameterization. With the introduction of programmable GPUs, more gen-

eral attributes can be mapped onto the model in real time (e.g., BRDFs, bump maps,

displacement maps, etc.). It is even possible to represent the geometry of the model

in parameter space, leading to thegeometry imagesrepresentation [11]. To preserve

the texture and other attributes the mapping should be as close as possible to being

isometric, and therefore not introduce any distortion. This is possible only if the charts

are nearly developable. Boundaries between charts lead to undesirable discontinuities

in the mapped texture; hence a good segmentation method must segment the mesh into

nearly developable charts while minimizing the number of charts and their boundary

lengths.

In manufacturing processes it is common to perform the exact opposite operation

of unfolding surfaces, i.e. starting with flat pieces of material, and bending these into

the desired shapes. If distortion is avoided during the deformation process, it is clear

that the resulting shapes are developable. Since most materials such as metal, wood,

and fabric have only limited capabilities of absorbing distortion, developability must

be taken into account during the design phase; thus developable surfaces are often used

in computed aided design systems (CAD).

Some of the most common examples of manufacturing with developable surfaces

are those of ship and aircraft design, architecture, and fashion design (Figure1.3).

When designing ships, the hull is typically segmented into parts which are fitted with

large metal sheets. Each metal sheet is shaped using two processes: rolling and heating.

The rolling process is used to bend the sheets into cylindrical shapes, and is used in

Chapter 1. Introduction 3

areas where the desired hull surface is developable. In areas such as the bow, which

are not developable, the heating process is combined with the rolling process to shrink

the metal sheets along one side, thus creating the required distortion. The heating

process parameters are usually determined on the basis of experience and heuristics,

thus resulting in a complex and error prone manufacturing process. By improving the

design and using mostly developable surfaces, manufactures are able to both simplify

and improve the actual construction process [2].

(a) (b)

(c) (d)

Figure 1.3: Applications of developable surfaces.

Similar considerations also apply in building construction when using sheets of

material. The most well known architectural designs making explicit usage of devel-

opable surfaces are those of Frank Gehry. Gehry’s designs are innovative in their usage

of developable surfaces as measures of constructibility. Shelden defines constructibil-

ity as the ability to form sheet materials without large scale material deformations that

would require forming through molding or stamping [40]. While any ”free form” sur-

faces may be constructed from various materials, Shelden notes that these are typically

Chapter 1. Introduction 4

more costly to create and do not always result in the same quality and desired accuracy.

For instance, smooth planar forms are much easier to construct from sheets of metal

than from concrete. Moreover, using developability constraints allows Gehry to main-

tain the correlation between the materials used and their final form [40]. Figure1.3(b)

shows an image of the Guggenheim museum in Bilbao, Spain which is constructed

primarily from developable sheets.

In fashion design the usage of developables is even more straightforward. Gar-

ments are sewn from patterns, and these are cut from sheets of fabric. Each pattern

corresponds to a chart or panel of the garment. When designing the garment, the core

requirement is to generate charts that can be cut from flat sheets of fabric and sewn

together with minor distortion to form the desired garment. To simplify the sewing

both the number of charts and the length and complexity of their boundaries should

be minimized. Traditionally these sewing patterns are designed by expert craftsman;

however recent advances in the usage of developable surfaces as design constraints will

hopefully result in more work being automated.

Similar design considerations also apply to virtual fashion design, i.e. fashion de-

sign for virtual characters. This practice is essential in both feature films and real-

time applications. In addition to realistic bodies, faces, and hair, designing convincing

clothing is a crucial element in achieving character realism. Currently, the modeling of

virtual garments is time consuming and requires both technical and tailoring expertise.

Even using specialized software, such as MayaCloth [25], users have to design sewing

patterns and use physically-based simulation to obtain the garment rest shape. Chap-

ter6 demonstrates how the developable surface approximation method introduced here

simplifies the task of designing patterns for virtual garments.

Paper crafting is yet another example where developable surfaces play a key role.

The art of paper crafting is similar to that of Origami, also known as paper folding.

The difference between the two, is that Origami designs typically start from a single

sheet of paper which is then folded into shape, while paper crafting starts with multiple

patterns which are bent into shape and then glued together. Figure1.3(c) shows some

examples of paper crafted models created by Mitani and Suzuki [27]. Since paper does

not stretch and it does not shear the simple techniques of bending and gluing used to

Chapter 1. Introduction 5

craft the models rely on the fact that target model is in fact developable. Worth noting

here, is that paper crafting is not used only for artistic or pleasure purposes. Paper

models are also commonly used as teaching and visualization aids for math, science

and engineering [28].

This thesis focuses on two problems common to these applications and their us-

age of developable surfaces: Mesh segmentation into (nearly) developable charts, and

mesh approximation with developable surfaces. The next sections briefly describe

these problems, and their relevance to the mentioned applications.

1.3 Mesh segmentation

Mesh segmentation has numerous applications in computer graphics [37] and man-

ufacturing [2, 40]. As noted previously, this is the first step required when creating

texture atlases or patterns from 3D models. Chapter4 describes a simple descrip-

tor for capturing developable surfaces in meshes. Based on this descriptor, an efficient

and robust algorithm namedD-Chartsfor segmenting meshes into (nearly) developable

charts was created. The algorithm combines geometry processing techniques with tools

traditionally used by pattern designers. As a result, compared to recent mesh segmen-

tation methods, for a given number of charts the D-Charts method segments the mesh

into more developable charts, leading to less distortion in the generated texture at-

lases. The algorithm successfully segments mechanical models into their developable

components, producing quasi-isometric texture atlases. For other models for which

a compact developable segmentation does not exist, the segmentation is based on a

user-prescribed developability tolerance.

Based on the segmentation algorithm an automatic method for pattern design, fo-

cusing on the design of soft, stuffed toys is introduced. To demonstrate the practicality

of the technique, design patterns for several popular computer graphics models were

created and then used to construct physical copies of the models out of fabric or paper.

The segmentation algorithm and the results of this work have been published in [14].

Chapter 1. Introduction 6

1.4 Developable approximation

Approximating surfaces with developable surfaces is a useful feature in many design

processes. As noted above, developable surfaces play a key role in any manufacturing

industry requiring patterns for sewing, metal forming and forging, or any other fabri-

cation applications where 3D objects are constructed from sheets of material. In many

industries, it is common to initially focus on the major design requirements, while

deliberately ignoring details such as developability which may be corrected later on

[45]. For instance, in fashion design the final 2D patterns are developable, however

it is hard to imagine that developability plays a key role during the initial sketching

of the garment which focuses on the 3D appearance. In such cases, usage of auto-

matic tools can simplify the transition between the design stages. In order to enforce

developability while maintaining the original shape as much as possible, the original

surfaces must be approximated with developable surfaces. Developable segmentation

is not applicable in these cases, since this method relies on creating additional seams

across the surface which might be undesired depending on the application. For in-

stance, garments usually have very specific seam lines which are typically symmetric,

do not have sharp angles, and are usually positioned on the sides of the body rather than

in the front or back. Therefore, an algorithm for approximating a given surface patch

with a single developable surface is needed. Chapter6 describesDCS approximation,

a method for generating such developable approximations. The DCS approximation

method assumes that the original surface as well as the seam lines are provided as in-

put. By taking only the geometric constraints into account the method deforms each

surface patch into a ”more developable” surface which is ”close” to the input model. By

placing constraints on seam vertices, it is guaranteed that the resulting surface patches

remain connected along the seams. Additional constraints may be placed on boundary

(or other) vertices to keep them in place at the cost of possibly lower developability.

The method was developed in the context of a virtual garment modeling system.

Using a sketching interface proposed by Turquin et al. [43] users generate an initial

3D surface. The users draw the contours and boundaries of the garment directly on a

2D view of the virtual mannequin. This sketch is converted into a 3D surface using the

Chapter 1. Introduction 7

distance field technique [43]. Given this input, each surface panel enclosed by seams

is approximated with a developable surface, while keeping the panels assembled along

the seams. This work has been submitted for publication as part of paper focusing on

the simplification of virtual garment design [5].

To summarize, this thesis focuses on developable surfaces and their applications

in computer graphics. Two related problems of mesh segmentation into developable

charts and developable surface approximation are studied, and appropriate algorithms

are suggested. Chapters2 and 3 provide the necessary background and review re-

lated work. Chapter4 explains the two problems of segmentation into developable

charts and approximation with developable surfaces targeted in this thesis, followed

by a novel method of identifying developable surface patches in 3D meshes. Chapters

5 and6 introduce the segmentation and approximation methods, followed by the ob-

tained results. Finally Chapters7 and8 summarize and discuss conclusions and future

work.

8

Chapter 2

Background

2.1 Definition

Developable surfaces are surfaces which can be unfolded (developed) onto the plane.

Mathematically, this means there exists a mapping of the surface onto the Euclidean

plane which is locally isometric, i.e. locally length preserving. The mapping does

not have to be globally isometric, since developable surfaces may self intersect once

unfolded. An introduction to mappings and their properties is found in [7].

The most commonly known property of developable surfaces is that the Gaussian

Curvature at all surface points is zero. The following three observations explain why

the Gaussian curvature vanishes (A formal proof appears in Theorem 6.1.2 of [33]).

• Isometric surfaces share the same first fundamental form.

• The Gaussian curvature can be expressed in terms of the first fundamental form

alone.

• The Gaussian curvature of the plane vanishes at every point.

Based on this property it is relatively simple to verify developability of a given

surface. For instance, using this property, and the fact that the Gaussian curvature

across the sphere is both constant and positive, it is clear that any patch of a sphere,

no matter how small, is non-developable. This property, however, does not usually

provide enough insight when dealing with construction, manipulation, or unfolding of

developable surfaces.

Since it is hard to characterize the entire set of developable surfaces, most research

focuses on the subset of sufficiently smooth developable surfaces. The next sections

Chapter 2. Background 9

cover some key concepts regarding these surfaces.

2.2 Developable surfaces as ruled surfaces

Under assumptions of sufficient differentiability, developable surfaces are planes, cylin-

drical surfaces, conic surfaces, tangent surfaces, or compositions of these surfaces

(Theorems 5.1.7 and 6.1.2 of [33]). Peternell [30] illustrates the three later basic sur-

face types as shown in Figure2.1. These are alltorsal ruled surfaces, which are a

special case of ruled surfaces.

