
Synthesis of Stylized Walking Controllers

for Planar Bipeds

by

Dana Sharon

B.Sc., University of British Columbia, 2002

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

August 2004

c© Dana Sharon, 2004

Abstract

We present a new method for generating controllers for physics-based simula-

tions of planar bipedal walking, targeted towards producing autonomous character

behaviors for computer animation. A common criticism of physics-based charac-

ter animation is the lack of personality and style in the final motion. We develop

controllers that mimic a desired style as much as possible, while still subject to

the laws of physics and to the realities of maintaining balance. The resulting simu-

lated character can interact with and respond to its environment, unlike the original

kinematically-specified desired motion.

Walking is a very challenging control task because of its dynamically unsta-

ble nature. Continuous balance control is required to prevent the character from

falling over or reaching poses from which it cannot recover. The complexity of a

walking controller is compounded by high dimensional continuous state and action

spaces. Our controller implements a nearest-neighbor control policy with respect to

a set of nodes embedded in the state space, and is parameterized by the locations of

these nodes and their associated actions. We use greedy search to find an optimized

controller given an intuitive objective function. Importantly, several shaping tech-

niques are used to ensure that local minima in the optimization space define good,

meaningful solutions.

We demonstrate the ability to generate stable walks of various styles, walks

for bipeds of varying dimensions, and walks that are robust to unobserved terrain

variations.

iii

Table of Contents

Abstract iii

Table of Contents v

List of Tables vii

List of Figures ix

Acknowledgements xi

Dedication xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges in Bipedal Walking Research 3

1.3 Research Goals . 5

1.4 Thesis Organization . 5

2 Previous Work 7

2.1 Animation-Specific Methods . 7

2.1.1 Keyframing . 7

2.1.2 Spacetime Constraints . 8

2.1.3 Motion Capture . 9

2.1.4 Hybrid Kinematic/Dynamic Animation Methods 10

2.2 Dynamic Methods . 11

2.2.1 Zero Moment Point Methods 11

2.2.2 Virtual Model Control . 13

2.2.3 Reinforcement Learning . 13

2.2.4 Other Specialized Controllers 15

2.3 Summary . 16

3 Dynamic Simulation 19

3.1 Character Modeling . 20

3.2 Joint control . 22

3.3 Ground Model . 23

3.4 Equations of Motion . 24

v

3.5 Summary . 25

4 Learning Controllers for Walking 27

4.1 Controller Representation . 27

4.2 Controller Optimization . 29

4.3 Walking Controller Realization . 29

4.3.1 Controller Input and Output 30

4.3.2 Target Motion Trajectory . 31

4.3.3 Cost Function . 32

4.3.4 Initialization . 34

4.3.5 Connecting Nodes . 35

4.3.6 Bootstrapping . 36

4.3.7 Introducing Disturbances . 37

4.3.8 Torso Controller . 37

4.4 Summary . 38

5 Results 39

5.1 Styles . 40

5.2 Characters . 44

5.3 Terrain . 46

5.4 Robustness . 47

5.5 Summary . 50

6 Conclusions 51

6.1 Contributions . 51

6.2 Limitations . 52

6.3 Future Work . 55

Appendix A Model Parameters 57

Bibliography 59

vi

List of Tables

A.1 Link Parameters for the Human Model 57
A.2 Joint Parameters for Human Model 57
A.3 Link Parameters for the mechbot Model 58
A.4 Joint Parameters for the Mechbot Model 58
A.5 Link Parameters for the Human Model 58
A.6 Joint Parameters for Human Model 58

vii

List of Figures

3.1 Simulation Loop . 19

3.2 Character Models . 21

3.3 PD Controller. 22

3.4 Ground Model. 23

4.1 Abstraction of Controller Representation and Operation 28

4.2 Simple Deterministic Search algorithm (SDS) 30

4.3 Keyframes. 32

4.4 Cost Function. 33

4.5 Controller Initialization and Optimization. 34

4.6 Duplicate Poses . 35

4.7 Optimizing over Progressively longer Periods. 36

4.8 Torso Correction. 37

5.1 Controller Dimensions . 39

5.2 Regular Walk . 40

5.3 Regular Walk Error . 41

5.4 Extended Swing Walk . 42

5.5 Double Swing Walk . 43

5.6 Bird Walk . 44

5.7 16-Link Biped Walk . 45

5.8 Uphill Walk . 46

5.9 Downhill Walk . 47

5.10 Bumpy Terrain Walk . 48

5.11 Uphill and Downhill Walks with a Robust Controller 50

ix

Acknowledgements

I thank my supervisor, Michiel van de Panne, for his guidance, enthusiasm, and
financial support. Michiel’s encouragement and unbelievable patience turned this
roller coaster ride into a wonderful adventure. I am also grateful to my second
reader, Robert Bridson, for his valuable feedback.

I thank my friends Leah Findlater, Matt Williams, and Karyn Moffatt for
making it a joy to come to work. Special thanks to my partner, Nando de Freitas,
for his continuous love and support.

This work was funded by NSERC and IRIS.

Dana Sharon

The University of British Columbia

August 2004

xi

To my family: Michael, Miriam, Ideet, and David.

xiii

Chapter 1

Introduction

Computer graphics systems are becoming increasingly sophisticated, and are using

ever-increasing levels of abstraction to model real and imaginary worlds. Instead of

creating character motions by hand, we may wish to develop autonomous charac-

ters that are equipped with many basic skills, the most basic of which is walking.

Developing something as seemingly simple as a physically-correct walking skill is,

however, a daunting task. In this thesis we present novel methods for designing

controllers that can walk with a particular style, as well as using a novel controller

representation.

We begin by discussing the motivation behind bipedal locomotion research

in Section 1.1. Section 1.2 details some of the challenges that researchers face when

studying bipedal motion. In Section 1.3 we outline some of the goals we wish

to achieve. We conclude this chapter in Section 1.4 with an outline of the thesis

structure.

1.1 Motivation

Locomotion is a problem of interest to many fields of research, including robotics,

animation, and biomechanics. While our particular interest is biased towards com-

puter animation applications, the diverse range of fields with an interest in modeling

locomotion, specifically walking gaits, is indicative of the importance of the problem.

1

Robotics

Anthropomorphic robots, or “humanoid robots” as they are sometimes called, have

long been a fascination of mankind, first as captured by many a science fiction

story, and more recently as embodied by a string of engineering marvels such as the

Honda Asimo and the Sony QRIO robots. Because of the long-term challenges of

building humanoid robots with even moderate capabilities, entertainment robotics

has become the immediate driver of many current robotic efforts.

Roboticists can create other types of robots, such as wheeled robots or robots

with more than two legs. These robots are more stable than bipeds but this stability

comes at the cost of dexterity and flexibility. Bipeds are more versatile and can walk

in the same environment as humans. Moreover, they can perform tasks that other

robots cannot, such as stepping over large obstacles and walking up and down stairs.

Computer Animation

Building intelligent, autonomous characters for use in computer graphics is not all

that different from building capable robots. It is a simpler problem in that it lets

us easily experiment with the control problems without having to deal with the

complexities of hardware. Instead, the biped remains a computer simulation and

the goal might be to create a believable character for an animated movie or computer

game. Intelligent, reactive motion is a key part of what makes a character believable

and “alive”.

Biomechanics

Bipedal locomotion models are of interest in biomechanics because they provide an

understanding of human motion. This understanding can then help in developing

prosthetics for people or might help in understanding how hip fractures from falls

in the elderly occur and thus provide insights into how to reduce such injuries.

Studying locomotion can also provide insight into the workings of the brain. While

progress continues to be made, human motor control strategies continue to be poorly

2

understood. Working with simulations of a complex bipedal model provides a test-

bed for newly proposed models of motor control.

Kinesiology

High fidelity models of human motion have applications in athletic training and in-

jury rehabilitation. Computer simulations can help predict the feasibility of partic-

ular motions as well as their strength and timing requirements. Dance choreography

is yet another application.

Engineering Evaluation

The control of biped locomotion also has applications in engineering and design,

most notably for footwear and portable equipment [10]. Simulations can help answer

questions such as “How effectively can a person walk or run uphill while wearing a

backpack with this weight distribution?” While it might seem simpler to test this

in person, a good model can make predictions for a wide variety of body shapes and

sizes.

1.2 Challenges in Bipedal Walking Research

Bipedal walking control is a challenging research area. Given how effortlessly most

of us walk, it is both frustrating and fascinating to discover how difficult it is to

duplicate this effortless action. Walking is a dynamically unstable motion in which

the character is first falling and then catching itself from falling with the next foot

placement. The character must continuously control its balance in this fashion.

Walking systems are high-dimensional non-linear systems, and as such they

are challenging to control. The literature on the control of walking is distributed

across multiple fields, including computer animation, robotics, kinesiology and biome-

chanics. Coalescing information from these various disciplines is challenging because

each discipline brings with it its own motivations and constraints, and therefore re-

sults in significantly different techniques. For example, in robotics, researchers must

3

ensure that their controllers work on actual physical robots. Torque limits at the

joints are but one constraint that this introduces. Physical robots are expensive and

thus the process of learning to walk cannot involve the robot falling down all the

time. A recent trend is to build smaller robots that are robust to falls. Also, phys-

ical robots may suffer from imperfect knowledge about the state and any number

of difficult-to-model effects such as joint friction and gear backlash. Robot walking

controllers tend to produce slower, more artificial looking walks that ensure stability.

In computer animation the challenges lie elsewhere. Here, it might be im-

portant to produce a variety of natural looking motions, as the character will be

walking in computer games or movies whose goal is to entertain people. In animated

movies, the character needs to move in a believable way in order to maintain the

required “suspension of disbelief”. Creating a realistic character motion is an ex-

tremely challenging and time consuming task that requires a great deal of talent and

skill even for kinematically defined motions. For dynamically simulated motions the

challenge is even greater, although the solution is ultimately more general.

