
Role-Based Control of Shared Application Views

by

Lior Berry

B.Sc., Tel Aviv University, 1998

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

August 19, 2005

c© Lior Berry, 2005

ii

Abstract

Collaboration often relies on all group members having a shared view of a single-user appli-
cation. A common situation is a single active presenter sharing a live view of her workstation
screen with a passive audience, using simple hardware-based video signal projection onto
a large screen or simple bitmap-based sharing protocols. This offers simplicity and some
advantages over more sophisticated software-based replication solutions, but everyone has
the exact same view of the application. This conflicts with the presenter’s need to keep
some information and interaction details private. It also fails to recognize the needs of the
passive audience, who may struggle to follow the presentation because of the amount of
interaction details, display clutter or insufficient familiarity with the application.

Views that cater to the different roles of the presenter and the audience can be pro-
vided by custom solutions, but these tend to be bound to a particular application. This
thesis describes a general technique and implementation details of a prototype system that
allows standardized role-specific views of existing single-user applications and permits ad-
ditional customization that is application-specific with no change to the application source
code. Role-based policies control manipulation and display of shared windows and image
buffers produced by the application, providing semi-automated privacy protection, relaxed
verbosity and added visual cues to meet both presenter and audience needs.

The system’s prototype was evaluated in a formal user study, in a task training scenario
using a shared view. The study showed that adding visual cues improves accuracy, while
privacy filters do not result in performance penalties but can even assist viewers.

iii

Contents

Abstract . ii

Contents . iii

List of Tables . vii

List of Figures . viii

Acknowledgements . x

1 Introduction . 1

1.1 Sharing an application View . 2

1.2 Motivation . 4

1.3 Our contribution . 7

1.4 Thesis Outline . 8

2 Privacy and Augmentation Problems . 9

2.1 Scenario: Semi-structured presentation . 10

2.2 Scenario: Brain-storming with multiple content sources 11

2.3 Scenario: Access Control for desktop sharing 12

2.4 Privacy Concerns . 13

2.4.1 Privacy vs. Security . 14

2.4.2 Privacy properties of presentation scenarios 14

2.4.3 Privacy Risk Management . 16

2.4.4 Private Information Sources in View Sharing 17

2.5 Improving the Audience Experience . 19

2.5.1 Inadequacy of single-user GUIs for passive viewers 20

2.5.2 Controlling verbosity . 22

Contents iv

2.5.3 Mitigating visual clutter . 23

3 Related Work and Literature . 25

3.1 Collaboration-Aware Solutions . 25

3.2 Collaboration-Transparent Solutions . 27

3.2.1 Centralized tools . 28

3.2.2 Replication-based tools . 29

3.3 Screen Recording tools . 31

3.4 Spatial and Window Set Manipulations . 32

3.5 Visual manipulations . 33

3.6 Multi-Machine User Interfaces solutions . 35

3.7 Single Display Privacyware . 35

3.8 Presentation tools . 36

3.9 Presentation Authoring . 36

3.10 Animation . 38

4 System Description . 41

4.1 Core Functionality and Components . 41

4.1.1 Cloning Windows . 41

4.1.2 “Semantic glue” queries . 43

4.1.3 Plug-In Architecture . 45

4.1.4 Policies and rules . 52

4.2 Manipulating the Visual Representation . 55

4.2.1 Blurring . 55

4.2.2 Salience and highlighting . 57

4.2.3 Spatial manipulations . 58

4.2.4 Temporal manipulations . 59

4.2.5 Handling Menus . 60

4.2.6 Mouse Cursor manipulations . 61

4.3 Access Control Extension for Input . 61

4.4 Feedback and Control . 62

4.4.1 Radar View . 62

4.4.2 Changing Privacy Classification . 63

Contents v

4.4.3 Plug-In UI . 63

4.4.4 Audience input . 64

4.5 Limitations . 66

4.5.1 Identifying private information . 66

4.5.2 Working on the image buffer . 67

4.5.3 Performance . 67

4.5.4 Feedback for the presenter . 68

5 User Study . 75

5.1 Methodology . 76

5.1.1 Experimental Design . 78

5.2 Method . 79

5.2.1 Participants . 79

5.2.2 Instruments and Data Collection . 79

5.2.3 Procedure . 82

5.3 Results . 83

5.3.1 Measuring Performance . 83

5.3.2 Quantitative Analysis . 84

5.3.3 Questionnaire Analysis . 92

5.4 Summary and conclusions . 98

5.4.1 Effects on performance . 99

5.4.2 Balancing privacy and augmentations 100

5.4.3 Perceived utility . 101

6 Future Work and Conclusions . 102

6.1 Future Work . 102

6.1.1 System improvements . 102

6.1.2 Future studies . 104

6.2 Conclusions . 105

Bibliography . 109

A Questionnaire . 114

Contents vi

B Task Descriptions . 117

B.1 Marking Scheme . 117

B.2 Task descriptions . 120

vii

List of Tables

1.1 Categories of View Sharing . 2

4.1 The Plug-In API . 49

5.1 Subject familiarity with Excel functionality 80

5.2 Performance - Repeated Measures ANOVA 85

5.3 Overall functionality training effectiveness 95

viii

List of Figures

1.1 The unexpected “hazards” of sharing a desktop 5

2.1 Privacy Concerns in a Collaborative Session 10

2.2 Sharing content from multiple laptops . 12

2.3 Fine Grained Access Control . 13

2.4 Perceptual gap between presenter and viewers 21

2.5 Inadequacy of conventional GUI for Passive Viewers 22

3.1 Custom GroupKit controls to assist viewers 26

3.2 Design Space of Collaborative Applications 27

3.3 Manual control of shared views . 39

3.4 Sharing screens for awareness . 40

3.5 Visual Surface Manipulations . 40

4.1 System Architecture . 42

4.2 Use of Extended Desktop Mode . 43

4.3 Using Accessibility Information . 51

4.4 Obtaining menu information . 52

4.5 Semantic driven blurring (Spreadsheet) . 55

4.6 Miscellaneous Blurring Examples . 56

4.7 Spatial Manipulations . 59

4.8 Temporal Manipulations – Iconic Indicators 69

4.9 Manipulating Menus . 70

4.10 Overriding Cursors . 71

4.11 Radar View . 72

4.12 PrivacyControls . 73

4.13 Highlighting Examples . 74

List of Figures ix

5.1 Subject Excel Expertise . 80

5.2 Task Accuracy . 86

5.3 Effects of condition on speed . 87

5.4 Effects of condition on efficiency . 88

5.5 P × A interaction . 89

5.6 TASK × P × A interaction . 90

5.7 Condition effects on accuracy per task . 91

5.8 Training Experience I . 94

5.9 Training Effectiveness . 95

5.10 Feature ratings . 97

x

Acknowledgements

I would like to thank my supervisory committee Dr. Kellog Booth, Dr. Lyn Bartram and
Dr. Brian Fisher for providing useful feedback and advice and keeping me intrigued all
along the way. I would also like to thank Gail Murphy (the second reader) and Ritchie
Argue for providing helpful comments on the last versions of the thesis, Maureen Stone for
her resourceful comments early on and Barry Po for his tips and assistance. I also thank the
members of the Imager Lab and the Interaction Design Reading Group (IDRG). Funding
for this research was provided by the Natural Sciences and Engineering Research Coun-
cil of Canada under its Discovery Grant and Research Network Grant programs, through
NECTAR, the Network for Effective Collaboration Technology through Advanced Research.
Facilities and research infrastructure were provided by the Canadian Foundation for Inno-
vation awards, including the WestGrid high performance computing initiative.

Dedicated to my beloved wife, Tamar, and my children, Adi and Tal, who supported me
in this journey.

In memory of my parents, Tamar and Moshe.

LIOR BERRY

The University Of British Columbia
August 2005

1

Chapter 1

Introduction

People working in groups increasingly rely on the ability to share views of an entire work

session or a specific application for co-located or distributed cooperative work. Although

new tools and frameworks introduced in recent years support a wide range of collaboration

formats, the dominant format is still that of a single person, the presenter, sharing a view

of her workstation while others, the audience, watch. This generalized presentation setting

applies to people giving conference or classroom presentations, demonstrating software,

training others, or engaging in collaborative work where a shared document on a public

display is the focus for group discussion. It differs from traditional presentations in its ad

hoc, extemporaneous nature, and that it is not restricted to applications that are specifically

designed for presentations, but instead utilizes any and all of the applications used in normal

day-to-day work. Unlike traditional presentations, where the presenter prepares all of the

material in advance and may even have one or more rehearsals with “safe” audiences, the

generalized presentation is akin to “performing without a net”. The goal of the research

described in this thesis is to support this style of shared viewing during collaboration.

Other more symmetrical patterns of collaboration are also possible, where all partici-

pants can equally interact with a shared application. However, this mode is far less common.

There are technological hurdles to adapting existing desktop tools for more elaborate col-

laborative modes. There are also social considerations that come to into play: people do

not easily move away from tools with which they are already familiar. The generalized

presentation scenario mimics the teacher-class model and relies on an intrinsic asymmetry

of roles and needs: viewers in the audience expect to be passive; the presenter is active.

Our focus is on supporting the asymmetric roles in a generalized presentation by adapting

the full spectrum of single-user applications to shared viewing for collaborative use.

The assumption of assymmetric roles may seem unrealistic, but even in scenarios such

as collaborative editing, where roles are more equal, there is usually a turn-taking pattern.

Chapter 1. Introduction 2

Time

P
la

ce

Same Different

Same

Face-to-face meet-
ing - shared display
(large room display or
workstation screen)

Sharing a copy of a
document or Video
recording of inter-
actions (locally)

Different

Tele video / desk-
top conferencing
or collaborative syn-
chronous editors

Sharing a copy of a
document or Video
recording of inter-
actions (over the net-
work)

Table 1.1: View sharing options categorized based on time and place (adapted from
Grudin’s groupware options model, 1994).

So at any point in time there is a single editor (the presenter) and all others are just viewers

(the audience).

There is a range of solutions to facilitate a shared view of an application or work session.

An important distinction is whether a solution is based on the collaboration-transparency

principle and works with collaboration-unaware applications. These solutions do not require

the application to know a view of it is being shared and hence no source code changes to

the applications are necessary. This stands in contrast to collaboration-aware applications

that are specifically designed to support cooperative work and shared views.

Another important distinction is the synchronous or asynchronous nature of the solution

(same time or different time) and whether the solution works for co-located or distributed

participants (see Table 1.1).

We chose to focus our work on collaboration-unaware solutions, mostly because people

tend to share existing end-user tools that have no built-in collaboration or view sharing

capabilities. We also chose to focus on synchronous, co-located solutions that most closely

correspond to the general presentation scenarios. We will argue in Chapter 6, however, that

our approach can be extended to synchronous distributed solutions and to asynchronous

use of screen recordings.

1.1 Sharing an application View

For co-located groups, view sharing is usually achieved by replicating the video signal from

the presenter’s computer onto an external public display (using a projector or a large screen

Chapter 1. Introduction 3

display). For distributed groups, bitmap-based screen sharing protocols such as the remote

frame buffer protocol used in VNC (Richardson, Stafford-Fraser, Wood, and Hopper 1998)

provide view sharing. We will consider both of these to be equivalent, and will refer to them

as “bitmap-based screen sharing” without distinguishing between hardware and software

implementations, or between analog and digital formats. Functionally, both solutions are

equivalent. Essentially, a bitmap that contains a copy of the presenter’s visual display is

conveyed via a video cable or over a network onto another display and is kept updated as

the presenter makes changes.

These solutions afford important properties that more sophisticated collaboration-aware

solutions (discussed in Chapter 3) may be hard-pressed to achieve. We believe that the

following properties will continue to make bitmap-based view sharing schemes a favorable

and viable solution for the foreseeable future:

• Collaboration transparency - collaboration is transparent because any application

can be shared without requiring it to know it is shared or requiring code changes

• Minimal software & hardware demands - viewers do not need to install the

shared application, which is often an unacceptable imposition due to licensing restric-

tions, computation power limitations, operating system incompatibilities, or similar

issues. The only extra hardware required is a projector or a network connection.

• Synchronized views - there is no need to synchronize views between the presen-

ter and audience because only one copy of the application is running so everyone is

guaranteed to see the same view.

The last point allows referential transparency: the presenter and the viewers can eas-

ily refer to the same objects in the same location within an application window. Sharing

a bitmap of the application view also facilitates easy manual drawing, highlighting, and

annotating on top of the view. For these and other reasons, synchronized views are de-

sirable. Our system maintains them at all times, except when an explicit choice has been

made to alter the views seen by different participants based on their respective roles in the

collaboration.

We allow exceptions to synchronizing views because forcing synchronized views is also

the chief drawback of many existing schemes. A strict “What You See Is What I See”

Chapter 1. Introduction 4

(WYSIWIS) mode in which all viewers are forced to share the exact same view that the

presenter sees, despite the roles that they play within the group, conflicts with the different

needs of the presenter and audience. A “relaxed WYSIWIS” mode has been suggested

in the literature (Stefik, Bobrow, Foster, Lanning, and Tatar 1987) to address this prob-

lem. Unfortunately, none of the current bitmap-based solutions implement this successfully

(Begole, Rosson, and Shaffer 1999).

In this thesis we present a relaxed WYSIWIS mode that retains all of the advantages of

traditional bitmap-base sharing. It addresses two of the main needs: maintaining the pre-

senter’s privacy and adapting views to improve the viewers’ ability to follow the presenter’s

interactions.

1.2 Motivation

Before describing our solution, we explain the two problems that led us to develop our tech-

niques. These both occur frequently in generalized presentations. Having introduced the

problems we set out to solve, we conclude the chapter with a summary of our contributions

and outline the rest of this thesis.

Presenter’s Privacy

The initial problem motivating our work was the lack of support for presenter privacy.

While generally interested in sharing a view with her audience, there are often interactions

or display components a presenter would like to keep private. These may be interactions

with other running applications on the desktop or with parts of the shared application that

are deemed private.

Some components may contain embarrassing information (such as a navigation history

list or an open Instant Messenger client with incoming messages that may not be appropriate

for the audience to see). The exposure of some components may be beyond simple embar-

rassment. For example, exposing a file open dialog that shows files with sensitive client

names in a business meeting or exposing parts of a worksheet with confidential parameters

could be fatal to a business relationship. Figure 1.1 provides a graphic example.

The need to limit publicly shared information will only intensify as collaboration tech-
1See one example at http://www.flickr.com/photos/digitalweb/3797979/ (last checked August 8th, 2005).

Chapter 1. Introduction 5

Figure 1.1: Exposing a full desktop is often undesirable. This presenter has left his instant
messenger client open when presenting a document from his laptop. A colleague
sends him an instant message with sensitive information that is now viewed by
all meeting participants. Similar scenarios are quite common in the real world
(some are even documented online1).

nologies and application sharing become part of day-to-day work (both co-located and

distributed). It is becoming very common for meeting participants to bring in their laptops

and be asked to extemporaneously present materials on a public screen. Presenters may

find themselves in an ad hoc presentation-like mode without having the time to prepare or

while having to do other tasks on their computer in parallel.

Recent work (Hawkey and Inkpen 2005) shows that in similar ad hoc scenarios most peo-

ple would like to take measures to minimize the exposure of private information. (Hawkey

focused on accidental exposures of cached web browsing information. It is reasonable to

assume the same patterns apply to more sensitive data.)

There are lots of existing mechanisms that can assist users in protecting private infor-

mation. However, it is not clear that someone engaged in a live presentation can attend

effectively to her privacy at the same time she is attending to the quality of the presentation.

To make the situation worse, there is also a growing number of applications and compo-

nents that invade one’s desktop autonomously and carry sensitive information: instant

messneger arrivals, network notifications, assistive wizards, and a slew of other mechanisms

all designed to increase the effectiveness of a single user in dedicated, non-shared activities.

These applications may be crucial for the presenter and should be kept active, but must not

be exposed to viewers in the audience. Some automation of privacy protection is therefore

Chapter 1. Introduction 6

called for to enable the presenter to focus on her primary task (the presentation) without

worrying about the secondary tasks that are supporting the presentation task.

Assisting Passive Viewers

A different problem arises when we consider the audience experience. Passive viewers may

wish to control the type and level of information presented to them and they may require

assistive cues to accurately follow the presenter’s interactions with an application.

Passive viewers often find themselves visually searching for the current point of interac-

tion. This problem is intensified on large screen displays, where mouse cursors and other

UI components are hard to track (Baudisch, Cutrell, and Robertson 2003). In other cases

the audience is forced to view tedious interactions by the presenter (such as searching for a

menu item or adjusting display parameters) that are irrelevant to their interests and create

visual clutter and distraction. Conversely, some manipulations a presenter makes have no

associated visual feedback that passive viewers can follow (such as when a “hot key” is used

to invoke a command instead of using a menu selection that will be seen on the screen).

Viewers will therefore miss important cues in all these situations.

These needs require adapting the shared view to display less information in some cases,

and to display more information in other cases. Indeed, existing screen recording tools that

were designed to produce training videos, such as Camtasia,2 allow visual enhancements and

cleanup to be applied to a recorded movie in a separate “post production” editing session.

Being able to apply these enhancements in real time and in an automated way would be

beneficial for effective collaboration.

Role-Appropriate Views

The two problems presented here, protecting the presenter’s privacy and tailoring the audi-

ence’s experience, are actually both manifestations of the need to provide role-appropriate

views of an application to every group member. One approach is to use more elaborate

collaboration-aware tools or to adapt existing tools to run in a synchronized mode (Xia

et al. 2004), so that presenter and audience have similar but non-identical views.

While custom solutions enable one to flexibly craft views as desired, they fall far short

of meeting the advantages of existing bitmap-based protocols that were outlined before
2http://www.techsmith.com (last checked August 8th, 2005)

Chapter 1. Introduction 7

because they usually require all parties to have a copy of the application and they depend

strongly on application-specific features. Evidence for this claim is the fact that time and

time again people resort to bitmap-based sharing rather than adopting more sophisticated

solutions. For this reason we believe that any improvements to bitmap-based sharing modes

are highly relevant to improving collaboration “in the field”.

1.3 Our contribution

We have developed a novel framework for adapting a live shared view of applications to

meet the presenter’s privacy requirements and to provide viewers with suitable cues and

level of detail, balancing concerns for privacy and awareness. Our system uses bitmap-based

techniques to transparently share visual information, while allowing policies to be specified

that control the generation of different views for the different roles within a collaborating

group by reusing the visuals from the running application in a systematic way that does

not depend strongly on the inner workings of the application.

To achieve this, the system conducts an “over the shoulder” monitoring of what the

presenter is doing, actively manipulating the published visuals in three ways:

• hierarchically based spatial transformations for selective sharing, repositioning and

scaling of application components (including sub-window regions), or replacement of

entire components with standardized iconic representations are applied to the bitmap

as it is replicated (or cloned) on the shared display;

• simple local or global chromatic image filters, such as blurring or highlighting, are

applied to the visual surface of the application so that specific components that are

most salient to the audience “pop out”, but components that are not become less

obvious;

• application-state-based temporal transformations are applied to the timeline of cap-

tured interactions, such as slowing down interactions or omitting interactions entirely.

To make these manipulations useful and meaningful, some reliance on application-

specific semantics is required to extract locations of semantic UI objects and to acquire

information about the application’s state. Any such reliance could very well be a “slippery

slope” that leads to precisely the application-dependent solutions we seek to avoid. For this

Chapter 1. Introduction 8

reason we have chosen to limit application dependencies by severely restricting knowledge of

applications to certain stylized patterns. This is a critical aspect of our design. It is realized

through a plug-in architecture and a set of heuristics for obtaining application semantics

without giving up too much generalizability or collaboration transparency (we refer to this

part of the system as “semantic-glue” and will describe it in detail in Section 4.1.2) .

We have implemented a prototype of the system and have demonstrated how it can be

applied to several popular commercial off-the-shelf applications, disproving to some extent

the misconception that bitmap-based application sharing forces strict WYSIWIS shared

viewing (see the discussion by Begole et al. (1999)). We also conducted a user study for

our system that evaluated the balance of privacy and awareness in a training scenario. The

results of the study will be used to inform the next iteration in our design. We believe that

these results and some of our other conclusions apply equally well to collaboration-aware

solutions for shared viewing, even though our focus has been on collaboration-transparent

solutions.

1.4 Thesis Outline

In the remaining chapters we describe our work, beginning with the problems of presenter

privacy and passive viewer needs for augmentation that were the motivation for our work.

These are examined in more detail in Chapter 2 . In Chapter 3 we survey related work and

derive guidelines for our system. Chapter 4 describes the prototype system, and some of

its advantages and limitations. The user study to evaluate certain aspects of the system is

described in Chapter 5. Chapter 6 concludes with possible directions for future work and a

discussion of our results and lessons learned from our experience to date. The appendices

contain samples of the materials used in the user study and a pointer to an electronic

compendium of other materials that are available on the Web from the author.

9

Chapter 2

Privacy and Augmentation

Problems

“sub rosa” — The Romans hung a rose over meetings to indicate the meeting was

confidential. Attendees understood that whatever was said under the rose - or sub rosa

– had to remain a secret.

— Robert Langdon, “The Da Vinci Code” (Dan Brown).

My fellow journalists called themselves correspondents; I preferred the title of reporter.

I wrote what I saw. I took no action - even an opinion is a kind of action.

— Thomas Fowler, “The Quiet American” (Graham Greene).

It is important to first understand the privacy needs of a presenter and the visual

augmentation needs of passive viewers in generalized presentations. This chapter discusses

both of these after presenting three example scenarios that illustrate some of the motivations

for our work.

Throughout this chapter and most of the rest of the thesis we assume that a group of

people is collaborating using one or more computers each of which is communicating with

the others through a high-speed network. Our main interest is the case of a single computer,

which we assume is being used in an “extended desktop” mode (see Figure 4.2) where an

auxiliary video output to a shared screen (either a monitor or a projector) displays the

contents of the extension to the primary desktop displayed on the main monitor (or LCD

screen if the computer is a laptop). We use the term “system” to refer to the prototype

implementation of the architecture that we have designed as our solution to the problems

we identified in the scenarios that follow.

The scenarios form the basis for the informal set of requirements that was used to

develop our prototype.

Chapter 2. Privacy and Augmentation Problems 10

2.1 Scenario: Semi-structured presentation

Bob and Carol are both managers and Ted and Alice are team members in a group of

employees. Bob, the presenter, is discussing the team’s budget using a spreadsheet on

his laptop that is being projected onto a large shared screen also viewable by Ted and

Alice. Carol views Bob’s laptop remotely, using VNC. Some of the data, parameters and

interactions in Bob’s spreadsheet are confidential and should not be exposed to Ted and

Alice, but should be available to Bob and Carol (see Figure 2.1). Bob determines some

parameters for his spreadsheet using other applications (e.g. an IM client with Carol). A

key requirement is that Bob must see the information about the private parameters and he

must be able to change them, but without exposing any of the information to Ted or Alice.