(a) (b) (c)

Figure 2.1: Sufficiently smooth developable surface types [30]: (a) cylinder; (b) cone;

(c) tangent surfaces.

A Ruled surfaceis a surface constructed by sweeping a straight line in space. This

construction leads to a simple parameterization of such surfaces

x(u,v) = b(u)+vδ(u).

whereb(u) ∈ R3 is called thedirectrix or thebase curveandδ(u) ∈ R3 is called the

generatoror director. Therulingsare the straight lines, which are swept in space along

the directrix curve, and these are easily apparent by keepingu constant while varying

only v.

Following is an outline of Theorem 6.1.3 of [33] which proves that each of the

above surfaces are developable. Each of the surfaces may be parameterized as follows:

• generalized cylindrical surfaces –x(u,v) = b(u)+vpwhereb(u), p∈ R3

• generalized conical surfaces –x(u,v) = p+vb(u) whereb(u), p∈ R3

Chapter 2. Background 10

• tangent surfaces –x(u,v) = b(u)+vb′(u) whereb(u),b′(u) ∈ R3

In order to show that these surfaces are in fact developable, Pottmann and Wallner

derive the actual development, i.e. they find an isometric mapping to a planes(u,v).

They then proceed to show that the coefficients of the first fundamental form ofx(u,v)

in each case are identical to those ofs(u,v), thus showing that the mappings are locally

isometric.

2.3 Dual representation

An important characteristic of torsal developable surfaces is derived from projective

geometry. Since sufficiently smooth developable surfaces are ruled surfaces with van-

ishing Gaussian curvature, it is easy to show that the tangent planes remain constant for

all the points of a generator line. Proof of this is shown by deriving the normal to the

surface at every point from the surface parameterizations noted earlier, and verifying

that the direction of this normal is constant along the generators. The normal at(u0,v)

is defined by

n(u0,v) =
dx(u,v)

du
(u0,v)×

dx(u,v)
dv

(u0,v).

By evaluatingn(u0,v) for each of the possible surface types we get the following:

• generalized cylindrical surfaces –n(u0,v) = b′(u0)× p;

• generalized conical surfaces –n(u0,v) = vb′(u0)×b(u0);

• tangent surfaces –n(u0,v) = (b′(u0)+vb′′(u0))×b′(u0) = vb′′(u0)×b′(u0).

Since the direction of the normal vector does not depend onv, it is clear that the tangent

planes are constant for constant values ofu, i.e. along generators. Moreover, the

tangent planes of the entire surface may be considered as a one-parameter smooth

family of planesT(u). This family of planes corresponds to a curve in the dual space

as explained next.

Each oriented planeP∈T(u) is uniquely defined by its normal vector of unit length

and its signed distance from the origin:

P := nxx+nyy+nzz+d = 0.

Chapter 2. Background 11

TheBlaschke mapping([29]) b maps each oriented plane to a point in the dual space,

nxx+nyy+nzz+d = 0→ (nx,ny,nz,d)

The domain of this mapping is called theBlaschke cylinder— B⊂ R4. This hyper-

surface is a quadratic cylinder, and intersections ofB with hyperplanes where the fourth

coordinated is constant, are spheres with a radius of one. Mapping each of the planes

P ∈ T(u) results in a smooth curvet(u) ∈ B corresponding to the smooth family of

planesT(u) [29].

Figure 2.2: Developable surfaces and their corresponding normals maps embedded on

the unit sphere.

In Chapter6 this work uses properties of the normal maps (Gauss maps) of de-

velopable surfaces. The normal maps are equivalent to the first three coordinates of

points in the dual space. Since the points in the dual space form a curve, it is clear that

reducing the dimension by simply removing the fourth coordinate still results in curves

on S3. Figure2.2 shows some examples of developable surfaces and the correspond-

ing normal maps plotted on the unit sphere. It is worth noting that this mapping from

generator lines to a curve on the unit sphere need not be a one to one mapping. Figure

2.3shows an example where the curve corresponding to the model is self overlapping.

Note however that the curve remains continuous as long as the surface is smooth.

Figure 2.3: A developable surface and the corresponding self overlapping normal map.

Chapter 2. Background 12

2.4 Non-smooth developable surfaces

The previously defined characteristics of developable being ruled surface (Section2.3)

and having a dual representation (Section2.2) apply only to sufficiently smooth devel-

opable surfaces. It is clear however, that the set of smooth developables do not capture

the entire set of developable surfaces. A non-smooth developable surface can easily be

created, for instance, by taking a piece of paper and crumpling it. The paper remains

developable, since it can be flattened out into the plane. As in most previous research,

the rest of this thesis focuses mostly on smooth developable surfaces. Nevertheless,

the merging method described in Section5.2.3does capture straight line creases span-

ning from one chart boundary to another. The problem of better characterizing and

modeling general developable surfaces is left for future research.

2.5 Developability and distortion metrics

As previously noted, developable surfaces can be unfolded into the plane without intro-

ducing any distortion. Therefore, mathematically,developableis a binary term. Nev-

ertheless, in this thesis the termdevelopabilityis used to quantify how close surfaces

are to being developable. A natural measurement is the distortion introduced when

parameterizing a surface into the plane. Common metrics to measure the stretch dis-

tortion are theLStretch
2 andLStretch

∞ metrics as defined in [36]. Shearing distortion can be

measured using theLShear
2 as defined in [38]. For perfectly developable surfaces where

no distortion at all is introduced the stretch metrics are one(LStretch
∞ = LStretch

2 = 1) and

the shear metric is zero(LShear
2 = 0).

TheL∞ indicates the worst distortion, thus a high value ofL∞ means there is at least

one area which is not developable. An exception to this could occur due to the existence

of degenerate triangles in the mesh. A single triangle of areaε which is distorted during

the parameterization does not indicate a non-developable region in the mesh; however

theL∞ metrics could become very high. TheL2 metrics are averaged distortion metrics.

Surfaces which are mostly developable, but include small non-developable areas might

still have very lowL2 metrics.

Chapter 2. Background 13

To further complicate the situation, the values of these metrics depend not only

on the surface itself, but also on the parameterization method used. While ABF++

[38] results in minimalLShear
2 , stretch minimizing parameterization [35] optimizes the

LStretch metrics. Furthermore, these metrics need not always agree, in the sense that

less stretch distortion does not always indicate less shearing distortion and vice versa.

Moreover, if one surface has a lower value ofLStretch
2 than another, this does not always

indicate that the value ofLStretch
∞ for the first surface is also smaller. It is needless to

state that it is sometimes hard to compare the developability of two surfaces. As a

result, in Chapters5 and6 all metrics are presented for each model.

It is worth noting that it is common to use different methods to evaluate the devel-

opability of surfaces or quantify algorithm results when no atlas generation is involved.

Mitani and Suzuki [27] use Metro [3] to measure the Hausdorff distance between the

input surface and the developable estimates they find. Wang and Tang [44] use the

maximum Gaussian curvature as a measure of developability. Yamauchi et al. [49] de-

fine the area covered by the surface normals on the normal map as their developability

metric. Unfortunately, there is no straightforward method of comparing these metrics.

For instance a surface could have very high distortion during parameterization, yet be

relatively close in the Hausdorff distance-wise sense to its developable approximate.

In this thesis the distortion metrics prove to be a more natural choice since the target

applications are atlas and pattern generation.

14

Chapter 3

Related work

3.1 Mesh segmentation

Over the last decade, mesh segmentation has become an important component of many

computer graphics algorithms. Shamir [37] provides a review of recent segmentation

methods, including a generalized formulation of the segmentation problem. He clas-

sifies segmentation methods as being either patch based or, part or feature based, and

notes that different methods are more appropriate for different applications. The fol-

lowing two sections review relevant segmentation methods for texture atlas and pattern

generation. Other segmentation methods, such as [15, 16], focus on feature-based seg-

mentation. They segment the mesh into charts corresponding to protrusions and other

meaningful model components. Typically these charts are very far from being devel-

opable and are thus unsuitable for our needs. Methods such as that of Gelfand and

Guibas [9] or Wu and Kobbelt [47] are well suited for segmenting CAD point-sets or

meshes into kinematic surfaces or primitive structures; however, these surfaces include

only a small subset of the developable surfaces.

3.1.1 Texture atlas generation

Over the last decade, many methods have used mesh segmentation to generate texture

atlases [13, 18, 22, 24, 34, 49, 50]. Figure3.1 shows two examples of texture atlases

generated by recent state-of-the-art algorithms [34, 50].

Many existing segmentation algorithms focus on the construction of nearly planar

charts, since these are clearly developable and will not introduce any parameterization

distortion.

Chapter 3. Related work 15

Figure 3.1: Texture atlas examples. (left) Horse model and corresponding charts [34].

(Right) Bunny model with Iso-Lines and corresponding charts [50].

Maillot et al. [24] are one of the first to introduce automatic texture atlases gen-

eration methods. In order to minimize the distortion during the parameterization, they

suggest segmenting the mesh based on the surface normals. The faces are divided ac-

cording to their normals into buckets of maximal connected components, such that the

normals in each bucket are similar. Adjacent buckets are then merged in a greedy order

based on the similarity between their average normal and curvature direction, resulting

in a segmentation into nearly planar charts.

Sander et al. [36] segment the mesh based on the planarity and compactness of each

chart. They start by assigning each triangle to a separate chart, and then merge adjacent

charts in a greedy manner. By enforcing constraints on boundaries when merging they

guarantee that patches remain homeomorphic to discs. The process terminates once all

merges exceed a user specified tolerance.

Garland et al. [8] use similar means of planarity, compactness and orientation of

faces to segment the mesh. The mesh dual graph is constructed and edges are assigned

a merging cost. Next adjacent nodes (faces) are merged in a greedy manner to create a

hierarchal segmentation of the mesh.

Sander et al. [34] use a Max-Lloyd approach to segment the mesh. Multiple regions

are grown around seed triangles based on a greedy approach. Faces are added to charts

if their normal is close to the chart normal, and the chart remains compact. After the

entire mesh has been segmented, new seeds are calculated and the process is repeated.

This method named Multi-Chart Geometry Images (MCGIM) is one of the state-of-

the-art methods and is therefore used for comparison with the results of our D-Charts

method (Section5.4).