Repeatability of results is an issue in bipedal locomotion research. Most

projects construct their own biped model with unique mass distributions, joint

torque limits and so forth. It is unfortunate that the various techniques are rarely

compared to one-another and their success often relies on manual tuning of various

parameters. Without a proper comparison or benchmark, it is often hard to evaluate

previous work.

Another problem that plagues this research area is the large number of pa-

rameters that are involved, including ground model parameters, muscle stiffness, and

mass distribution of the character. Often these variables interact in unforseen ways

and thus if even one parameter is wrong, a controller may not produce a successful

walking motion.

Generalization and parameterizations with respect to different environments

is another key challenge. Ideally, a walking controller, or set of controllers, would be

able to handle any reasonable environment including obstacles, variable terrain and

steps of various sizes. One cannot provide the controller rules for all possible situa-

4

tions it might encounter, given that the environment can have an infinite number of

instantiations. Generalizing and classifying possible combinations of character and

environment state is a challenging problem.

Many problems are specific to the approach used to generate controllers. For

example, if machine learning or optimization techniques are used, one needs to eval-

uate the performance of controllers. It is not obvious what good performance criteria

for walking should be. Criteria might include energy minimization, robustness, or

similarity to a specific walk.

1.3 Research Goals

The general problem of walking control remains unsolved in many ways. The major

goals for our work are as follows:

1. To develop controllers that apply to a variety of characters. Our controller

should be able to take as input an arbitrary character model, including number

of body parts, lengths, masses, and inertia information for each part, and

control constraints such as joint strengths and joint limits.

2. To develop controllers that are robust to perturbations in the character state

and can generalize to a variety of environments.

3. To develop controllers that mimic a specified desired style. The style may

be physically infeasible in part or in whole. The controller should mimic the

desired motion and at the same time maintain balance.

1.4 Thesis Organization

The remainder of this thesis is structured as follows. In Chapter 2, we present a

selection of previous work relating to bipedal locomotion. We also describe related

work on imitation-based learning. Chapter 3 documents our dynamic simulation

system and gives the detailed specification of all our character models. Chapter 4

describes our controller representation and our method for optimizing the controller

5

to produce a stable walk of a desired style. We present several shaping techniques

that are important for producing a tractable optimization problem. We present the

results of our experiments in Chapter 5. We demonstrate controllers for distinct

walking styles, for distinct characters, and for terrains of varying slopes. We con-

clude in Chapter 6 with a summary of contributions, limitations and directions for

future work.

6

Chapter 2

Previous Work

Bipedal locomotion has been a challenging and popular research topic for decades.

The published literature consists of many hundreds, if not thousands of papers.

Interest has come from many different fields, such as computer animation, robotics

and biomechanics. However, as discussed in the previous chapter, each field has

its own specific motivations and goals. For example, the goals of entertainment

robotics may clearly differ in significant ways from those of biomechanics. We begin

by presenting an overview of kinematic and dynamic techniques tailored to computer

animation in Section 2.1. We then provide an overview of control techniques drawn

largely from the robotics literature in Section 2.2.

2.1 Animation-Specific Methods

Animation does not have to solve the real control problem. It can rely on kinematic

techniques. The price to be paid is that the models of motion are not as general, and

we do not necessarily learn much about real motion control in humans or robots.

2.1.1 Keyframing

Keyframing is at the heart of almost any commercial animation system. Motions

are defined by a set of key poses or keyframes of a character at specific instants in

time. The complete character motion is then computed by interpolating between

7

the keyframes, most commonly using splines. Keyframing grants the animator full

control over the motion, both in terms of style and timing. However, it demands

patience and skill on the part of the animator to incorporate realistic dynamics into

the motion. The product of keyframing is a motion trajectory over time. This

trajectory is not reusable in that the resulting motion is completely specific to the

given situation and the given character.

2.1.2 Spacetime Constraints

Physics plays an important role in constraining how humans and animals move.

Spacetime constraints were introduced in [49] as a means of automatically produc-

ing physically-realistic motion. The user specifies character attributes, as well as

constraints on the desired motion, such as keyframes or foot placements that con-

strain the character at specific instants in time. Given an objective function related

to control energy or motion smoothness, one can pose the animation as a trajectory

optimization problem, with the goal of both satisfying the constraints and minimiz-

ing the objective function.

The spacetime constraints method has a number of limitations. The ex-

istence of analytic first and second derivatives is assumed, which is necessary to

allow for the application of efficient local optimization techniques such as Sequen-

tial Quadratic Programming. Constraints can become cumbersome to specify even

for simple motions and characters. It is often not clear what a suitable objective

function should be. Another drawback is that the posed optimization problems may

have many local minima and thus the local optimization method’s success depends

highly on the initial state, in this case an initial motion trajectory. Lastly, the

optimization process can be prohibitively slow.

To partially address these issues, it is possible to use simplified dynamic

models [31, 46], efficiently computed cost functions [11], and a priori knowledge of

the specific problem [18, 22]. However, in the absence of initial motion capture

data, spacetime constraints has not, to the best of our knowledge, been able to

produce quality walking or running gaits for figures of human complexity. A number

8

of impressive results have been developed by using reference motions to initialize

the optimization process [31, 36]. Nonetheless, spacetime constraints methods are

trajectory based and output a set of poses over time. Such trajectories may not

be reused if even minor changes are made to the environment and it has not been

shown that the optimized trajectories are sufficiently accurate to drive a forward

dynamics simulation even in the perfectly predictable environments assumed by the

model. Lastly, trajectories can not be easily parameterized to enable generalization

of the motion.

2.1.3 Motion Capture

Motion capture is among the most popular methods for producing walking motions.

Here, an actor moves around in a studio and their 3D motions are directly recorded,

usually as a set of joint angles sampled at 60 or 120 Hz. The raw motion capture

data is once again specific to the given environment and the given actor.

By post-processing, the data may be adapted to satisfy new environmen-

tal, modeling, or timing constraints. For example, the data may be retargetted to

characters of different dimensions or adjustments may be made to the speed and

direction of the movement. A number of motion capture editing techniques have

been developed to address these types of problems [12, 1, 30, 42]. However, similar

to spacetime methods, the output of the motion capture process, including editing,

is a trajectory of the degrees of freedom over time. This property limits the reusabil-

ity and applicability of the data, as the character might be expected to exist in a

continuously changing environment. For this situation, an online kinematic motion

controller can be used to allow for a larger repertoire of motion and to create mo-

tions on the fly. In [4, 20, 34], novel motion is generated by cutting and pasting

different motion sequences together. The possible points at which transitions can

be made between motions are typically pre-computed and stored in a motion-graph

data structure. These methods and others allow for the generation of novel motion

sequences that can follow paths, accommodate for style and timing constraints, and

can select among several kinds of captured motions, such as running and jumping.

9

The motion graph algorithms described above rely heavily on the richness of

the recorded motion examples. More recent work looks at extracting parameteriza-

tions of motion from motion examples [7, 19, 28] and thus allows for interpolated

motion styles instead of just re-sequencing of motion clips. However, the further

one extrapolates from the given examples, the poorer the quality of the synthe-

sized motion. Ultimately, one cannot record every possible motion type and every

possible style, especially when the motion involves significant interaction with the

environment or with other characters.

A glaring problem of motion capture techniques is that they are limited to

real-world characters. As one cannot physically capture the motion of a character

that is a figment of one’s imagination, motion capture cannot make valid predictions

about the feasible motions for imaginary creatures such as mech robots. The motion

of many animals can also not be captured as they cannot be made to move in a

desired way with motion capture apparatus attached to them. A kinematic model

of motion is inherently limited in that there is no connection at all to the forces,

muscles, sensory system, nervous system, and control strategies that play defining

roles in how real humans and animals move.

2.1.4 Hybrid Kinematic/Dynamic Animation Methods

Motion capture methods can generate a rich repertoire of high-quality motion but in

general they cannot interact with a continuously changing environment. Physically-

based controllers, on the other hand, are more general and interactive, but do not

yet produce high quality, stylized motion for complex human characters, as will be

seen in the next section. Some research projects explore hybrid dynamic-kinematic

controllers that can benefit from the advantages of both techniques, but where the

dynamic control is mostly limited to upper body motion [27, 52, 53]. For example,

[29] describes a hybrid gait controller in which the dynamic component is confined

to falling and jumping motions.

10

2.2 Dynamic Methods

In physically-based modeling approaches to character animation, a character is usu-

ally specified as a set of rigid links connected together with actuated joints. The

links each have different masses, lengths and moments of inertia. Motion is accom-

plished by generating torques at the various joints, and by applying ground reaction

forces on links that are in contact with the ground. The torques and forces are used

by the equations of motion to compute accelerations for all the character’s degrees

of freedom (DOF). The character’s state, consisting of the DOFs and their time

derivatives, is updated over time, given the known accelerations.

The challenge in making such forward-simulation methods work is deciding

upon the required torques or muscle forces to apply, in order to generate a desired

motion. This is a control problem and in this section we review approaches drawn

largely from the robotics literature for solving this problem for walking gaits.

2.2.1 Zero Moment Point Methods

The Zero Moment Point (ZMP) was first described by [48] as the point on the

stance foot at which the horizontal component of the moment created by the ground

reaction forces vanishes. Equivalently, it can be shown that the ZMP coincides with

the Center of Pressure (CoP) of the foot [13]. The sum of the ground reaction forces

can be replaced by one force acting at the CoP. During the single stance phase of

walking, the ZMP lies within the area of the supporting footprint. During double

stance, the ZMP lies within the convex hull defined by both feet. These areas of

support are often referred to as the stability region.

Many researchers have used the ZMP to define a motion trajectory that is

guaranteed to be dynamically stable [15, 51, 50, 17, 41, 38]. As an example, in [38]

this is done by first defining a walking pattern using several parameters such as

walking stride length, hip height and walking phase periods. The walking pattern

parameters are used to calculate initial trajectories for the hip positions, swing foot

position, and joint angles over time. Given these, the walking pattern can be used

11

to compute a trajectory for the ZMP. If at any point along the trajectory, the ZMP

is outside the stability region, then the motion is known to be unrealizable. In this

case, the walking parameters can be adjusted to achieve a realizable ZMP trajectory.