Figure 2.1: Bob’s privacy needs in the first scenario: the “Params” worksheet (a) should be
entirely private; the entire salaries cell range (b) should be private, as should the
copy of the value for Hopkin Greer from within the cell range that is currently
displayed in the formula edit box (c); the file dialog (d) and menu (e) expose
private file names, which should not be displayed; and Bob’s notes (f) and his
IM client with Carol (g) should be kept private.

Bob could extract just the relevant data to a new spreadsheet and project it on a

shared auxiliary screen with the master spreadsheet visible solely on his laptop. In theory

this solves the problem, but not in practice. Extracting the appropriate information with

its dependencies is possible (though not trivial). However, synchronizing the spreadsheet

Chapter 2. Privacy and Augmentation Problems 11

versions when changes are made is time-consuming, error-prone and requires redundant

computations (even when using automated scripts). Moreover, Bob will still need to make

sure that updates do not reveal private information. The cognitive overhead of managing

the session will diminish his ability to focus on the budget. We want a solution that lets

Bob concentrate on his primary task (the budget) and not worry about maintaining his

privacy.

Carol has different needs. She has to watch Bob’s verbose UI interactions, some of which

are distracting or take up valuable screen space on the laptop she is using to follow Bob’s

presentation on his larger monitor screen. Ted and Alice, on the other hand, only see the

results of Bob’s manipulations echoed in the secondary spreadsheet on the projection screen,

so they are missing critical interaction cues that could be crucial to their understanding of

the presentation.

This scenario demonstrates the need for role-based viewing policies. Bob and Carol need

to see a different view than Ted and Alice, because of privacy concerns. All passive viewers

need an augmented, “cleaned up” version of what Bob sees in order to comfortably follow

his actions. In fact, more than one is needed because Carol is an expert user with different

authorization to see salary information, while Ted and Alice are novices who need help

following the spreadsheet manipulations but who have no authorization to see the salary

information except in summary form.

2.2 Scenario: Brain-storming with multiple content sources

Huey, Dewey & Louie are conducting a project status report meeting. They are trying to

revisit what each has done and lay out future plans for the project. Each of them brings

his own laptop and there is a public screen in the room they can all share by connecting

their laptops to it through the network. As part of the meeting each participant shares

live content from his personal computer with the other people, but constantly interacts

with other “private” components on his machine as well. Unfortunately, the public screen

is limited in size and cannot show all three of the desktops images at the same time.

Therefore, each participant would like to share a view of only a part of an application or

a specific document item so that all of the shared information can be seen on the public

screen but none of the private information.

Chapter 2. Privacy and Augmentation Problems 12

Figure 2.2: Each meeting participant shares only part of his desktop on the public screen,
using the WinCuts system (picture taken from Tan et al. (2004)). However
this system is based on sharing a manually selected region of a window, which
quickly breaks down as users resize, scroll or change their selection and focus.

This scenario restates the need for selective sharing of applications. It also demonstrates

that even when sharing only a single application, it still has dialogs, menus and wizards or

UI elements that take up screen space and clutter the display (intensified in this case when

several participants interact at the same time). In many cases sharing only window parts

or providing alternative awareness cues can be better.

2.3 Scenario: Access Control for desktop sharing

Adam is a new user of a computer system and has encountered some difficulties filling in

fields of a certain dialog box. Adam would like his colleague Eve, who sits in a different

office, to fill these parts in.

Adam starts desktop sharing with Eve so she can fill in these fields for him. However

Adam would like to make sure that Eve cannot touch or view other dialog fields, that she

cannot hit the OK button that releases the dialog before he has had a chance to check what

she has done, and that she cannot interact with other applications on his desktop that are

not pertinent to the task.

(Alternatively, Adam and Eve might be co-located, so Adam projects his laptop with

the application onto a shared display and Eve uses her PDA to control Adam’s machine

Chapter 2. Privacy and Augmentation Problems 13

using a multi-screen collaboration tool (Booth, Fisher, Lin, and Argue 2002). Adam still

has the same concerns about what Eve can see and do on his computer.)

This scenario demonstrates the need for fine grained access control in desktop sharing

and ubiquitous computing scenarios. In existing solutions whoever gets control over the

shared desktop can act as if he is the user currently logged in. We want to do better than

this “all or nothing” approach.

Figure 2.3: Eve is controlling Adam’s machine through her PDA (taken from the video
appendix of Berry et al. (2005)). Adam would like to make sure that Eve can
only interact with specific dialog elements and cannot hit the OK button.

2.4 Privacy Concerns

Privacy can be an important factor in the adoption of Computer Supported Collaborative

tools. Yet, it is hard to come up with a crisp definition of what is considered private

information that needs protection, and what information does not. One of the reasons is that

privacy is often a highly subjective matter: we each perceive privacy differently according to

our values, interests, and power. Another reason is the wide range of conflated issues that

Chapter 2. Privacy and Augmentation Problems 14

are classified under privacy. These range from individuals withholding activities from other

individuals (similar to the presentation scenarios laid out before) to groups keeping secrets

from the state, encryption, identity theft, and “big brother” scenarios (Lederer, Mankoff,

and Dey 2003).

2.4.1 Privacy vs. Security

It is important to first distinguish between privacy and security. Often these tend to be

mixed up. Hong, Ng, Lederer, and Landay (2004) point out that security relates to “mech-

anisms and techniques that control who may use or modify the computer or the information

stored in it,” and privacy relates to “the ability of an individual (or organization) to de-

cide whether, when, and to whom personal (or organizational) information is released”.

Obviously the release of some types of private information has security implications, and

conversely the application of security measures can affect privacy.

In the context of generalized presentation scenarios, there are many privacy concerns

that do not pose a real security threat, but may still put one of the participants (usually

the presenter) in an awkward position. As Palen and Dourish (2003) note “... in mundane

and pervasive activity like video conferencing, shared calendar management and instant

messaging communications, concerns most salient to users include minimizing embarrass-

ment, protecting turf (territoriality) and staying in control of one’s time.” There are also

security-related privacy concerns (e.g. accidentally revealing one’s credit card number or

user name). Our system attempts to support both types of privacy concerns.

2.4.2 Privacy properties of presentation scenarios

Most privacy related phoenomena can be classified as having surveillance related properties

or transaction related properties (Lederer et al. 2003), classified by the level of participation

and awareness on the subject’s part (the presenter in our case), and by the ability to apply

machine-processing to the captured information (also referred to as monitored vs. searched)

Surveillance - is often interpreted as a disempowerment of the subject, who is unaware

of the fact that his actions are being recorded by institutionally managed cameras, personal

cameras, or overseen or overheard behavior. Closest to our scenarios are video media spaces

described by Boyle and Greenberg (2005), in which people can choose whether to keep a

Chapter 2. Privacy and Augmentation Problems 15

video channel open with colleagues (much like a presenter chooses to share a view of his

desktop) for awareness and informal communication.

In these scenarios people still like to keep several privacy properties: autonomy (con-

trol over identity and self-presentation), confidentiality (control over information access and

fidelity) and solitude (control over interactions and attention). Most of the tension arises

when people forget they may be viewed by others and disclose sensitive information or ex-

pose themselves in an awkward state (when undressed undressed in an at-home setting or

simply when making mistakes that make them look bad in the media space).

Transactions - Transactions are usually associated with data that the subject has

willingly agreed to release: for instance credit card transactions, RFID tags, and information

entered into HTML forms. The subject has the ability to alter the disclosure by changing

the content or conditions of the transaction. The transaction is usually recorded and is

subject to a machine-search.

In our shared view scenarios, the presenter willingly chose to expose information visible

on his computer to others, but as with transactional types of information he is fully aware

of what is shared and has the ability to change it (for instance by deciding what to do with

the shared application, by preparing ahead of time or by dragging a window off-screen).

Furthermore, it is very common for shared application view sessions to be recorded.

These recordings are more subject to machine search than surveillance videos. Analyzing

and searching live video is a hard problem, whereas indexing a screen recording is much

more tractable (our system as described in Chapter 4 demonstrates some of these capabil-

ities). Shared application view sessions can be made transactional (Li, Spiteri, Bates, and

Hopper 2000), but this does not resolve all of the problems.

Putting the previous observations together we can state that in generalized presentation

scenarios a presenter is knowingly sharing with others content that could be sensitive or

interactions that can make him look bad, but has at least the theoretical ability to change

or limit the exposed information. However, micro-managing all possible privacy leaks while

attempting to give a presentation at the same time is not an easy task, as we shall show in

the following sections. We therefore believe that automated help is required to meet all of

our expectations for privacy during generalized presentations.

Chapter 2. Privacy and Augmentation Problems 16

2.4.3 Privacy Risk Management

An important aspect when considering the development of a system aimed at privacy pro-

tection is to assess the magnitude of the privacy risk and the cost of the solution. Hong

et al. (2004) suggest looking at:

• The likelihood L that an unwanted disclosure of personal information occurs

• The damage D that will happen on such a disclosure

• The cost C of adequate privacy protection

Hong concludes that implementing and using a particular privacy solution is worthwhile

only if the potential damage outweighs the cost of creating and using the solution (C < LD).

In many situations C > LD unless there is built-in support for maintaining privacy.

It is not always clear what is the damage potential for exposing private information

in a generalized presentation scenario. As noted before, some exposures only result in

embarrassment or a temporary inconvenience for the presenter (search history, file system

view), while other exposures can actually lead to a security threat or severe consequences

(login name, confidential budget parameters, or exposing a recently used files list). The

potential for either type of exposure often makes presenters feel insecure when going “on-

the-air,” suggesting that the perceived (psychological) cost may be larger than the actual

(logical) cost.

There is no doubt that allowing a presenter some control over what private information

is exposed is important and can make a presenter feel more comfortable (Palen and Dourish

2003). Yet Hong’s risk assessment equation tells us that if the potential damage is not too

high, expensive solutions are not likely to be adopted (e.g. collaborative-aware tools that

require development, training and abandoning familiar end-user tools).

Many solutions will require presenter and viewers to install or purchase special tools.

As Grudin (1988) pointed out, when the person enjoying the benefits of the technology (the

presenter whose privacy is maintained) is not the person doing the work or suffering the

costs (viewers that install and learn special tools bear the brunt) the technology will most

likely fail.

Chapter 2. Privacy and Augmentation Problems 17

The conclusion to draw from this is that for all these cases a simple solution that does

not require completely new tools would be beneficial.

2.4.4 Private Information Sources in View Sharing

Lederer et al. (2003) suggest classifying private information types along two dimensions:

Persona vs. Activity and Primary vs. Incidental Content.

In generalized presentations the first dimension is collapsed to mostly activity related

information, as the audience already knows who is presenting and that he exists, so there

is no anonymity.

Most sensitive information that may be revealed in such a session relates to past activities

(favorite web sites, recent file menu items, search history or a view of a file listing) or to

in-session activities (such as keying in a login name, handling an error dialog or altering

network settings).

Many people use the same machine for personal purposes and work purposes and most

of the tension arises when traces of activities from one domain appear in the other domain.

Hawkey and Inkpen (2005) point out that whenever information that is not appropriate

for the current view context is exposed there is tension. It does not have to be illicit

information such as pornography (although this is often what many people think of as the

canonical example). For instance, issues of confidentiality can also arise with proprietary

or confidential business information that is visible on the shared view.

When considering possible control over the exposure of private information, it is im-

portant to understand its characteristics in regards to the other dimension (primary or

incidental). The common types for the presentation scenarios are:

Semantic objects – Visual representations of objects in the document model and their

attributes (a specific range of cells in a spreadsheet, a paragraph in a text document, or a

dialog box showing properties). These can be considered primary content. Often, a pre-

senter would like to specifically mark these objects as confidential or private, while still

exposing the rest of the document (one of the difficulties is that an object may have more

than one visual representation, even at the same time, such as in Figure 2.3b and 2.3c).

Peripheral data – Sensitive data that is not part of the object model of the shared

Chapter 2. Privacy and Augmentation Problems 18

document but appears in the application’s UI as a byproduct of the presenter’s interac-

tions (recent files, browser navigation history, auto-complete text boxes) and is therefore

incidental to the activity.

Many applications have introduced personalized convenience features that cache users’

preferences and selections and appear without explicit action on the part of the user. Other

applications couple sensitive and non-sensitive UI controls (a global settings dialog that

contains both Color and Security settings), so a presenter who tries to interact with control

α will expose a sensitive control β on the path to α.

Interactions – Some of the interactions a presenter makes may be deemed private

because they affect his reflected image, regardless of the data they operate on. These are

mostly incidental disclosures. Some examples are committing syntax errors or other mis-

takes, searching for the right menu item, struggling with a wizard, or exhibiting slow typing

skills.

Some exposures of private elements (primary or incidental) are an immediate outcome

of the presenter’s direct manipulations and fit well within the presenter’s mental model of

the application. These may be avoided or bypassed by the presenter at the price of forc-

ing clumsier interactions or more careful preparation ahead of time. Other exposures are

byproducts of agents that work on behalf of the user (e.g. an error message or the contents

of an auto-complete text widget). These are less predictable and require more automated

help to avoid accidental exposure. In either case it is disclosure to viewers we need to

control, not the appearance or content of these elements. For example, it is possible to

clear the contents of the navigation history or to filter it before using a browser in a pre-

sentation (as hinted by Hawkey), but this will take away important cues from the presenter.

Private information from any of the previously presented types that may appear in a

shared view can be dealt with at several levels:

Task level – A presenter would need only to expose the windows and components that

are part of the shared task, not all activity. This may entail sharing several applications or

only one instance of an application (e.g. a single document). It is often not necessary or

Chapter 2. Privacy and Augmentation Problems 19

desirable to expose the entire desktop (as seen in Figure 1.1).

Window level – An application usually comprises more than just a single window.

There are dialog boxes, menus, palettes, toolbars and sub-window frames. In many cases

these contain private information (file browsing dialog), they appear at awkward moments

(error dialogs), or they just take up screen space. Clearly, not all of these components

should be shared.

Visual Surface level – At the lowest level, we have the information bits visible on

a single window’s surface, such as representations of underlying document objects or the

contents of UI widgets. Our approach demonstrates how these can be dealt with as parts

of the image buffer at this level.

When working on our system prototype, we realized that in many cases it is more

effective to define a state of the application as private and freeze updates on the public

copy until the application exits the state. This is useful when private data is mapped

to externally inaccessible objects or associated with a large set of objects that cannot be

treated individually (e.g. switching to a private worksheet or a show-comments mode or

when an arbitrary error occurs).

It may seem that some of the private interactions described above are brief, so the

amount of information viewers can extract is limited. However, it is common for shared

sessions to be recorded, allowing later analysis so that ephemeral information becomes

persistent (Palen and Dourish 2003). It has also been shown that viewers are quite likely to

notice sensitive text on a large-screen public display, often used in co-located presentations

(Tan and Czerwinski 2003), which suggests that in Hong’s equation the size of the display

may increase L and probably the number of viewers in the audience will too!

2.5 Improving the Audience Experience

Recent work by Reeves, Benford, O’Malley, and Fraser (2005) has pointed out that inter-

action with computers is increasingly a public affair, such as interactions in museums and

galleries or the growing use of mobile devices in public contexts. Therefore, there is a need

Chapter 2. Privacy and Augmentation Problems 20

to consider not only an individual’s dialogue with an interface but also to consider the

ways in which interaction affects and is affected by spectators or “how should spectators

experience a performer’s interaction with a computer?”.

In our first scenario passive viewers followed Bob’s interactions. We can customize each

person’s view by adding, deleting, or modifying the application’s presentation (bitmap) to

provide a more useful experience, effectively optimizing the amount of salient information

on the screen for each viewer.

2.5.1 Inadequacy of single-user GUIs for passive viewers

Passive viewers must follow the interactions performed by the presenter, but there is a

perceptual gulf between the presenter and the viewers (Figure 2.4). While the presenter

translates her intentions and semantic-level operations into GUI interactions, the passive

viewers are doing the reverse process, inferring the underlying intentions and semantics from

the interactions. This is not an easy process. Even when verbal explanations are provided

by the presenter these are usually insufficient, inconsistent, and they require extra effort on

the part of the presenter.

The process is similar to Norman’s execution and evaluation gulfs, where the problem

is simpler because the presenter is also the viewer (Norman 1988). This is illustrated in

Figure 2.4, which depicts the viewer needing to deduce, based on the evidence provided by

the interactions visible on the screen, what the presenter is doing and why she is doing it.

One of the root problems is that the visual language of most existing graphical user

interfaces is highly tuned for a single active user, ignoring the needs of passive viewers. For

example, when a presenter decides to perform a contextual menu selection, the cue for a

passive viewer that some interaction is about to take place is the appearance of the menu,

by which time it already obscures most of the context for the operation (Figure 2.5a).

Another problem is that passive viewers tend to follow the presenter’s point of interaction

(often highlighted in GUIs), yet in some cases the presenter would like to draw attention to

other regions of the display.

Some operations have no feedthrough (the feedback produced when artifacts are manip-

ulated) or feedthrough that is inadequate for passive viewers who will simply miss it, as can

happen with collaborative-aware groupware solutions (Gutwin and Greenberg 1998a). This

implies that viewers will miss critical clues that assist them in bridging over the deduction

Chapter 2. Privacy and Augmentation Problems 21

Figure 2.4: The presenter translates his goals and intentions to actions on the shared ap-
plication (execution), whereas the viewer has to interpret the presenter’s goal
and intentions from the reflection of the actions on the shared view (interpreta-
tion and deduction). Adapted from Norman’s model. In the original model the
presenter and the viewer are the same person, so the problem is much simpler.
The presenter interprets the state of the system to evaluate the results of his
actions rather then deduce his original goals.

gulf (Figure 2.3).

In Figure 2.5c, the presenter was using a keyboard shortcut to move between two states

of the text. Viewers have no way to tell what command was used because there is no

feedthrough as there would be had a menu selection been made.

Other low-level parameters such as cursor size or shape, the time a menu or dialog

remains on-screen after release, and the way selection highlighting is done, are tuned for

the performance of a single active user. These are not suitable for passive viewers, who are

trying to follow the interactions without the benefit of knowing the intention of the action

or experiencing the kinesthetic feedback of mouse or keyboard interaction.

The shape and size of the mouse cursor are a particularly interesting example. Po,

Fisher, and Booth (2005) remark that modern GUIs are still using more or less the same

original cursors that came about in the mid 1970’s. These cursors were partially crafted

Chapter 2. Privacy and Augmentation Problems 22

Figure 2.5: Inadequacy of conventional GUI for passive viewers: (a) a menu obscures the
context for the operation; (b) viewer focus follows the mouse interactions with
the top cells, but the presenter wants viewers to focus on the bottom cells
that are changed as a result of the interaction; and (c) a non-visible keyboard
shortcut was used to insert text (for instance undoing a delete operation), so
viewers cannot tell what caused the change.

based on the hardware constraints of the time. They were purposely designed to be not too

small for the user to see yet not too large so as to obscure too much of the display. To the

best of our knowledge, no real evaluation has ever been conducted on their suitability for

passive viewers.

As we will show in Chapter 4, some of these parameters can be independently changed

on the public view of an application to better fit the needs of passive viewers in the audience.

2.5.2 Controlling verbosity

Viewers may have different levels of expertise and familiarity with a shared application. It

is beneficial to adapt their views to the appropriate levels. A key aspect to be controlled

is the verbosity of interactions or the amount and level of interaction details. For example,

if Bob is to teach Ted and Alice how to fill out a report using an application unfamiliar

to them, exposing the fine details of his actions (menu selections, dialog boxes, etc.) and

adding cues (like keyboard shortcuts and change highlighting) could be crucial.

On the other hand, if Ted and Alice were experienced users, exposing each and every

interaction or adding too many cues will prevent them from concentrating on the semantics

of the report.

From a pedagogical point of view, it sometimes makes more sense to show one logical

interaction unit as a single visual step, so the high-level semantics are not obscured by the

Chapter 2. Privacy and Augmentation Problems 23

low-level details.

Reeves et al. (2005) propose to control the representation of both the manipulations a

presenter makes and the effect of these manipulations in four main levels: hidden, partially

revealed, revealed and amplified. They then present a taxonomy of possible spectator views,

adapted here for our scenarios:

• “Secretive” - Both interactions and effects a presenter makes are hidden. This is useful

for private components or for interactions that are irrelevant and could only distract

viewers.

• “Expressive” - Interactions and effects are revealed or amplified. This is useful for

teaching scenarios, making sure viewers understand how to accomplish a certain task.

• “Magical” - revealed or amplified effect, while interactions are hidden. Useful when

presenting to expert users who do not care how the interaction was made or when

display space is limited. In both cases it is still important for viewers to stay alert for

content changes.

• “Suspenseful” - revealing and amplifying interactions while hiding effects. Useful when

interacting with private content. The actual changes made to the content cannot be

seen by viewers. Therefore, they need to compensate by getting better understanding

of what actions were performed.

2.5.3 Mitigating visual clutter

We have already implied that it is desirable to share only relevant windows or components,

rather than the entire desktop. This can assist viewers in making better use of their screen

space. This is especially true for remote viewers who work with other applications on their

screen in parallel, or for multiple co-located users who bring up applications on a shared

display as in Figure 2.2.

In the case when all sub-windows, dialog boxes and menus are automatically shared

as well, viewer’s display can quickly become cluttered. This is somewhat like violating

acoustical privacy with cellular phones (Palen and Dourish 2003). The presenter imposes

his “conversation” with the application on the viewers, much like a person talking on a

cellular phone imposes on others in a public area.

Chapter 2. Privacy and Augmentation Problems 24

A viewer should be capable of controlling how much of this conversation penetrates his

display and replace some interactions with other “low volume” representations.

In all cases viewers need to maintain some level of awareness of the presenter’s actions

because this has been shown to be important for collaborative work (Gutwin and Greenberg

1998b). However, it does not always have to be in a one-to-one manner. Alternative

representations may be more effective for passive viewers. Moreover, when bringing in

privacy concerns it is clear that the awareness level should also be balanced with privacy

constraints. Fortunately, these two goals are not necessarily in conflict. Removing private

information reduces screen clutter and thus increases awareness of the elements that remain

visible.

25

Chapter 3

Related Work and Literature

There is a large corpus of research on tools that support collaborative work and that can

provide varying degrees of application view sharing. However some are targeted at shared

editing and are not suitable for the presentation scenarios in which we are interested. Other

tools are suitable for presentations, but cannot meet the privacy and augmentation de-

mands. In this chapter we survey the relevant previous work, highlighting the features and

approaches that best fit the requirements we identified in the previous chapter.

3.1 Collaboration-Aware Solutions

Many collaboration-aware tools and frameworks that allow the creation of custom view

sharing with varying synchronization degrees are reported in the literature. There have been

a number of surveys of other systems and toolkits (Greenberg and Roseman 1999; Begole,

Rosson, and Shaffer 1999). There are also commercial tools that support collaborative

writing and flexible viewing of documents, for instance SubEthaEdit1.

GroupKit (Roseman and Greenberg 1996) allows easy coding of real-time distributed

multi-point conferences between users. Using its collection of multi-user groupware widgets

it is easy to create relaxed WYSIWIS file viewers. Gutwin and Greenberg (1998a) suggested

enhancements to the toolkit with custom controls that assist passive viewers. Some of these

are illustrated in Figure 3.1.