Chapter 3. Related work 16

While planar charts are obviously developable, most developable surfaces are not

planar. Thus planar segmentation is too restrictive and results in more charts than are

necessary. Following is a review of other segmentation techniques for texture atlases

which do not necessarily produce planar charts.

Levy et al. [22] introduce a segmentation method that detects crease lines and

generates charts using these lines as boundaries. Charts are then further segmented

if the stretch after the parameterization is too high. The method may fail to segment

models properly if there are no clear crease lines.

Sorkine et al. [41] simultaneously generate both the parameterization and the cuts.

Thus this method can successfully discover developable regions and parameterize them

using a single chart. Since this method depends on the order of the triangle insertions

it tends to form charts with long and complex boundaries.

Gu et al. [11] construct a single chart out of the input model. They first generate

cuts that convert the surface into a disk and then iterate between parameterization and

cutting, continuing to add cuts from the current boundary to points of maximal distor-

tion, as long as the distortion is deemed to be too high. Sheffer and Hart [39] also cut

the entire surface into a single chart. They detect points of high curvature and connect

these by a Steiner tree of cuts, taking visibility into account, so that the cuts go through

less visible parts of the model. While both methods result in the minimal number of

charts (i.e., one), the chart boundaries tend to be quite long and complex.

The Iso-chartsmethod [50] interleaves parameterization and segmentation. Start-

ing with an initial segmentation it repeatedly parameterizes the charts and then seg-

ments them if the parametric distortion is high. The authors use a variation of the

fuzzy-region cutting approach [16] to generate straight boundaries between the charts.

Section5.4.1 presents a comparison of atlases generated by our method with those

generated by Iso-charts.

Yamauchi et al. [49] acknowledge that Gaussian curvature alone is not stable

enough in order define a developable segmentation. Instead they use the area of the

patch normals on the Gauss map (normal map) as a measure of developability. A

flooding approach is used to grow charts from initial triangles marked as seeds, such

that the resulting charts have an equal distribution of Gaussian area. A Max-Lloyd it-

Chapter 3. Related work 17

eration procedure is used to reposition the seed triangles and regrow the charts in order

to further improve the segmentation.

In addition to texture atlas generation, developable mesh segmentation is also rel-

evant to pattern design as demonstrated by the D-Charts algorithm. The next section

reviews important contributions to automated pattern design.

3.1.2 Pattern design

Much of the research on pattern generation focuses on unfolding, or parameterization,

of given charts. McCartney et al. [26] introduce an automatic unfolding method and

demonstrate the impact of darts and gussets on the quality of the unfolding. Darts are

stitched tapering folds, generated by cutting a sharp corner out of a pattern. Gussets

are triangular inserts added into seams to widen the corresponding regions. Wang

[46] proposes another method for the unfolding of free-form surface charts for pattern

design by fitting a woven mesh model.

Several methods address segmentation for manufacturing applications. To gener-

ate patterns for metal-work, Elber [6] approximates NURBS surfaces by cross-section

aligned developable strips. This method requires a very large number of strips to ap-

proximate accurately the input models, since only rectangular, ruled surface strips were

allowed. Kolmanic and Guid [17] use cross section curves provided as part of the data

to segment models into developable strips bounded by these curves in order to generate

shoe patterns.

Guthe and Klein [12] introduce a method for atlas generation for NURBS surfaces,

which is particularly suitable for pattern design. The charts are formed by stitching

NURBS patches together based on distortion considerations. The authors employ a

cutting approach similar to that used by [11, 39] using the distortion in the current

parameterization as an indicator of where to place cuts. Further cuts are added when

the resulting charts overlap in the parameter domain. It is not clear how well these

methods will work for irregular meshes.

Mitani et al. [27] introduce a method for pattern generation for making papercraft

toys from meshes using strip-based approximate unfolding (Figure3.2). Since basic

Chapter 3. Related work 18

triangle strips can be extremely long, they first segment the mesh as suggested in [22]

and then compute strips within each chart. This method results in quite a large number

of charts with complex boundaries. As evident by Figure3.2, using such charts will

require complicated methods of cutting and stitching the charts due to their complex-

ity, and is therefore not practical. Therefore, the technique is somewhat specific to

paper-crafting; here the core constraint is that paper is incompressible, requiring charts

to be truly developable. Since fabric can stretch, the ”stripification” approach is too

restrictive for fabric pattern design.

Figure 3.2: Papercraft toys using strip-based approximate unfolding [27].

3.2 Surface approximation with developables

The second problem addressed in this thesis is that of surface approximation with de-

velopable surfaces. The relevant research focuses predominantly on the approxima-

tion of point clouds in order to identify the underlying analytic developable surfaces

[2, 29, 30, 32]. The inputs to these methods are usually sampled from smooth devel-

opable surfaces, possibly including some degree of noise. The normal maps of the

input surfaces in this case are always very close to being one-dimensional curves (Fig-

ure 3.3). It is not clear how these methods could be applied to developable surfaces

which correspond to multiple, may be self-intersecting and overlapping, curves in the

normal map.

Pottmann and Randrup [32] use cones, cylinders and helical surfaces to approxi-

mate given data sets. Chen et al. [2] extend this method to data sets representing more

than one single developable element. Using a region growing approach they segment

the data into regions which are then approximated separately. Finally, the approxima-

Chapter 3. Related work 19

Figure 3.3: Developable surfaces approximating a set of points and the corresponding

normal maps [2, 30].

tion elements are smoothly joined to create aG1 or Gr smooth surface.

Peternell [30] first approximates the tangent planes of the surface in order to cre-

ate the Blaschke image of the surface. Next, curve approximating techniques ([19])

are used to identify the 1D curves apparent in the Blaschke image. Each curve is

then analyzed and the best approximating developable surface among the types defined

in Section2.2 is determined. Peternell acknowledges that the method works best on

nearly developable surfaces, such as double curved surfaces with a small secondary

curvature or sampled developable surfaces including some degree of noise.

In the past, methods addressing developable surfaces were of great interest for in-

corporation into NURBS based CAD systems [20, 31, 45]. Early work by Leopoldseder

and Pottmann [20] focused on approximating developable surfaces with cone splines

in order to incorporate these into existing systems.

Pottmann and Wallner [31] approximate specific types of NURBS surfaces with

developable NURBS surfaces. They formulate the problem as finding a set of devel-

opable planes to approximate a set of given tangent planes. By optimizing a distance

metric defined between two planes, they are able to construct a developable NURBS

surface which is close to the input surface.

Wang et al. [45] try to minimize the Gaussian curvature across NURBS surfaces in

order to increase developability. By optimizing an energy function accounting for both

the amount of deformation and the Gaussian curvature, they improve developability

while maintaining shape as much as possible. The authors do however acknowledge

that sometimes the improvement in Gaussian curvature is only local.

So far there has been very little research on computing developable approxima-

Chapter 3. Related work 20

tions given triangular meshes as an input. Wang and Tang [44] adopt their NURBS

surface method [45] to 3D meshes. They translate the developable surface property of

zero Gaussian curvature into a requirement that the sum of angles around each vertex

be to 2π. They then explicitly minimize the sum of squared differences between the

actual sum of angles around each vertex and 2π. The method tends to generate devel-

opable meshes with edge lengths which are close to the original. However, since the

method is based on a strictly local procedure, it is bound to converge to local minima

when operating on input surfaces which are not sufficiently close to being developable.

Moreover, since the surface normals are not constrained in any way, they tend to change

drastically, resulting in a wrinkled surface — an effect that is usually undesirable.

The following chapters introduce a new method for dealing with developable sur-

faces and 3D meshed. Two new algorithms which address the segmentation and ap-

proximation problems are then presented, and compared to some of the methods noted

here in order to evaluate their quality.

21

Chapter 4

Research contribution

The following chapter describes the two problems addressed in this thesis. Sections

4.1 and4.2 define the problem of segmenting meshes into nearly developable charts,

and approximating meshes with developable surfaces. Next, Section4.3 explains the

key contribution of this work — theDCS descriptorand thefitting error, which allow

for simple detection of developable surfaces of constant slope, and are the basis of the

algorithms described in the following chapters.

4.1 Mesh segmentation into developable charts

The first problem addressed here is that of segmenting meshes into developable charts.

A formal definition of the generalized mesh segmentation problem is found in [37].

Common to all segmentation problems, the goal is to find a set of disjointchartsor

patches, that cover the entire mesh (Figure4.1). Specifically in our setting, we would

like to minimize the distortion of each chart that occurs during parameterization. As

noted in Chapter1, this may be achieved only if the parameterized surfaces are as close

as possible to being developable. Therefore, the first and foremost requirement specific

to the segmentation is that each patch be nearly developable.

Figure 4.1: Mesh segmentation — disjoint charts cover the entire model.

Chapter 4. Research contribution 22

In contrast to segmentation into planar regions [8, 24, 34, 36], the developability

condition alone is typically not sufficient for a meaningful segmentation. Any triangle

strip is by definition developable, thus meshes can be ”stripified” using a very small

number of triangle strips (Figure4.2). Obviously this segmentation is not particu-

larly useful for most applications, as it leads to charts with extremely long boundaries.

Therefore, in addition to developability of each chart, two additional requirements for

a meaningful segmentation are necessary: a small number of charts, and that each chart

be compact. Since finding an optimal segmentation satisfying the above requirements

is NP-Hard in nature, the D-Charts method proposed in Chapter5 is an optimization

method which searches for local minima.

Figure 4.2: Mesh segmentation into triangle strips [48].

This segmentation algorithm uses a region-growing approach. Like [4, 34] it uses

an iterative Lloyd scheme [23] to improve an initial segmentation. As in [4], a notation

of proxiesandseedsis used to characterize each chart; however in contrast to the pre-

viously used planar proxies, a new developable of constant slope (DCS) proxy is used

(Section4.3). A fitting thresholdis used to enforce the developability of each chart,

while additional compactness measures are used to achieve a meaningful segmentation.

Another key difference compared to previous Max-Lloyd segmentation methods such

as [4, 34], is the fact that the proposed segmentation algorithm does not depend on a

the initial number of charts used. The method only requires a rough estimate, while

additional charts are added or removed as needed.

To validate the developability of the resulting charts, texture atlases of various mod-

els were generated, and the measured distortion metrics were compared to those of pre-

vious state-of-the-art methods such as MCGIM [34] and Iso-Charts [50]. In addition,

since developable mesh segmentations may be used as the basis for automatic pattern

Chapter 4. Research contribution 23

design, the results were also tested as sewing patterns. Developable segmentations for

several popular computer graphics models were created and the resulting patters were

then used to sew soft-toys or construct papercraft models of the virtual models.