Thus, the ZMP is used as a criterion for the validity of motion trajectories.

Once joint trajectories with a realizable ZMP trajectory have been computed,

a motion can be controlled to follow this desired ZMP trajectory [9, 14]. Motion

capture data can also be used to create the desired ZMP trajectory [9]. The desired

ZMP is distinguished from the actual ZMP that is generated from the motion tra-

jectory using inverse dynamics. The motion trajectory is optimized by reducing the

deviation of the desired ZMP from the actual ZMP.

In reality, due to disturbances, the robot will not be able to perfectly follow

the desired motion trajectory. In this case the actual ZMP will not be the same as the

desired ZMP and the robot may lose balance and fall. [14] present several strategies

to correct for the deviation between ZMP’s and thus regain balance. Adjusting the

angles of the ankle joints can be used to shift the actual ZMP toward the desired

one. The trajectory of the desired ZMP may also be changed to get closer to the

actual ZMP. The above two control strategies will alter the ideal robot configuration

thus changing the distance between the robot’s upper body and the next footstep

position. The next footstep is repositioned to avoid falling. This will change the

stride length temporarily.

ZMP controllers are most popular in robotics because they can ensure robot

stability in a controlled environment. However, these controllers are not robust to

large unexpected changes in the environment, and may fail with even small pushes.

The resulting motion is typically not energy efficient1. Moreover, the resulting

motion is not natural looking, because the knees are usually bent during the entire

motion in order to avoid kinematic singularities.

1This is due in large part to the use of high gain PD controllers.

12

2.2.2 Virtual Model Control

There is no intuitive way of setting the motion trajectory so that it produces a phys-

ically valid ZMP trajectory. The ZMP approach requires iterative modification of

the desired motion trajectory. In response to these limitations, virtual model control

[33] presents an intuitive method for controlling the locomotion of a character. The

authors introduce virtual components that connect parts of the character to others,

and parts of the character to the environment. These virtual components produced

virtual forces that are used to guide the desired motion. Virtual forces are ulti-

mately converted into realizable torques at the character’s joints. For example, to

induce the swing leg foot to move in a parabolic shape, a virtual spring and damper

system is attached between the swing foot and the torso. The spring rest position

changes as a function of the desired swing foot position. The forces calculated from

the virtual spring and damper are translated into torques at the character’s joints.

Other virtual components may be used to induce a constant walking speed and body

height. A finite state machine is used to induce a walking motion by activating and

disabling different virtual components as a function of the current phase of the gait.

Such virtual components are intuitive to design and have trivial computa-

tional requirements. Moreover, this strategy is successful in controlling a character

walking blindly over variable terrain. This method was tested on two small robots

designed with lightweight legs in order to be easy to control. A drawback of this ap-

proach is that the virtual forces cannot necessarily be translated into actual torques

during any given stage of the walk cycle and there is no notion of anticipation built

into this model of control. Also, it is unclear how this method can be used to

generate specific styles of walking.

2.2.3 Reinforcement Learning

The goal of Reinforcement Learning (RL) is to learn control strategies from delayed

rewards [16]. Thus, for example, we would like a robot to learn how to walk by

discovering which actions lead to falls and which ones lead to appropriate forward

motion. In RL, a controller is known as an action policy or more simply, a policy.

13

The policy is a function that uses the current state of the character to decide on

an appropriate action. After every action, the character’s state is updated and

the controller will receive positive or negative reinforcement, known as a reward,

depending on some evaluation criteria. The controller needs to learn a policy that

maximizes the expected future rewards.

Unfortunately, many RL methods suffer from the curse of dimensionality: the

algorithms’ time and memory needs grow exponentially with the dimensionality of

the state. Another challenge is to find the right tradeoff between exploration (trying

new actions) and exploitation (making decisions based on what worked before).

Nevertheless, RL has been used to learn walking motions for simple, low dimensional,

bipeds [24, 25, 43]. The approaches are not known to scale well to bipeds with higher

number of DOFs.

One notable exception is presented in [39]. Here, RL was used to train a

19-DOF 3D biped to walk of flat ground and up and down slopes. The biped can

adjust its stride length and direction. Careful preprocessing and decomposition of

the control were used to help reduce the dimensionality of the problem in order to

yield a tractable learning problem. However, this method has many parameters.

Moreover it was tested on only one character and can produce only one style of

motion.

The RL methods described above explicitly model the control system during

learning. A model consists of a state-transition function and a reward function.

Another approach to RL is to search for the policy directly, without learning a

model of the system. A policy, or controller, can be represented, parameterized,

and optimized in a variety of ways. Two such methods follow.

In one case, a character is augmented with sensors, detecting joint angles or

contact, and actuators at the joints. A network connecting sensors and actuators

can then be created and optimized to synthesize locomotion [45]. Such controllers

require less knowledge about a unique representation of the character’s state than

other methods, as actions rely entirely on sensory information such as foot-ground

contact. These controllers have produced interesting modes of locomotion for a

14

variety of simple 2D characters. However, the user has little or no control over the

resulting motion, with speed being a typical optimization metric.

An alternative to sensor-actuator networks are banked stimulus-response con-

trollers [5]. Here, a controller consists of a set of sensor-action rules. A Genetic Algo-

rithm is used to globally optimize the controller parameters. The user may guide the

search by providing an initial guess at the locomotion style and several controllers

can be concatenated to generate a more complex motion repertoire. Although con-

trollers have been shown to generate both 2D and 3D bipedal locomotion, finding

an optimal controller is extremely slow in the 3D case. Similar to most dynamically-

based controllers presented so far, the user has no control over the resulting style of

motion. Furthermore, results are not robust and are given for flat ground only.

Imitation-Based Learning

The RL techniques presented so far attempt to learn a task from scratch. Others

make use of prior knowledge about the task structure or hierarchy [23, 35] or from

raw observations of human-captured performance [3, 26, 37]. These approaches are

collectively known as imitation-based learning or learning from demonstration.

Bootstrapping the learning process with prior knowledge results in faster

learning as the policy search can focus on areas of the search space that pertain

to the task at hand. However, most techniques are limited to learning “one-time”

motions such as the acrobat swing up task or weight lifting. Imitation based learning

for a simple 5-link planar biped locomotion is demonstrated in [26]. Motion is,

however, limited to flat terrain. Moreover, the imitation is reserved for learning

the basic locomotion skill, rather than the style of locomotion presented in the

demonstrations.

2.2.4 Other Specialized Controllers

Many of the specialized controllers begin by specifying the walking motion as a finite

state machine with states such as double stance phase and swing phase. One such

example is the work of [47], which associates each state with timing information and

15

a character pose. The controller will start at one state and will use Proportional

Derivative (PD) control to drive the character to the pose associated with that state.

After a fixed time, the controller will switch to another state. The pose and timing

parameters associated with the states are not known in advance and are found by

global and local search methods.

In [21], the authors control 3D simulated bipedal walking by introducing

regulation variables to stabilize an open loop state machine. The user can control

certain aspects of the motion such as speed and direction. The user can have limited

control over style. The methods here are shown to work on a human and a non-

human character. The method is not directly amenable to online control, however.

The control for each actual step requires computing 4 trial simulations of that step

in order to compute an online estimate of how parameter changes will affect the

balance during the upcoming step.

2.3 Summary

We have presented some popular techniques used in the generation of bipedal loco-

motion. The literature exhibits an alarming trend of providing insufficient documen-

tation of the capabilities and limitations of the controllers presented [32]. Moreover,

new techniques are rarely compared to previous algorithms and most researchers

work on substantially different platforms. We do not fully address these issues.

However, we do test our method on a variety of characters and terrains.

Our controller representation has some similarities with the stimulus-response

pairs used by Auslander et al [5], as will be shown in Chapter 4. Our approach dif-

fers significantly in that we allow the use of an example target motion to directly

help define the motion style produced by a controller.

Our method also uses a form of imitation-based learning that is described

in Section 2.2.3. However, we apply our strategy to more complex characters and

motions. Moreover, we demonstrate more complete use of the motion example by

16

mimicking the style of the motion, thereby allowing the user greater control over

the resulting motion.

Although some of the techniques described in this chapter can handle vari-

able terrain and can work on various characters, most of the previous work assumes

flat ground and work on limited range of characters. For example, motion cap-

ture techniques are mostly applicable to characters of a human-like structure. Dy-

namic techniques allow for interaction with the environment but most controllers

for physically-simulated characters provide little or no control over resulting motion

style. We address these issues in the following chapters.

17

Chapter 3

Dynamic Simulation

In this chapter we provide necessary background information related to our dynamic

simulation environment. Figure 3.1 shows the main simulation loop and its key

components. This chapter will discuss five of these components in some detail. The

key variables in this figure are as follows: x, ẋ, ẍ, αd, τ, Fg.

Character
Model

Ch 3.1

Ground

Ch 3.3

Model

x..Joint PD
Controllers

Equations
of Motion

Ch 4 Ch 3.2 Ch 3.4

Controller τdα

Fg

Integration

Ch 3.4

x,x
.

Figure 3.1: Simulation Loop

A summary description of the simulation loop operation is as follows. At

each new time step, the controller takes the character’s state, {x, ẋ}, as input, and

outputs a set of desired joint angles, αd. For now, we assume that the controller

is a black box. A PD controller computes joint torques, τ , using the desired joint

19

angles, along with a specification of the character model. The ground reaction

forces, Fg, are applied to the character at locations of contact with the ground. The

character specification then serves to define the equations of motions that generate

the character’s acceleration, ẍ, given the joint torques and the ground forces. The

accelerations are integrated to update the character’s state.

The structure of the remainder of this chapter is as follows. We describe our

character models in Section 3.1. PD control in discussed in Section 3.2. The ground

interaction model is described in Section 3.3. We discuss the equations of motions

and the integration step in Section 3.4.