The privacy concerns that we are interested in (restricting view) are typically not ad-

dressed by these systems. Most systems are designed for true synchronous collaborative

work and focus on providing access control as a means to regulate privacy (see a survey

by Tolone, Ahn, Pai, and Hong (2005)).

Managing a collaborative session creates a substantial amount of overhead, much like

managing one’s privacy or providing proper awareness for passive viewers. Some work
1http://www.codingmonkeys.de/subethaedit/ (last checked August 8th, 2005)

Chapter 3. Related Work and Literature 26

has looked into providing rule and policy based automated regulation of collaborative ses-

sions (Edwards 1996). Lau, Etzioni, and Weld (1999) looked at rules controlling what pages

are saved into the web browsing history and created a simple “privacy policy editor inter-

face” for managing them. Such policies regulate reactions to events and system states that

reduce the unpredictability of the system and require less management efforts from the user.

Recently, some effort has been targeted at managing sensitive transactional information

that may be exchanged in collaboration settings, notably the work in the Platform for

Privacy Preferences (P3P) Project2.

Figure 3.1: Some custom controls can be developed using GroupKit that assist passive view-
ers in following a person who is interacting with the groupware. (a) Providing
visual feedback on a delete operation. (b) A dialog that opens on the presenter
screen, shows only as mini-summary on the viewer screen (c).

However, many of these tools are usually not acceptable solutions in the real-world. Most

of them were only built as proof of concept or as laboratory tools with a minimal feature set

that cannot match that of commercial end-user tools. Moreover, Li and Li (2002) note that

groupware features are used less frequently than features supporting individual activities,

so being forced to learn new interfaces for a sporadic task, such as occasional view-sharing,

will discourage presenter and viewers from using such solutions. Rather than retrofit all

of the features present in existing single-user applications to the new collaboration-aware

frameworks and toolkits, it seems more sensible to extend the single-user applications to

support collaboration when that is possible.
2http://www.w3.org/P3P/ (last checked August 8th, 2005)

Chapter 3. Related Work and Literature 27

Figure 3.2: The replication level (based on the Zipper model) affects the amount of WYSI-
WIS relaxation, but also the synchronization effort. Collaboration-aware solu-
tions and groupware toolkits offer richer options of decoupled views, but are
very specialized. On the other hand transparent solutions are general but offer
limited ability to relax views (being centralized and bounded by the window
level). The cyan colored rectangle shows where our solution fits in. By allow-
ing some reliance on application and windowing semantics one can farther relax
WYSIWIS into the visual surface level and support privacy and passive viewers.

3.2 Collaboration-Transparent Solutions

Our system is targeted at existing collaboration transparent single-user tools that were not

designed for multiple views and cannot accommodate code changes. The lack of access to

source code is but one reason why code changes might not be possible. A prominent example

of this type of software is the collection of off-the-shelf desktop tools such as text editors

and spreadsheets that enjoy widespread use by single users and which form the basis for

many of the ad hoc collaborations that follow the generalized presentation model we wish

to support.

In this context, it is useful to classify these based on a mapping of the sharing archi-

tecture space. The Zipper model, presented by Dewan (1999), looks at the common layers

that can be shared: Screen, Application, Window, Widget, View, Model and classifies the

solution architecture based on the share branching level. In each architecture one of these

layers is the branching point. All layers below it are shared and all layers above it are

Chapter 3. Related Work and Literature 28

replicated and therefore influence the level of WYSIWIS relaxation.

Figure 3.2, shows some of the possible solutions (with varying degrees of collaboration-

awareness and replication level)

3.2.1 Centralized tools

VNC and NetMeeting - Closest to our approach are tools that replicate the screen

or window layers (known as centralized tools), such as VNC (Richardson et al. 1998) or

NetMeeting3. XTV (Abdel-Wahab and Feit 1991) is an equivalent tool (it replicates X-

Windows display commands instead of replicating a bitmap).

VNC shares the entire screen, including windows of applications a presenter might like

to keep private. NetMeeting and XTV share all windows of a chosen application, and they

lack the ability to keep some of the dialogs or palettes private. NetMeeting and similar

solutions allow sharing of a fixed region of the screen, but if windows are moved or resized

outside of the region bounds they will not be shared. Worse yet, if an embarrassing error

dialog or new window that should be private pops up in the shared region, it will be shared.

In terms of supporting different views, NetMeeting and its successor, LiveMeeting, allow

a presenter to manually “pause and play” the view sharing (Figure 3.3). This requires the

presenter to identify privacy concerns, some of which are unpredictable, while he is “on-

the-air” and is therefore error-prone. For example, a presenter who is about to type into an

HTML form field would have to anticipate that an auto-complete box will appear and then

“pause” updates beforehand. The presenter would also have to remember to press “play”

after the auto-complete box has gone away. Manually managing these incidents is quite

cumbersome. The presenter should be able to specify rules for controlling these private

elements in advance.

All of these centralized tools lack any ability to systematically change the contents

of the replicated screen parts and therefore cannot handle sub-window elements, protect

private content within an element, or provide highlighting to assist viewers (some tools

allow manual highlighting or sketching on the application surface, but that becomes invalid

once the window is scrolled or resized).
3http://www.microsoft.com/windows/netmeeting/. There is a plethora of commercial tools that of-

fer similar functionalities such as: Bridgit (http://www.smarttech.com/support/product/bridgit/), webex
(http://www.webex.com) or SunForum(http://www.sun.com/desktop/products/software/sunforum/) (all
web sites last checked August 8th, 2005)

Chapter 3. Related Work and Literature 29

More recent research has looked at using similar “screen-scraping” tools to promote

group awareness by publishing live bitmaps of participants’ displays (often scaled down).

The Notification Collage (Greenberg and Rounding 2001) supported the posting of a live

desktop image on a publicly accessible display so that lab-mates can get a notion of what

their colleagues are doing, and whether the colleagues are available or need assistance (Fig-

ure 3.4b). Commercial remote desktop solutions allow the viewing of multiple remote

desktops mostly for remote assistance purposes4. It is clear that all of these tools have se-

vere privacy implications. Moreover, when observing a desktop in miniature, especially for

remote assistance purposes (Figure 3.4a), it is easy to miss critical interactions and details

that may require alternative representations or visual augmentations that suit a smaller

view.

Despite all of the drawbacks, centralized bitmap-based sharing tools are still very pop-

ular due to their high degree of collaboration transparency and the low demands on the

part of the viewer (just a thin client is required by the viewers because most of the work is

performed on the presenter’s computer). This is a property our solution tries to maintain.

3.2.2 Replication-based tools

Many collaboration supporting tools are based on the notion of replication. Each person

runs his own copy of the shared application. Solutions differ in the way they synchronize

these two copies:

Flexible JAMM - This is a framework for transparently replicating the widget layer of

Java Applets at run time (Begole, Rosson, and Shaffer 1999). It is based on replacing some

widgets and components of existing single-user applications with multi-user versions that

can be synchronized with some degree of differentiation and provide cues on the actions

of the other users. The focus of this approach is on location-relaxed WYSIWIS (users can

look at different parts of a document).

While aimed at preserving collaboration-transparency, this approach puts different con-

straints on the running environment and underlying code (e.g. it relies on specific Java

Swing features and the use of a custom class loader). Cheng, Rohall, Patterson, Ross,

and Hupfer (2004) proposed using aspects and pointcuts to transparently add collaborative

capabilities to shared applications, mostly for awareness purposes. However, neither tech-
4http://www.apple.com/remotedesktop/ (last checked August 8th, 2005)

Chapter 3. Related Work and Literature 30

nique easily addresses privacy concerns and both are unsuitable for commercial off-the-shelf

applications that do not expose their code.

Operational Transformations - Recently some research efforts have focused on syn-

chronizing two running single-user applications (i.e. replicating the Model layer), using

operational transformation (OT) techniques. This approach allows users to use the tools

they are familiar with in a collaborative setting, but at the expense of blending in some

application specific semantics (Li and Li 2002). OT is largely aimed at keeping two copies

of a document synchronized by capturing user editing operations and sending a transformed

version of them to the other copy. As such these techniques can be used for the generalized

presentation scenarios, where presenter and viewers each have a copy of the document.

A prominent example, working with an off-the-shelf editor (MS Word) is CoWord (Xia,

Sun, Sun, Chen, and Shen 2004). Each user has independent control of her copy while the

system synchronizes the underlying document models using the application’s API. Co-Word

does more than we need. It allows modifications to be made freely by all of the participants,

and keeps track of conflicts when they arise and either resolves them or reports them to

the participants. The generalized presentation scenarios we want to support assume that

only serialized changes are made by different participants, and most often only a single

participant (the presenter) makes modifications.

These solutions assume complete independence of views, which is not suitable for pre-

sentation scenarios, and typically they do not provide any privacy protection. Still, with

some effort views can be synchronized as well (replicating the View layer) and OT can be

extended so that private document parts are converted or changed on the viewers’ copy. Be-

cause each participant is running a different copy of the application there is less opportunity

for incidental privacy leaks, but not entirely. There is implicit shared information propa-

gated by the synchronization protocols that may reveal information that was not intended

to be shared in the document, such as intermediate text resulting from a cut-and-paste

operation that is modified in the document but can be seen in its original by other users

through change-tracking mechanisms.

There are similar solutions that work with other software tools. For example Sakairi,

Shinozaki, and Kobayashi (1998) devised shared browsing that also synchronizes HTML

Chapter 3. Related Work and Literature 31

form fields, unlike simple shared browsers that just point at the same URL. Also worth

noting is a commercial tool that can synchronize Excel versions.5

The major drawback of JAMM, CoWord and other replication-based solutions is that

both presenter and viewer need a copy of the application, or alternatively two instances

running on a single computer. This is often a harsh demand that cannot be met (e.g.

viewers do not have a license to run the application, they have an incompatible version of

it or the presenter’s machine cannot run two copies of the application).

Furthermore, synchronizing the application replications and the views can be a hard

problem (Dewan 1999). It often requires resource locking or forcing expensive calculations

to be carried out multiple times and even then there are still inherent conflicts that must

be resolved in some manner when more than one participant modifies the same part of a

document or object.

3.3 Screen Recording tools

There are several tools that allow recording a computer’s display and basic editing and

indexing of these recordings.

Recording

Most tools rely on the same techniques that the centralized tools presented beforehand use

to capture screen image buffers. Yet, these tools add an additional component that encodes

these images into a video sequence. The vncrec6 tool is a basic screen capturing tool that

simply records the broadcast messages of the VNC protocol and then replays them in order.

Commercial tools like Camtasia also provide manual editing capabilities on recorded videos

(deleting interaction sequences, drawing and adding annotations or choosing screen regions

to magnify) and some automated augmentation effects (adding a visual indication on mouse

clicks).
5A commercial tool enables multiple users to work collaboratively on an Excel worksheet in real-time

(http://www.advancedreality.com, Last checked August 17 2005).
6http://www.sodan.org/∼penny/vncrec/ (last checked August 18th, 2005)

Chapter 3. Related Work and Literature 32

Indexing

The ability to search recorded screen interactions can be very useful. One simple solution

(Li, Spiteri, Bates, and Hopper 2000) relies on the lower level VNC protocol events as

indexes to search for certain keystroke combinations or for updates that changed at least

40% of the screen. It is hard to relate this level of indexing to application interaction events.

Lately several observation and web-usability testing tools7 have incorporated similar

indexing capabilities on screen recordings with some additional data channels: capturing

window events (open,close,focus), screen text or web browser page changes and physiological

data (such as heart rate or eye-tracking).

3.4 Spatial and Window Set Manipulations

Wincuts (Tan, Meyers, and Czerwinski 2004) is a collaboration transparent bitmap-based

window sharing system that provides some spatial manipulation of shared windows. It

allows a presenter to manually select a region of the window and publish only that part (see

Figure 2.2).

Similar ideas are presented in regards to window layouts and screen space use for window

managers by Hutchings and Stasko (2004). In many cases only the relevant part of a window

should be kept visible or shared.

While still allowing a lot of flexibility and addressing clutter and privacy issues, this

approach quickly breaks down when a presenter needs to resize or scroll a window. As we

shall explain later, our system completely subsumes these approaches, automating spatial

manipulations and blending them with other filters.

Subsequent work by Hutchings and Stasko (2005) is also relevant to the manipulation of

an application’s window set. Dialog and notification windows are classified using OS calls

and duplicated on multiple displays so a user can easily spot them. Similar techniques can

be used to determine which dialogs and windows should be duplicated on a public display

and which windows should remain on the presenter’s display.
7Two examples are Morae (www.techsmith.com) and The Observer R© (www.noldus.com).

Chapter 3. Related Work and Literature 33

3.5 Visual manipulations

Several techniques for systematically modifying the visual surface of an application were

explored in past research:

Surface Manipulations - An interesting set of manipulations to existing applications’

visual surfaces was presented by Olsen et al. (1999) and Edwards et al. (1997). The visual

manipulations are aimed at supporting the work of a single user (allowing text search and

search result highlighting, radar views and visual bookmarks).

On the technical side, this approach requires overriding some of the low-level drawing

routines of the graphics object (or drawable object in the subArctic8 toolkit they used). It

also relies on consistent ordering and grouping of component drawings and adding keyword

hints at certain points in the code (Figure 3.5). Given these hints, when the application

renders itself on the drawable object it is possible to extract locations of objects and text

on the visual surface and add custom filters.

This approach resembles the idea of a “magic lens” (Bier et al. 1993), that replaces

PostScript commands to create an alternative view of the visual surface beneath it. This

type of approach cannot reason about information that does not go through the display

pipeline (like field names). Some of the technical demands (adding special grouping calls) are

not fully met by off-the-shelf tools and are quite hard to support under some architectures

(for instance it is not easy to override the low level drawing routines in Windows).

Still, this may be a viable way to perform some of the “semantic glue” operations and

visual manipulations that we will discuss in Section 4.1.2. The main advantage of this

technique is that it is efficiently blended into the drawing pipeline and therefore locations

extracted on the visual surface are guaranteed to be synchronized with the currently visible

objects.

Our system employs similar filters that can be used in a multi-user shared view scenario.

We will describe alternative channels of information to allow graphic parsing of the visual

surface using a plug-in architecture that is part of our system in Chapter 4. The plug-ins

allow us to incorporate these techniques into our system.

8http://www.cc.gatech.edu/gvu/ui/sub arctic (last checked August 18th, 2005)

Chapter 3. Related Work and Literature 34

Blur filters - Blur filters have long been used for privacy purposes in video recordings

and conferencing. Boyle and Greenberg (2005) survey some basic automated techniques to

detect states where the video contains private information. However, accurately processing

a video signal is not always possible and constantly applying some level of blur to conceal

private details will result in loss of awareness (Neustaedter, Greenberg, and Michael 2005).

In contrast, by parsing the visual surface of a shared application (which we will demonstrate

later), it is possible to apply selective blur that does not impede awareness but does protect

privacy.

Another interesting use of blur filters was introduced by Blackwell, Jansen, and Marriott

(2000). Blurring is applied to an image of an application, apart from a fixed size region that

the user can move using the mouse. The user’s gaze is “coaxed” to be on this non-blurred

part. Thus, knowing where the non-blurred region is (mouse position) tells us what the

user is looking at.

This scheme demonstrates that blurring operations not only serve as privacy preservers,

but can also provide helping cues and direct attention of passive viewers to important screen

parts.

Subjunctive UIs - Some work has been focused on simultaneously showing parallel

system states to reveal the outcomes of all combinations of a specified set of parameter val-

ues. Theoretically, some of the parameters can be used to regulate privacy or augmentation

and provide two different views of the application, one for the presenter and the other for

the audience. These are subjunctive because they show the results of future actions that

may or may not be taken, in effect allowing the user to see if the desired effect will be

achieved before committing to the action.

An interesting example is Side Views (Terry and Mynatt 2002) that augments a few

existing open-source applications in a semi-transparent way to allow live previews of com-

mand actions. It drives the original application as a computation server on a copy of the

document. The desired commands are then executed using the open-source code (such as

applying bold typeface to a line of text or an image filter). This approach relies on tight inte-

gration with the underlying application and in many cases requires expensive computations

to produce the alternate views.

Chapter 3. Related Work and Literature 35

3.6 Multi-Machine User Interfaces solutions

In regards to privacy and clutter, Pebbles (Myers, Peck, Nichols, Kong, and Miller 2001)

replicates some application components on a handheld device. Thus a presenter may choose

to conduct some interactions on her handheld or auxiliary computer to avoid exposure.

Greenberg, Boyle, and Laberg (1999) proposed a similar solution.

This approach requires extra hardware to be present and it does not address viewer needs

for awareness cues. Most importantly this approach is limited in the type and complexity

of components that can be recreated on the handheld (text fields and menus work well, but

part of a worksheet relying on other spreadsheet parts may not). In the end, it is equivalent

to the two-display extended desktop situation.

Other systems rely on the availability of PDAs and laptops for audience members instead

so that personalized views of a presentation can be displayed on them.

Hexel, Johnson, Kummerfeld, and Quigley (2004) developed a solution that personalizes

Impress (OpenOffice.org) or PowerPoint R© slides. An important component of the system

is a context manager that exploits the personal devices as a channel for obtaining audience

member profiles. These profiles form a basis for real-time altering of content presented on

individual and room displays.

The system relies on slides being represented as XML information that can be altered

based on rules (much like personalized web pages are produced) and on off-line authoring

of alternate slides.

For example, some viewers will get additional subtitles with German translation, but

the slides on the public display may be altered so private information will be omitted from

them while still being available for certain audience members.

The ideas of a context manager that can drive multiple views is very compelling. It is

not clear how this solution can apply to other applications that do not provide easy access

to the displayed content or to GUI components that are exposed while interacting with the

presentation.

3.7 Single Display Privacyware

Research into single display privacyware has resulted in several platforms and hardware

setups that enable multiple users to each have a different view of a shared display by using

Chapter 3. Related Work and Literature 36

shutter-glasses (Shoemaker and Inkpen 2001; Yerazunis and Carbone 2001). For example,

they enable one user to bring up private information on the shared display without the

others seeing it. These solutions require additional hardware (LCD shutter glasses) and are

not fully secure because it is easy to circumvent the privacy safeguards by removing the

glasses.

Moreover, these systems still require running software that is capable of supporting

differentiated views, so collaboration-aware tools or special software is used. The solution

we propose can allow existing application to enjoy some of the advantages of such setups

without requiring special hardware or collaboration-aware tools.

3.8 Presentation tools

Perhaps the best existing solutions for our requirements are, not surprisingly, tools devel-

oped specifically to support presentations. Recently, commercial presentation authoring and

playback tools such as Microsoft PowerPoint R©9 and Apple Keynote10 have taken advantage

of multi-display technology to play the presentation on a public screen, while providing a

private view to the presenter on her laptop (where she can view her notes or check other

slides). The drawback is that these work only within the application, not across multiple

applications that are used within a generalized presentation. Our approach can provide

similar advantages to other single-user applications and they can be used together in a

generalized presentation.

3.9 Presentation Authoring

The idea of automating the design of the graphical presentation of information, interfaces,

multimedia content and presentation slides to maximize their effectiveness for an active user

or for viewers has been explored from many different angles.

Searching the Design Space

A pioneering work was APT (A Presentation Tool) by Mackinlay (1986). APT was designed

to automate the design of the graphical presentation of relational information (charts, plots
9http://office.microsoft.com/en-us/assistance/HP030893931033.aspx (last checked August 18th, 2005)

10http://www.apple.com/iwork/keynote/presenter.html (last checked August 18th, 2005)

Chapter 3. Related Work and Literature 37

and graphs) by applying a search architecture on the design space.

The fundamental idea is that graphical presentations are sentences in a graphical lan-

guage and are composed of primitive graphical techniques. Thus, a search architecture can

examine the space of these building blocks, taking into account the nature of the data,

user preferences and the properties of the output medium and tailor a presentation that

will maximize the presentation effectiveness. Effectiveness was mostly evaluated on how

accurately people perceived the generated design.

A similar problem arises when considering possible modifications and enhancements that

can be applied to the shared view of an application. In Chapter 4 we will describe a set (or

language atoms) of visual manipulations that can address privacy concerns or assist passive

viewers. To make the shared view more effective an automated search of this set is required.

Applying AI techniques

Another approach to tailor information presentation to the needs of viewers relies on using

user models and AI reasoning in the authoring process.

For instance the Valhala system (Csinger, Booth, and Poole 1994) introduced “intent-

based authoring” in the domain of video authoring. Form and content of edited video

sequences and video annotations are determined based on the author’s (presenter’s) intent

and a model of the viewer and his needs.

Viewer models can be constructed explicitly (viewer choices) or implicitly by observing

viewer actions and interactions and inferring his characteristics.

Another important input for the authoring process is the media characteristics. Each

media format (video vs. paper or workstation screen vs. large screen display) has its own

limitations and advantages that an authoring process should consider.

It is possible to use similar techniques for editing a shared application view. The viewer

model can incorporate knowledge about expertise with the shared application and privacy

restrictions. Presenter intent could be formalized as well (e.g. train the viewer on the

application vs. update the viewer on recent budget changes that happen to be in a shared

spreadsheet). Intent-based authoring can then transform the view using various visual

manipulation techniques and annotation techniques according to these models.

Chapter 3. Related Work and Literature 38

3.10 Animation

Animation has been studied in research as a means to improve user understanding of an

application (usually focused on the active user and not on passive viewers). Early work

by Baecker and Small (1990) studied potential uses of “animation at the interface”. An

important aspect of this work looked at the use of animation for making an interface more

comprehensible. Baecker demonstrated how animation can show a user what has been done,

answering a question like “how did I get here ?” or convey transitions between application

states and cue the user on new and old areas of interest. This early work also demonstrated

effective use of animated icons to provide feedback on a system’s state or to intensify menu

selections.

Thomas and Calder (2001) and others examined different cartoon-style animation effects

for augmenting direct manipulation of UI elements in custom UI toolkits. Effects like squash

and stretch, motion blur and dissolves were implemented.

One of the initial examples were pulldown menus. These were modified so that the a

menu gradually expands (“slow-in”/“slow-out”) from zero to full size over a short interval

of time.

Other animation techniques were applied to indirect manipulation effects (e.g. an align

objects command) that require cognitive re-parsing of the new visual state. In such a case,

animation that simulates a drag-and-drop operation can be helpful.

The challenge is applying animation techniques in a transparent fashion to existing

applications so they can then be used to assist passive viewers in the context of generalized

presentations.

Chapter 3. Related Work and Literature 39

Figure 3.3: LiveMeeting is used to share a region of the screen containing a portion of a
spreadsheet. The presenter’s control is limited to manually pressing the pause
and play buttons before engaging in a private activity, such as using a “File
Open” dialog.

Chapter 3. Related Work and Literature 40

Figure 3.4: Sharing screens to promote awareness: (a) a remote desktop viewer observing a
group of people for potential assistance in a classroom scenario; (b) some group
members have posted mini-views of their desktops (marked in red) on a public
screen using the Notification Collage.