4.2 Mesh approximation with developable surfaces

The second problem addressed in this thesis, is that of approximating meshes with

developable surfaces. In contrast to most previous algorithms, our goal here is not to

find the analytical representations of developable surfaces which closely approximate

the input surfaces. Instead, our goal is to increase the input surface developability

by modifying its geometry, while at the same time keeping the deformed surface as

close as possible to the input surface. It is assumed that the input surfaces include all

seams, thus the algorithm does not add these. This increases the problem complexity

and imposes an additional requirement on the developable surface. Singular surface

points, such as cones apices, must not exist, since these require seams connecting them

to the boundaries in order to be developed into the plane. Additionally, since most of

the input meshes include more than one chart, an additional constraint on boundary

vertices is required. Namely, after the geometry is modified adjacent chart boundaries

must continue to be perfectly aligned.

To make the charts more developable, we use an approach inspired by the moving-

least-squares (MLS) approximation [1, 19, 21]. For each triangle on the surface we

find the locally best-fitting developable surface and move the triangle to that surface.

Since previous methods [2, 29, 30, 32] consider only ruled developable surfaces,

that is surfaces for which the normal map is a 1D curve, they work well when the input

is very close to developable. In our case the input meshes have non-negligible Gaussian

curvature, and their normal maps often cover a large area of the normal sphere (Figure

4.3).

To quantify the improvement in developability, each chart is parameterized into a

plane and distortion metrics are measured. As described in Section2.5, the parameter-

ization distortion is a natural metric as the final goal is to generate planar patterns for

the surface panels.

Chapter 4. Research contribution 24

Figure 4.3: (Left) Developable ruled surface approximating a set of points and the

corresponding normal maps [30]. (Right) Typical input to our approximation. The

normal map shows the triangle normals and the dual graph edges between the triangles.

4.3 Developability and the DCS descriptor

Both the developable segmentation and the developable approximation problems share

a common challenge — how to detect developable surface patches in the mesh? The

following section describes our novel approach to this task.

While planar charts are developable, they are too restrictive and are therefore not

appropriate. Using the vanishing Gaussian curvature as the only means for detecting

developable regions in a mesh does not typically provide a viable tool. As noted by

Yamauchi et al. [49], it is relatively hard to estimate the Gaussian curvature accurately

on meshes and numerical instabilities are often encountered. Therefore, the detection

mechanism we propose is narrowed to a subset of developable surfaces —developable

surfaces of constant slope. The detection procedure is based on a simple observation:

A surface is adevelopable of constant slopeif and only if the angle between the normal

to the surface at every point and a common axis is constant.

This definition includes cones, generalized cylinders and planes. In the case of a cone

or cylinder, the surface normal is at a constant angle or perpendicular to the axis (Figure

4.4). In the case of a plane, the normal is aligned with the axis. This simple condition

is used to measure developability.

Chapter 4. Research contribution 25

Figure 4.4: Developable surfaces of constant slope

This angle-based condition is the basis for both the segmentation and approxima-

tion procedures. In this thesis, we define theDCS descriptorfor each chartC as the

pair< NC,θC > whereNC is a unit vector representing the axis, andθC is the constant

angle between the normals to the mesh surface and the axis. To measure how well a

given trianglet with a normalnt fits into a given chartC, we define thefitting error as

follows:

F(C, t) = (
NC ·nt −cosθC

2
)2. (4.1)

This error measure is significantly simpler than previous metrics used for computing

developable regions, such as that of [50] where spectral analysis was needed to achieve

a similar goal.

26

Chapter 5

Mesh segmentation into

developable charts1

The following chapter describes theD-Chartssegmentation algorithm1 [14]. Section

5.1 provides an overview of the algorithm and thecost functionused to drive the op-

timization method. Figure5.3 illustrates the algorithm stages which are explained in

detail in Section5.2. Section5.3 describes how the resulting charts are then refined

into sewing patterns. Finally, Section5.4 presents the segmentation results as well as

patterns used for sewing and constructing soft-toys and papercraft models.

5.1 D-Charts algorithm overview

The D-Charts mesh segmentation algorithm uses a region-growing approach. Like

[4, 34] it uses an iterative Lloyd scheme [23], avoiding random initialization issues

common to older methods, such as [36, 41]. As in previous methods, a notation of

proxies and seeds is used to characterize each chart. The general Lloyd algorithm

framework is as follows:

• Grow charts, covering the entire model, based on the current proxies and seeds.

• Compute new proxies and seeds.

• Repeat until the process converges.

1A version of this chapter has been published. Julius, D., Kraevoy, V. and Sheffer, A. (2005). D-Charts:

Quasi-Developable Mesh Segmentation. Computer Graphics Forum, Proceedings of Eurographics 2005,

Volume 24, Pages 581-590, Dublin, Ireland, 2005. Eurographics, Blackwell.

Chapter 5. Mesh segmentation into developable charts 27

As pointed out in [4], the segmentations computed using the general Lloyd frame-

work depend on the initial positioning of the seeds. To improve the segmentation the

authors propose the use of manual operations such assplit or mergeto increase or

decrease the number of charts, or to ”teleport” them.

In the D-Charts algorithm an automatic procedure based on an initial estimate of

the number of charts and a fitting threshold valueFmax is used to determine the opti-

mal number of charts. The algorithm increases or decreases the number of charts as

necessary based on the actual fitting error computed during segmentation. The fitting

threshold, as defined in Section4.3, is also used to ensure that charts remain nearly

developable. By fitting each triangle to the chart proxy that represents a developable

surfaces of constant slope, the chart developability may be computed and bound.

The steps of our algorithm are as follows:

• Modified Lloyd Iterations: Charts are grown using Lloyd iterations while bound-

ing the fitting error byFmax. Enforcing this bound ensures that charts remain

nearly developable (Section5.2.1).

• Hole filling: As the fitting error is bounded during the growing process, some

triangles are not assigned to any chart. During hole filling these triangles are

assigned to charts, extra charts are added when necessary (Section5.2.2).

• Post-processing: During post-processing the resulting charts are further im-

proved. First, the boundaries between charts are straightened, without increasing

the fitting error. Then, adjacent charts are merged if the combined chart is de-

velopable. Finally, seams are cut toward regions of high error, forming darts and

gussets (Section5.2.3).

The algorithm stages are explained in detail in Section5.2.

5.1.1 Cost function

The main motivation of the segmentation algorithm is to segment the mesh into (nearly)

developable charts. However, as noted in Section4.1the developability condition alone

Chapter 5. Mesh segmentation into developable charts 28

is typically not sufficient for a meaningful segmentation. Hence the challenge faced is

to segment the mesh into reasonably compact, developable charts.

Developability is measured using the fitting errorF(C, t) (Eq. 4.1). To test for

compactness when adding a triangle to a chart, two additional metrics are introduced,

the first aiming at the generation of relatively ”round” charts, the second at the genera-

tion of charts with straight boundaries. Both metrics measure the suitability of adding

a triangle to a chart when the triangle shares one or more edges with this chart. To

measure compactness the following cost is defined

C(C, t) = π
D(SC, t)2

AC
, (5.1)

whereSC is the seed triangle of the given chart,D(SC, t) is the length of the shortest

path (inside the chart) between the two triangles, andAC is the area of chartC. For

triangles on the boundary of a circle (which is ideally compact) this metric evaluates

to one; otherwise, distant triangles are penalized, while close triangles are promoted

(Figure5.1).

Figure 5.1: Compactness metric.

To promote straight boundaries the ratio between the length of the triangle’s edges

that are shared with the chart and those that are not is used. The cost function is defined

as

P(C, t) =
louter(C, t)
l inner(C, t)

. (5.2)

To combine the developability and compactness metrics, a single cost function is

defined. This function measures the cost of adding a triangle to a chart, where the tri-

angle shares one or more boundary edges with triangles inside the chart. The complete

cost metric for the triangle is thus:

Cost(C, t) = F(C, t)αC(C, t)βP(C, t)γ. (5.3)

Chapter 5. Mesh segmentation into developable charts 29

The weightsα, β, andγ control the importance given to each metric. For all the

examples the following values were usedα = 1, β = 0.7, andγ = 0.5. These numbers

were found empirically to provide an appropriate balance between developability and

compactness. Using lower values ofβ and γ sometimes resulted in elongated strips

or jagged boundaries. Figure5.2 demonstrates the effect ofβ when segmenting the

sphere.

Figure 5.2: Segmentation of the sphere. Left — usingα = 1,β = 0,γ = 0. Right —

usingα = 1,β = 0.7,γ = 0.

Chapter 5. Mesh segmentation into developable charts 30

5.2 Algorithm stages

(a) (b) (c) (d)

(e) (f) (g)

Figure 5.3: Stages of D-Charts on a bull model with a bottom view of the back feet:

(a) Seeds (b) Charts after one growth iteration. (c) Final charts. (d) Hole filling. (e)

Boundary straightening. (f) Merged charts. (g) Adding seams.

Given the above definitions of a proxy, a fitting error, and a cost function, this

section describes the stages of the algorithm in more detail (Figure5.3).

5.2.1 Modified Lloyd Iterations

Initialization: Given the initial number of charts, the algorithm performs a two step

initialization of seeds and proxies. First a seed for each chart is selected. Although in

theory any random set of triangles should be adequate (since the following iterations

will eventually move the charts into place), in our experience, when extremities exist in

the mesh a more refined choice of seeds usually leads to faster convergence with better

results. Thus, the distance between seeds is maximized, using the standard farthest

point algorithm.

Next, a proxy is calculated for each of the seeds. For each seed three potential

charts are examined — the sets of triangles around each of the three seed-triangle

vertices. The algorithm calculates a proxy for each chart as explained below (Equation

Chapter 5. Mesh segmentation into developable charts 31

5.4) and selects the proxy that minimizes the fitting error (Equation4.1) for the seed

triangle. Figure5.3(a) shows the bull with the initial seed triangles marked.

Growing Charts: Initially each chart contains only a single triangle — the seed.