3.1 Character Modeling

We apply our control strategy to three planar biped models as shown in Figure

3.2. The human character in Figure 3.2(a) and the robot (mechbot) in Figure 3.2(c)

both have 7 links and 6 pin-joints. The more complex human model in Figure 3.2(b)

has 16 links and 15 joints. Each link has an associated set of defining parameters,

including mass, length, center of mass (CoM) location, and moment of inertia. The

values of these parameters can be found in Appendix A.

One of our goals was to test our algorithms on a variety of different characters.

The 7-link human biped differs from the 7-link mechbot in several respects. First,

the bipeds have different mass distributions and link lengths. The human has thigh,

shin, and foot lengths and masses similar to those of an average adult human being.

The mechbot model has much shorter thighs and shins. Second, the mechbot bends

its knees inward. Last, the human’s CoM is located directly above the character’s

hips. In contrast, the CoM of the mechbot is located ahead of its hips. These

properties require different balancing and locomotion strategies. Our controllers are

sufficiently general to adapt to these property changes.

The global location of a character in the world is given by the position of the

root link. For the 7-link models presented above, the torso is the root. The 16-link

character has its root located at the pelvis. The global position and orientation are

20

6

α

7 4

3

5
2

1Pg

(a)

16

15

14

13

12

11

2

1 αgP

4

3
5 8

6
9

10

7

(b)

α

7 4

36

5
2

1Pg

(c)

Figure 3.2: Character Models (a) 7-link human. (b) 16-link human. (c) 7-link
mechbot.

21

given by Pg and α, respectively. Positions and orientations for all other links are

given locally, with respect to their parent link. The origin of each local coordinate

system is the point where the link attaches to its parent. The link CoM parameters

in Appendix A are given with respect to the links’ local coordinate systems.

3.2 Joint control

The character joints are actuated and can generate internal torques according to

the following Proportional Derivative (PD) control equation:

τ(t) = ks(αd(t)− α(t))− kd(α̇(t)), (3.2.1)

where ks and kd are the spring and damper coefficients describing the joint’s strength,

α and α̇ are the angle and angular velocity of the joint at time t, and αd is the current

desired angle for the joint.

parent link

d
τ

α
α

sk

kd

Figure 3.3: PD Controller.

Figure 3.3 illustrates a PD controller. The filled circle represents a joint

between a link and its parent, represented by the white rectangles. α and αd are

the current and desired angles of the child link, respectively. Both α and αd are

given with respect to the parent link. The spring and damper system represents

the PD controller. The controller drives the child link towards the desired target

position given in gray. The joint’s strength is modelled using the spring and damper

22

coefficients, ks and kd. The character’s joint strengths and joint limits can be found

in Appendix A.

If a joint angle limit is exceeded, an additional corrective torque is applied

at the joint, computed as follows:

τ(t) = k1εe
k2|ε| − k3(α̇(t)) (3.2.2)

ε =

αmin − α(t), if α(t) < αmin

αmax − α(t), if α(t) > αmax,

(3.2.3)

where k1 and k2 are spring coefficients, k3 is a damping coefficient, α(t) and α̇(t)

are the joint’s angle and angular velocity at time t, and ε is the error between the

joint angle, α(t), and the joint limit (either αmin or αmax). Thus, the magnitude of

the corrective torque grows exponentially with the error, ε.

3.3 Ground Model

During simulation, we need to compute the ground reaction forces that arise during

foot-ground contact. Generally, these forces are distributed along the foot length

that is in contact with the ground. In practice, however, we cannot accurately model

this continuous foot-ground interaction, and instead we apply forces at several key

points along the foot.

P

M

k

k

s

d

Figure 3.4: Ground Model.

The ground contact is modelled using a spring and damper system as shown

in Figure 3.4. We define monitor points along the feet which will be tested for ground

23

contact. We record the position, Pi, at which the ith foot monitor penetrated the

ground as well as the current position, Mi, and velocity, Ṁi, of the monitor point.

An external force is computed that pushes the monitor point back towards the point

of initial penetration of the ground. The external force is computed as:

Fi(t) = ks(Pi −Mi(t))− kd(Ṁi(t)), (3.3.1)

where Fi(t) is the external force applied at time t to the ith foot monitor. ks and

kd are the spring and damper coefficients, respectively. In our experiments, we

typically use ks = 25, 000N/m and kd = 2, 500Ns/m. Multiple monitor points can

penetrate the ground simultaneously. Each such point is dealt with independently,

using Equation 3.3.1.

3.4 Equations of Motion

A character’s state is given by {x, ẋ, y, ẏ, α1:j , α̇1:j , gleft, gright} and comprises both

continuous and discrete variables. The continuous variables are the global position

and velocity, x, ẋ, y, ẏ, the global orientation angle and angular velocity, α1, α̇1, and

the joint angles and velocities, α2:j , α̇2:j , where the number of joints, j, depends on

the character model. The discrete variables, gleft, gright are booleans for the feet

that are set to ’true’ when the left or right foot, respectively, is in contact with the

ground.

The equations of motion are derived using a reduced-coordinate Newton-

Euler formulation. A full coordinate specification of the character’s state would

involve global positions and orientations for each link and would require constraints

to ensure that the ends of connected links do not drift apart. Such a formulation can

be costly in the absence of sparse matrix techniques and requires stabilization of the

constraints. In a reduced, or minimal coordinate formulation, a global position and

orientation is provided for one of the links, and the remaining links are specified using

orientations relative to their parent links. For our application we have found the

reduced coordinates formulation to be faster and more convenient. The accelerations

24

computed by the equations of motion are integrated using an Euler integration

scheme.

3.5 Summary

In this chapter we presented the three character models controlled by our system.

We also described how joint torques and ground reaction forces are computed and

used to update the character’s state. Next, we present our controller strategy.

25

Chapter 4

Learning Controllers for

Walking

This chapter describes our approach for developing a controller for bipedal walking

behaviors. Key choices include the controller representation to be used, the general

optimization procedure to learn the free parameters of the controller, and, impor-

tantly, the choice of optimization function. In the remainder of this chapter, we

discuss our choices, first in general terms, and then more specifically with respect

to walking.

4.1 Controller Representation

Our controller is a mapping from an input state, ζ, to an output action, µ. The

controller consists of a collection of nodes, ω1:n, that are used to determine a nearest

neighbor control scheme. Each node ωi consists of a center state, ζ ∈ I
m, and a

target action, µ ∈ O
p, where I

m and O
p define the controller’s input-space and

output-space, respectively. During simulation, the center state parameters locate

each node in space and are used to determine which node is active. The active node,

ωa, is defined as the nearest-neighbor to the current known state of the dynamically

simulated character and is computed as

27

a = argmini(||w
T (ζ − ζi)||2). (4.1.1)

where a is the index of the active node, ζi is the center state of the ith node, ζ is a

projection of the current full state1 of the character onto the controller’s input-space,

and w ∈ R
m is a vector of weights for the various elements in ζ. The nature of the

state projection as well as the weighting vector will be discussed in Section 4.3.1.

Once the active node is found, its target action defines the controller’s output, µa,

which is used to drive the character.

active node voronoi cell boundary
target trajectory
simulation trajectory

initial state
current state

target action
center state

Figure 4.1: Abstraction of Controller Representation and Operation

Figure 4.1 offers an abstraction of our controller representation in operation.

The thick solid line is a projection of a motion trajectory that we want our character

to follow. The filled circles are the node center states, ζ1:n, and the arrows are an

abstraction of the node target actions, µ1:n. The center states partition the input-

space into a set of high-dimensional Voronoi cells. As can be seen from the figure,

the cell actions generally drive the dynamical system, i.e., the moving simulated

character, back onto the desired trajectory. The thick dashed line represents a

simulated trajectory as guided by our controller. The simulation begins with the

character in the position denoted by the square. The star is the current state of the

simulation. A nearest neighbor search reveals that the bottom left node is active

1As discussed in Chapter 3, the character’s full state is defined by the character’s DOFs
and their time derivatives.

28

(i.e., closest to the star). The controller will now use this node’s target action to

drive the simulation. Eventually, the system will leave this node’s neighborhood

region and another node will be activated.

The node centers and node actions are free parameters of the representation

and are thus not known in advance. The values of these parameters are determined

through an optimization, the goal of the optimization being to follow a given desired

motion trajectory. An overview of the optimization process is given in the next

section.

4.2 Controller Optimization

We employ a simple deterministic search (SDS) algorithm, also known as coordinate

search [44], to find the optimal controller parameters, with respect to an evaluation

criterion, or cost function, C(·). Our specific choice of cost function is documented

in Section 4.3.3. The core SDS algorithm is summarized below in Figure 4.2. We

let Θ denote the vector of all controller parameters, [ζ1:n, µ1:n]. In the absence of

known derivative or gradient information we explore the corresponding parameter

space by making systematic evaluations of C(Θ±∆Θi) for each free parameter i in

Θ. SDS uses a (local) hill climbing approach by iteratively updating Θopt if it yields

a better cost function value.

We iteratively reduce the size of parameter perturbations, α. Using this

coarse-to-fine method allows us to first explore larger neighborhoods in the param-

eter space and then refine our search once we get closer to our local minimum.

4.3 Walking Controller Realization

The controller strategy presented above is general enough to work on a variety of

control problems. In [2], this controller was adapted to a significantly different con-

trol problem: steering cars and trucks with trailers, forwards and backwards around

winding tracks. In order to apply this method to walking control, we adapted our

controller representation and optimization in several respects. The following sub-

29

�

�

�

Input:

starting point Θ
perturbation step size α
decay factor β
ebest ← C(Θ)

Algorithm:

repeat

for each element i in Θ do

∆Θ← αE {E , the Kronecker delta, δi}
enew ← C(Θ + ∆Θ)
if enew < ebest then

Θ← Θ + ∆Θ
ebest ← enew

else

enew ← C(Θ−∆Θ)
ifenew < ebest then

Θ← Θ−∆Θ
ebest ← enew

end if

end if

end for

α← βα
until converged

Output:

Θopt ← Θ

Figure 4.2: Simple Deterministic Search algorithm (SDS)

sections provide controller alterations and implementation details that are specific

to the generation of walking motions.