Figure 3.5: Visual surface manipulations: (a) the application is forced to render into a
special drawable* object (inherited from the regular drawable / graphics object);
drawText calls are captured as well as special startGroup and endGroup calls
that are planted into the application’s code to indicate where objects are on
the visual surface when it is their turn to be rendered; (b) a blur operation is
applied to UI controls; and (c) a highlight / shadow operation

41

Chapter 4

System Description

We have implemented a prototype of the system using C# under Windows and tested it

with three widely-used commercial applications (Microsoft Excel R©, Word R©, and Internet

Explorer). For the prototype we rely on a variety of compatible features in the applications,

but the principles apply to any modern operating system and scripting language. They

should work with any application, although some additional “semantic glue” layers that we

describe later may be required in the most general case.

Most of the functionality described in this chapter was implemented or partially imple-

mented in the prototype. Functionality that was not implemented and possible improve-

ments will be indicated where appropriate.

4.1 Core Functionality and Components

Our system relies on a number of support functions that comprise the overall architecture.

We describe the support functions. In the next section we describe how they are used.

4.1.1 Cloning Windows

In order to support differentiated views, our system grabs the visual surface of shared

application windows on the presenter’s machine and conveys a manipulated version of the

bitmap to the public display, published in clone windows. This functionality is provided by

the Frame Buffer Grabber module (Figure 4.1).

In the prototype, we simply relied on timer-based device context copying, similar to

Wincuts from Microsoft Research (MSR) (Tan et al. 2004). This approach matched our

initial focus on co-located scenarios, where all displays and views are controlled from a

single machine.

A more efficient solution might use a modified version of the Remote Frame Buffer

(RFB) protocol (Richardson et al. 1998), adapted to work on separate windows. The RFB

Chapter 4. System Description 42

Application

Policy and

Rule base

Frame Buffer

Grabber

Plug-in Repository

Excel-

plug-in

base Plug-in

Frame Buffer

Player

OS Windowing

Accessibility

Application API

Presenter’s display Viewer’s display

Plug-in interface

Word-

plug-in

App .. x

plug-in

Monitor Director

OS

semantic

model

Semantic Glue

visual rep-

resentation
Video signal /

Network

Figure 4.1: System Architecture – the main components of the system. See text for descrip-
tions. The image buffers from the presenter’s display are captured and manip-
ulated using the semantic glue queries before being transferred (over video or
network channels) to the viewer’s display.

protocol uses paint events to trigger copying of changed parts only.

In both solutions the viewer client is a simple image buffer player (Figure 4.1,right) that

is completely independent from the shared application.

We use extended desktop mode to control the presenter and viewers’ displays. In this

mode the public display is a logical continuation of the presenter’s desktop, although often

physically located on a wall behind the presenter (Figure 4.2).

A clone of each of the shared application’s windows is created by querying the system’s

list of windows and making bitmap copies of the parts that are shared. The clones are

automatically placed on the part of the desktop lying on the public display, and they are

updated as the application modifies the originals.

The presenter can move any of the application’s windows on her display or cover them

with other windows without affecting the published clones.1 The novelty is in how we
1In modern operating systems each window renders itself to a separate graphics object, so even when

windows are covered it is still possible to grab only the specific window’s visual surface. Under Windows,

Chapter 4. System Description 43

Figure 4.2: The presenter’s laptop drives both displays. Display 2 (public display) is not
a copy of Display 1 (laptop screen), which is the the common mode for doing
presentations. Instead the presenter’s desktop spans the two displays. The
presenter could drag the shared application A to the public part of her desktop,
so application B can remain private. However, if application A has a private
component visible (e.g. a menu) the presenter will have to drag the window back
and forth between the displays, conducting private interactions on Display 1.
Furthermore, it will be hard to control on which display private popup windows
appear because most applications are not fully designed to work in multi-display
environments and popup windows often follow the main application window. In
our solution, application A resides on Display 1 and a clone A′ is published on
Display 2. Our system guarantees that private elements visible in application
A will not get copied into A′.

modify the bitmap images and window set before they are placed on the public display.

4.1.2 “Semantic glue” queries

To alter the shared view along the lines discussed in previous sections, the system needs

to monitor a shared application. It should be able to tell where on the visual surface

representations of private elements or elements that need verbosity adjustments are located,

which visible dialogs, windows, menus and UI widgets are private, and if the application is

in a private state.

This requires methods for obtaining information about the application’s GUI compo-

simply copying from the window’s device context will also copy parts of covering windows, but it is possible
to use the new PrintWindow functionality to force a window to render itself onto a separate device context.
See Tan et al. (2004) for more details.

Chapter 4. System Description 44

nents, the underlying semantic objects, and their visual representations. The following

query layers are used.

L1: OS windowing queries – Enumerating all windows belonging to a specific ap-

plication (or process), detecting creation/destruction of such windows, visibility, titles and

locations. Many of the widgets used in an application are themselves windows and can be

accessed the same way. This layer also supports capturing of keyboard and mouse events.

In the prototype we relied on using P/Invoke2 to access Win32 dll calls that provide this

information. Similar functionality is supported in other modern operating systems.

L2: Accessibility API – These are common APIs often targeted to sight-impaired

users. They enable third-party tools, such as screen readers, to systematically expose infor-

mation about UI elements in a running application. Exposed information contains element

names, roles, text, visibility, state and on-screen location as well as events triggered by UI

elements (as button clicks). It is also possible to walk the accessibility hierarchy to explore

children items (e.g. dialog items within a dialog, as in Figure 4.3).

Previous work (such as by McGrenere (2002)) has already demonstrated how tracking

Accessibility events (using a generic tracker tool from Microsoft) can be used to log a user’s

activity with an application.

We extended this information channel and successfully re-purposed these APIs as a

resource to detect exposures and locations of elements that should be kept private or high-

lighted (e.g. UI widgets, menus and specific menu items, rendered HTML objects).

Accessibility APIs are now supported by many commercial tools, UI toolkits and oper-

ating systems.3 Our use of them can be further generalized.

L3: Application-specific API – Many commercial applications provide an API for

integration and automation. These APIs can be used via COM and a scripting language

(VisualBasic or C# scripts in Windows), JavaBeans, AppleScript and other frameworks.

Within our system, we used these APIs in a simple manner to extract information about

the application’s state and to identify the visual representations of semantic objects. While

writing some scripting code to work with the API is required, our experience when devel-
2Using P/Invoke is described in http://msdn.microsoft.com/msdnmag/issues/03/07/NET/ (last checked

August 17th, 2005).
3Supported by Microsoft Accessibility, Java APIs, OS X, wxWidgets and more. Some level of accessibility

is now required by law (http://www.section508.gov, last checked August 8th, 2005) and will no doubt increase
over time. Some standardization can be expected that will further enhance the range of platforms we can
support.

Chapter 4. System Description 45

oping the prototype shows that this is a focused effort with a limited amount of coding.

Modern APIs already provide methods for locating document model objects on the window

surface, or an Application object can usually be queried for its current state. Furthermore,

coding occurs only once and can then be used in flexible ways.

L4: Extracting information from surface drawing operations – This is a tech-

nique introduced by Olsen et al. (1999) and is based on overriding the basic drawing

routines so object locations can be extracted (see Section 3.5). Its requirements are quite

problematic, especially for the commercial tools we worked with, therefore this technique

was not used and it is not shown in Figure 4.1. However, it is still a possible semantic glue

layer that could be used in some cases.

4.1.3 Plug-In Architecture

To create a generalizable framework, we chose to implement all of these queries using a

plug-in architecture for our system. Each shared application has a middleware plug-in

to our system 4 that provides the semantic glue and extends a generic base plug-in. Our

architecture defines a Plug-in API (PAPI) with the services it expects from each middleware

plug-in. Default actions are provided for each service in the base plug-in. Application-

specific plug-ins can be added that override the default actions. The Monitor module can

then use these plug-ins for parsing the visual surface and window set of an application and

apply suitable filters.

Base Plug-In

A default base plug-in provides a set of general capabilities to track common UI entities. It

serves as a toolbox for developing more specifically tailored plug-ins.

The base plug-in runs a background service that searches for dialog boxes, menus and

other widgets (like dropdown boxes) of a shared application by tracking window creation

events using L1 methods. It then uses additional L1 calls to extract their window class

(type), title and location and the accessible object associated with the window5.
4The plug-ins we describe are added to our system, not to the applications. The plug-ins may have

specific knowledge of the application and its API, but no access to the source code of the application is
assumed or required.

5We used the AccessibleObjectFromWindow() and AccessibleObjectFromPoint() calls available in
Windows, but there are equivalent methods in other Accessibility packages.

Chapter 4. System Description 46

L2 calls are then used to extract accessible name, role, text, state, selection and location

for the object and its child elements (e.g menu items or dialog fields) on the “accessibility

tree”.

Hints on how to handle these items can then be obtained by testing this information

against information specified in an application-specific plug-in without additional coding as

will be described in the next section.

Handling UI components means making decisions about which components are to be

replicated on the public screen, which components should be replaced with alternative

representations or what image filters should be applied on the visual surface of a window

where such elements are located. The base plug-in provides a set of generic image filters

for blurring and highlighting that will be described later and the Director module can be

instructed what components to replicate.

The base plug-in also uses the same accessibility information to provide generic augmen-

tation capabilities, such as highlighting the active dialog field, highlighting menu selections,

or telling the director to “gradually decay” the image of dialogs and menus on the public

display after they are released by the presenter.

It is important to note that the base plug-in is application agnostic. It does not carry out

any L3 queries, because these are application-specific. All application-specific knowledge is

specified in extension plug-ins, or in cross-application policies that will be described later.

Application-specific Plug-Ins

An application-specific plug-in encapsulates the knowledge about a specific application and

its monitoring, and supports a common API that the Monitor module can use. These

encapsulate behavior that customizes or overrides the behavior of the default base plug-in.

There are three main types of such methods (see also Table 4.1):

Privacy Hints – One set of methods of the Plug-In API (PAPI) provides privacy hints.

When a new window or widget is detected by the base plug-in it will direct a call to the

appropriate application plug-in with the Accessible object representing the widget and its

properties as input.

The application-specific plug-in returns text or keyword-based descriptions and hints on

the UI widget (indicating if it is private and should not be replicated, if it should be replaced

with an iconic representation, or if it or any of its child elements need to be blurred). Most of

Chapter 4. System Description 47

these services can be simply realized by checking the string based widget properties (window

class, title, accessibility name, accessibility text, accessibility role) against a predefined

classification table. In the prototype, which is a work-in-progress, widget classifications

were hard-coded. However, one could represent these classifications in an XML table or

simple scripted hints that do not require coding and process the information extracted by

the base plug-in. For example, a set of rules that defines the “save as” dialog as private and

replaces it with an iconic animation, and also makes sure that the “File” menu is blurred

for a specific application, might be written in pseudo XML script as:

...

<Match wndClass="# EXCEL-DIALOG-CLASS #", title="save as">

<Classification status="private" hint="animation:filesave"/>

</Match>

<Match accessibilityRole="menu", accessibilityName="File">

<Classification status="private" hint="blur:pixelize"/>

</Match>

...

These scripted hints can allow a presenter to easily customize manipulations to the

shared view without needing to write a separate plug-in for the application.

Other privacy hints can be associated with application-specific states (such as when

switching to a private worksheet). These are extracted using application-specific L3 calls.

Visual surface parsing – Other PAPI methods are used to extract lists of regions of

the visual surface containing private information, regions that need highlighting or specific

sub-window areas to be displayed (instead of the full window). A plug-in translates these

general PAPI queries into appropriate queries in one or more of the four layers. Usually this

will translate to L3 scripting calls to locate specific document model objects on the visual

surface (e.g. the selected paragraph, cells with certain attributes or cells that were changed)

or applying L1 and L2 calls to locate sub-windows of the application on its window tree

(e.g. locating toolbar windows and excluding them from the region to publish).

In the prototype we focused on writing a wide range of parsing capabilities in L3 and

L2 for each one of the applications we worked with to test different approaches and ideas.

Further research is required on how to customize these capabilities for specific presenter or

Chapter 4. System Description 48

audience needs.

One possible approach that was partially taken in the prototype is to extend a plug-in A

for application α that provides the basic queries, by creating a version A′ (by inheritance)

that overrides the relevant PAPI methods (Table 4.1). Another approach exposes the ba-

sic queries for meta-scripting (so, for example, a rule like "cell[*,*].backcolor=red →
blur" will apply blur filters to every cell colored in red, given that checking cell properties

and computing their on-screen locations are defined in the application-specific plug-in A).

Once scripts providing these basic capabilities are written, they can be driven by meta-

scripts similar to the previous set of methods.

Application-specific resources and UI – These are methods that return application-

specific animation clips, image filters and command descriptions stored in the plug-in to be

presented to viewers.

When a plug-in classifies a widget or region it also gives back a hint on what filter,

augmentation or animation to use. Some are cross-application (like a file open animation

or basic blur filters provided by the base plug-in) and some are application-specific (a data

import wizard animation for Excel provided by an Excel-specific plug-in). Both types of

hints have been implemented in the prototype.

Many keyboard shortcut descriptions can be extracted automatically from the Accessi-

bility information by doing a reverse mapping (the accessibility information for menu items

usually contains the keyboard shortcut for them and the menu item name can serve as the

index). In the prototype this approach was used in a manual manner (i.e extracting a subset

of shortcuts from the accessibility information off-line and encoding the reverse mapping in

the plug-in).

An application plug-in can also provide its own UI for tweaking the manipulations or

even the scripted hints, as will be discussed in Section 4.4.3.

Plug-In Repository

The Monitor module directs its calls to a plug-in repository manager, which loads the

appropriate application plug-in at run time (possibly even from remote servers). If no ap-

propriate plug-in exists the default base plug-in will be used, offering some basic monitoring

capabilities. (At its simplest, the base plug-in could query the presenter before displaying

any menu or dialog box, and then apply “program by example” techniques according to the

Chapter 4. System Description 49

Plug-In Interface
Privacy Hints

GetApplicationState()

Returns a set of keywords describing the
application state and its privacy (e.g.
"visibleWorksheet[params]",private). It uses
the base Plug-In to obtain a description of active
application windows and dialogs, and L3 calls to the
application to obtain application-specific states.

GetWidgetPrivacyHints()

Gets as input the accessibility object describing the
widget (dialog, window, tab etc.), as extracted by the
base plug-in. Returns hints on the privacy level of the
widget and its children.

GetMenuPrivacyHints()
Similar to GetWidgetPrivacyHints, but specific to
menus.

Visual Surface Parsing

QueryPrivateRegions()

Returns a list of regions in the frame buffer that contain
private information (using L3 or L2 calls). Each region
is returned with keywords describing it and hints on
the suitable blurring effect.

QueryHighlightRegions()

Returns a list of regions in the frame buffer that need
highlighting (e.g. active selection context, specifically
selected document object). Each region is returned
with keywords describing it and hints on the suitable
highlight effect.

QueryChanges()

Returns a list of regions that map to document changes
(e.g. text or cell changes) or global state changes to
be reported as subtitles (e.g. switching sheets or docu-
ment sections). Each change is returned with keywords
describing it and hints on the suitable effect to use.

QueryPublishedRectangle()

Returns the subarea of the main application window to
be ”published” or replicated for viewers (based on the
selected policy: follow a specific object, follow active
selection context, exclude UI layers etc.

Application-Specific Visual Resources

GetVisualResourceFromToken()
Given a hint token, returns a visual resource (such as
an animation sequence, icon or effect operator).

GetCommandDescription()

Given a command (such as keyboard shortcut) that was
captured by the base plug-in, returns an application-
specific description of that command that can be used
for reporting.

Plug-In Control

ProcessKeyboardInput()

Handles keyboard commands that control the plug-in’s
functionality. For example, the Excel plug-in can be
instructed to toggle between highlighting active table,
active row, or active column.)

ShowUI()

Brings up a UI window (or a semi-transparent layer
over the application’s window) to control plug-in spe-
cific functionality. (Not implemented in the current
prototype.)

Table 4.1: The Plug-in API (PAPI). There are four main categories of methods: (i) Privacy
Hints on application windows, widgets and menus; (ii) Visual Surface Parsing
to extract regions that contain private information or need highlighting on the
application’s visual surface; (iii) Visual Resources that access application-specific
animations, icons or effects; and (iv) Plug-In UI and control to tune plug-in-
specific functionality.

Chapter 4. System Description 50

presenter’s responses.)

A similar scheme is successfully used in popular web browser extensions6 that grab

pre-written web-site-specific DHTML “user scripts” from online repositories. These control

changes to the way the site looks and behaves in the web browser. These site-specific scripts

(many are contributions of community members) behave much like the application-specific

plug-ins we suggest. The source code for these scripts is provided freely so users can adapt

them to their own needs.

Detailed Plug-In Examples

We next discuss two detailed examples of application-specific plug-in used in the prototype.

These highlight the different ways semantic queries can be posed and generalized.

Plug-In Example I

Our Excel plug-in defines the keywords “open”, “save as” and “options” in a dialog title

as private. When the base plug-in finds these in a dialog, a private state indication will

be issued and the dialogs will not be exposed. The keyword combination path="Format

Cells/ Protection";role="tab" will tell the base plug-in that the tab widget entitled

“Protection” in the “Format Cells” dialog is private (Figure 4.3) and its entire contents

should be blurred. The path regular expression: "File/(^.*\.xls$)";role="menu item"

orders all items in the “File” menu that match a file pattern to be blurred (i.e. recent MS

Excel files). Some of these rules were hard-coded in the prototype.

To get regions for blurring or highlighting, Excel-specific API calls (L3) are used to

locate cell ranges marked in a specific background color, the selected cell range and its

surrounding table, or changed cells. The on-screen bounding box is then computed.

Specifically, Excel.Range objects provide color, bounding box and value properties that

are simple to use and the Excel.Application object has methods to get selection and changed

ranges. If the selection is in a private cell range, additional L1 and L2 API calls are used to

locate the formula edit box or locate the sub-window frame containing the document (these

can be identified by their window class or name and position in the window tree). Once

a bounding box is obtained the base plug-in provides generic blur and highlighting filters

that work on any image buffer.
6A prominent extension is for Mozilla: http://greasemonkey.mozdev.org/ (last checked August 7th, 2005).

Chapter 4. System Description 51

Figure 4.3: The Accessibility tree of an Excel dialog can be used to locate private items
(such as the Protection tab) and their location. The Accessibility tree view
in this picture was generated using the Accessibility Explorer tool (part of the
Microsoft Active Accessibility 2.0 SDK).

In Excel, the Application object provides attributes for determining the active work-

sheet and the visibility of comments. Knowing this information, it is possible to enter a

private state in Excel when particular worksheets are being viewed or when certain types

of comments are present.

All of the above were packaged into a straight-forward C# script in the Excel plug-in.

No changes were made to Excel, although knowledge of Excel’s object model and API was

necessary. Similar techniques were used for MS Word (the Range object for Word relates

to a text range, not a cell range).

Plug-In Example II

Our web browser plug-in defines the keyword “favorites” in any menu as private (Figure 4.4).

It also defines keywords matching the navigation history dropdown and auto-complete box

(their window class, accessibility name and role) as private. Thus when any of these is

opened and identified by the base plug-in, a private state will be issued and they will not

be echoed on the public screen.

We targeted our plug-in to Internet-Explorer, but a similar plug-in for a different browser

only needs to replace the keywords with the appropriate names (e.g. “bookmarks” instead

of “favorites” for the Firefox browser). Alternatively a generic web browser plug-in can use

a pattern like: "favorites | bookmarks | ...";role="menu".

Chapter 4. System Description 52

In a similar manner, L2 calls can expose the accessibility object associated with any

HTML item by its title attribute (adding this attribute in the HTML code is now encouraged

to assure that web sites are accessible), so any browser plug-in can easily locate a specific

HTML form field based on the title value and then blur it or highlight it if appropriate.

Figure 4.4: The Accessibility tree for the menu bar in Internet Explorer (left) and Firefox
(right). By specifying the keywords “Favorites” or “Bookmarks” as private a
browser plug-in can prevent these menus from showing on the public screen.

4.1.4 Policies and rules

The Director module handles the published representation to be rendered on the public

display. It uses the Monitor module to track the application and extract descriptions of its

state and visible elements. It then applies policies that determine how to manipulate the

visuals.

When instantiating a policy, a tuple comprising the application, the state or element,

and the viewer’s role is the input. The output is a rule that determines the manipulations

that will be applied to the published visual representations.

Privacy classification

We must determine how private elements, states or elements that need verbosity control

can be extracted, assuming applications being shared do not know about privacy. There

are two complementary approaches to consider.

Chapter 4. System Description 53

The first approach (taken in the initial prototype and partially discussed in previous

sections) is letting the presenter mark these elements explicitly.

When working with a document in an editor we can readily support what we call a

“Magic Marker” that maps a visual property of an object to a privacy state (most editors

have a notion of object style properties). For example, a presenter can mark a document

object as private by coloring it with a specific color, using the native application tools (e.g.

a background color for cells in Excel or a highlight color for paragraphs in Word as shown

in Figure 4.5). When writing in this color the PAPI calls translate to simple L3 scripts that

will recognize these objects as private and extract their on-screen locations.

A policy that regulates blurring for marked objects will create the effect of a marker that

cannot be seen by viewers, while the presenter can interact normally (as opposed to using

black on black writing or using Excel’s column and row hiding features that will prevent the

presenter from viewing and interacting with the information). This mode provides visual

feedback and awareness on what the audience cannot see, as called for by Shoemaker and

Inkpen (2001).

Other means for coding attributes can also be used (like adding a “Private” prefix to a

worksheet’s name or to a comment’s text to mark their privacy). Another option is to use

the application’s built-in selection mechanism, so for example the paragraph containing the

insertion point can be extracted by querying the application and then it can be rendered

differently.

A second approach is to use an automated rule-guided search for privacy leaks. We

already described how the base plug-in can be augmented with application-specific verbose

mappings. These can be extended to conduct online cross-application rule-guided searches

for private information in any menu, dialog or document rather the relying on pre-computed

classifications. By searching the text and context of UI widgets it is possible to identify error

messages, dialog field names related to security or network settings and classify personal

information appearing within the shared document.

We have experimented with searching for private text in a spreadsheet or document

(phone numbers, names, etc.) and automatically blurring them. Another interesting domain

is that of web pages, where we partially implemented a search of the HTML code for private

UI widgets and content elements (e.g. examining all form field names and blurring ones

that might contain private information, such as userids, credit card numbers, etc.).

Chapter 4. System Description 54

Sample Rules

We believe that a combination of these approaches is required for adequate privacy protec-

tion. Together with the visual manipulations (described later), this allows a flexible range

of rules or policies. We list a few examples of the types of rules that we have considered in

our prototype.

• “Do not expose any dialog related to files or the network in any application to any

public viewer.”

• “Blur any document element in any application marked in pink to group A members.”

• “If there is any viewer from group B, do not expose my “favorites” in a public view

or any web page not coming from company servers.”

• “Ask me before exposing any window from application X on the public display, unless

I authorize it beforehand.”

Also useful is an opt-in policy of “blur everything unless specifically marked by me”

as opposed to the opt-out versions we used in the prototype. Opt-in policies can better

protect against unexpected exposures of information, but require more work and attention

from the presenter.