For each seed, each of its adjacent triangles are inserted into a priority queue. For each

triangle both its adjacent chart and the cost of assigning it to that chart (Equation5.3)

are specified. As long as the queue is not empty, the triangle with minimal cost is

extracted from it and assigned to its specified chart if the following conditions hold:

1. The triangle has not yet been assigned to any other chart (this can occur, since

each triangle may have more than one entry in the queue).

2. The fitting error for the triangle and specified chart is below the thresholdF(C, t)<

Fmax. The fitting threshold ensures that charts remain nearly developable.

Otherwise, the triangle is skipped and the next triangle in order is processed. After as-

signing the triangle to the chart, its adjacent triangles, which have not yet been assigned

to any chart, are inserted into the queue (specifying the current chart and the cost with

respect to it). After the process terminates, proxies are recomputed and the growth

procedure is repeated. Figure5.3(b) shows the bull charts after a single iteration.

Note that bothP(C, t) andC(C, t) (Eq. 5.1 and5.2) change as chartC is grown,

thus changing theCost(C, t) (Eq. 5.3) for each triangle. To avoid re-sorting the entire

priority queue after every step, multiple queues are used — one per chart. At each step

the triangle with minimal cost is found by comparing the first triangle from each queue.

This method requires only local updates to each queue after each step. Global sorting

is not needed as the order of triangles in each queue in terms of cost is not altered.

Finding new proxies and seeds:The optimal proxy< NC,θC > for a given chart

contains the normalized axis vector and the angle that minimize the weighted fitting

error between the conic surface and the chart triangles. The new proxy is computed by

solving the following constrained optimization problem:

min
NC,θC

1
AC

∑
t∈C

AtF(C, t) s.t. ‖NC‖2 = 1, (5.4)

whereAt is the area of the trianglet. Knitro [51] is used to obtain the solution. Since

only four variables are involved, the solution takes only milliseconds.

Chapter 5. Mesh segmentation into developable charts 32

After calculating the new proxies, the algorithm selects a new seedSC for each

chart. The seed must fit the proxy well (i.e., with only a small fitting error), and to the

extent that is possible, it should be near the center of the chart. To find such seeds the

algorithm examines the firstk triangles in the chart with minimal fitting error (k = 10

in all our examples), and then selects the one closest to the center of the chart. This

approach improves the method suggested in [4] since nearly developable surfaces will

have a large number of triangles with very low fitting error, resulting in an almost

random selection of new seeds.

Termination: The process is terminated when only a small percentage of triangles

(below 5%) have been reassigned from one chart to another between two consecutive

iterations. While the convergence of Lloyd iterations is guaranteed in the continu-

ous case, this guarantee does not extend to 3D meshes [4]. In practice the algorithm

converges in a small number of iterations (fewer than 100) given a reasonable initial

estimate of the number of charts alongside a smallFmax. To guarantee termination users

may specify a bound on the number of iterations. Figure5.3(c) shows the bull after

the iterations have converged.

5.2.2 Filling holes

After the Lloyd iterations converge, most of the triangles are classified as belonging to

one chart or another. However, due to the use of the error boundFmax, some triangles

may not belong to any chart (Figure5.3(c)). All such triangles are collected into con-

nected components which are categorized as either large or small holes, depending on

the component area. Small holes are then filled by removing the bound on the fitting

error and growing the surrounding charts into the holes (the introduced error is later

reduced by adding partial cuts (Section5.2.3)). Large holes are dealt with by adding

additional charts inside the holes. First, all the triangles in the hole are assigned to

a new chart; next, an optimal proxy and seed are computed, and finally the chart is

”re-grown” inside the hole as described above. This may result in additional holes; and

these are dealt with recursively. This approach leads to better results than spawning

new proxies during the iteration phase. Regions of high Gaussian curvature, such as

Chapter 5. Mesh segmentation into developable charts 33

the tip of the nose on the Horse model (Figure5.7), repel the growing charts. Even

newly spawned charts are pushed away after a few iterations, resulting in additional

ones being spawned and an excessive number of charts in total. Figure5.3(d) shows

that the small holes on the top side of each of the bull’s feet are filled by adjacent charts,

while the larger holes on the bottom are filled by creating additional charts.

5.2.3 Post-processing

The post-processing performs three major operations: it straightens chart boundaries,

merges adjacent charts when developability conditions allow, and finally introduces

partial cuts into the mesh.

Straightening boundaries: After convergence, boundaries between charts often

tend to be jagged, especially in areas where fitting errors between the triangles and

each of the two adjacent charts are similar. To improve the segmentation, fuzzy areas

between each pair of adjacent charts are defined. Fuzzy areas are the regions along

the boundaries in which the triangle fitting error is low with respect to both charts. To

find these regions, both charts are grown virtually into one another. Since the fitting

error is bounded byFmax, only triangles with low fitting errors are reached and marked

as belonging to the fuzzy area. Next, each boundary segment between the charts is

adjusted. For each segment, first its two end-points are found; then the shortest path,

within the fuzzy area, between these points is found, and defined as the new boundary

segment. Figure5.3(e) shows the straightened boundaries on the bull.

While this notion of fuzzy regions is somewhat similar to that used in [16], the

boundary straightening algorithm itself is much simpler. The min-cut approach [16] is

used only when the boundary is circular, namely when the two charts share an entire

boundary loop.

Merging charts: The developability metric (Equation4.1), captures developable

surfaces of constant slope. To capture more general developable surfaces, the algo-

rithm merges adjacent charts if together they still represent a nearly developable surface

(Figure5.4). Using the same framework, for each pair of adjacent charts the algorithm

tests to see if the boundary region between them (formed by triangles near the common

Chapter 5. Mesh segmentation into developable charts 34

boundary) can be approximated by a cylindrical surface. This is a sufficient condition

for the combined chart to be developable, and necessary if each chart lies on a different

DCS surface.

Figure 5.4: Merging adjacent charts without reducing developability.

Given the boundary regionB, the algorithm computes a proxy< NB,θB = π/2 >

(Equation5.4). The charts are merged if the average fitting error is below a given

thresholdη:
1

AB
∑
t∈B

AtF(B, t) < η.

In the mechanical examples (Figure5.8) η = 1e−5 was used to keep the charts strictly

developable; in all the other examples values ofη = 1e−2 were used. Figure5.3(f)

shows the merged charts.

Darts and gussets:Due to hole filling, charts can contain small regions of trian-

gles with large fitting errors. These regions can cause high distortion or ”strain” in the

surrounding region during parameterization. To reduce the strain, the pattern design

technique of darts and gussets has been incorporated into the algorithm, introducing

partial cuts into the charts. These partial cuts are inserted from the boundaries toward

the regions with high fitting error. Each seam relaxes the strain in a circular area cen-

tered at the tip of the cut, with a radius equal to the length of the seam; thus, elongated

high-error regions may require a number of seams. Figure5.5shows examples of a dart

and gusset in real fabric followed by a dart in virtual pattern created by the algorithm.

During parameterization, cuts corresponding to darts will naturally open up in 2D,

while cuts corresponding to gussets will result in overlaps in the 2D parameterization.

Therefore, after the parameterization, the overlaps need to be located, the overlapping

Chapter 5. Mesh segmentation into developable charts 35

Figure 5.5: Examples of darts and gussets and a dart created by the D-Charts algorithm.

regions cut off, and when possible, reattached to an adjacent chart (Section5.3).

Lastly, to parameterize surfaces such as cylinders isometrically onto the plane, cuts

connecting the chart boundary loops are introduced. At the end of this process a mesh

segmentation into quasi-developable charts, which can be used both for texture atlas

generation and for model fabrication is produced. Figure5.3(g) shows the added

seems between charts, as well as darts on the ears and each of the feet.

5.3 Pattern design

The following section describes the use of the segmentation algorithm in the design of

patterns for stuffed toys and paper models. The algorithm begins by segmenting the

model as previously described.

When wrapping the fabric around soft stuffing, such as in soft toys, shearing leads

to visible wrinkles. Therefore free-boundary, conformal (low-shear) parameterization

is used to unfold the charts in 2D. In all the examples [38] was used.

After the parameterization the algorithm optimizes the charts for sewing needs.

First, it tests for overlaps, removes those, and generates gussets. It then shortens ex-

Chapter 5. Mesh segmentation into developable charts 36

cessively long darts and simplifies chart boundaries. Finally, it packs the charts into a

square domain using the method of Levy et al. [22] and prints them including reference

points.

Next, the chart optimization steps are described in more detail.

Fixing gussets and overlaps:The parameterization obtained may contain two

types of overlaps: gussets (i.e., local overlaps) and regular, global overlaps. The al-

gorithm detects both and cuts the charts to remove them using the method of [22].

The resulting small charts are merged with neighbors if the merging criterion (Section

5.2.3) is satisfied and the merge itself does not create new overlaps.

Shortening darts: Since dart creation is based on a local fitting measure, at times

more darts are created than are necessary. The parameterization in practice eliminates

such darts, stitching boundary vertices where the sum of angles around the vertex is

close to 2π. Such darts are easily identified and then shortened by ”gluing” the edges

together.

Simplifying boundaries: When creating sewing patterns the boundaries should

be as simple as possible. Hence the boundaries between pairs of charts in 2D are

simplified using a vertex collapse method. The cost of collapsing a vertex is defined

as the sum of the areas of the two triangles formed by the vertex and its neighbors on

the boundary (a single triangle is formed on each side of the boundary). The costs are

accumulated by adding half the cost of each collapsed vertex to each of its neighbors.

Sewing notations: To ease the sewing, reference points are added to each chart.

These help identify corresponding boundary points on adjacent charts and greatly sim-

plify the alignment of the sewing patterns (Figure5.6).

Figure 5.6: Atlas and reference points of bull model.

Chapter 5. Mesh segmentation into developable charts 37

5.4 D-Charts results

5.4.1 Texture atlases

To evaluate the segmentation algorithm, it was used to generate texture atlases for

several models (Figures5.7and5.8). For the parameterization stage the free-boundary

stretch minimizing parameterization was used [35]. To evaluate the parameterization

theLStretch
2 , LStretch

∞ , andLShear
2 metrics were used (Section2.5).