4.3.1 Controller Input and Output

The input of our walking controllers is the character’s pose along with foot-ground

contact information. A pose is defined by the character’s angular DOFs, i.e., its

global orientation along with its joint angles. Poses are thus easily extracted from

the full character state, which is the collection of the character’s DOFs and their

30

time derivatives, as discussed in Chapter 3. Using the pose instead of the full state

significantly reduces the number of free parameters.

To find the active controller node, the current character pose is compared

to the node center states, ζ1:n, as described in Section 4.1. The angles comprising

the character pose or center states are each weighted differently using the weight

vector, w, in Equation 4.1.1. A joint angle weight is given by the associated mass

of the lower link that the joint is attached to. For example, the ankle joint weight

is set to the foot link mass and the hip joint weight is the mass associated with the

thigh link. The weight for the global orientation is set to the mass of the torso.

Walking motion is naturally divided into phases - double stance, where both

feet are in contact with the ground; and single stance, where only one foot is sup-

porting the character, and the other foot is swinging from the back to the front. The

nodes in our walking controller incorporate this phase information by supplementing

the node center states with information about left and right foot contact. When

comparing the state of the dynamic simulation with each node, the Left and Right

foot contact state, as given by gleft, gright (see Section 3.4), must be the same for

the simulation and the node. Given the importance of foot-ground contact during

walking, this phase information is an easy way to enforce particular nodes to be

dedicated to particular phases of the walk cycle. We also take advantage of the

left-right symmetry of these phases as we shall discuss in Chapter 5.

The output of a controller, expressed in Section 4.1 as a target action, µ, is

a set of desired joint angles. Once an active node is found, we use PD controllers to

drive the joints towards their desired angles.

4.3.2 Target Motion Trajectory

The goal of our controller is to mimic a style, as specified by a user-provided target

motion trajectory. The target motion is defined by a set of keyframes as shown in

Figure 4.3. Each keyframe specifies the character’s pose at a given time. One of the

legs is dashed to make the left and right legs distinguishable. Keyframes are linearly

interpolated over time to produce the target motion trajectory. The time values in

31

Figure 4.3 show the time it takes to transition from one keyframe to the next. Other

methods, such as motion capture, could also be used to acquire the desired motion.

We shall see shortly how the target motion trajectory plays an important role in

defining our cost function.

��

������
������
������
���������
������
������

������
������
���

��

	

�
����

��
��� ������

������

��
��

���
�

������������ ���
������
������

������
������
������
���������

������
���
������
���

�����

��
��
�

!!
!!
""
""

##
#
$$
$

%%&
&

'�''�'
'�'
(�((�(
(�(

)�))�)
)�))�)
)�)

**
**
*

+�++�+,�,,�,

-

.�.�.�..�.�.�./�/�//�/�/
00
00
11
11

2�22�2
2�22�2
3�33�3
3�33�3

4�44�4
4�44�4
4�4

55
55
5

6�6�66�6�67�7�77�7�7 8�88�899

:�::�:
:�::�:
;�;;�;
;�;;�;

<�<<�<
<�<<�<
<�<

==
==
=

>�>�>>�>�>>�>�>
?�??�?
?�?@�@�@
@�@�@@�@�@@�@�@
A�A�AA�A�AA�A�AA�A�A

BBC
C

DD
DD
D

EE
EE
E

FGH�H�H
H�H�HI�II�I

J�JJ�J
J�JJ�J
J�JJ�J

K�KK�K
K�KK�K
K�KK�K

0.2 s

0.3 s

0.15 s
0.2 s

0.3 s

0.15 s

Figure 4.3: Keyframes.

4.3.3 Cost Function

The choice of an appropriate cost function is important and challenging. Our con-

troller has two potentially conflicting goals. On the one hand we wish our character

to follow a desired trajectory. On the other hand, our character must maintain

its balance while obeying the laws of physics, something that the target trajectory

might not do. We design well-shaped cost functions for walking by using a form

of imitation-based learning. By rewarding how well a controller mimics a desired

target motion, we provide a convenient handle for the design of the desired style of

walk. It also implicitly rewards balanced walking because actions that result in falls

will cause larger deviations from the desired motion.

Our cost function, C(Θ), integrates the deviation of the physics-based walk

simulation from a target walk cycle. At time t, the error, δ(t), between the dynam-

ically simulated character and the kinematic target walk cycle is defined using a

mass-distance metric integrated over all character link lengths:

32

δ(t) =

M
∑

i=1

∫

L

ρi(xi(t)− x′
i(t))

2dx, (4.3.1)

where M is the number of character links, L is the length of a link, xi(t) is a point

on the ith link at time t for the dynamically-simulated biped, x′
i(t) is the location

of the same point at the same time instant for the target walk cycle, and ρi is the

associated density for the ith link. The density is a link’s mass per unit length and

allows us to weight character links differently, assuming that errors at heavier parts

of the body, such as the torso, are more important than errors at lighter parts, such

as the foot. Figure 4.4(a) shows the distances at two points on the character.

LMLMLLMLMLLMLMLNMNNMNNMN

OMOOMOOMOPMPPMPPMP

QMQQMQQMQRMRRMRRMR
SMSSMSSMSTMTTMTTMT

UMUUMUUMUVMVVMVVMV

WWW
WWW
WWW
WWW
WWW
WWW
WW

XXX
XXX
XXX
XXX
XXX
XXX
XX
YMYMYMYMYMYMYMYMYYMYMYMYMYMYMYMYMYYMYMYMYMYMYMYMYMYYMYMYMYMYMYMYMYMYYMYMYMYMYMYMYMYMYYMYMYMYMYMYMYMYMYYMYMYMYMYMYMYMYMY
ZMZMZMZMZMZMZMZMZZMZMZMZMZMZMZMZMZZMZMZMZMZMZMZMZMZZMZMZMZMZMZMZMZMZZMZMZMZMZMZMZMZMZZMZMZMZMZMZMZMZMZZMZMZMZMZMZMZMZMZ

[M[M[[M[M[[M[M[
[M[M[[M[M[[M[M[
[M[M[[M[M[[M[M[
[M[M[[M[M[[M[M[
[M[M[[M[M[[M[M[
[M[M[[M[M[[M[M[
[M[M[

\M\\M\\M\
\M\\M\\M\
\M\\M\\M\
\M\\M\\M\
\M\\M\\M\
\M\\M\\M\
\M\

]M]]M]]M]
]M]]M]]M]
]M]]M]]M]
]M]]M]]M]
]M]]M]]M]
]M]]M]]M]
]M]]M]

^M^^M^^M^
^M^^M^^M^
^M^^M^^M^
^M^^M^^M^
^M^^M^^M^
^M^^M^^M^
^M^^M^

_M_M_M_M__M_M_M_M__M_M_M_M__M_M_M_M_
`M`M`M`M``M`M`M`M``M`M`M`M``M`M`M`M`

aMaaMaaMa
aMaaMaaMa
aMaaMaaMa
aMaaMaaMa
aMaaMaaMa
aMaaMaaMa
aMaaMa

bMbbMbbMb
bMbbMbbMb
bMbbMbbMb
bMbbMbbMb
bMbbMbbMb
bMbbMbbMb
bMbbMbcMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMccMcMcMcMcMcMcMc

dMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMddMdMdMdMdMdMdMd

eMeeMeeMe
eMeeMeeMe
eMeeMeeMe
eMeeMeeMe
eMeeMeeMe
eMeeMeeMe
eMe

fMffMffMf
fMffMffMf
fMffMffMf
fMffMffMf
fMffMffMf
fMffMffMf
fMf

gMgMgMgMggMgMgMgMggMgMgMgMggMgMgMgMggMgMgMgMg
hMhMhMhMhhMhMhMhMhhMhMhMhMhhMhMhMhMhhMhMhMhMhiMiMiMiMiMiMiMiMiiMiMiMiMiMiMiMiMiiMiMiMiMiMiMiMiMiiMiMiMiMiMiMiMiMiiMiMiMiMiMiMiMiMiiMiMiMiMiMiMiMiMiiMiMiMiMiMiMiMiMi
jMjMjMjMjMjMjMjMjjMjMjMjMjMjMjMjMjjMjMjMjMjMjMjMjMjjMjMjMjMjMjMjMjMjjMjMjMjMjMjMjMjMjjMjMjMjMjMjMjMjMjjMjMjMjMjMjMjMjMj

kMkkMkkMk
kMkkMkkMk
kMkkMkkMk

lll
lll
lll

mMmMmMmmMmMmMmmMmMmMmmMmMmMmmMmMmMmmMmMmMmmMmMmMm
nMnMnnMnMnnMnMn
nMnMnnMnMnnMnMn
nMnMn

Distance between
corresponding points

(a) (b)

Figure 4.4: Cost Function: (a) Instantaneous motion tracking error. (b) An ab-
straction illustrating the error over multiple time steps.

The dashed character shows the desired pose at time t. The solid character

refers to the dynamic pose at time t. The error is computed by measuring the

distance between corresponding points along the character’s links. The knee and toe

distances shown here are only illustrative examples. In practice, we approximate the

continuous mass-distance integral by representing each link using two point masses,

one placed at each end of the link. Each point mass is assigned half the weight of

the link. Integrating this error over time gives us the cost function:

C(Θ) =

∫ Tsim

0

δ(t)dt (4.3.2)

33

where Tsim is the duration of the simulation and δ(t) is as defined in Equation 4.3.1.

The choice of Tsim is important and will be discussed further shortly. Figure 4.4(b)

illustrates the cost function being integrated over time. The thick solid line is the

desired trajectory for a period of time, Tsim. The dashed line is a dynamic simulation

for the duration Tsim. The cost function is calculated by integrating the distance

between these two trajectories over time.

4.3.4 Initialization

In local search algorithms such as ours, a successful optimization may largely depend

on the parameter initialization. We initialize controller nodes to appropriately-

spaced positions along the kinematic target trajectory, as shown in Figure 4.5(a).