Specifying Rules and Policies

In the prototype we have concentrated on the system architecture and a collection of ma-

nipulations (discussed in the next section) that illustrate the value of having role-based

policies to control views.

Our goal has not been to develop a robust mechanism for describing policies. However,

a prominent future direction is looking into adapting schemes that allow policies, roles and

rules to govern access control in collaborative sessions (“login space”) to to regulate privacy

(“display space”).

Schemes similar to the ones proposed by Edwards (1996) may be used to specify static

or dynamic policies in a flexible policy specification language. The schema presented there

already allows rich ways to describe roles and policies some are evaluated based on the

outcome of scripts. The missing link is the rules that identify the visible UI elements and

Chapter 4. System Description 55

semantic objects and what privacy or augmentations filters to apply. The simple scripting

and query examples shown in this section could serve as a basis for such a language. This

is a fruitful area for future research.

4.2 Manipulating the Visual Representation

The Director component takes in the “raw” captured frame buffers grabbed from the appli-

cation windows and applies one or more of the following manipulations based on the policy

and rules that are in effect.

4.2.1 Blurring

When private elements are visible, the challenge is guaranteeing that viewers cannot see

them while allowing the presenter to work freely. The PAPI can extract the locations of such

elements on the visual surface at any time (with attributes and hints, such as the suggested

blur effect to use). In some cases a private information unit may appear in several places

(e.g. the contents of a selected private spreadsheet cell will also appear in the formula bar).

This demonstrates why tighter integration with application semantics is crucial for ensuring

privacy.

Figure 4.5: (a) The presenter’s view of a spreadsheet, (b) Greeking cells marked in pink,
exposing selection and style, and (c) fully concealing a cell range.

The Director can apply several image blurring operators on extracted private zones

(Figures 4.5 and 4.6). Because blurring occurs at the frame buffer level it can be applied

Chapter 4. System Description 56

regardless of what the underlying element is (UI control, text, image etc.) or how the

bitmap was originally drawn (therefore all filters used in the prototype are provided by

the base plug-in). Different filters offer different visual affordances, balancing between the

presenter’s privacy and the audience’s awareness.

• Draw over – Invoked for full privacy, with no awareness of the presenter’s interactions

in the blurred part.

• Greekify – Creates a “Greeked text” effect by searching text line boundaries on the

image and replacing them with filled rectangles in the dominant color. The filter

implementation resembles the techniques used by Olsen, Taufer, and Fails (2004)

for finding text paragraph boundaries from a hand-sketched annotation. The major

difference is that our system uses automated visual-surface parsing to direct the filter

as opposed to reliance on manually generated annotation marks. This filter is useful

for exposing structure, style and some notion of the presenter’s interactions, such as

selection, without exposing sensitive text.

• Pixelize – This is a general purpose filter, mostly useful for image-based content. It

provides awareness cues for viewers, but may be insufficient for full privacy.

Figure 4.6: (a) Word document with blurred paragraphs and image; (b) recent files menu
items blurred by pixelization; and (c) a login web page where the userid field
was detected and Greeked.

Chapter 4. System Description 57

4.2.2 Salience and highlighting

The system supports a highlighting mechanism that is independent of the shared applica-

tion’s own selection and highlighting tools. Highlighting is used to draw viewers attention to

important content or changes (also serving as visual deixis), many of which are not identical

to the current selection. Earlier work by Olsen et al. (1998) looked at allowing different

agents, software and human, to point into the visual space of an application and some of

our highlighting shares the same visual effect.

In Figure 4.13a the presenter is interacting with the tools palette, but wants to keep

viewers focused on a specific paragraph. The PAPI provides a method through which

the shared application can be queried for regions to highlight, supporting policy-guided

highlighting.

Highlighting active selection context

We found it useful to highlight the context for the active selection as changes are made.

The context is application-dependent (the paragraph, sentence or section containing the

insertion point in Word, the table surrounding the selected cells or dependent cells in Excel,

or the active dialog field in any application).

The highlighting effect is application-independent and works on the image buffer by

placing a semi-transparent colored mask on top of non-highlight areas. Detaching the

highlighted object from selection and instead highlighting a specific object, while working

with other objects, is also useful and can be done by caching the previous highlighting

bounds or by caching a pointer to the previously selected object within the plug-in.

Highlighting changes

Another mode of highlighting makes changes more salient to viewers (mostly to indirect

changes in parts of the visual surface far from the presenter’s interaction). A considerate

presenter would point out these changes to an audience and perhaps even mark them on

the screen. To assist the presenter, the semantic glue layer can extract such linkages and

provide automatically generated highlighting. Figure 4.13c shows a hand-drawn style of

circling for changed cells that exposes changes in blurred data while preserving privacy.

When working with minimized screens it is also useful to highlight and intensify changes

Chapter 4. System Description 58

of state that are otherwise hard to detect, such as when the presenter switches between

worksheets, sections or documents (Figure 4.13e). This can be accomplished by reporting

the new states as subtitles.

Other manipulations that can affect salience and attention are the magnification of

relevant regions of the visual surface, re-rendering of textual elements in a bigger font (many

of these underlying texts can be extracted through the semantic glue layer) or “shaking”

windows or parts of the windows that have changed.

4.2.3 Spatial manipulations

One set of manipulations allows the presenter to share only a partial view of an application’s

window. This is useful for reducing screen space use and clutter, and in addressing privacy.

The PAPI provides a method through which the window part to be shared (“published

rectangle”) can be accessed. Computing this window part can take into account several

policies.

• Excluding the UI – Remove UI layers such as toolbars and embedded windows that

take a substantial amount of screen space (Figure 4.7b). L1 and L2 calls can be used

to search and prune the application window tree.

• Active context – Share only the active context, based on the presenter’s selection

using techniques described in the previous section.

• Sharing a specific element – Share only a specific semantic object (paragraph or

table) or UI element chosen by the presenter.

The semantic layer guarantees that the window part computed will adhere to the stated

policy and will take into account changes to the window’s dimension, scrolling or UI changes,

unlike the manual definitions presented in WinCuts (Tan et al. 2004) or the even less helpful

fixing of a portion of the screen to be shared.

Another set of manipulations uses affine transformations. Rotating windows is useful

for single tabletop display sessions, where viewer orientation should be part of the policy.

Automatically scaling down the size of dialog boxes, palettes and other secondary windows

(identified by the PAPI), together with a careful placement of these next to the full sized

main window can assist in reducing clutter and support privacy (Figure 4.7c). Combining

Chapter 4. System Description 59

several spatial transformations together can be quite powerful. For example, it is possible

to publish only the selected paragraph context, flipped vertically so a viewer on the opposite

side of a tabletop display can follow the discussion without requiring replication of the full

document window (Figure 4.7a).

Figure 4.7: Spatial manipulations: (a) publishing only active context (paragraph contain-
ing insertion point) + vertical flip; (b) auto-exclusion of toolbars, menus and
embedded frames from an Explorer window, exposing only the sub-window with
the HTML page; and (c) automatically downsizing an “options” dialog.

4.2.4 Temporal manipulations

There are situations when it is more reasonable to define the entire state of the application as

private, rather then extensively applying blurring transformations (e.g. when the presenter

interacts with a private worksheet, uses the file open dialog, or works with a wizard).

The semantic glue layer can query the application state. If it matches the privacy policy,

the system can trim the interaction timeline by not sending updates to the viewer’s display

until the presenter exits the private state. To keep some level of awareness for the viewer, the

system can display an animated iconic representation summarizing the state. For example,

an open file icon can appear instead of exposing the dialog itself (Figure 4.8a) to prepare

a viewer for a document change, or an icon indicating interactions on a private worksheet

can give the viewer hints about what the presenter is doing.

In other situations, it is better to not provide any indication at all, maintaining complete

privacy, as when the presenter interacts with an auto-complete text box (Figure 4.8c), an

error dialog, a private comment, or commits syntax errors when taking notes in public.

Chapter 4. System Description 60

Some of these states are quite unpredictable by the presenter (e.g. an error dialog popping

up or auto-complete suggestions), so automatic detection of these is crucial.

Another set of timeline manipulations can be applied to the pace at which certain

operations (as extracted by PAPI) are played on the public display or by letting viewers roll

back recorded interactions (for example, using the semantic glue to tag recorded interactions

for quick roll-back). One example we implemented involves menu selections, discussed in

the next section.

4.2.5 Handling Menus

Menus are fundamental interaction components that are often problematic in a generalized

presentation scenario. They can create a lot of clutter (being arbitrarily long, regardless of

the size of their parent window), and they often bundle private information (recent files,

bookmarks). More importantly, menus are becoming highly tuned for the active user and

less for a passive viewer (adaptive menus with personalized order and gestural menus that

do not show on the screen). As described previously, the base plug-in obtains the relevant

attributes (name, items, locations, selection) from any menu through L2 calls and can

mandate blurring on specific items or prevent a menu from showing on the public display

(these are highly generalizable techniques).

A critical moment is when the presenter makes a selection on a menu. From her point

of view there is no need for the menu anymore and it is taken away by the application. Our

system, however, can capture the selection event and pause the timeline so that the menu

lingers on the public screen for an extended “decay” period suitable for passive viewers

(possibly with animated highlighting of the selected menu item). It is also possible to

identify the creation of a pop-up context menu (which might result from a right mouse

click on a link in a browser), and smoothly move its clone to a neutral placement that does

not block the operation’s context (Figure 4.9a). We can use these techniques to stall the

progress of a dialog on the public screen after the presenter closes it, allowing viewers to

fully understand the interaction.

Watching interactions with menus is not the best way to convey operations to viewers.

In many cases, replacing a menu selection with different feedback, such as specifying the

selection in a semi-transparent subtitle, is a better technique (Figure 4.9b). Consider a

presenter who scrolls through a menu until finding a specific item. It is hard for a viewer

Chapter 4. System Description 61

to tell if the menu was closed because a selection was made or the menu was released with

the ESC key without making a selection. Our subtitle scheme reports only when a selection

is actually made. This scheme still works even if the presenter uses keyboard shortcuts or

gestural menus because the semantic glue translates these back to a menu item description

for display, so all equivalent operations appear the same to viewers.

4.2.6 Mouse Cursor manipulations

We are able to provide viewers with a different representation for the mouse cursor to better

suit their needs, while the presenter can continue working with a normal cursor.

Some of these alternative representations are shown in Figure 4.10. They assist viewers

in visually tracking the cursor and knowing the presenter’s focus of interaction. Alternative

cursors can support augmented or relaxed verbosity. They can increase verbosity by visually

encoding low-level interactions (such as mouse button clicks or keyboard presses) or reduce

it by displaying only the state indicators discussed previously. Because passive viewers

often focus their attention on the moving cursor, encoding indicators on the cursor (as in

Figure 4.10d) will grab their attention.

Finally, it may be desired to conceal the mouse cursor altogether when the presenter

interacts with components that are private, so mouse positions do not disclose interactions.

4.3 Access Control Extension for Input

Our focus so far has been strictly on output. We also want to support limited forms of

shared input, with an emphasis on preserving privacy.

In augmented collaboration environments like the iRoom that uses PointRight (Johanson

et al. 2002) or similar solutions (Rekimoto and Saitoh 1999; Booth et al. 2002), or in remote

desktop solutions such as VNC, a presenter can grant a viewer full control over keyboard and

mouse input to her machine (a coarse form of floor control). For example, when requiring

help (as in Scenario 2.3), when delegating a task, or when letting a viewer present something

from his machine.

This is highly undesirable, because from the presenter’s operating system’s point of

view, keyboard and mouse input are still coming from the logged in user (the presenter).

Therefore, a viewer who takes control could make changes to non-shared applications or

Chapter 4. System Description 62

make unwanted changes to the application being shared.

We integrated the basic functionality of PointRight into our system (for example, al-

lowing a viewer to control the shared application from her PDA as in Figure 2.3), but we

are able to use the semantic layer to identify locations of widgets, menus and controls that

should not be accessed. Thus when a viewer sends a mouse click event on such a control,

the system will not pass this event to the OS. Similar treatment can be applied to keyboard

events (this requires more queries on the application). This scheme allows finer grained ac-

cess control policies to be applied to applications that were not designed for it. Additional

work is required to make this technique more robust.

4.4 Feedback and Control

Solutions that address privacy differ “by the degree to which subjects have feedback about

and control over the disclosure process” (Lederer et al. 2003). Our system is aimed at

providing semi-automated control of privacy based on rules defined by the presenter. There

are two problems that arise:

1. Privacy and augmentation manipulations are done on the public view of an applica-

tion, so a presenter may forget what viewers can see or may not be aware that some

elements are kept private and do not get copied to the public view.

2. In some cases the privacy attribute assigned to a GUI or document item based on the

rules can be incorrect or may not suit changes in the circumstances. For example, the

presenter may have specified in a rule that any context menu should remain private,

however, at some point he would like to explicitly show an operation involving this

menu.

The two problems demonstrate the need for feedback and control mechanisms in the

presentation time.

4.4.1 Radar View

One approach taken in the prototype uses a radar view window on the presenter’s screen

to provide constant feedback on what the audience can see (Figure 4.11). In co-located

scenarios the presenter may still be able to look at the public screen (although it may

Chapter 4. System Description 63

actually be behind the presenter). In distributed scenarios knowing what viewers see is

crucial for successful collaboration. Radar views are an efficient mechanism for maintaining

mutual awareness in groupwork environments (Gutwin and Greenberg 1998b).

A presenter can also use the radar view to control the public copy of the application

through window miniatures (for example, to move these windows on the public screen).

Early VR work has already used the concept of a world-in-miniature (Stoakley, Conway,

and Pausch 1995) for navigation and view control. Similar techniques can be used for shared

viewing.

4.4.2 Changing Privacy Classification

Other feedback cues that we experimented with in the prototype can serve as in-situ privacy

controls. Figure 4.12 left shows a balloon window that shows up when the presenter starts

interacting with a dialog of a shared application.

This balloon provides an alert to the presenter that this specific window is either visible

or invisible to the audience (based on the privacy policy and rules). It is possible to add a

button to this balloon so the presenter can override the privacy classification.

Another example (Figure 4.12,right) uses a more subtle privacy cue. A mini-icon win-

dow is attached to widgets that are not visible on the public view (in this case a menu)

and provides privacy feedback to the presenter. When the presenter’s mouse lingers over

this mini-icon it will expose the menu on the public screen. Using this scheme solves a

problem typical to menus - if the presenter had to click on the screen the menu would have

disappeared, because this is how menus are programmed to behave.

4.4.3 Plug-In UI

Plug-Ins for specific applications may require controls that are application-specific for fine

tuning visual effects. For example, the Excel plug-in provides highlighting of the active

selection context, by marking the boundaries of the table containing the cell selection or

the formula bar if it is being used to edit a formula. However, is some cases it is desirable

to highlight the active row or column or fix the selection on a specific range of cells.

One possible solution relies on keyboard shortcuts. A special keyboard shortcut (Ctrl-

Ctrl in the prototype) will transfer keyboard focus to the clone window, so following key-

board events can be used as commands to alter the plug-ins behavior (via the ProcessKey-

Chapter 4. System Description 64

boardInput() method, Table 4.1).

For example, pressing the right arrow will toggle between table, row and column high-

lighting for Excel. A Word plug-in may use other keys to toggle sentence, paragraph or

section highlighting.

Another option is for the plug-in to provide a set of UI controls that can modify its

behavior. Thus when the special keyboard shortcut is detected the plug-ins ShowUI()

method will be called and the control window will be displayed on presenter’s display, either

as a separate window or as a semi-transparent layer on the shared application window that

was found to be effective in the Notification Collage (Greenberg and Rounding 2001). This

functionality was not implemented in the prototype.

A possible extension to the system relates to editing the scripted hints that govern a

plug-in’s behavior (discussed in Section 4.1.3). Tools like Microsoft’s Accessibility Explorer

(see Figure 4.3 and Figure 4.4) already provide a general interface for selecting application

UI widgets. A relatively simple extension can allow a presenter to visually select a specific

widget and then provide or alter the privacy specification for it. These interactions could

be translated to the underlying scripts.

4.4.4 Audience input

Apart from letting an audience member control the shared application (as discussed in Sec-

tion 4.3), input from viewers can be used to adjust their view properties, control the pace of

the presentation, or replay specific parts on personal displays. None of these functionalities

was implemented in the prototype, but we discuss each of them here because they are easy

extensions to what has been implemented.

Replaying interactions

Another functionality that can greatly assist passive viewers is the ability to replay recorded

interactions (either off-line or while the presenter is still talking). The desire for such

functionality was also expressed by the participants of the user study testing our system as

will be discussed in Chapter 5.

The semantic glue can be used to make replaying more efficient by providing rich index-

ing of the recordings and allowing different modes of replaying instead of the time-consuming

serial access:

Chapter 4. System Description 65

• “Take me there” – Instead of “blind rewinding” backward in time, the meta-data

collected by the semantic glue can be queried. Thus, a viewer could simply look

for a specific interaction. Such an interaction might be an application-specific event

(e.g. the point where the presenter changed a specific paragraph or switched to a

specific worksheet), the beginning of a specific dialog interaction, or the point where

a certain dialog field or a certain menu item was used. Such indexing is also useful

for simply taking the viewer to the beginning of the most recent interaction sequence,

which provides an answer to Baecker’s (1990) “how did I get here?” question (see

Section 3.10).

• “Executive Summary” – Rather than replaying recorded interactions frame-by-frame

it is possible to use the indexing to skip parts where no significant changes were

made. For example, rather than watching the presenter type in the contents of a field,

rolling the recordings to the point where she moved to the next field or to just before

releasing the dialog may be enough. Another example would be playing recordings

and fast-forwarding on the parts that did not involve changes to a specific paragraph.

Controlling pace

Viewers should be able to send feedback to the presenter throughout the presentation to

control the pace of the presentation. While this could be done using a conventional commu-

nication channel (verbally, phone or chat) the process is quite awkward and a busy presenter

might ignore such requests.

Our system is not intended to replace existing communication channels, but possible

extensions to it could shift the control balance towards viewers. For example, we intend

to explore ways of using the semantic glue to detect interactions for which viewers may

want extended viewing time (such as when the presenter releases a dialog). In such cases

viewers can get a short-timed popup control that allows them to freeze the dialog image on-

screen and examine the changes made, or even replay the entire interaction. A companion

extension on the presenter’s end could trigger a blocking mechanism to prevent the presenter

from performing other actions until viewers release the lock.

Chapter 4. System Description 66

4.5 Limitations

Experimenting with the prototype for the system showed that the proposed techniques,

especially those relying on Accessibility APIs (L2), can work well with off-the-shelf appli-

cations. The system does indeed provide a useful and simple solution for sharing a view of

an application with relaxed WYSISWIS and minimal demands on the shared application.

However, some limitations of our approach were also evident.

4.5.1 Identifying private information

Tracking and handling automatically all cases where private information can leak is not

always trivial. This is even true for collaboration-aware tools, but it is even more important

for the collaboration-unaware tools our system is designed to augment. The level of privacy

protection that is easy to provide is mostly bounded by the capabilities of the application’s

API and the quality and integrity of the Accessibility information. These are constantly

being improved in new versions of software packages and UI toolkits, but may still be

insufficient.

In other cases it is possible to rely on tagging and marking of private data, but this will

require extra effort from the presenter. Furthermore, because we work with applications

that are collaboration-unaware, providing a tagging mechanism for the presenter is not

always possible (we used color or style attributes available in editors, but other applications

may not have equivalents). In addition, if tags are not grounded in the document model

they may become invalid under ceratin operations (for example, copying private data to a

different location or using find and replace).

Still, in simple presentation scenarios the techniques we used may be enough and might

be preferred over more complex solutions (look back at the privacy risk management criteria

in Section 2.4.3). It is reasonable to believe that the more crucial privacy is for a presenter

the more willing she is going to be to mark and tag these items (changing the document is

also possible, but may prevent the presenter from viewing or manipulating the private data

that is required for the task).

Another possible path is relying on UI customization and document model extension

APIs that are now part of many off-the-shelf software packages.

Chapter 4. System Description 67

4.5.2 Working on the image buffer

Private information is handled only on the visual surface level and not in the underlying

document model level. We rely on image buffer and window set manipulations that do not

require knowing how the visible information was generated and rendered. This provides an

important advantage – manipulations and filters can be applied transparently and across

applications.

However, using blurring filters or eliminating private information on the public display

can still expose some private properties of the data. For example, the Greeking effect in

Figure 4.5b exposes orders of magnitude for the blurred salaries (a more careful choice of

the blur filter could have solved the problem in this case).

In addition, concealing information is itself an indication of the nature of the data. In

other cases viewers may deduce the properties of blurred data from other visible information

or operations (e.g. sorting a worksheet by salary will reveal who has the top salary).

These problems are common to other possible privacy solutions. Even when using a

replication-based solution one still has to be careful what information is synchronized and

how, so privacy is not violated.

4.5.3 Performance

There is an innate limitation on the public display update rate, because we copy image

buffers. In theory performance should match that of VNC (assuming some variation of the

RFB protocol is applied instead of the inefficient timer-based copying used in the prototype).

In practice, the overhead of adding semantic glue queries and image buffer filters can slow

down the update rate.

Our experience showed that the slow down was sometimes noticeable yet reasonable.

The image filters and window set manipulations are quite efficient. The more expensive

operations tend to be the ones involving application API calls.

It is clear that some of the APIs we use were not designed with performance in mind or

even to work in all application states. API calls varied in execution time between application

states and even resulted in errors in some cases.

Another problem with our approach is synchronizing image buffer operations (grabbing

and copying) and the semantic glue parsing. This problem is quite similar to the one faced

Chapter 4. System Description 68

by VNC, where unsynchronized updates or glitches occur from time to time (Lok, Feiner,

Chiong, and Hirsch 2002).

The problem lies in the fact that grabbing the application’s image buffer is done out-

of-process (with respect to the shared application). Thus, if capturing a paint event and

analyzing it (as VNC does) or processing a semantic glue query take a non infinitesimal

time t0, when proceeding to grab the changed parts of the image buffer, the analysis will be

missing possible changes that occurred in t1 < t0. VNC hides even more complexity because

some paint events are actually captured before the application has done the repainting.

Some of the heuristics used in VNC, such as sending custom synchronization messages

to the shared application or using timer-based polling to update the shared view only in

“idle” times7 can also be applied in our system.

In practice update glitches occur mostly when large parts of the visual surface are

abruptly changed, such as in scroll operations or if the semantic glue query fails or takes a

significant amount of time. They don’t occur in the typical case.

4.5.4 Feedback for the presenter

In the simple implementation of the system prototype only a special view for the audience

is generated. The presenter continues to interact with the original application.

Therefore, the presenter may be missing critical cues on what the audience can see or

what is highlighted on their view. The limitation emanates from the fact that manipulations

occur at the image buffer level and cannot be directly applied to the original copy of the

application.

In Section 4.4 some heuristics to address this problem were presented, but may be

insufficient. Another possible solution is to treat the presenter as a special case of viewer.

Instead of running the shared application on his computer, it can be hosted on a third

machine (as already happens in some collaboration scenarios), or it could render into off-

screen memory so it can be manipulated and re-displayed on-screen. Thus, the presenter’s

copy of the application can be treated in the same way the audience’s is, but with a different

set of privacy and augmentation filters.