The parameters used to generate each model and the results obtained are summa-

rized in Table5.1. All the results were generated on a P4 3GHz machine using the

Graphite software package [10]. The runtime is a function of both model size and

complexity. For mechanical models such as the Fandisk (10K faces) the time is less

than 10 seconds. For free-form models the algorithm takes from 100 seconds to seg-

ment a medium-sized 20K faces model (gargoyle) and up to 500 seconds to segment

the larger and more complex ones (bunny or feline). Most of the time is spent per-

forming the Lloyd iterations; the hole-filling takes a negligible amount of time and the

post-processing takes about 10% of the total time. Our times are comparable to those

of the MCGIM algorithm [34]. Note that the method performs well on models of high

genus such as the feline, as well as models with boundaries, such as the bunny. The

D-Charts algorithm is particularly suitable for segmenting mechanical models (Figure

5.8) for which it accurately captures the planar, cylindrical, and conic parts.

Following is a comparison between the D-Chart algorithm results and those pro-

vided by the authors of Iso-charts [50] and by the authors of MCGIM [34]. The D-

Charts segmentation method significantly improves all three error metrics for all the

models, using the same or a smaller number of charts. The improvement is most signif-

icant on mechanical models such as the Fandisk, where D-Charts achieves the minimal

LStretch
2 error of one. This indicates that the charts generated are much closer to being

developable than those generated using previous methods. Since there is a trade off

between developability and compactness, as expected, D-Charts generates charts with

slightly longer boundaries. The difference in length is on average about 10% to 15%.

Chapter 5. Mesh segmentation into developable charts 38

Figure 5.7: Model segmentation and atlas generation. Top rows — mesh segmentation.

Middle rows — texture atlases. Bottom rows — parameterization (iso-lines). The

statistics for most of the models are given in Table5.1.

Chapter 5. Mesh segmentation into developable charts 39

Figure 5.8: Segmentation of mechanical models. First and last rows — mesh segmen-

tation. Second row — texture atlases. Third row - parameterization (iso-lines). The

LStretch
2 error for all the textured models is less than 1.00075 (it is not 1 as some models

contain small blends or fillets).

5.4.2 Soft toys

Figures5.9 and5.10show sewing examples and the resulting soft-toy models created

from the D-Charts sewing patterns. For mechanical models, such as the Fandisk and the

bishop, the segmentation results in developable charts. Thus it is possible to reproduce

those models accurately from paper (Figure5.11) or from any other sheet material. For

the toy models, distortion must inevitably be introduced. Nevertheless, the generated

stuffed toy models capture the shape of the objects. Predictably, minor details are lost,

mostly due to fabric resilience.

Chapter 5. Mesh segmentation into developable charts 40

Figure 5.9: Creating stuffed toys using D-Charts generated patterns.

Chapter 5. Mesh segmentation into developable charts 41

Bunny Horse Feline Gargoyle Fandisk

#faces 69450 19996 41262 20000 9926

D-Charts

Input #charts 12 15 25 12 6

Total time (sec.) 468 130 482 91 9

Lloyd (sec.) 417 115 446 73 3

Post (sec.) 51 15 36 17 6

Final #charts 10 12 25 10 4

LStretch
2 1.004 1.01 1.01 1.006 1

LStretch
∞ 1.429 2.315 3.488 1.645 1.017

Lshear
2 0.006 0.001 0.012 0.008 0

Iso-charts

#charts 16 13 26 11 4

LStretch
2 1.023 1.035 1.052 1.019 1.021

LStretch
∞ 2.831 2.766 3.401 2.153 2.272

Lshear
2 0.021 0.038 0.056 0.022 0.018

MCGIM

#charts 15 25 10 5

LStretch
2 1.014 1.018 1.009 1.008

LStretch
∞ 2.803 3.563 2.221 2.092

Lshear
2 0.014 0.019 0.011 0.012

Table 5.1: Segmentation statistics. For all the modelsFmax = 0.2 was used. When

available the statistics for models segmented with MCGIM and Iso-charts are provided.

Chapter 5. Mesh segmentation into developable charts 42

Figure 5.10: Texture atlases and stuffed toys generated using D-Charts.

Figure 5.11: Papercraft bishop and Fandisk.

43

Chapter 6

Developable approximation1

This chapter describes theDCS approximationalgorithm for developable mesh approx-

imation1 [5]. As noted, the goal of the algorithm is to increase the surface developabil-

ity while preserving the surface geometry as much as possible. Section6.1provides an

overview of the method, followed by Section6.2 which covers each of the algorithm

stages in more detail. As explained in Section1.2developable surfaces play a key role

in both real and virtual fashion design. Therefore, the DCS approximation method was

developed in the context of a virtual garment design system. Section6.3 presents the

results of applying the DCS approximation method to garment panels in the virtual

design setting.

6.1 DCS approximation method overview

The DCS approximation algorithm modifies surfaces by increasing their developabil-

ity. In our context, it is assumed that all the seams are specified by the user, thus the

algorithm does not introduce additional ones. Hence, the goal is to take each surface

panel bounded by the seams and make it developable with as little modification as pos-

sible. TheLStretch
2 , LStretch

∞ , andLShear
2 distortion metrics described in2.5 are used to

quantify the improvement in developability.

To make the panels more developable, the algorithm uses an approach similar to

that of the moving-least-squares (MLS) approximation [1, 19, 21]. Working in the

projective geometry setting each triangle is processed in turn. First the normal maps

1A version of this chapter has been submitted for publication. Decaudin, P., Julius, D., Wither, J.,

Boissieux, L., Sheffer, A. and Cani, M.P. (2006). Virtual garments: A fully geometric approach for clothing

design.

Chapter 6. Developable approximation 44

are used to find a locally best fitting developable surfaces for each triangle. Next, each

triangle is moved to its corresponding developable surface in Euclidean space. Similar

to MLS, local approximation provides a global solution, making the modified surface

more developable.

As mentioned in Section2.3, the normal map of any sufficiently smooth devel-

opable surface is a union of curves on the unit sphere. Therefore, the normal map of

any sufficiently small region on such surface can be accurately approximated by an arc

or a point. The family of surfaces whose normal map is an arc or a point are known

as developable surfaces of constant slope [33]. Following the observation above, any

sufficiently smooth developable surface can be approximated locally by a developable

surface of constant slope.

The algorithm uses the following procedure to perform the local approximation.

• For each triangle on the input mesh it computes a local neighborhood and finds

a proxy that best approximates this neighborhood (Section6.2.1).

• Next, an optimal transformation that moves the triangle to the approximating

proxy with minimal change of its vertex positions is computed (Section6.2.2).

This computation is performed independently for each triangle. After the trans-

formation the triangles are no longer connected.

• Finally, to reconnect the mesh the algorithm glues the triangles together, while

trying to preserve the newly computed normals and positions (Section6.2.3).

The gluing is applied simultaneously to all the surface panels as they must remain

connected.

As shown in Figure6.1 the footprint of the normal map on the sphere shrinks, making

it nearly one dimensional. The process can be repeated to further improve developa-

bility. Note that as expected, the improvement in developability comes at the expense

of higher deviation from the original surface, thus it is up to user to decide on the right

trade off.

Planar parameterization is performed to obtain the actual 2D patterns for the surface

panels (Section6.2.4). The following section describes the algorithm stages in detail.

Chapter 6. Developable approximation 45

Figure 6.1: (Left) Input to our approximation. The normal map shows the triangle

normals and the dual graph edges between the triangles. (Right) Approximation output,

the normal map is closer to being one dimensional

6.2 Algorithm stages

6.2.1 Local approximation

The algorithm begins by locally approximating a neighborhood around each mesh tri-

angle by a DCS surface. The neighborhood of a triangle consists of several rings of

triangles surrounding it (Figure6.2).

Figure 6.2: Normals in local neighborhood closely fit an arc on the unit sphere.

The approximation is done in terms of the normal map, as it controls the devel-

opability of our surface. The results are then translated into Euclidean space when

performing the actual triangle transformation. As explained in Section4.3a DCS sur-

face can be described by an axis vectorN and an angleθ, such that at each point on

the surface the angle between the normal to the surfacen at that point and the axis is

equal toθ. The algorithm computes the axis and the angle by solving the following

Chapter 6. Developable approximation 46

constrained optimization problem,

min
N,θ ∑

j
((n j ·N−cosθ)/2)2 sub j. to ‖N‖= 1 (6.1)

wheren j are the normals to the faces in the neighborhood. This formulation is equiva-

lent to that of Eq.5.4and is solved in the same manner (Section5.2.1).

Note that for planes, this definition is not unique. For instance, a planeP(x) :=

PN · x+ d = 0 can be represented by an infinite number of proxies:(N,θ) = (PN,0)

or (N,θ) = (V,π/2) s.t. V ⊥ PN. Thus an explicit test if the local neighborhood can

be approximated by a plane is performed by finding the axisN that approximates the

neighborhood best forθ = 0. If the total fitting error for all triangles in the neighbor-

hood is below a given threshold, the planar proxy is used.

The formulation in Equation6.1 supports surface approximation with cones and

does not distinguish between cones whose apexes lie on the surface and those whose

apexes lie outside the approximated surface. The apex of a cone is clearly not devel-

opable. Thus, to develop a surface containing an apex and extra dart connecting the

apex to the boundary is required. This case can be detected during parameterization

and the darts can be added as described in Section5.2.3. Since extra darts are unde-

sirable in our setting, it is necessary to avoid creating cones whose apex lies on the

surface. To achieve this an inequality constraint is introduced into the minimization,

requiring that‖cosθ‖ ≤ 0.5. The next step after developable proxies are found is to

transform each triangle.

6.2.2 Triangle Transformation

The triangle transformation is computed in two steps. First the normaln of the triangle

is moved to the arc on the unit sphere defined byN andθ. If θ > 0 the normal vectorn

is rotated around the vectorn×N such that, after rotationn ·N−cosθ = 0, otherwise

the normal vector is simply set ton = N. Next, new positions for the triangles vertices

v1,v2,v3, are computed. These positions should be as close as possible to the original

positionsv0
1,v

0
2,v

0
3, and the new triangle normal should be equal ton. The new positions

Chapter 6. Developable approximation 47

are computed as the solution of a simple quadratic minimization problem,

min
vi ,d

3

∑
i=1

(v0
i −vi)2 sub j. to vi ·n−d = 0 (6.2)

It is often useful to fix the position of some of the vertices of the input model.

For instance, when developing the skirt mesh (Figure6.1), to keep the waist-line of a

skirt unchanged the positions of the vertices on the waist boundary were fixed. This

requirement is easily satisfied by removing the specified vertices from the minimization

formula. The system will have a solution as long as one vertex in the triangle remains

free.