The number of nodes is chosen based on experience and generally depends on the

complexity of the motion trajectory we wish to mimic. See Chapter 5 for choice

examples and a more detailed discussion. Both center poses, ζi, and target poses,

µi, lie directly on the trajectory. We assign µi = ζi+1, i.e., each node’s target action

will drive the character to the center state of the next node. Such an initialization is

intuitive and it helps shape the controller optimization by focusing on those areas of

the pose-space that are of interest, namely, those surrounding the desired trajectory.

The dashed line in Figure 4.5(a) is an example simulated trajectory and indicates

that the initial guess at the values of the controller parameters is suboptimal.

(a) (b)

Figure 4.5: Controller Initialization and Optimization: (a) Initial controller param-
eters. (b) Optimized controller parameters.

34

Figure 4.5(b) illustrates the same controller after optimization. We see a

slight shift in some of the center and target poses. The dashed line representing

the dynamic trajectory shows that we can adjust the node parameters, successfully

tracing the desired trajectory to obtain balanced walking.

4.3.5 Connecting Nodes

Poses may repeat at different parts of a desired motion trajectory. For example, the

motion in Figure 4.6(a) has identical poses at the second and fourth keyframes. If

the simulated character is in this pose, our controller would not know wether to drive

the character towards the third pose or the fifth pose. That is, we might have two

controller nodes with similar or identical center states, but with significantly different

target actions. To solve this problem, we create a directed graph of control nodes,

as shown in 4.6(b). The controller’s nearest neighbor search will only measure the

character’s pose against the center states of the current active node, and its successor

nodes in the directed graph. Thus, when the character reaches the duplicate pose,

there is no longer ambiguity as to which node to select, since only one of them will

directly succeed the currently active node.

(a)

node node node nodenode
1st 2nd 3rd 4th 5th

(b)

Figure 4.6: Duplicate Poses: (a) Keyframes with identical poses. (b) Directed graph
associated with a controller.

35

4.3.6 Bootstrapping

We optimize over progressively longer durations, i.e., increasing Tsim. The optimized

controller for a short walk simulation is used as the initial guess for the next iteration,

which then optimizes for a longer walk simulation. Bootstrapping the optimization

in this manner prevents the optimization process from getting trapped in errant local

minima. For cases where a target trajectory is physically infeasible, the controller

will follow the target trajectory during short term optimizations, but, over a longer

time interval, will deviate as necessary in order to better follow the target trajectory

in the long term. Figure 4.7 illustrates this progression. The thin solid curve

represents part of the target trajectory we wish to mimic. The thick solid curve

is the kinematic simulation after time Tsim, and the dotted curve is the dynamic

simulation using the current controller after the same amount of time. Figure 4.7(a)

shows that an initial controller fails to follow the target motion even for a short

period of time. After optimizing, we generate better results, as seen in Figure

4.7(b). However, the optimized controller only works for the short period of time

it was tested on. Figure 4.7(c) shows that if the simulation runs for a longer time,

the current optimal controller fails. Figure 4.7(d) illustrates our controller after

parameter optimization with a larger value of Tsim. Our mass-distance cost metric

and the long time intervals over which it is evaluated distinguish our use of a target

trajectory from other control methods which track a reference trajectory only very

locally.

(a) (b) (c) (d)

Figure 4.7: Optimizing over Progressively longer Periods: Before (a) and after (b)
optimization with short simulation evaluation period. Before (c) and after (d) opti-
mization with longer simulation evaluation.

36

4.3.7 Introducing Disturbances

In order to adjust the node centers towards the regions of state-space that the char-

acter will visit, the character must indeed visit those regions during the optimization

process. To ensure that the optimization routine sees a sufficient range of situations,

we introduce small variations in the terrain to induce perturbations, even when the

goal is to produce a stable walk on perfectly level terrain. This significantly enhances

the stability of the final gaits.

4.3.8 Torso Controller

The torso plays an important role in both the balance of a walk and its style. Because

of this, the torso is provided with a separate PD controller whose goal is to drive

the torso to a desired global orientation which is given by the target trajectory.

α

dα

current stance leg
hip joint of

Figure 4.8: Torso Correction.

Figure 4.8 illustrates how the torso controller is used to correct the global

orientation. α and αd are the character’s current and desired global orientations,

respectively. These cannot be manipulated directly. Instead we add the torque in

Equation 4.3.3 to the current stance hip, which pushes the torso towards the desired

global orientation. Note that this stance hip torque is equal and opposite to a PD

controlled external torque applied to the torso.

τ = kp(α− αd) + kd(α̇) (4.3.3)

37

4.4 Summary

In this chapter we presented a nearest-neighbor controller strategy for generating

walking motions. We use a hill climbing algorithm and several shaping techniques

to optimize controllers that can stably mimic a desired style. In the next chapter,

we demonstrate a number of results.

38

Chapter 5

Results

In this chapter we present results in the form of walking motions produced by our

controller synthesis method. Our controller was tested for generality along several

dimensions as shown in Figure 5.1. First, we ensure that our method can produce

several styles of walking for a given character. We describe the style results in

Section 5.1. Next, we test the generality of our method by applying our controller

to different characters. Section 5.2 presents motion results for several characters.

We experiment with terrains of various slopes to ensure that our controller is not

restricted to level terrain. Section 5.3 describes the results of our uphill and downhill

tests. Finally, we test our system for robustness using unobserved perturbations in

the terrain. Results for this are given in Section 5.4. Experiments were performed

on machines ranging from a dual Xeon 2.66GHz machine with 4GB of RAM to a

1GHz Pentium III with 512M RAM.

Figure 5.1: Controller Dimensions

39

5.1 Styles

We test a number of different walking styles for the 7-link human biped specified in

Chapter 3. The first and simplest style is shown in Figure 5.2. The keyframes that

define the desired walking style are shown in Figure 5.2(a). Each step is defined

by 3 keyframes yielding a total of 6 keyframes for the full walk cycle. For clarity,

one of the legs is drawn with a thinner line. All the walks are left-right symmetric,

both in terms of the keyframes defining the target motion, as well as the controller

nodes. The arrows between the keyframes annotate the transition time between the

keyframes, in this case, 0.2 seconds.

0.2 0.2 0.2 0.2 0.2 0.2

(a)

(b)

Figure 5.2: Regular Walk

Figure 5.2(b) shows the first few steps of a walk generated by our optimized

controller. Every 100th frame is drawn and successive frames are spaced out so as

not to overlap. Notice that the style of walk is very close to the style specified by the

keyframes in Figure 5.2(a). The controller has 12 nodes which are initialized along

the target motion defined by the keyframes. Each node has 12 free parameters: 6

for the node center pose and 6 for the node action. Since the nodes are left-right

40

symmetric, we only optimize half of the nodes. In total, we thus have 6 nodes × 12

parameters per node = 72 free parameters requiring optimization.

For the optimization algorithm in Figure 4.2, we use an initial perturbation

step size of α = 0.3, and initial decay factor β = 0.1. We optimize for simulation

duration times, Tsim, ranging from 0.5s− 1.2s, with a step size of ∆t = 0.1s. Once

the optimization reached 1.2 seconds of simulation, a stable controller was found

that produced the desired style. A controller is considered to be stable if it can

produce a walking motion for at least 1000 simulation seconds without falling down.

Figure 5.3 shows the progress of our controller optimization routine by plot-

ting the controller error against the number of iterations. The controller error is

defined in Section 4.3.3 as the deviation of the dynamic character’s motion from the

desired kinematic motion. In this graph, one iteration is the process of perturbing

one parameter and evaluating the resulting controller. Note the jumps in the error

graph. These discontinuities result from the cost function changing during the op-

timization as longer values of Tsim are used. Since the cost is a function of Tsim,

every increase of Tsim will result in a discontinuity in the cost function. Optimizing

the controller in Figure 5.2(b) required 3,758 iterations, which took approximately

5 minutes of CPU time.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

iterations

er
ro

r

Figure 5.3: Regular Walk Error

A second style is shown in Figure 5.4. Figure 5.4(a) shows the keyframes

defining the desired motion. This style differs from the first in several ways. The

41

swing leg is made to lift very high. The first two keyframes show that we desire

the character to remain in double stance for 0.1 seconds while moving the weight

from the back leg to the front in a specific style. A single step takes 1.05 seconds

to complete, compared to 0.6 seconds of the previous style. Figure 5.4(b) shows a

walking motion from our controller. The style matches the target motion closely,

retaining the slow motion, the high swing leg lift and the slow weight shift from one

leg to the next.

0.1 0.25 0.35 0.35

(a)

(b)

Figure 5.4: Extended Swing Walk

This controller was defined using 24 nodes. With left-right symmetry en-

forced, only 12 nodes need optimizing. As before, each node has 12 free parameters,

resulting in a total of 144 free parameters. Optimization was performed for simu-

lation evaluation times of 0.1s− 1.0s, with simulation time increases of 0.1 seconds

step sizes. A stable controller was found in under 10 minutes of CPU time, after

8,934 iterations.

A final style is shown in Figure 5.5. Figure 5.5(a) shows the desired motion

keyframes. Notice that this walk exhibits a rather esoteric additional backwards

swing of the swing leg. The swing leg swings forwards in the second keyframe, then

42

0.4 0.2 0.2 0.3

(a)

(b)

Figure 5.5: Double Swing Walk

backwards in the third keyframe, and once more forwards in the fourth keyframe

before the footstrike. A single step takes 0.9 seconds. In Figure 5.5(b) we see the

first few steps of the motion generated by our controller. The character preforms

the double swing as requested by the keyframes.

Similarly to the previous style, this controller was defined using 24 nodes, 12

of them free to be optimized. The controller had 144 free parameters. Interestingly,

it took only 450 iterations and 1.5 minutes to optimize this controller, even though

the motion is likely much harder in that it requires delicate balance to succeed. We

speculate that the fast convergence is likely due to a fortuitous initialization of the

nodes. Center and target poses of each node were initialized to poses along the

desired trajectory as defined by the keyframes. In this case, the initial controller

parameters produced a good walk for the first 2 seconds of simulation. Thus, we

begin the optimization using Tsim = 2sec, compared to previous styles where we

43

begin from Tsim = 0.5sec or Tsim = 0.1sec. A stable controller was readily found

with Tsim = 2sec.