7see a technical discussion on different VNC Hooks in http://grox.net/doc/apps/vnc/winvnc.html (last
checked August 17th, 2005).

Chapter 4. System Description 69

Figure 4.8: (a) The file open dialog is dynamically replaced with an iconic representation.
(b) A private worksheet that has become active (marked by having “(Private)”
as part of its name) is detected and replaced with an iconic indicator. (c) An
auto-complete text box in a browser (in this case containing previous search
items) is detected and not exposed to the audience. (c) The presenter is taking
notes (d, left), so the public view (d, right) shows that the presenter is writing
(a keyboard animation icon appears) but the view will be updated only when
moving to the next bullet (pressing enter), so the presenter can fix syntax errors
and expose notes to the audience only when ready.

Chapter 4. System Description 70

Figure 4.9: Manipulating menus: (a) moving a context menu to the side + highlighting
selection after release, (b) replacing a menu selection with a subtitle below the
mouse cursor, and (c) reporting a keyboard shortcut command.

Chapter 4. System Description 71

Figure 4.10: (a, b) changing cursor size, shape and transparency, (c) spotlight fo-
cus+context cursor, (d and f) visual feedback on the presenter’s mouse clicks
and keyboard presses, (e) a private state indicator embedded on the cursor
(file open) and (g) the cursor is frozen when going into the privacy-protected
security tab, so its current location – shown here as a “ghost” – is not visible
to the audience. The original cursor is shown in red indicating it has access
control, i.e. if a viewer is given remote control of the mouse his clicks on the
security tab will not go through (see Section 4.3).

Chapter 4. System Description 72

Figure 4.11: Radar View: In this case a Word document and an Excel spreadsheet are
shared on the public view. Other controls and documents on presenter’s desk-
top (such as personal notes or a document protection dialog) are private. The
radar view provides awareness for the presenter on which windows are shared.
Alternatively, it can also show miniatures of the public view with the blurred
or highlighted regions.

Chapter 4. System Description 73

Figure 4.12: A popup notifier that appears when an application dialog is opened (left) can
remind presenter whether the audience can see this dialog or not according
to the active policy. It can also provide a control for bypassing the policy
(not implemented in the prototype). A less obtrusive privacy control relies
on adding a mini icon window that “floats” next to private UI components
(e.g. attached to a popup menu as seen on the right). It provides a privacy
indication for the presenter and if the mouse hovers on it long enough will
bypass the privacy policy and expose the menu on the public screen.

Chapter 4. System Description 74

Figure 4.13: Auto-highlighting of active context: (a) active paragraph is highlighted, (b)
outlining the table surrounding selection, (c) highlighting active dialog field;
Auto-highlighting changes: (d) “by-hand” style circling of changed formula pa-
rameters, changed cells and dependent cells, and (e) highlighting sheet switch-
ing in a downsized view (compare with Figure 3.4a).

75

Chapter 5

User Study

The system that has been developed is a working prototype for the architecture and design

presented in this thesis. This chapter describes an experimental user study whose purpose

was to assess the degree to which the system meets its design goal of supporting viewers in

a generalized presentation.

When considering an evaluation of our system we should note that it is required to mea-

sure the system’s effect on both the presenter and the viewers to gain a full understanding of

the effectiveness of the system. For a presenter the question is whether the system improves

her ability to maintain her privacy and be more comfortable in making the presentation.

One aspect of this is which of the privacy filters are better. For viewers, a primary question

is whether the privacy-related manipulations diminish the viewers’ ability to understand the

presenter’s actions. A related question is whether the augmentations targeted to passive

viewers assist an audience in following the presenter.

We decided to focus on the second set of questions (utility for viewers). The presenters’

perceived privacy is a very subjective measure. One of the problems in a controlled exper-

iment is that a presenter may not have the same privacy sensitivities for mocked-up data

that would exist for her own data. Therefore, a true evaluation of this part of the system

may be best achieved in a field study, where presenters will be using it for their real-world

presentations. This would allow us to assess the subjective effectiveness of the system as

it is experienced by presenters. A secondary reason is that we already know that a person

engaged in a presentation is too busy to notice and prevent privacy leaks. Therefore, we can

be somewhat confident in assuming that the ability to define privacy concerns beforehand

and have them automatically handled is at least partially beneficial for presenters. Our own

experience bears this out, although it would of course be important to confirm this with a

formal study.

The initial scope of the experiment focused on the effects on viewers of the privacy

Chapter 5. User Study 76

filters. However, it also examined the effects of visual augmentations because this could

be measured at the same time and interactions between the two were possible. As we will

show later in this chapter, the interaction between the two manipulation types did turn out

to be of particular interest.

5.1 Methodology

To assess the system’s effect on passive viewers, we chose to use a training scenario as an

example of a generalized presentation. A passive viewer (subject) is trained on a set of tasks,

watching presenter’s interactions with an application on a public display. This allows the

shared view to be manipulated and altered using one or more of the techniques introduced

in Section 4.2 throughout the training. After being trained a viewer is asked to complete

a similar task on his own. It is then possible to asses the subject’s performance from

different aspects (speed, accuracy, efficiency). The monitored parameters and the tools to

collect them will be described in detail in Section 5.2.

We chose an Excel spreadsheet as the shared application and a set of tasks common

to a real-world grade report preparation for use in the study. This choice allowed the

experiment to have a reasonable level of external validity. In addition Excel has a vast

collection of features and functionalities to which we can apply our techniques. Some

features are familiar to most users and some are not, so a combination of these can be

used for testing. In addition most Excel features we included in the tasks have equivalent

counterparts in other applications.

We describe a wide range of manipulations to the shared application view. Some are

privacy enhancements aimed at maintaining the presenter’s privacy and others are visual

augmentations for passive viewers. We will refer to the former as privacy filters and the

latter as augmentation effects or filters.

Therefore, we have two factors we can control: Privacy and Augmentation. In the

experiment a coarse split to two levels, “on and off” was used. The “on” level was mapped

to a subset of manipulations. The following is a list of the possible four conditions and the

manipulations they entail:

N - Normal view – this is the control condition, showing regular screen recordings

without any manipulations (as one might get from using VNC). We will refer to this con-

Chapter 5. User Study 77

dition as R(regular) or N(normal) in the analysis

P - (Privacy) – blurring or excluding private information on the public view.

• Blurring specific ranges of cells

• Replacing file selection dialogs with animated icons

• Blurring specific menu items (recent files and others)

• Auto-Hiding error dialogs

A - (Augmentation)

• Highlighting of active context

• Highlighting active dialog field

• Highlighting of changes

• Visual indication on mouse clicks

• Report keyboard shortcuts as subtitles

• Extended “decay” period for menus and dialogs (+ highlighting selected menu item)

• Replacing frequent context menus with subtitles

• Replacing file selection dialogs with animated icons

• Replacing a wizard with an iconic animation

• Auto-Hiding error dialogs

PA - (Privacy + Augmentation) The union of the features of the A and P conditions.

Some of the features can be considered both as privacy preservers and as augmentation

for passive viewers. For example replacing file selection dialogs with iconic indicators does

not expose sensitive file system views on the one hand and mitigates visual clutter on the

other hand.

We were particularly interested in the interaction between the privacy and augmentation

factors. Does privacy have different effects when used with or without the combination of

Chapter 5. User Study 78

visual augmentations?

The hypotheses we were trying to test in the study were:

Hypothesis #1 – Adding visual augmentations in the training will affect subjects’

task performance (conjectured improvement)

Hypothesis #2 – Adding privacy filters in the training will affect subjects’ task per-

formance (conjectured degradation)

Hypothesis #3 – The effect of privacy depends on the the additional use of visual

augmentations (P X A - Interaction Effect)

Hypothesis #4 – The overall ordering of task performance for the training conditions

will be: fpmi(P) < fpmi(N) < fpmi(PA) < fpmi(A)1

These hypotheses led to the following testable null hypotheses:

H01: Performance is not affected by adding visual augmentations in the training

H02: Performance is not affected by adding privacy filters in the training

H03: The effect of privacy filters does not depend on the presence of visual augmenta-

tions

H04: All four different training types will lead to the same performance levels

5.1.1 Experimental Design

We used a 2 × 2 × 4 mixed model design with privacy and augmentation being between

subject factors (with two levels each - on and off) and task being a within subject factor

with four levels as will be described later. We used a set of dependent variables to measure

performance (speed, accuracy and efficiency) that will be described in Section 5.3.1.

The main statistical test used for this model was a mixed model factorial ANOVA

(Analysis of Variance) on the entire design. The significance level for all tests was chosen

to be 0.05.
1fpmi(·) denotes a primary performance measure from the set: speed, efficiency, accuracy as described in

Section 5.3.1.

Chapter 5. User Study 79

5.2 Method

In the experiment participants were asked to complete a grade report template in Excel (see

Appendix B) after watching recorded training movies with different visual augmentations.

5.2.1 Participants

Twenty-eight subjects participated in the experiment. Six were female and twenty-two were

male. Seven participants were randomly assigned to each one of the four between subject

conditions (R,P,A,AP). Subjects were paid $10 for their participation.

Twenty six participants were undergraduate or graduate students in the Department

of Computer Science or the Department of Electrical and Computer Engineering at the

University of British Columbia. Two participants were graduate students in a different

department at the same university.

Previous Excel experience

All participants had basic familiarity with Excel or an equivalent spreadsheet application.

Four subjects (14.3%) use it once a week, eighteen subjects (64.3%) use Excel on a monthly

basis, and four subjects (14.3%) use it less frequently.

All subjects ranked themselves as having basic or intermediate overall expertise with

Excel or a different spreadsheet (20 subjects ranked themselves as having minimal or basic

expertise and 8 subjects ranked themselves as intermediate, see Figure 5.1). Subjects were

specifically screened for not being Excel experts (i.e. using Excel on a daily basis and

familiar with most functions).

Subjects were also asked to rate their expertise with the specific Excel features used in

the tasks. These reports were collected after the experiment to support the analysis and

are summarized in Table 5.1.

5.2.2 Instruments and Data Collection

The following is a description of the materials and monitoring tools used in the study.

Chapter 5. User Study 80

Figure 5.1: Subject Excel Expertise: The four conditions were on par (even though subjects
were randomly assigned to conditions).

Table 5.1: Subject familiarity with Excel functionality – U=unfamiliar, B=basic and
E=expert. There is one notable difference between conditions with respect to
the use of absolute references. This functionality was the core of Task 2 and
some of Task 3 and subjects in condition AP had less previous experience with
it compared to the other conditions.

Training movies

To make all training sessions as comparable as possible, apart from the controlled factors,

we chose to pre-record these as screen capture videos rather than conducting live training

sessions (which may differ from subject to subject).

We used our system to create a manipulated view of interactions with Excel (with one of

the N,A,P or AP feature sets) and recorded this view using an off-the-shelf screen capturing

tool. The same soundtrack was used for all training movies. Altogether twelve movies were

created: 4(conditions)×3(subtasks).

The movies were played back for subjects using a movie player that supports a true full

screen mode (no UI controls or other artifacts were present on the screen while the movies

were being played).

Chapter 5. User Study 81

Questionnaire

At the end of the experiment session participants were asked to complete a short question-

naire (Appendix ??). The questionnaire comprised four parts:

• Past Excel experience - Participants were asked to rank their frequency of using Excel

and their expertise level.

• Evaluation of the specific Excel functionalities used in the task: (i) Prior familiarity

(not familiar, basic and expert) and (ii) Training session effectiveness for the specific

functionality on a 5-point scale (1=Highly ineffective, 5=Highly effective)

• Training session and task experience – eleven statements about the quality of the

training and the ease of performing the tasks. Participants were asked to rank each

statement on a 7-point Likert scale (1=Strongly Disagree, 7=Strongly Agree)

• Effectiveness / Disturbance of the specific visual enhancements and privacy filters

– participants ranked eleven augmentation features on a 5-point scale (1=Disturb-

ing,5=Effective) and a N/A option if the specific feature did not appear in the train-

ing.

• Free form comments and suggestions

Excel-Logger

To monitor subject performance a special logging tool, ExcelLogger, was created (writ-

ten in C#). We utilized the monitoring techniques from our system (Excel API hooks,

Accessibility and OS hooks) to provide us with the following logging information:

• Excel user interactions (cell changes, selection and worksheet changes).

• Menu selections (time to selection, aborted menus) and dialog interactions.

• Use of Excel’s help wizard.

• Mouse clicks and keyboard presses (including shortcut keys)

Chapter 5. User Study 82

We automated a screen recording component2 to work in concert with the logger, so

video recording of the subject interactions were also created (and the logged events can be

used as an index)

The ExcelLogger tool also functioned as a wizard that led each subject through the

tasks and training components (see procedure section)

A log analyzing component was programmed to prase the interaction logs and pro-

duce different aggregated measurements that served as the dependent variables as will be

described in Section. 5.3.1.

5.2.3 Procedure

Each session lasted an hour to an hour and a half. Participants first watched a short movie

explaining about the different augmentation effects and privacy filters (about two minutes

long). They then watched a series of three short subtask training movies (four to six minutes

long each). After each subtask training movie subjects were asked to complete the subtask

on their own in Excel. They were provided with written notes summarizing the training

and the steps they were required to reproduce.

The first subtask focused on setup and importing data from external data files into

designated spots in the report, the second subtask focused on the use of lookup formulas and

absolute references to connect data from different sheets, and the third subtask combined

various functionalities such as grade computation formulas, conditional cell formatting and

data sorting options.3

After completing the three subtasks, subjects were asked to complete the entire grade

report filling task on a new Excel worksheet with different course data. No training movie

was provided for this task, so subjects were forced to use the knowledge they retained

from the previous training. For all tasks subjects were allowed to use Excel’s help wizard

if they needed to. If they failed to resolve a problem using Help, they could ask for the

experimenter’s intervention (these interventions were logged as well).

All subjects had the same set of tasks. All three training movies were similar (apart

from the set of augmentation and privacy filters used in the movie).
2CamRecorder.exe - see Camtasia Studio Online Help.

http://download.techsmith.com/camtasiastudio/docs/onlinehelp/studio help.pdf (page 204) (last checked
August 18th, 2005)

3A full description of the steps required to complete each task can be found in Appendix B.

Chapter 5. User Study 83

We ran a series of pilot studies to tune the tasks. An early pilot showed us that providing

a single training session on the entire task did not work. Subjects did not remember what

they saw in the training and relied instead on Excel’s help. On the other hand, we felt that

a single shorter task was too susceptible to individual differences. We decided that breaking

the training and tasks into smaller units fit with pedagogical guidelines and allowed better

testing of the training effect on performance.

At the end of each session the participant was asked to complete a short questionnaire

and was then given a debriefing.

5.3 Results

5.3.1 Measuring Performance

We used measures of three different dependent variables as primary indicators of perfor-

mance for each one of the tasks:

• Speed - Overall time to completion (TIME)

• Accuracy - The resulting report from each task was assessed using a marking scheme

and was assigned a floating point grade in the scale 0-1. (GRADE)

• Efficiency - Overall number of actions to complete the report (#ACTIONS) as

recorded by the ExcelLogger (Section. 5.2.2).

We also carried out an analysis of secondary dependent variables that can assist in

establishing an understanding of the different factor effects.

• Excel operations – breaking down the total number of actions based on Excel opera-

tions: number of times cell content was changed (#CC), number of times cell selec-

tion was changed (#SC), number of times sheets were switched (#SW) and number

of times “undo” was used (#UND). It is reasonable to assume that a subject who

commits more errors on the path to the solution or is not sure how to complete the

task will require more of these Excel operations. Therefore, these counts better reflect

efficiency and to some extent provide an indication of the the number of “on-the-fly”

errors (as opposed to the final number of errors reflected in the grade or the overall

number of actions that includes many other event types).

Chapter 5. User Study 84

• Menu operations - Two count measures were taken: the number of menu selection

(#MS) and (#MA), the number of aborted menus (a menu that was opened and

closed without committing a selection).

An additional time measure was also computed: average first menu selection time

(FMST). For each menu item selected in all of the tasks, only its first selection time

was taken into account, which reflects the effort of finding the menu item.

To capture the overall search time, which may include opening and closing of other

menus, the selection time was defined as: the time from the first detection of an opened

menu window until selection was made. Aborted menus followed by the opening of

a new menu within a certain time gap (10 second) were considered to be the same

operation.

• Help Requests - counting the number of help uses or interventions may be misleading,

since separate requests can still refer to the same problem. Therefore two separate

measures were used: a boolean value indicating whether help or interventions were

required (HELP and INTERVENTION) and the total time the help window was used

(HELP-T).

• Shortcut key usage – the absolute number of shortcut keys that were used is misleading

(for instance, a subject who committed a lot of errors may use these more). Therefore,

a boolean value was used, one for the cell filling operations (CTRL: Ctrl+D,Ctrl+R)

and one for the absolute references toggling using the function key four shortcut (F4)

that were demonstrated in the training.

5.3.2 Quantitative Analysis

We performed a statistical analysis of subject performance, based on the data collected by

ExcelLogger.

Primary performance measures

Table 5.2 summarizes the results of the global repeated measures ANOVA.

Chapter 5. User Study 85

Dependent Measure Factor Significance
Speed (Time)

Task F3,72=60.669, p=0.001 (partial η2 = .717)
P F1,24=1.059, p=.314
A F1,24=0.196 p =.662
A*P F1,24=1.106, p=0.303

Efficiency (# Actions)
Task F3,72=37.177 p=0.001 (partial η2 = .608)
P F1,24=0.99, p=.756
A F1,24=0.186 p =.670
A*P F1,24=1.475, p=0.236

Accuracy (Grade)
Task F3,72=10.809 p=0.001† (partial η2 = .311)
Task*A*P F3,72=3.459, p=0.05† (partial η2 = .126)
P F1,24=0.596, p=.448
A F1,24=0.437 p =.515
A*P F1,24=5.071, p=0.034 (partial η2 = .174)

Table 5.2: Testing for performance differences among the four conditions. Mauchly’s test
of sphericity was significant for the entries indicated by a †. Therefore, the
Greenhouse-Geisser correction was taken into account in these entries, so the F
statistic was computed with adjusted degrees of freedom F1.649,39.579.

Task effect

The repeated measures 2 × 2 × 4 ANOVA showed a statistically significant task effect for

all primary measures (TIME, #ACTIONS, GRADE).

However, the differences in time and number of actions due to the task are not inter-

esting. The tasks were not designed to be equal (especially the fourth one, which is a

composition of the other three).

The statistically significant differences in grades between tasks (Figure 5.2) are again

not surprising because the tasks were different. It does indicate that the tasks were not

equal in difficulty.

Running post hoc paired samples t-tests on the overall grades we can verify that Task

2 had significantly lower grades than the other tasks (p ≤ 0.02). The other tasks were not

significantly different in grades apart from Task 3 and Task 4 (p ≤ 0.024).

The common errors in the tasks were: forgetting to fill in parts of the cover page or

copying wrong parameters (Task 1), wrong use of absolute referencing, inaccurate parame-

ters for the lookup functions or simply copying values instead of using the shown formulas

(Task 2 and Task 3). In Task 4 similar errors were observed.

Chapter 5. User Study 86

Figure 5.2: Average grade per task

Effects on speed and efficiency

No significant effects for Augmentation, Privacy or interactions were found with respect

to TIME and #ACTIONS in the global ANOVA or in two-way factorial ANOVAs (PXA)

conducted for each task separately.

Figures 5.3 and 5.4, summarize the results for these two measures. While no effect was

statistically significant, it seems that adding augmentation alone or privacy alone (A or P)

had some consistent improvement on time and efficiency. Adding augmentation and privacy

together (AP) varied between tasks and measures and in some cases degraded performance.

It is also evident that there was great variation between subjects (both globally and in

each condition) with respect to speed and efficiency. These variables were probably more

related to the overall expertise a subject had with Excel and his interaction style, neither

of which are likely to change much after only a short training session.

Understanding interactions for grades

There was a statistically significant P × A interaction and only borderline significance for

a TASK × P × A interaction (Table 5.2). These were further analyzed.

P × A is an interesting interaction as can be seen in Figure 5.5. The analysis was

followed by Post-Hoc LSD tests.

Condition P had significantly greater accuracy (p < 0.043) than the control condition,

as did Condition A, though with only borderline statistical significance (p < 0.05). No other

differences were significant (it should be noted that these differences were not significant

with more conservative tests such as Bonferroni or Tukey’s HSD).

In other words, adding privacy filters without augmentation or augmentation without

privacy increases overall accuracy, whereas adding privacy together with augmentation does

Chapter 5. User Study 87

Speed (TIME)

Figure 5.3: Effects of condition on speed: None of the effects was statistically significant at
the 0.05 level.

not increase accuracy (in fact it degrades accuracy as can be seen from the graph, but the

difference is not statistically significant).

To understand the TASK × P × A interaction, separate two-way ANOVAs (PXA) were

conducted for each task. Figures 5.6 and 5.7 show the per task effects. Although Tasks

1,3 and 4 seem to have the same behavior, there are no significant main effects nor P × A

interaction effects for Tasks 1 and 4.

Task 3 had a statistically significant main effect of A (F1,24=4.289, p ≤ 0.049, par-

tial η2 = .152). Subjects who had visual augmentations for Task 3 had greater accu-

racy than subjects who did not (Mean(A=1)=0.973, SD(A=1)=0.045, Mean(A=0)=0.919,

SD(A=0)=0.089). No significant P effect or interaction was detected.

Task 2 had a statistically significant P × A interaction effect (F1,24)=5.207, p ≤ 0.032,

partial η2 = .178), but no significant main effects. Post-Hoc LSD tests show that there

Chapter 5. User Study 88

Efficiency (# Actions)

Figure 5.4: Effects of condition on efficiency: None of the effects was statistically significant
at the 0.05 level.

was a statistically significant difference between the control condition (R) and P for this

task (p ≤ 0.042). Subjects in condition P were more accurate than subjects in the control

condition (Mean(P)=0.928, SD(P)=.095, Mean(R)=0.671, SD(R)=.275). No other simple

main effects for this task were detected.

The lack of significant effects for Task 4 indicates that in terms of learned functionality

retention, all conditions behave more or less the same. This was also verified by running

2× 2× 3 (P × A × SUBTASK) ANOVA on the accuracy differences between each original

subtask and its equivalent part in Task 4 (δgrade). This ANOVA showed only a significant

interaction TASK × A (F1.1379,33.092)4=5.207, p ≤ 0.033, partial η2 = .154). Additional one-

way ANOVAs for each subtask on A showed that for Tasks 1 and 3 there was no significant

A effect. For Task 2 there was a significant effect for A (F1,26=4.342, p ≤ 0.047, partial η2 =

4Greenhouse-Geisser correction

Chapter 5. User Study 89

Figure 5.5: P × A interaction (across all tasks). when A=0 adding privacy improves ac-
curacy (statistically significant), whereas when A=1 adding privacy reduces
accuracy (not significant).

.143), participants with augmentations improved a little bit in Task 4 (MeanA=0(δgrade) =

−0.0054, SDA=0 = .115, MeanA=1(δgrade) = 0.091, SDA=1 = .130). For Task 3 the overall

accuracy dropped a bit (not significant), perhaps due to fatigue effects.