After all the triangles are moved to their respective local approximating surfaces,

the triangles are no longer connected (Figure6.3), and need to be glued back together

as described in the following section.

Figure 6.3: Each triangles is translated separately to the approximating developable

surfaces. The mesh connectivity is broken.

6.2.3 Gluing

The triangles are glued together by applying an appropriate linear transformation to

each triangle. The transformations are formulated using the local frames of the tri-

angles. The local frame is defined using the three triangle vertex positionsv1,v2 and

v3, and a fourth pointv4 found by offsetting one of the vertices by the triangle normal

[42]. The local coordinate frameV is then defined asV = (v4− v1,v4− v2,v4− v3).

Chapter 6. Developable approximation 48

The transformation gradient expressed in terms of the local frames before and after the

transformation (V andṼ) is ṼV−1 [42]. To preserve the normal and remain close to the

original surface, the transformation gradient should be close to identity,

min
ṽ

∑
j
‖ṼjV

−1
j − I‖2

F , (6.3)

whereI is a 3×3 identity matrix, and the indexj goes over the mesh triangles. In cases

where the surfaces was pre-segmented into a number of panels, this stages is applied

to the entire mesh. This is important since we not only want the triangles within each

panel to be glued together, but also the panels to remain connected across seams.

6.2.4 Unfolding

To obtain planar patterns, the algorithm unfolds the surface panels (Figure6.4). ABF++ [38]

conformal (shear minimizing) parameterization is used to unfold the panels. ABF++

generates zero-distortion parameterization for truly developable surfaces, and mini-

mizes shear when distortion is inevitable. Figure6.5shows two outfits with their cor-

responding texture maps and the resulting 2D patterns.

Figure 6.4: Panel unfolding using ABF++[38].

6.3 DCS approximation results

The DCS approximation algorithm was developed in the context of a virtual garment

design system. Input meshes were generated using an intuitive sketching system based

Chapter 6. Developable approximation 49

Figure 6.5: Texture mapped garments and corresponding patterns.

on that of Turquin et al. [43]. A 3D shape for the virtual garment is deduced from con-

tour lines drawn by the user in 2D over a front (or back) view of a virtual mannequin.

The sketching system was further enhanced to enable the addition of seam-lines and

darts [5]. Figure6.6(left) shows an example sketch.

Figure 6.6: From sketch to garment. Left to right: sketched contours and darts; 3D

shape computed using distance field; piecewise developable surface; final virtual gar-

ment, compared with the real one sewn from the 2D patterns we output.

Next, each surface panel was approximated with a developable surface and un-

folded into a 2D pattern using the DCS approximation method described above (Figure

6.6(center)). All the results were generated on a P4 3GHz machine using the Graphite

software package [10]. The runtime of the approximation method is a function of

the mesh size, where one iteration of approximation on the 7K faces skirt (Figure6.7)

takes about 29 seconds.

The developed surfaces and the 2D patterns were then used as input to a procedural

fold modeling algorithm, in order to create realistic looking 3D buckling folds without

performing cloth simulation [5]. For the shirt and skirt models, the 2D patterns were

also used to sew real garments as shown in Figures6.6(right) and6.7(right).

Chapter 6. Developable approximation 50

Figure 6.7: From sketch to garment. Left to right: sketched contours and darts; piece-

wise developable surface; final virtual garment, compared with the real one sewn from

the 2D patterns.

To evaluate the improvement in the degree of developability for each surface, we

measured the distortion created during the unfolding process. Table6.1 lists the statis-

tics for the models shown in the paper. To test the method on an example with higher

initial distortion, the skirt model without any darts was used as input. As shown in the

table, the distortion before the approximation is quite high, but is drastically reduced

after applying our approximation algorithm.

Additionally, we compared the DCS approximation method with the Gaussian cur-

vature based method of Wang and Tang [44], which is currently the only other method

applicable to 3D meshes. Table6.1shows that the improvement achieved by DCS ap-

proximation is better. Moreover, two more significant differences are noted. First, the

DCS approximation does not introduce folds and wrinkles into the mesh. This effect

is particularly undesirable in our setting, since a well fitting garment should ideally

have no wrinkles beyond those caused by external physical forces such as collisions

and gravity. Figure6.8 shows a comparison of the mean curvature across the surface,

and demonstrates that DCS approximation actually reduces the mean curvature. Sec-

ond, the DCS approximation method is not influenced by the existence of local minima

encountered when optimizing the Gaussian curvature, and is therefore capable of op-

erating on surfaces which are not initially sufficiently close to being developable.

Chapter 6. Developable approximation 51

skirt shirt bra mini skirt pant leg∗ skit no darts

#faces 6818 7016 1366 2923 936 6818

#panels 2 6 2 2 1 2

input mesh

Lstretch
2 1.003 1.005 1.0015 1.0012 1.008 1.01

Lstretch
∞ 1.122 1.137 1.119 1.0855 1.0786 1.537

Lshear
2 4.6e-5 3e-4 1.5e-4 3.5e-5 8.4e-5 1.4e-4

modified mesh

Lstretch
2 1.00035 1.0014 1.0005 1.0002 1.0001 1.0005

Lstretch
∞ 1.056 1.075 1.096 1.021 1.0157 1.064

Lshear
2 2.99e-6 6.21e-5 3.2e-5 9.2e-7 2.4e-6 2.9e-6

Table 6.1: DCS approximation statistics.∗For comparison, the distortion for the output

generated by Wang [44] is (Lstretch
2 = 1.00015, Lstretch

∞ = 1.0232, Lshear
2 = 3.4e−6).

(a) (b) (c)

Figure 6.8: Curvature comparison with Wang et al. [44]: (a) input mesh; (b) result pro-

vided by Wang; (c) DCS approximation output. The coloring shows the mean curvature

of the surface. The statistics for the models are listed in Table6.1.

52

Chapter 7

Summary and conclusions

This thesis focuses on developable surfaces, 3D meshes, and mesh processing algo-

rithms that take advantage of the developable surface properties. The main challenge

faced when dealing with developable surfaces represented as meshes is how to charac-

terize these surfaces. This thesis presents a novel method of capturing these surfaces.

The DCS descriptorand fitting error defined in Section4.3 provide simple and ro-

bust tools for detecting, measuring, and approximating developable charts in meshes.

This tool is more advanced compared to previously used techniques such as usage of

planar charts, which are developable yet quite restrictive, or Gaussian curvature based

methods which are subject to numerical instabilities. Based on this concept two novel

algorithms were created. First, an algorithm namedD-Chartsfor (nearly) developable

mesh segmentation (Chapter5). Second,DCS approximation, an algorithm for devel-

opable surface approximation (Chapter6).

Mesh segmentation has numerous applications in computer graphics [37]. As de-

scribed in Chapter1, developable segmentation is the first step required when creating

model atlases for texturing or patterns. To preserve the texture and other attributes

during mapping, the parameterizations should be as close as possible to being isomet-

ric, since only these do not introduce distortion. This is possible only if the charts are

nearly developable.

As demonstrated by the examples in Section5.4, D-Charts successfully segments

meshes into compact (nearly) developable charts. Mechanical models are segmented

into their developable components, producing isometric texture atlases, while for other

models for which a compact developable segmentation does not exist, the segmentation

is based on a user-prescribed developability tolerance. As evident from the comparison

Chapter 7. Summary and conclusions 53

in table5.1 the algorithm is more suitable for texture atlas generation than previous

segmentation techniques. The D-Charts algorithm also provides a first step toward

fully automatic pattern design, an important problem which previous research did not

seriously address. Based on the segmentation algorithm an automatic method for pat-

tern design, focusing on the design of soft, stuffed toys is introduced. To demonstrate

the practicality of the technique, design patterns for several popular computer graphics

models were created and then used to construct physical copies of the models out of

fabric or paper.

Approximating surfaces with developable surfaces is a useful feature in many de-

sign processes. Chapter1 explains how developable surfaces play a key role in any

manufacturing industry requiring patterns for sewing, metal forming and forging, or

any other fabrication applications where 3D objects are constructed from sheets of ma-

terial.

Chapter6 describes the developable approximation method developed as part of

this thesis. As demonstrated in Section6.3, DCS approximation method is particu-

larly useful, since it may be applied to meshes that are not close to being developable.

Moreover, in contrast to previous methods, it increases surface developability without

introducing additional wrinkles. The method was combined with a sketching interface

and fold modeling system to provide a novel solution for the design of virtual garments.

In this system, an initial rough geometry of the garment, created using the sketching

interface, is approximated by a piecewise developable surface. Since the approximated

surface is piecewise developable, computing the 2D sewing patterns and distortion-free

texture mapping becomes straight-forward, and real replicas of the designed garments

can be sewn.

Together these algorithms demonstrate advantages of using theDCS descriptorand

fitting error for detecting, measuring, and approximating developable charts in meshes.

54

Chapter 8

Future work

An important consideration when modeling 3D objects is symmetry. For instance,

most garment patterns and many soft toys have a clear symmetry axis. An important

improvement to the D-Charts algorithm, is to correctly identify this symmetry before

processing the models in order to enforce the desired symmetry in the 2D patterns.

Moreover, for any machine based fabric cutting or stamping method, if several charts

have the same shape (up to mirroring), the cutting becomes much simpler.

Common to allK-meansclustering or Max-Lloyd methods is the manual selection

of the parameterK. While D-Charts does partially address this problem usingholes

andmerging(Sections5.2.2and5.2.3), an initial reasonable estimate is still required.

A generic method to provide an initial guess applicable to any type of model would

further improve the algorithm.

The shape of chart boundary curves is also of great importance in many applica-

tions. Currently the DCS approximation allows only simple constraints of fixing ver-

tices in place, while the D-Charts algorithm does not address this issue at all. Smooth

boundaries and curvature constraints would probably simplify the cutting and sewing

processes.

Section6.2.1of the DCS approximation algorithm, which explains how local neigh-

borhoods are found, raises an interesting question — How do we estimate the optimal

neighborhood size? While currently this is left as a user defined parameter, it would be

interesting to find optimal neighborhoods automatically. One possible approach would

be to use a grow-reseed method, such that neighborhoods are grown and shrunk until

they are optimally fitted around each triangle.

Finally, it would be of great interest to further broaden the set of developable sur-

Chapter 8. Future work 55

faces handled. By extending the proxy definitions to capture more general developable

surfaces, or improving the methods to better handle non-smooth surfaces, better and

less restrictive results may be achieved.