5.2 Characters

We next test the ability of our method to control other characters. We test our

method on a total of three characters, where one is the 7-link human already dis-

cussed in the previous section. We first discuss the 7-link mechbot character specified

in Chapter 3.

Figure 5.6(a) shows the keyframes for a desired mechbot walk. Figure 5.6(b)

show the walking result using our mechbot controller. The controller has 12 nodes,

each of which has 12 free parameters, the same as for the 7-link human character.

The optimization thus has 72 parameters to optimize. A stable controller was found

after 22,420 iterations, using 2.4 hours of CPU time. The optimization routine ran

simulations from 0.1 - 3.1 seconds. Surprisingly, this walk took much longer to

optimize than for the 7-link human. We speculate this is because the much shorter

stride length leads to a smaller region of support and thus a less stable walk.

0.2 0.2 0.2 0.2

(a)

(b)

Figure 5.6: Bird Walk

44

The final character is the 16-link human biped described in Chapter 3. In

Figure 5.7(a), we see the keyframes used to define the target walk. Note that the

arms in the second and fourth keyframes are parallel to the character’s upper body

and are thus difficult to discern. Figure 5.7(b) shows a dynamic simulation using

our controller.

0.3 0.3 0.3 0.3

(a)

(b)

Figure 5.7: 16-Link Biped Walk

The controller uses 12 nodes. Each node’s center pose or target pose contains

16 parameters - one for global orientation, and 15 for joint angles. However, we leave

many of them constant, optimizing only for the hip, knee and ankle joints for the

center and target poses. As a result, we have 12 free parameters for each node, the

same as for the 7-link characters. This is because we assume that the lower body

can react appropriately to the predictable upper body movements. A stable walk

was discovered within 4,193 iterations, taking 30 minutes of CPU time.

45

5.3 Terrain

To ensure that we could control motion on sloped terrain, we test our method on

the 7-link human biped walking both uphill and downhill. Note that we do not

use the same controller as we did for the case of flat ground. Both of the following

controllers are created and optimized for the specific slopes presented to them.

0.3

0.2

0.3

0.2

(a)

(b)

Figure 5.8: Uphill Walk

Figure 5.8(a) shows the keyframes used to define a desired walk up a hill.

The hill had a slope of 22.5 degrees. The controller had 12 nodes, leaving a total

of 72 parameters to be optimized. Left-right symmetry leaves 6 nodes, each having

12 free parameters. The optimization ran simulations over evaluation intervals of

0.5 - 15 seconds. An optimal controller was created within 5 hours, after 20,165

iterations. Figure 5.8(b) shows a dynamic simulation of our controller. Only one

leg is drawn for clarity.

Figure 5.9(a) shows the keyframes used to define a desired downhill walk.

The hill had a slope of 18 degrees. The optimization ran simulations from 0.5 - 10.9

46

0.3

0.3
0.3

0.3

(a)

(b)

Figure 5.9: Downhill Walk

seconds. An optimal controller was created after 59,728 iterations and 21 hours of

CPU time. Figure 5.9(b) shows a simulation of our controller.

5.4 Robustness

The results presented thus far have produced stable walks on flat and sloped terrains.

The stability arises from the stable basin of attraction created by the controller. If a

character drifts off of the desired trajectory, the active node will drive the character

back onto the limit cycle. However, if the character drifts too far, the small set

of nodes will not be able to correct the character’s motion. If our character is to

be robust to sudden changes in its state or the state of the environment, we must

require that the controller recover from larger deviations. Our hypothesis is that

with additional controller nodes, we will be able to control the character in a larger

region of the state space.

47

In order to test this assumption, we take the simplest controller presented

in Section 5.1 and triple the number of nodes, yielding 36 nodes and 215 controller

parameters to optimize. To ensure that the character would constantly be pushed

off its limit cycle, we presented the character with bumpy terrain. The character is

not aware in any way to the upcoming terrain, and must continuously recover from

unexpected changes in state.

(a)

(b)

(c)

Figure 5.10: Bumpy Terrain Walk

We optimize the controller over heavily bumpy terrain with local slope gradi-

ents between 12.5% - 30%. At each stage, we present the controller with 20 randomly

48

generated terrains. We search at two resolutions; each parameter was perturbed by

α = 0.3 and α = 0.01. After 130,000 iterations, requiring approximately one week of

CPU time, we test our controller on terrain of various bumpiness. We define a con-

troller to be successful if it can generate 70 seconds of walking over variable terrain

without falling. Figure 5.10(a) shows the controller driving a character on a mod-

erately bumpy terrain with gradients of 12.5% or less. Our controller succeeds at

walking on 20 randomly generated terrains that were not seen during optimization.

The controller’s performance degrades smoothly with an increase in terrain gradient.

Figure 5.10(b) shows a successful walk over a terrain having up to 20% gradients.

However, our controller succeeds on only 70% of the 20 randomly generated terrains

of this type. Figure 5.10(c) provides a closeup of the terrain.

There are various reasons for the limited controller capabilities. First, the

search process does not present the controller with all possible situations during

optimization. This is a challenging problem as there exist an infinite number of

possible terrains. The explosion of possibilities worsens if combined with all possible

character states on that terrain. Naturally, we cannot train the controller on all cases

it might enter into. Second, the controller may have had too few nodes to allow for

appropriate actions for the given range of situations. We use our experience to

choose the required number of nodes. Moreover, there is a trade off between the

number of nodes and the time it takes to optimize them.

We also test our robust controller on terrains with constant slope. The

simple controller of Section 5.1 failed on slopes as small as 2%. Figure 5.11 shows

the controller successfully walking uphill on a 7% slope, and downhill on a 10%

slope. Notice that the steps in these results are irregular and thus do not appear

as smooth as the ones in Figures 5.8 and 5.9. However, those controllers were

specifically trained on those slopes. Here, the character continuously expects flat

ground and must recover at each step.

49

(a)

(b)

Figure 5.11: Uphill and Downhill Walks with a Robust Controller

5.5 Summary

We have demonstrated our controller’s ability to generate walks for a variety of user-

specified styles, for a variety of characters, and for several terrain slopes. Moreover,

a robust controller was presented that successfully walks over unobserved variations

in terrain. In the next chapter we discuss our contributions as well as the known

limitations of our method. We conclude with possible directions for future work.

50

Chapter 6

Conclusions

As shown in Chapter 5, our method is capable of generating controllers for various

planar biped characters that walk in a desired style and are robust to unexpected

state and environment changes. In this chapter we summarize our contributions

(Section 6.1), point out known limitations (Section 6.2), and elaborate on future

directions (Section 6.3).

6.1 Contributions

Compact Controller Representation

In Chapter 4 we described a controller representation that divides the state into

Voronoi cells, and chooses an action based on which cell the simulation is currently

closest to. By optimizing the free parameters in this compact controller representa-

tion, we were able to create walking controllers for various characters and walking

styles.

An important property of our controller representation is that it does not

suffer from the curse of dimensionality. The number of nodes does not have to

increase with the character dimension. Particularly, for a well defined motion such

as walking, we need not be concerned with all areas of state-space, but rather only

poses close to the desired state-space trajectory. Our scheme could be classified as

a semi-parametric representation [6].

51

Variety of Characters

Unlike much previous work, we present three different characters on which we test

our method. The characters differ in both number of links and their mass distribu-

tion. We describe how these differences could lead to different control strategies for

producing balanced walks. In Chapter 5 we show how our controller was general

enough to accommodate for these differences.

Control of Walking Style

Unlike previous work on walking control, we provide the user the ability to control

the style of the walk. We shape our cost function using a motion trajectory specified

by the user and impose much weaker conditions on this desired trajectory than

ZMP or other reference trajectory approaches. Our controllers are evaluated on

how closely they could imitate the desired motion which also implicitly rewards

balance. In Chapter 5 we show that our controller can generate several distinct,

user-specified walking styles.

6.2 Limitations

The following is a discussion of the known limitations of our system. We note that

most other walking techniques share similar limitations.

Optimization Time

If the controller we wish to generate is simple1, an optimal controller can be found

within a minute, after hundreds of iterations. However, for more difficult motions,

our optimization routine can be painfully slow. For example, for the downhill walker,

the routine took approximately 60,000 iterations to find a stable solution. An un-

avoidable reason for slowness is the high dimensionality of the problem. Exploring

1Deciding what makes a controller or walking motion simple is an open problem. In this
context, a simple controller is one that does not require the character to be off balance for
a long time interval during the motion.

52

a high-dimensional space is time consuming. Another reason may be the naive opti-

mization algorithm used. The optimization perturbs one parameter at a time, and

does not compute a gradient for the cost function.

Hand Tuned Parameters

Hand tuned parameters are a notorious problem in motor control methods. We

manually tune tens of parameters including PD control coefficients for joints, ground,

and joint limits. One of the implications of hand tuning is that our controllers are not

as general as we would hope, since different characters require different parameter

values.

Lack of Convergence Guarantees

Our optimization routine involves a cost function that changes during the course of

the optimization, given that we optimize over progressively longer simulation times.

For a constant simulation time, Tsim, we have convergence guarantee given that we

use a simple hill-climbing method. However, no matter how large Tsim gets, we can

never guarantee that the controller will operate successfully for a simulation time

larger than Tsim.

A related problem is that we may chance upon a controller, Θopt,1, early

during the optimization, that happens to produce a stable indefinite walking motion,

but we do not have a good way of discovering such immediate success. Since we

can not determine if our controller is truly stable in the long run, we may continue

optimizing, and produce a better Θopt,2. Although Θopt,2 is better than Θopt,1 for

the simulation time that the controller was optimized for, Θopt,2 may still fail for

longer periods of simulation. Thus, there is no way to identify the superiority of

Θopt,1 over the long run.