Secondary performance measures

We also performed a number of statistical tests on the secondary measures:

Excel operations - The same 2× 2× 4 repeated measures ANOVA was used, with the

separate dependent variables being: #CC,#SC,#SW and #UND.

Apart from a non-interesting significant task effect for all variables, the only statistically

significant difference found was a main effect of P on #SC, the number of cell selection

changes, (F1,24=5.001, p ≤ 0.035, partial η2 =.172). Subjects who had privacy filters

committed fewer cell changes (Mean(P=0)=113.446,Mean(P=1)=77.589, SE=11.338).

Menu operations - The same ANOVA was conducted on #MS and #MA, but no

Chapter 5. User Study 90

Figure 5.6: P × A interaction per task. Task 3 has a significant main A effect and no
interactions. Tasks 1 & 4 have no main effects and no interactions and Task 2
has a significant P × A interaction.

statistically significant effects or interactions were found, apart from a task effect (not

interesting).

To test FMST, which was a cross-task measure, a factorial 2× 2 (P × A) ANOVA was

used. The test detected only a main effect of A (F1,24=4.815, p ≤ 0.038, partial η2 =.167).

Participants who had the visual augmentations spent about one second less on average when

looking for menu items for the first time (Mean(A=0)=3862.571 ms, Mean(A=1)=2709.214

ms, SE=371.661).

Keyboard shortcut use - CTRL and F4 were two boolean dependent variables ag-

gregated over all the tasks. A non parametric Kruskal-Wallis on independent samples test

was used with three different grouping possibilities (A,P,P × A). Statistically significant

differences were detected with respect to A for both variables.

CTRL: χ2(df = 1) = 3.947, p ≤ 0.047, only 7 out of 14 subject who did not have visual

Chapter 5. User Study 91

Figure 5.7: Condition effects on accuracy per task: The grades for each condition per task
(alternative representation to the one presented in Figure 5.6 that displays stan-
dard deviations as well).

augmentations used the Ctrl-R and Ctrl-D shortcuts, as opposed to 12 out of 14 subjects

who used them when augmentations were employed in the training.

F4: χ2(df = 1) = 5.400, p ≤ 0.020, only 6 out of 14 subject who did not have visual

augmentations used the F4 shortcuts, as opposed to 12 out of 14 subjects who used it when

augmentations were used in the training.

Testing for subjects who used both types of shortcuts also showed a strong effect for

augmentation (χ2(df = 1) = 8.816, p ≤ 0.003) with only 3 out of 14 subject in A=0 using

both shortcut types, as opposed to 11 out of 14 subjects in A=1.

Help Requests - A 2× 2× 4 repeated measures ANOVA was conducted on HELP-T

(total help window use time), but no statistically significant effects were detected (apart

from task).

Chapter 5. User Study 92

A non parametric Kruskal-Wallis on independent samples test was used on HELP

(boolean indicating if subject used help overall) and INTERVENTION (boolean indicating

if subject asked for experimenters help overall) and the combined “HELP or INTERVEN-

TION” variable. The latter may be more reflective of subject problems, since some subjects

solved the problems using HELP and did not need intervention (subjects were instructed

to try to solve their problem using help first).

The test was run using the three different grouping possibilities (A,P,P × A). No sta-

tistically significant differences were detected on HELP or INTERVENTION. The “HELP

or INTERVENTION” variable did have a statistically significant A effect, (χ2(df = 1) =

3.947, p ≤ 0.047), with 12 out of 14 subjects in A=0 requiring help as opposed to 7 out of

14 in A=1. It should be noted, however, that in Tasks 2 and 3 more subjects in A=1 asked

for intervention that A=0 but without statistical significance (5 vs. 4 in Task 2 and 3 vs.

1 in Task 3).

Most help usage and some interventions revolved around the use of absolute references

in the lookup formulas and the structure of the lookup formula.

Some of the requested interventions were around an unexpected technical problem (Excel

“saved” the import data as queries and was auto-completing the lookup formula parameters

with these). And a few others requested interventions were regarding a confusion between

the two data sets used for the tasks.

5.3.3 Questionnaire Analysis

We performed a qualitative analysis of the data collected via the questionnaire (Appendix ??).

Training session and task experience

We used the non-parametric Kruskal-Wallis test to detect differences on the 7-point Likert

scale rating medians between subject groups (it was separately used on the A,P and A*P

factors). The only significant differences detected were with respect to factor A on two

questions (no significant effect for P or P × A interactions):

• Q7: “Overall it was easy to complete the task”, χ2(1) = 4.268, p < 0.05(0.038),

(Med(A=0)=5 , Avg(A=0)=4.857, SD(A=0)=1.231 ; Med(A=1)=6 , Avg(A=1)=5.785,

SD(A=1)=1.477)

Chapter 5. User Study 93

• Q10: “It was easy to replicate the presenter’s actions”, χ2(1) = 4.572, p < 0.05(0.033),

(Med(A=0)=5 , Avg(A=0)=4.571, SD(A=0)=1.158 ; Med(A=1)=6 , Avg(A=1)=5.5,

SD(A=1)=1.557)

We found some notable differences (though not-significant) with respect to the training

and task completion experience (graphs in Figure 5.8).

“Negative statements” ratings: - Subjects who had visual augmentations (A=1)

expressed more concern about the amount of detail in the training (especially A=1,P=0),

but at the same time found it less difficult to follow the training. Subjects who had aug-

mentations were much more divergent in their opinions than subjects who did not have

such augmentations (Q3: SD(A=0)=0.938, SD(A=1)=2.336 and Q4: SD(A=0)=1.447,

SD(A=1)=2.277).

Participants in condition A were much more certain (almost unanimously (Q6: Med(A)=1,

SD(A)=0.787) that there was no missing information in the training, as opposed to condi-

tions R and P that were more diverse and a bit less certain (Q6: Med(R)=2, SD(1)=1.864,

Med(P)=2, SD(P)=2.478). Especially interesting are subjects in condition AP who had a

notable bi-polarity (four subjects gave ratings of 5 or 6 and three subjects rating of 1).

“Positive” statements ratings: -

Subjects from conditions P, A and AP expressed a quite uniform rating for training

pace (Q5: Med(A,AP)= 5, Med(P)=6). Subjects who were in the control group (R) were

polarized (4/7 gave 5 or 6 ratings and 3/7 gave 2 or 3 ratings). A similar pattern can also

be seen with respect to Q8. Subjects in conditions P,A and AP feel quite comfortable using

the Excel techniques they were trained on (Q8: Med(P,A,AP)= 6), while subjects from the

control condition have more diversity (3/7 rated 4, 2/7 rated 6 and 2/7 rated 7).

A different pattern can be seen for the overall “pleasant to watch” rating (Q11). The

median ratings for all conditions are equal (apart from AP which is a bit lower). However,

subjects who had privacy (P,AP) were more uniform with their rating as opposed to subjects

without privacy (R,A) some of whom gave lower ratings.

Chapter 5. User Study 94

Figure 5.8: Training experience ratings - Q3: “the training session contained too much
information and details”; Q4: “the training session was hard to follow and
confusing”; Q6: “Information I needed to complete the task was missing in
the training session’; Q5: “the training session was well pace”; Q8: “I feel
comfortable using the Excel techniques showed in the training”; Q11: “overall,
the training session was pleasant to watch”.

Training effectiveness by functionality

Subjects were asked to rate the effectiveness of the training they had for Excel functionality

used in the tasks. Ratings were on a 5-point scale. A preliminary multivariate 2×2 ANOVA

(A × P) on the eight features detected a significant interaction effect only for training on

“multiple sheets” functionality (F1,24=6.259, p=0.02).

The ANOVA was followed by the more appropriate non-parametric Kruskal-Wallis tests

on the ratings for “multiple sheets”. These showed that when A=0 (no augmentations)

there was a significant effect of P resulting in a higher rating for effectiveness (χ2(1) =

3.857, p = 0.05, Med(R)=3, Avg(R)=3.714, SD(R)=0.951 ; Med(P)=5 , Avg(P)=4.714,

SD(P)=0.756). In contrast, when A=1 (with augmentation) there was no simple effect for

P. No statistically significant effects for A were found. No significant effects for the other

functionalities were found.

The results summary in Table 5.3 and graphs in Figure 5.9 show the same pattern,

albeit without statistical significance, repeated for all eight functionalities. Participants in

conditions P and A tended to give higher ratings than did participants in the control group

(R).

Chapter 5. User Study 95

Participants in condition AP showed more diversity between the different functionalities.

While the training on conditional formatting, absolute references, lookup tables and the

round function got relatively high ratings, ratings for the other functionalities spread across

the entire rating gamut.

Figure 5.9: Rating of effectiveness of training per taught functionality. The only two statis-
tically significant different groups are marked in red (“Multiple sheets” R and
P).

R P A AP
Mean 3.889 4.181 4.329 4.187
Median 4.000 5.000 5.000 4.000
SD 1.123 0.872 0.806 0.756

Table 5.3: Overall functionality training ratings per condition. In general subjects from
conditions P and A gave a higher rating than than did those in the control
condition.

Visual enhancements ratings

Subjects were asked to rate the different augmentation and privacy features that were used

in the training movies on a 5-point scale. Some participants rated features they saw only

in the introduction movie and not in the training. These ratings were not counted in the

analysis. Participants also had the option to mark N/A on features they did not notice in

the training.

The 5-point scale was collapsed to 3 points (effective + very effective, neutral, disturbing

and very disturbing). The graphs in Figure 5.10 summarize the results.

Augmentations

Chapter 5. User Study 96

These features were rated by subjects in the A and AP conditions. We conducted t-

tests that showed that there was no difference between these two groups and therefore all

subjects with A=1 were analyzed together.

Rated most effective were the automated highlighting of cell changes (rated by 92.86%

as effective), active dialog fields (rated by 91.67% as effective), and reporting on keyboard

shortcuts (rated by 84.62% as effective).

Somewhat less effective was the highlighting of active selection context (rated by 61.54%

as effective and by 38.46% as neutral).

Highlighting of mouse clicks was not considered to be effective (only 50% rated them

as effective). This is somewhat surprising because similar highlighting is considered as

attractive feature of commercial screen recording tools.

Menu augmentations received more diverse ratings with only 53.85% of the subjects

rating extended menu highlighting as effective and 50.0% rating subtitles as effective. Few

subjects considered these features disturbing (1 subject, 7.14% on subtitles and 2 subjects,

15.38% on menu highlighting). However, the findings from the performance analysis indi-

cate that these features have some significant effect on menu selection times that outweigh

the minor opinion about their disturbance.

Privacy filters

These features were rated by subjects in the P and AP conditions. We conducted t-tests

that showed that there was no difference between these two groups and therefore all subjects

in P=1 were analyzed together. Replacing dialogs with icons was also rated by subjects

in condition A, again a one-way ANOVA test showed there was no significant difference in

ratings between the A, P and AP groups with respect to rating this feature.

All privacy filters were classified as disturbing by some of the subjects, but no filter was

categorically considered as disturbing (ranked so by more than 50% of the subjects). It

is only natural that these filters be considered as somewhat disturbing because they hide

information from the viewer.

Cell content blurring and concealing private worksheets received similar ratings. It is

also not surprising that these features were considered to be disturbing by about 40% of the

subject becuase they directly interfere with their ability to learn the task. However, it is

surprising to see that a substantial fraction of the subjects (about 45%) were not bothered

Chapter 5. User Study 97

by these privacy filters and that some other subjects (about 15%) thought the filters were

effective.

More controversial were menu item blurring and replacing dialogs with icons. Menu

item blurring was rated by 46.15% as effective and by 23.08% as disturbing, suggesting it is

a viable filter. Replacing dialogs with icons had an almost the inverse pattern with 42.11%

rating it as disturbing and 26.32% rating it as efficient.

Figure 5.10: Ratings of augmentation features (top) and privacy filters (bottom).

Chapter 5. User Study 98

Qualitative feedback

Participants also gave free form feedback in the questionnaires. We discuss some of the

prominent remarks made by subjects:

Participants from all conditions suggested making the training clips shorter (“split videos

into shorter sections”).

Several participants suggested watching the clips while doing the task or allowing a

playback mode. Obviously allowing this can improve on the training and should probably

be preferred in the real-world. However, allowing playback and a “do it as you go” as one

participant suggested would probably diminish the differences between subjects and make

the experiment analysis much harder.

Some participants in conditions R and P mentioned that the keyboard shortcuts used

were hard to follow and reproduce - “some information like copy and past is not clear in the

movie”, “Have some of the shortcuts in the movie as well (Ctrl+D)”. They would have also

liked to see some of the other enhancements “the visual enhancements in the intro should

be available in the training, they can help a lot”.

Some participants in these conditions also felt that the training was going too fast,

“training was too fast. I could not remember how to use the techniques and had to guess”,

“Some slowing down could be useful”.

Two participants in condition A found the training effective - “very efficient in teaching

different Excel functionalities” and “It was a very good training session” and also one

participant from condition R said - “Pretty good. To the point and concise”.

However, a few others (including several from condition AP) missed part of the visual

enhancements, some of which went by too fast - “some substitutes were going too fast

before catching my attention”, “payed more attention on finishing the task while ignoring

the visual effect” and “the visual enhancements did not really enhance the experience. Some

were unnecessary”.

5.4 Summary and conclusions

The experiment was conducted as part of the prototyping stage of the system development

in order to identify gross patterns and relations between privacy and augmentation and to

Chapter 5. User Study 99

identify promising directions for improvements.

5.4.1 Effects on performance

The experiment did not expose any global statistically significant differences in terms of

speed and efficiency and therefore does not allow us to reject any of the four null hypotheses

on these measures. The results of the experiment do suggest that introducing privacy filters

does not necessarily impede performance. In fact, one secondary measure indicated that

privacy filters may assist viewers - the reduced number of cell selection changes. This finding

may be explained by the fact that Greeking cells in the training drew more attention to

which cells were changed and which weren’t.

In terms of accuracy, a statistically significant overall interaction P × A teaches us that

H03 and H04 should be rejected.

Surprisingly, adding privacy filters improved accuracy when no visual augmentations

were used in the training. Similarly, adding visual augmentations without privacy filters

also improved accuracy (although significance was borderline). If both filter types are added

there is no statistically significant effect on accuracy. Descriptive statistics suggest, however,

that accuracy may be degraded in such cases.

With respect to H4, we cannot determine a global accuracy ordering of the four con-

ditions, but can state based on the results that the four conditions are not equal as

facc(R) < facc(P)andfacc(R) < facc(A)5. As for the other condition, we cannot determine

its ordering based on the results, although descriptive statistics also suggest that for the par-

ticular set of filters used in the study the following may hold: facc(AP) < facc(P) ≈ facc(A).

The results do not allow us to reject H02. Conversely, the overall and Task 2 simple

main effects of privacy and the fact that none of the other tests showed a negative effect of

privacy suggest that privacy filters do not reduce accuracy and may even improve it.

We could not globally reject H01 either, because there was no main effect for augmen-

tation. However from the overall TASK × P × A interaction detected we can deduce that

adding visual filters is more effective for certain types of tasks but has little effect on other

tasks. Moreover, the balance between privacy and augmentations should probably be tuned

for the type of task.

Specifically, only Task 3 had a significant main effect of augmentation on accuracy.
5facc(·) denotes the floating precision task grades that are believed to reflect accuracy.

Chapter 5. User Study 100

Unlike Tasks 1 and 2 that were centered around one functionality type, the training for

this task involved four or five different functionalities, some variations on previously taught

commands and some new. This implies that visual augmentations are more effective when

providing an overview of a complex task and less for a focused low-level discussion of the

details of tasks. On the other hand, blurring filters were more useful in Task 2 that was

based on detailed formula editing. A possible explanation is that blurring the cells forced

viewers to focus on the formula bar and on the interaction mechanics, while the visual

augmentations drew attention elsewhere. Although not designed for this purpose it seems

that privacy filters can also serve as efficient augmentation means, proving that sometimes

“less in more”.

Analysis of secondary performance measures indicated that providing augmentations for

passive viewers significantly improves the ability to learn menu and keyboard commands.

Also, subjects who had visual augmentations in their training relied less on the help mecha-

nisms. These suggest that adding visual augmentations improves key performance aspects.

5.4.2 Balancing privacy and augmentations

Overall, the case for condition AP is particularly interesting. Our original conjecture was

that this condition would be better than P, because some augmentations can help when

data is masked. However, our experimental results suggest that using only privacy filters

or only augmentations was better.

One possible explanation, examining Table 5.1, is that participants in condition AP

happened to be less experienced with absolute referencing compared to the other conditions.

This functionality was the basis for Task 2 and parts of Task 3; their relative lack of

experience led to poor accuracy.

Another explanation is that using augmentations and privacy filters together resulted

in a view that looked less like the real application interface that was used in the task.

Alternatively there was simply too much information that was perceived as overwhelming

by many viewers. This is supported to some extent by the questionnaire results. Subjects

in condition A and AP expressed more concerns that there was too much information in the

training (this was not statistically significant, however). Participants in the AP condition

were particularly polarized in their opinions. Half of the AP subjects even thought that

required information was missing in the training.

Chapter 5. User Study 101

Clearly a better controlled study might provide a more accurate explanation. In any

case an important conclusion is that one has to be careful about what visual effects are

used, which effects can be combined, and how to balance the use of different filters.

5.4.3 Perceived utility

The questionnaire analysis supported the perceived utility of visual augmentations. Subjects

who had visual augmentations in the training felt it was easier to complete the task and

replicate the interactions from the training (statistically significant). Again, no significant

effect for privacy was detected with respect to subject ratings of the training. This suggests

that overall privacy filters are not perceived to degrade learning capabilities.

Supporting the global A × P interaction trend with respect to accuracy, subjects who

had visual augmentations or privacy filters only thought the specific Excel functionality

training was more effective than did subjects in the control group or subjects who had both

types of filters.

In terms of rating the augmentations and filters used, it was not surprising that privacy

filters were considered to be disturbing by subjects, although no single privacy filter was

thought of as disturbing by more than half of the subjects. Blurring menu items was actually

considered to be an effective filter by many subjects. These support the overall impression

that privacy filters were not penalizing viewers.

As for augmentation effects, as expected, reporting on actions that otherwise have no

visual indication or are hard to track got high ratings (keyboard shortcuts, cell changes and

active context highlighting). More surprising was the relatively low rating of mouse click

highlighting that is also used by commercial screen recorders, and the fact that few subjects

thought menu selection highlighting was disturbing.

Together with the fact that some augmentations effects went by too fast for subjects

this implies that the parameters and format of these effects should be further tuned and

tested separately on subjects.

102

Chapter 6

Future Work and Conclusions

6.1 Future Work

The limitations discussed in Section 4.5 and the feedback collected on the prototype system

point out prominent paths for future work and studies.

6.1.1 System improvements

We first discuss suggestions for improving the system.

Performance and network support

The current implementation of the system uses an inefficient timer-based copying of image

buffers and cannot transfer these over the network. Implementing a variant of the RFB

protocol can solve these limitations. More importantly, it will allow the system to generate

more than one public view, which is useful in scenarios where meeting participants have

varying degrees of privacy concerns or even for providing the presenter with custom hints

on his view.

When considering the broadcast of shared application views over the network there are

different possible models of where privacy filters and other window manipulations occur

(the presenter’s machine, the viewer’s machine, or a trusted third party server). These

models will each have different implications on performance, privacy and security. An

interesting direction is mapping privacy and augmentation concerns in shared application

viewing sessions to the possible architectures (taking into account privacy risk management

concerns).

Chapter 6. Future Work and Conclusions 103

Improving the extraction of privacy risks

An important direction for future research is automating, simplifying and customizing the

extractions of private elements or elements that need highlighting. Some initial techniques

were introduced in the prototype but need more study: the “scripted hints”, mechanisms

for specifying and applying policies, and a possible UI layer on top that will allow easy cus-

tomization but still will require some effort from a presenter (although it is reasonable to

assume that pre-cooked scripts for popular applications will be shared through public repos-

itories, like the Mozilla extensions model, Section 4.1.3). Some basic automated heuristics

for extracting private elements, states, and augmentation hints were also introduced (e.g.

attempting to classify text in the document as sensitive or classify dialogs and fields by

their name and context) but clearly more work is required. Even if automation is achieved,

part of the problem as discussed in Chapter 2 is that privacy perception is subjective and

varies between different presenters and viewers.

One possible direction for future research is applying user modelling and machine learn-

ing techniques to learn what elements are considered private by a presenter (and different

audiences) and apply these to search the widget space and document model. Another direc-

tion is harnessing “programming by example” techniques. Perhaps most interesting are ap-

proaches that attempt to blend all of the techniques together, also known as mixed-initiative

models. Previous work on such models, such as by Horvitz (1999) showed interesting re-

sults with respect to modelling application users to offer help in critical moments. Similar

techniques may be able to address privacy risks as they arise.

Viewer control

More research is required on effective ways for viewer control and feedback. The prototype

system does not handle any input from viewers (apart from a possible cursor control),

especially with respect to manipulating the timeline of recorded interactions (playing back,

slowing down, indexing and search) or on ways to control the views (viewers should be able

to independently choose what augmentations they want or notify the presenter that they

want them).

We did not focus on the sharing of multiple application views on a single screen. Par-

ticularly interesting are awareness applications and desktop monitoring solutions that have

Chapter 6. Future Work and Conclusions 104

privacy problems but can also benefit from indexing and augmentation techniques. Also

interesting are wall displays or tabletop displays with high resolution where several people

can work off the display simultaneously; they need to keep some information private as well

as maintain mutual awareness.

6.1.2 Future studies

The results of the user study conducted indicate a number of areas in which we need to

better understand the implications of the different filters as well as to improve their design.

Controlled study

In the study we chose to work with a “real-world” application and with tasks that were

quite large in scope and represent actual tasks performed by users. However, it was hard to

control subjects’ expertise with the application and particularly with specific features (such

as absolute referencing).

The next version of the study should be based on a made-up system or a system that

is unfamiliar to all subjects. Furthermore it will be beneficial to use smaller tasks or even

focus on atomic operations (such as single menu selections or dialogs).

Individual feature tuning

The study used a fixed subset of augmentation features and privacy filters that were either

all present or all missing. This scheme did not allow the results to be attributed to a

particular feature. Moreover, qualitative feedback collected from several subjects indicates

that some augmentation features, such as subtitles, went by too fast or were not salient

enough and therefore were missed by them.

These call for an additional set of studies that will test different subsets of augmentation

and privacy filters as well as individual filters. Another set of studies should focus on specific

filters and attempt to find their optimal parameters (such as “decay” time, highlighting

effect, location on screen, etc.).

Measuring utility for a presenter and other audience profiles

The user study focused, by choice, on the system effects on viewers in a training scenario.

A different kind of user study is required for understanding how useful the system is for

Chapter 6. Future Work and Conclusions 105

presenters. We believe this requires a field study where data collected will indicate how

presenters use the system, what parameters are more useful, what information is consid-

ered private and how they handle it. It is also important to understand how much effort

presenters are willing to put into tagging private information as some parts of the system

require.