56

Bibliography

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin,

and Claudio T. Silva. Point set surfaces. InVIS ’01: Proceedings of the conference

on Visualization ’01, pages 21–28, Washington, DC, USA, 2001. IEEE Computer

Society.

[2] H.-Y. Chen, I.-K. Lee, Stefan Leopoldseder, Helmut Pottmann, Thomas Randrup,

and Johannes Wallner. On surface approximation using developable surfaces.

Graphical Models and Image Processing, 61(2):110–124, 1999.

[3] Paolo Cignoni, Claudio Rocchini, and Roberto Scopigno. Metro: measuring error

on simplified surfaces. Technical report, Paris, France, France, 1996.

[4] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. Variational shape ap-

proximation.ACM Trans. Graph., 23(3):905–914, 2004.

[5] Philippe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Sheffer,

and Marie-Paule Cani. Virtual garments: A fully geometric approach for clothing

design.Submitted, 2006.

[6] Gershon Elber. Model fabrication using surface layout projection.Computer-

Aided Design, 27(4):283–291, 1995.

[7] M. S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In

N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors,Advances in Multireso-

lution for Geometric Modelling, Mathematics and Visualization, pages 157–186.

Springer, Berlin, Heidelberg, 2005.

Bibliography 57

[8] Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical face clus-

tering on polygonal surfaces. InSI3D ’01: Proceedings of the 2001 symposium

on Interactive 3D graphics, pages 49–58. ACM Press, 2001.

[9] Natasha Gelfand and Leonidas J. Guibas. Shape segmentation using local slip-

page analysis. InSGP ’04: Proceedings of the 2004 Eurographics/ACM SIG-

GRAPH symposium on Geometry processing, pages 214–223, New York, NY,

USA, 2004. ACM Press.

[10] Graphite, 2003. http://www.loria.fr/∼levy/Graphite/index.html.

[11] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. InSIG-

GRAPH ’02: Proceedings of the 29th annual conference on Computer graphics

and interactive techniques, pages 355–361. ACM Press, 2002.

[12] M. Guthe and R. Klein. Automatic texture atlas generation from trimmed NURBS

models.Computer Graphics Forum, 22(3):453–453, 2003.

[13] Takeo Igarashi and Dennis Cosgrove. Adaptive unwrapping for interactive texture

painting. InSI3D ’01: Proceedings of the 2001 symposium on Interactive 3D

graphics, pages 209–216. ACM Press, 2001.

[14] Dan Julius, Vladislav Kraevoy, and Alla Sheffer. D-charts: Quasi-developable

mesh segmentation. InComputer Graphics Forum, Proceedings of Eurographics

2005, volume 24, pages 581–590, Dublin, Ireland, 2005. Eurographics, Black-

well.

[15] Sagi Katz, George Leifman, and Ayellet Tal. Mesh segmentation using feature

point and core extraction.The Visual Computer, 21(8-10):649–658, 2005.

[16] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy cluster-

ing and cuts.ACM Trans. Graph., 22(3):954–961, 2003.

[17] Simon Kolmanic and Nikola Guid. A new approach in cad system for designing

shoes.Journal of Computing and Information Technology, 11(4), 2003.

Bibliography 58

[18] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense poly-

gon meshes. InSIGGRAPH ’96: Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques, pages 313–324. ACM Press,

1996.

[19] In-Kwon Lee. Curve reconstruction from unorganized points.Comput. Aided

Geom. Des., 17(2):161–177, 2000.

[20] Stefan Leopoldseder and Helmut Pottmann. Approximation of developable sur-

faces with cone spline surfaces.Computer-aided Design, 30(7):571–582, 1998.

[21] D. Levin. The approximation power of moving least-squares.Math. Comput.,

67(224):1517–1531, 1998.

[22] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares

conformal maps for automatic texture atlas generation. InSIGGRAPH ’02: Pro-

ceedings of the 29th annual conference on Computer graphics and interactive

techniques, pages 362–371. ACM Press, 2002.

[23] Stuart P. Lloyd. Least squares quantization in PCM.Bell Telephone Laboratory

Memorandum (1957), reprint IEEE Transactions on Information Theory IT-28, 2

(Mar 1982), 129-I37, 1957.

[24] Jérôme Maillot, Hussein Yahia, and Anne Verroust. Interactive texture mapping.

In SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer

graphics and interactive techniques, pages 27–34, New York, NY, USA, 1993.

ACM Press.

[25] Maya cloth. InMaya cloth user manual, Alias, 2004.

[26] J. McCartney, B. K. Hinds, and B. L. Seow. The flattening of triangulated surfaces

incorporating darts and gussets.Computer-Aided Design, 31(4):249–260, 1999.

[27] Jun Mitani and Hiromasa Suzuki. Making papercraft toys from meshes using

strip-based approximate unfolding.ACM Trans. Graph., 23(3):259–263, 2004.

Bibliography 59

[28] Barbara Pearl.Math in Motion: Origami in the Classroom K-8. Math in Motion,

1999.

[29] M. Peternell. Recognition and reconstruction of developable surfaces from point

clouds. InProceedings of ’Geometric Modeling and Processing 2004’, pages

301–310. Elsevier Science, 2004.

[30] Martin Peternell. Developable surface fitting to point clouds. InComputer Aided

Geometric Design, pages 785–803, 2004.

[31] H. Pottmann and J. Wallner. Approximation algorithms for developable surfaces.

Comput. Aided Geom. Design, 16:539–556, 1999.

[32] Helmut Pottmann and T. Randrup. Rotational and helical surface approximation

for reverse engineering.Computing, 60(4):307–322, 1998.

[33] Helmut Pottmann and Johannes Wallner.Computational Line Geometry. Springer

Verlag, 2001.

[34] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-chart ge-

ometry images. InSGP ’03: Proceedings of the Eurographics/ACM SIGGRAPH

symposium on Geometry processing, pages 146–155. Eurographics Association,

2003.

[35] Pedro V. Sander, Steven J. Gortler, John Snyder, and Hugues Hoppe. Signal-

specialized parametrization. InEGRW ’02: Proceedings of the 13th Eurographics

workshop on Rendering, pages 87–98. Eurographics Association, 2002.

[36] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture

mapping progressive meshes. InSIGGRAPH ’01: Proceedings of the 28th annual

conference on Computer graphics and interactive techniques, pages 409–416.

ACM Press, 2001.

[37] Ariel Shamir. A formulation of boundary mesh segmentation. In3DPVT, pages

82–89, 2004.

Bibliography 60

[38] A. Sheffer, B. Ĺevy, M. Mogilnitsky, and A. Bogomyakov. ABF++: fast and

robust angle based flattening.ACM Trans. Graph., 24(2):311–330, 2005.

[39] Alla Sheffer and John C. Hart. Seamster: inconspicuous low-distortion texture

seam layout. InVIS ’02: Proceedings of the conference on Visualization ’02,

pages 291–298. IEEE Computer Society, 2002.

[40] Dennis R. Shelden. Digital surface representation and the constructibility of

gehry’s architecture, 2002.

[41] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski.

Bounded-distortion piecewise mesh parameterization. InVIS ’02: Proceedings

of the conference on Visualization ’02. IEEE Computer Society, 2002.

[42] R. W. Sumner and J. Popovic. Deformation transfer for triangle meshes.ACM

Trans. Graph., 23(3):399–405, 2004.

[43] E. Turquin, M-P. Cani, and J. F. Hughes. Sketching garments for virtual charac-

ters.EG Workshop on Sketch-Based Interfaces and Modeling, August 2004.

[44] C. C. L. Wang and K. Tang. Achieving developability of a polygonal surface by

minimum deformation: a study of global and local optimization approaches.The

Visual Computer, 20(8-9):521–539, 2004.

[45] C. C. L. Wang, Y. Wang, and M. M. Yuen. On increasing the developability of a

trimmed nurbs surface.Eng. Comput. (Lond.), 20(1):54–64, 2004.

[46] Charlie C. L. Wang, Kai Tang, and Benjamin M. L. Yeung. Freeform surface flat-

tening based on fitting a woven mesh model.Computer-Aided Design, 37(8):799–

814, 2005.

[47] Jianhua Wu and Leif Kobbelt. Structure recovery via hybrid variational sur-

face approximation. InComputer Graphics Forum, Proceedings of Eurographics

2005, volume 24, page 277, Dublin, Ireland, 2005. Eurographics, Blackwell.

[48] Xiang, Held, and Mitchell. Fast and effective stripification of polygonal surface

models (short). InSODA: ACM-SIAM Symposium on Discrete Algorithms (A

Bibliography 61

Conference on Theoretical and Experimental Analysis of Discrete Algorithms),

1999.

[49] Hitoshi Yamauchi, Stefan Gumhold, Rhaleb Zayer, and Hans-Peter Seidel. Mesh

segmentation driven by gaussian curvature.The Visual Computer, 21(8-10):649–

658, September 2005.

[50] Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. Iso-charts:

Stretch-driven mesh parameterization using spectral analysis. InProceedings of

the Eurographics/ACM SIGGRAPH symposium on Geometry processing. Euro-

graphics Association, 2004.

[51] Inc Ziena Optimization. http://www.ziena.com/knitro.html.

	Abstract
	Contents
	List of Tables
	List of Figures
	Preface
	Acknowledgements
	Co-Authorship statement
	Introduction
	Developable surfaces
	Applications
	Mesh segmentation
	Developable approximation

	Background
	Definition
	Developable surfaces as ruled surfaces
	Dual representation
	Non-smooth developable surfaces
	Developability and distortion metrics

	Related work
	Mesh segmentation
	Texture atlas generation
	Pattern design

	Surface approximation with developables

	Research contribution
	Mesh segmentation into developable charts
	Mesh approximation with developable surfaces
	Developability and the DCS descriptor

	Mesh segmentation into developable charts
	D-Charts algorithm overview
	Cost function

	Algorithm stages
	Modified Lloyd Iterations
	Filling holes
	Post-processing

	Pattern design
	D-Charts results
	Texture atlases
	Soft toys

	Developable approximation
	DCS approximation method overview
	Algorithm stages
	Local approximation
	Triangle Transformation
	Gluing
	Unfolding

	DCS approximation results

	Summary and conclusions
	Future work
	Bibliography