As for viewers, there are other generalized presentation scenarios apart from training

new users that can benefit from the system. For instance, explaining a report to viewers who

are already familiar with the software tool that is being used. In this case other measures,

such as comprehension and not task performance are more relevant. Task 3 in the study

also provided an indication that when viewers are already familiar with the fine interaction

details, having augmentations can have a stronger effect on performance. Clearly more

studies with different task types and different viewer profiles are required.

6.2 Conclusions

We have introduced a unified solution for privacy concerns and verbosity control to assist

a presenter and her audience in generalized presentation scenarios.

These concerns are not addressed by current single-user application sharing modes.

Still, we constantly choose to “post” our desktop in public or share application views while

knowing all too well that they are full of private and embarrassing information or that

they contain too many irrelevant components and details. The regularity with which this

happens is ample justification for tackling this problem.

Our design introduces role-driven views for each type of participant, balancing between

the presenter’s privacy needs and the audience’s awareness needs. While such view disparity

can be achieved through the use of collaboration-aware applications, in reality the majority

of shared view sessions use off-the-shelf collaboration-unaware applications. Furthermore,

most privacy concerns in such settings are not real security threats. The incentive to

abandon familiar tools for more sophisticated ones is low.

Our system is based on applying image filters and spatial and timeline manipulations to

bitmap representations of shared windows. The system’s framework is general and works

with off-the-shelf applications, requiring a limited “sematic glue” layer introduced through

an extensible plug-in architecture to monitor the visible information in an application and

Chapter 6. Future Work and Conclusions 106

drive these manipulations. The system allows additional intermediate sharing layers beyond

the conventional screen, application or window layers of centralized application view sharing,

expanding this part of the Zipper model (Dewan 1999).

Lessons learned from the prototype development

A prototype of the system was created and tested with several commercial applications. As

part of our work we learned a few lessons about the feasibility of such a glue layer. The

most prominent lesson is that useful information about an application’s UI and window

set for driving privacy and augmentation filters is already in place and it can be extracted

through existing mechanisms from collaboration-unaware applications (Accessibility APIs

being the most general and fruitful channel). We also learned that simple application-

specific scripting can be used to parse the visual surface of an application and enrich the

system’s capabilities.

Our prototype demonstrates that applying generic image and window set filters based

on the extracted information can satisfy useful privacy policies and provide an improved

presentation experience. However, it was also learned that extended customization, policy

and rule definition capabilities are required on top of the plug-ins. Partial implementations

and potential directions for such extensions were introduced, namely using simple scripts

and XML tables to customize manipulation rules and then blending these with policy and

role specification languages that are normally used for access control.

It was important to verify the utility of the suggested manipulations and the system’s

framework before delving into richer policy specification and scripting techniques. Therefore

a user study was conducted.

Lessons learned from the user study

The effects of using privacy and augmentation filters on viewers were tested in a training

scenario. The results indicate that while privacy filters protect information that is important

for the presenter, they do not interfere with viewer’s ability to follow the training. In fact,

privacy filters even improved some aspects of viewer learning and task performance (such as

accuracy and some forms of efficiency), acting as augmentation and awareness features. It

is interesting to compare these results with the use of blurring filters in video. These have

been recently shown by Neustaedter et al. (2005) to be unsuitable for balancing privacy

Chapter 6. Future Work and Conclusions 107

and awareness. The difference is that the latter are not driven by “semantic glue”.

Augmentation manipulations and filters were effective for some task types (training

semi-expert users on a wide set of functionalities) and not so much for other types (focused

and detailed training of novice users). They were shown to be useful for eliciting interactions

that lack proper feedthrough (keyboard shortcuts and menu selections).

These results indicate that the system can improve application view sharing sessions.

It was also evident that some combinations of augmentation and privacy filters are not

efficient or are even counter-productive. One conclusion is that a more accurate mapping

of the different filter effects is required. Such a mapping should also be part of the policy

and rule base that control the generation of shared views.

We believe that the results of the study and the potential utility of visual manipula-

tions can inform the design of similar techniques in collaboration-aware tools as well as in

asynchronous view sharing tools, such as screen recorders (in fact, the live output from the

system was recorded as training movies for the study).

Contribution

Working with the system prototype and its use in the user study showed that the suggested

approach can serve as a relatively simple alternative for enhancing a shared view of off-

the-shelf applications, maintaining the key advantages of the popular bitmap-based sharing

solutions - no code changes are required and viewers do not need a copy of the application.

The system improves the quality of generalized presentation sessions. It protects a

presenter from exposing private information and elements, allowing her to work normally

and comfortably. It assists viewers in maintaining a suitable level of awareness and in better

understanding the presenter’s intentions.

In conclusion, this work has contributed to the emerging field of application view sharing

in the following ways:

• We extended and developed a taxonomy of primitives for role-based view modification.

Examined the key problems and their sources and identified different ways to solve

them.

• We developed a model for role based view control that is largely application-independent.

This model lies in a new spot in the application sharing architecture space. It is still

Chapter 6. Future Work and Conclusions 108

very close to collaboration-transparency solutions with their advantages, but extends

existing information channels to parse an application’s visual surface and window set.

• We designed and prototyped a system architecture to provide view control. Tested

the system with various popular applications.

• We formally evaluated a set of augmentation and privacy filters using the system.

The study provided important and somewhat surprising results on the utility of the

different filters and their combinations. Namely, it pointed out that privacy filters

may support viewers while also supporting the presenter.

109

Bibliography

Abdel-Wahab, H. M. and M. Feit (1991). XTV: A framework for sharing X Window clients
in remote synchronous collaboration. In IEEE Conference on Communications Software:
Communications for Distributed Applications & Systems. ACM Press.

Baecker, R. M. and I. S. Small (1990). Animation at the interface. In The Art of Human-
Computer Interface Design, pp. 251–267. Addison-Wesley.

Baudisch, P., E. Cutrell, and G. G. Robertson (2003). High-density cursor: A visualization
technique that helps users keep track of fast-moving mouse cursors. In Proceedings of
INTERACT 2003, pp. 236–243.

Begole, J., M. B. Rosson, and C. A. Shaffer (1999). Flexible collaboration transparency:
supporting worker independence in replicated application-sharing systems. ACM Trans.
Comput.-Hum. Interact. 6 (2), 95–132.

Berry, L., L. Bartram, and K. S. Booth (2005). Role-based control of shared application
views. In Proceedings of the 17th annual ACM symposium on User interface software and
technology (to appear). ACM Press.

Bier, E. A., M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose (1993). Toolglass
and magic lenses: the see-through interface. In SIGGRAPH ’93: Proceedings of the 20th
annual conference on Computer graphics and interactive techniques, New York, NY, USA,
pp. 73–80. ACM Press.

Blackwell, A. F., A. R. Jansen, and K. Marriott (2000). Restricted focus viewer: A tool
for tracking visual attention. In Diagrams ’00: Proceedings of the First International
Conference on Theory and Application of Diagrams, London, UK, pp. 162–177. Springer-
Verlag.

Booth, K. S., B. D. Fisher, C. J. R. Lin, and R. Argue (2002). The “Mighty Mouse” multi-
screen collaboration tool. In UIST ’02: Proceedings of the 15th annual ACM symposium
on User interface software and technology, New York, NY, USA, pp. 209–212. ACM Press.

Boyle, M. and S. Greenberg (2005). The language of privacy: Learning from video media
space analysis and design. ACM Trans. Comput.-Hum. Interact. 12 (2), 328–370.

Cheng, L.-T., S. L. Rohall, J. Patterson, S. Ross, and S. Hupfer (2004). Retrofitting col-
laboration into UIs with aspects. In CSCW ’04: Proceedings of the 2004 ACM conference
on Computer supported cooperative work, New York, NY, USA, pp. 25–28. ACM Press.

Csinger, A., K. S. Booth, and D. Poole (1994). AI meets authoring: User models for
intelligent multimedia. Artif. Intell. Rev. 8 (5-6), 447–468.

Bibliography 110

Dewan, P. (1999). Architectures for collaborative applications. In M. Beaudouin-Lafon
(Ed.), Computer Supported Co-operative Work, Volume 7 of Trends in Software, pp. 169–
193. John Wiley & Sons.

Edwards, W. K. (1996). Policies and roles in collaborative applications. In CSCW ’96:
Proceedings of the 1996 ACM conference on Computer supported cooperative work, New
York, NY, USA, pp. 11–20. ACM Press.

Edwards, W. K., S. E. Hudson, J. Marinacci, R. Rodenstein, T. Rodriguez, and I. Smith
(1997). Systematic output modification in a 2D user interface toolkit. In UIST ’97:
Proceedings of the 10th annual ACM symposium on User interface software and technology,
New York, NY, USA, pp. 151–158. ACM Press.

Greenberg, S., M. Boyle, and J. Laberg (1999). PDAs and shared public displays - making
personal information public and public information personal. Personal Technologies 3 (1),
54–64.

Greenberg, S. and M. Roseman (1999). Groupware toolkits for synchronous work. In
M. Beaudouin-Lafon (Ed.), Computer Supported Co-operative Work, Volume 7 of Trends
in Software, pp. 135–168. John Wiley & Sons.

Greenberg, S. and M. Rounding (2001). The notification collage: posting information
to public and personal displays. In CHI ’01: Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 514–521. ACM Press.

Grudin, J. (1988). Why CSCW applications fail: problems in the design and evaluation
of organization of organizational interfaces. In CSCW ’88: Proceedings of the 1988 ACM
conference on Computer-supported cooperative work, New York, NY, USA, pp. 85–93. ACM
Press.

Grudin, J. (1994). Computer-supported cooperative work: History and focus. Com-
puter 27 (5), 19–26.

Gutwin, C. and S. Greenberg (1998a). Design for individuals, design for groups: tradeoffs
between power and workspace awareness. In CSCW ’98: Proceedings of the 1998 ACM
conference on Computer supported cooperative work, New York, NY, USA, pp. 207–216.
ACM Press.

Gutwin, C. and S. Greenberg (1998b). Effects of awareness support on groupware usability.
In Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 511–
518. ACM Press/Addison-Wesley Publishing Co.

Hawkey, K. and K. M. Inkpen (2005). Privacy gradients: exploring ways to manage
incidental information during co-located collaboration. In CHI ’05: CHI ’05 extended
abstracts on Human factors in computing systems, New York, NY, USA, pp. 1431–1434.
ACM Press.

Hexel, R., C. Johnson, B. Kummerfeld, and A. Quigley (2004). ”PowerPoint to the people”:
suiting the word to the audience. In CRPIT ’04: Proceedings of the fifth conference
on Australasian user interface, Darlinghurst, Australia, Australia, pp. 49–56. Australian
Computer Society, Inc.

Bibliography 111

Hong, J. I., J. D. Ng, S. Lederer, and J. A. Landay (2004). Privacy risk models for
designing privacy-sensitive ubiquitous computing systems. In DIS ’04: Proceedings of the
2004 conference on Designing interactive systems, New York, NY, USA, pp. 91–100. ACM
Press.

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In CHI ’99: Proceedings
of the SIGCHI conference on Human factors in computing systems, New York, NY, USA,
pp. 159–166. ACM Press.

Hutchings, D. R. and J. Stasko (2004). Revisiting display space management: understand-
ing current practice to inform next-generation design. In GI ’04: Proceedings of the 2004
conference on Graphics interface, School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, pp. 127–134. Canadian Human-Computer Communications
Society.

Hutchings, D. R. and J. Stasko (2005). Mudibo: multiple dialog boxes for multiple mon-
itors. In CHI ’05: CHI ’05 extended abstracts on Human factors in computing systems,
New York, NY, USA, pp. 1471–1474. ACM Press.

Johanson, B., G. Hutchins, T. Winograd, and M. Stone (2002). PointRight: experience
with flexible input redirection in interactive workspaces. In UIST ’02: Proceedings of the
15th annual ACM symposium on User interface software and technology, New York, NY,
USA, pp. 227–234. ACM Press.

Lau, T., O. Etzioni, and D. S. Weld (1999). Privacy interfaces for information management.
Commun. ACM 42 (10), 88–94.

Lederer, S., J. Mankoff, and A. Dey (2003). Towards a deconstruction of the privacy space.
Technical Report IRB-TR-03-037, Intel-Research Berkley.

Li, D. and R. Li (2002). Transparent sharing and interoperation of heterogeneous single-
user applications. In CSCW ’02: Proceedings of the 2002 ACM conference on Computer
supported cooperative work, New York, NY, USA, pp. 246–255. ACM Press.

Li, S. F., M. Spiteri, J. Bates, and A. Hopper (2000). Capturing and indexing computer-
based activities with virtual network computing. In SAC ’00: Proceedings of the 2000
ACM symposium on Applied computing, New York, NY, USA, pp. 601–603. ACM Press.

Lok, S., S. K. Feiner, W. M. Chiong, and Y. J. Hirsch (2002). A graphical user inter-
face toolkit approach to thin-client computing. In WWW ’02: Proceedings of the 11th
international conference on World Wide Web, New York, NY, USA, pp. 718–725. ACM
Press.

Mackinlay, J. (1986). Automating the design of graphical presentations of relational infor-
mation. ACM Trans. Graph. 5 (2), 110–141.

McGrenere, J. L. (2002). The design and evaluation of multiple interfaces: a solution for
complex software. Ph. D. thesis. Adviser-Ronald Baecker and Adviser-Kellogg Booth.

Myers, B. A., C. H. Peck, J. Nichols, D. Kong, and R. Miller (2001). Interacting at a
distance using semantic snarfing. In UBICOMP ’01: Proceedings of the 3rd international
conference on Ubiquitous Computing, London, UK, pp. 305–314. Springer-Verlag.

Bibliography 112

Neustaedter, C., S. Greenberg, and B. Michael (2005). Blur filtration fails to preserve
privacy for home-based video conferencing. ACM Transactions on Computer-Human In-
teraction (to appear).

Norman, D. A. (1988). The Design of Everyday Things. New York: Doubleday.

Olsen, D. R., D. Boyarski, T. Verratti, M. Phelps, J. L. Moffett, and E. L. Lo (1998).
Generalized pointing: enabling multiagent interaction. In CHI ’98: Proceedings of the
SIGCHI conference on Human factors in computing systems, New York, NY, USA, pp.
526–533. ACM Press/Addison-Wesley Publishing Co.

Olsen, D. R., S. E. Hudson, T. Verratti, J. M. Heiner, and M. Phelps (1999). Implementing
interface attachments based on surface representations. In CHI ’99: Proceedings of the
SIGCHI conference on Human factors in computing systems, pp. 191–198. ACM Press.

Olsen, D. R., T. Taufer, and J. A. Fails (2004). Screencrayons: annotating anything. In
UIST ’04: Proceedings of the 17th annual ACM symposium on User interface software and
technology, New York, NY, USA, pp. 165–174. ACM Press.

Palen, L. and P. Dourish (2003). Unpacking “privacy” for a networked world. In Pro-
ceedings of the conference on Human factors in computing systems, pp. 129–136. ACM
Press.

Po, B. A., B. D. Fisher, and K. S. Booth (2005). Comparing cursor orientations for mouse,
pointer, and pen interaction. In CHI ’05: Proceedings of the SIGCHI conference on Human
factors in computing systems, New York, NY, USA, pp. 291–300. ACM Press.

Reeves, S., S. Benford, C. O’Malley, and M. Fraser (2005). Designing the spectator expe-
rience. In CHI ’05: Proceedings of the SIGCHI conference on Human factors in computing
systems, New York, NY, USA, pp. 741–750. ACM Press.

Rekimoto, J. and M. Saitoh (1999). Augmented surfaces: a spatially continuous work space
for hybrid computing environments. In CHI ’99: Proceedings of the SIGCHI conference
on Human factors in computing systems, New York, NY, USA, pp. 378–385. ACM Press.

Richardson, T., Q. Stafford-Fraser, K. R. Wood, and A. Hopper (1998). Virtual network
computing. Internet Computing, IEEE 2 (1), 79–109.

Roseman, M. and S. Greenberg (1996). Building real-time groupware with groupkit, a
groupware toolkit. ACM Trans. Comput.-Hum. Interact. 3 (1), 66–106.

Sakairi, T., M. Shinozaki, and M. Kobayashi (1998). CollaborationFramework: A toolkit
for sharing existing single-user applications without modification. In APCHI ’98: Pro-
ceedings of the Third Asian Pacific Computer and Human Interaction, pp. 183. IEEE
Computer Society.

Shoemaker, G. B. D. and K. M. Inkpen (2001). Single display privacyware: augmenting
public displays with private information. In CHI ’01: Proceedings of the SIGCHI conference
on Human factors in computing systems, New York, NY, USA, pp. 522–529. ACM Press.

Stefik, M., D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar (1987). WYSIWIS revised:
early experiences with multiuser interfaces. ACM Trans. Inf. Syst. 5 (2), 147–167.

Bibliography 113

Stoakley, R., M. J. Conway, and R. Pausch (1995). Virtual reality on a WIM: interactive
worlds in miniature. In CHI ’95: Proceedings of the SIGCHI conference on Human factors
in computing systems, New York, NY, USA, pp. 265–272. ACM Press/Addison-Wesley
Publishing Co.

Tan, D. S. and M. Czerwinski (2003). Information voyeurism: social impact of physically
large displays on information privacy. In CHI ’03 extended abstracts on Human factors in
computing systems, pp. 748–749. ACM Press.

Tan, D. S., B. Meyers, and M. Czerwinski (2004). WinCuts: manipulating arbitrary
window regions for more effective use of screen space. In CHI ’04: CHI ’04 extended
abstracts on Human factors in computing systems, New York, NY, USA, pp. 1525–1528.
ACM Press.

Terry, M. and E. D. Mynatt (2002). Side Views: persistent, on-demand previews for
open-ended tasks. In UIST ’02: Proceedings of the 15th annual ACM symposium on User
interface software and technology, New York, NY, USA, pp. 71–80. ACM Press.

Thomas, B. H. and P. Calder (2001). Applying cartoon animation techniques to graphical
user interfaces. ACM Transactions on Computer-Human Interactions 8 (3), 198–222.

Tolone, W., G.-J. Ahn, T. Pai, and S.-P. Hong (2005). Access control in collaborative
systems. ACM Comput. Surv. 37 (1), 29–41.

Xia, S., D. Sun, C. Sun, D. Chen, and H. Shen (2004). Leveraging single-user applications
for multi-user collaboration: the CoWord approach. In CSCW ’04: Proceedings of the
2004 ACM conference on Computer supported cooperative work, pp. 162–171. ACM Press.

Yerazunis, W. and M. Carbone (2001). Privacy-enhanced displays by time-masking images.
Technical Report TR2002-011, Mitsubishi Electric Research Laboratories.

114

Appendix A

Questionnaire

The following questionnaire was administered to all subjects in the user study. The results
were analyzed and are reported in Chapter 5 of this thesis.

The user study was conducted under the auspices of ethics certificate B03-0151 (amended)
issued by the Behavioral Ethics Research Board of the University of British Columbia.

Appendix A. Questionnaire 115

Appendix A. Questionnaire 116

117

Appendix B

Task Descriptions

Each participant completed three subtasks based on a training movie and task notes sheets
that were handed out (section B.2). The fourth task was a combination of all three subtasks
and no training movie was shown.

The Excel sheets filled for each subtask and final task were graded by a single marker
based on a fixed marking scheme that will also be presented in this appendix. The tasks
identical for all subjects and were mostly mechanical and so is the marking scheme.

Although in the general case, two independent markers should define the grade on a
task (assuring inter-grader reliability), we believe that in this case the grades are objective
enough.

The marking scheme tries to give proper weights to each functionality type and capture
common errors or actions that subjects forgot from the training sessions as these are indi-
cators on the quality of the training. Also, subjects who came up with a solution or partial
solution that worked but diverged from the method shown in the training were penalized
accordingly (if it was close enough they got half points and no points otherwise).

For the statistical data analysis, described in chapter 5, grades were later converted to
a floating scale in the range [0-1].

B.1 Marking Scheme

Task 1

Total: 10 points

Filling cover page

• 1 pt - filling in course number

• 1 pt - filling in course name and instructor name

• 1 pt - filling in user id and e-mail

• 1 pt - creating a new worksheet “students”

• 1 pt - creating a new worksheet “grades”

Importing data

• 1 pt - Importing students list

Appendix B. Task Descriptions 118

• 1 pt - Importing grades

• 1 pt - Fixing missing grades (Find and Replace)

Preparing cover page for entering students

• 1 pt - Copying student numbers from grades list to cover page

Task 2

Total: 10 points

Computing student programs and names

• 1 pt - correct lookup value

• 1 pt - correct search table

• 1 pt - correct column and using FALSE on range lookup

• 1 pt - program computed for all students (use of $ on the table ref)

• 2 pt - lookup formula for students name (1 pt if correct + 1pt if lookup value uses $)

Computing grades

• 1 pt - Copy grades header row from “grades” sheet

• 3 pts - Compute grades for studetns (1pt first grade for first student, 1pt first line
computed correctly with $ on lookup value, 1pt all lines computed correctly with $
on table ref)

Task 3

Total: 15 points

Computing final grades

• 1 pt - enter grade component weights

• 4 pts - SUMPRODUCT (1 pt for vector of grades, 1 pt for vector of weights, 1 pt for
$ on weights, 1 pt for using ROUND)

Computing letter grades

• 1 pt - HLOOKUP and correct lookup value

• 1 pt - correct table

• 1 pt - using TRUE on range lookup

• 1 pt - $ on table

Appendix B. Task Descriptions 119

Finalizing report

• 1 pt - conditional formatting

• 1 pt - sorting

• 1 pt - using AVERAGE and ROUND for each grade component

• 1 pt - using STDEV and ROUND for each grade component

• 1 pt - linking final grade average and standard deviation to the cover page

Task 4

Total: 35 points

Part 1

10 points

• 1 pt - filling course number of cover page

• 1 pt - filling course name and instructor name

• 1 pt - filling name and e-mail

• 1 pt - filling date

• 2 pt - creating “students” sheet and importing students list

• 2 pt - creating “grades” sheet and importing grades list

• 1 pt - fixing missing grades

• 1 pt - copying students numbers from grades list to cover page

Part 2

10 points

• 1.25 pt - use correct lookup value for computing program of first student

• 1.25 pt pt - using correct table in lookup

• 1.25 pt - correct column

• 1.25 pt - $ on table ref

• 1.25 pt - $ on table lookup value

• 1.25 pt - use lookup for first grade of first student

• 1.25 pt - compute grades of first line correctly ($ on lookup value)

• 1.25 pt - compute grades for all lines ($ on table)

Appendix B. Task Descriptions 120

Part 3

15 points

• 1 pt - enter grade weights

• 4 pt - SUMPRODUCT (same as for task 3)

• 4 pt - letter grades (same as for task 3)

• 2 pt - conditional formatting

• 1 pt - sorting

• 2 pt - ROUNDED average and standard deviation for all grade components

• 1 pt - linking final grade average and standard deviation to the cover page

B.2 Task descriptions

Appendix B. Task Descriptions 121

Appendix B. Task Descriptions 122

Appendix B. Task Descriptions 123

Appendix B. Task Descriptions 124

Appendix B. Task Descriptions 125