53

Unsuccessful Optimization

During our experiments, we have had unsuccessful optimizations. In these cases, our

controller would get stuck in a bad local minimum. To solve these, we experimented

with different hand tunable parameters as described in Section 6.2.

No Planning

Our controller is reactive in nature. It observes the character’s state at a given time

and decides on a proper action to take. This type of controller will fail in a more

complex environment. For example, if the ground ahead contains holes or obstacles,

our controller is incapable of planning ahead to adjust its behavior to accommodate

upcoming changes.

Lack of Parameterization

Representations for motor control should ideally provide support for parameteriza-

tion. It is natural to consider parameterizing a walking gait according to walking

speed, stride length, and other stylistic parameters. We have not yet explored such

parameterization of controllers.

Parameter Correlations

We assume that the input space for the controller has been defined in a compact,

non-redundant fashion such that it can be used to compute meaningful distance

metrics. If two or more dimensions of the state descriptor are highly correlated, our

method cannot exploit this and may in fact be hampered by this.

Variable Terrain

The success of our method depends on the situations the controller has seen during

training. It currently does not compare well with virtual model control methods [8]

for blindly adapting to terrain variations. One possible solution is to consider better

optimization methods that ensure the controller experiences more situations during

54

training. We speculate that the nearest neighbor approach will be able to generalize

control to situations that are similar to those encountered during training, but will

not succeed if a situation is entirely different.

6.3 Future Work

Better Optimization Algorithms

Since our cost function is a complex, discontinuous, non-linear function, we cannot

compute an analytical gradient. We evaluate our cost function by running several

simulations and integrating a cost function over time. Thus, we cannot take ad-

vantage of standard optimization routines that rely on first and second derivative

information, such as Sequential Quadratic Programming. Moreover, we optimize

tens to hundreds of parameters, which makes gradient approximation methods such

as finite-differences prohibitively slow and unsuccessful. One possibility is to experi-

ment with other gradient approximation methods, such as such as the Simultaneous

Perturbation Stochastic Approximation (SPSA) method presented in [40]. The gra-

dient approximation in SPSA requires only two cost function evaluations, as opposed

to potentially hundreds, as in the finite-differences approach. However, in SPSA,

one must define several learning rate parameters that are crucial to successful opti-

mization and setting these correctly and consistently requires investigation.

It may also be possible to use the Voronoi cells to store value functions or

Q functions and to therefore apply more efficient policy-iteration methods instead

of direct policy search.

Multiple Samples

Our basic optimization method always begins simulations from a specific initial

state. During the initial stages of optimization, we are simulating for very short

periods, and thus run the risk of being trapped in a local minimum that will fail to

control the walking motion for longer durations. One way to potentially alleviate

this problem would be to run multiple simulations for every optimization episode.

55

Instead of evaluating the cost function from one initial state, one could evaluate

it from multiple states that are distributed along the desired trajectory. Thus,

parameter changes would not be accepted unless they provide reasonable solutions

for the entire trajectory. We further speculate that controllers trained from multiple

initial points will be more robust because they will have seen a larger range of

situations.

Energy Efficiency

Currently, our cost function only takes into account the deviation of a simulated

trajectory from a given target trajectory. There is no penalty for exerting excessive

amounts of energy by applying unnecessarily large torques at the joints. This may

lead to unnatural motions because we are most familiar with human and animal

gaits that tend to minimize energy expenditure. We could choose to penalize large

torques by adding a corresponding term to the cost function.

Adaptive Nodes

Currently, we choose the number of nodes based upon our experience. This is less

than ideal, as we may end up with too few or too many nodes. If we have too few

nodes, then we run the risk of not being able to find a suitable controller. If we

choose too many nodes, our optimization routine will be unnecessarily expensive.

A possible improvement is to add or remove nodes in some adaptive fashion. For

example, if a node does not properly represent a region surrounding a trajectory,

we could split it. If nodes are not being used, we can prune them. These are typical

operations in semi-parametric fitting methods [6].

Dynamically Driven Motion Capture

In Chapter 2 we reviewed techniques that attempt to derive controllers from motion

capture data. Our strategy takes a significant step towards solving this difficult

problem because of our use of kinematic motion trajectories during controller opti-

mization.

56

Appendix A

Model Parameters

link name mass (kg) inertia length (m) COM(x) COM(y)

1 torso 40 0.1333 0.2 0.00 0.0

2, 5 thigh 7 0.1234 .46 -0.23 0.0

3, 6 shin 4 0.0645 .44 -0.22 0.00

4, 7 foot 2 0.00807 .22 0.057 0.00

Table A.1: Link Parameters for the 7-Link Human

Joint ks kd αmin αmax

hip 900 90 -57 180

knee 900 90 -180 0

ankle 170 17 -115 -57

Table A.2: Joint Parameters for the 7-Link Human

57

link name mass (kg) inertia length (m) COM(x) COM(y)

1 torso 25 0.1875 0.3 0.05 0.05

2, 5 thigh 7 0.0233 .2 -0.1 0.0

3, 6 shin 4 0.0133 .2 -0.1 0.00

4, 7 foot 2 0.00666 .2 0.02 0.00

Table A.3: Link Parameters for the mechbot Model

Joint ks kd αmin αmax

hip 800 80 -115 180

knee 800 80 0 180

ankle 190 19 -180 -57

Table A.4: Joint Parameters for the Mechbot Model

link name mass (kg) inertia length (m) COM(x) COM(y)

1 pelvis 9.8 0.0817 0.1 0.00 0.0

2 lower torso 9.8 0.0395 0.22 0.0 .19

3 upper torso 15.4 0.0289 0.15 0.0 .075

4 head 5.6 .0226 0.22 0 .13

5, 8 upper arm 1.96 .0128 .28 0 -.1

6, 9 lower arm 1.12 .00732 .28 0 -.1

7, 10 hand .42 .00079 .15 0 -.04

11, 14 thigh 7 .0933 .4 0 -.15

12, 15 shin 3.255 .0678 .5 0 -.2

13, 16 foot 1.015 .00409 .22 0 -.05

Table A.5: Link Parameters for the 16-Link Human

Joint ks kd αmin αmax

neck 100 10 -.785 .785

upper-to-lower back 500 50 -.785 .785

lower back -to- pelvis 500 50 -.785 .785

shoulder 100 10 -3.1 3.1

elbow 50 5 0 3.1

wrist 50 5 -.785 .785

hip 300 30 -57 180

knee 300 30 -180 0

ankle 170 17 -115 -57

Table A.6: Joint Parameters for the 7-Link Human

58

Bibliography

[1] Y. Abe, C. K. Liu, and Z. Popovic, Momentum-based parameterization of dy-

namic character motion, ACM SIGGRAPH / Eurographics Symposium on

Computer Animation, 2004.

[2] K. Alton, Master’s thesis, University of British Columbia, in preparation.

[3] R. Amit and M. Mataric, Learning movement sequences from demonstration,

Proceedings of the IEEE International Conference on Development and Learn-

ing, June 2002, pp. 203–208.

[4] Okan Arikan and D. A. Forsyth, Interactive motion generation from examples,

Proceedings of the 29th annual conference on Computer graphics and interac-

tive techniques, ACM Press, 2002, pp. 483–490.

[5] Joel Auslander, Alex Fukunaga, Hadi Partovi, Jon Christensen, Lloyd Hsu, Pe-

ter Reiss, Andrew Shuman, Joe Marks, and J. Thomas Ngo, Further experience

with controller-based automatic motion synthesis for articulated figures, ACM

Transactions on Graphics 14 (1995), no. 4, 311–336.

[6] C. M. Bishop, Neural networks for pattern recognition, Clarendon Press, 1995.

[7] M. Brand and A. Hertzmann, Style machines, Proceedings of ACM SIG-

GRAPH, 2000, pp. 183–192.

[8] C.-M. Chew, J. Pratt, and G. Pratt, Blind walking f a planar bipedal robot on

sloped terrain, Proceedings of the International Conference on Robotics and

Automation, May 1999.

59

[9] A. Dasgupta and Y. Nakamura, Making feasible walking motion of humanoid

robots from human motion capture data, Robotics and Automation, vol. 2, 1999,

pp. 1044–1049.

[10] Boston Dynamics, www.bdi.com, 2004.

[11] A. C. Fang and N. S. Pollard, Efficient synthesis of physically valid human

motion, Proceedings of ACM SIGGRAPH, vol. 22, 7 2003, pp. 417–426.

[12] M. Gleicher, Retargeting motion to new characters, Proceedings of ACM SIG-

GRAPH, July 1998, pp. 33–42.

[13] A. Goswami, Foot rotation indicator (fri) point: A new gait planning tool to

evaluate postural stability of biped robots, IEEE International Conference on

Robotics and Automation, 1999, pp. 47–52.

[14] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenake, The development of honda

humanoid robot, IEEE International Conference on Robotics and Automation,

1998, pp. 1321–1326.

[15] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie,

Planning walking patterns for a biped robot, IEEE Transactions on Robotics

and Automation 17 (2001), no. 3, 280–289.

[16] L. Kaelbling, L. Littman, and A. Moore, Reinforcement learning: a survey,

Artificial Intelligence Research 24 (1996), 237–285.

[17] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and

H. Hirukawa, Biped walking pattern generation by using preview control of zero-

moment point, Proceedings of the IEEE International Conference on Robotics

and Automation, September 2003, pp. 1620–1626.

[18] H. Ko and N. Badler, Animating human locomotion in real-time using inverse

dynamics, balance and comfort control, IEEE Computer Graphics and Appli-

cations, vol. 16, March 1996, pp. 50–59.

60

[19] L. Kovar and M. Gleicher, Flexible automatic motion blending with registra-

tion curves, Proceedings of Symposium on Computer Animation, July 2003,

pp. 214–224.

[20] L. Kovar, M. Gleicher, and F. Pighin, Motion graphs, Proceedings of ACM

SIGGRAPH, 2002.

[21] J. F. Laszlo, M. van de Panne, and E. Fiume, Limit cycle control and its

application to the animation of balancing and walking, Proceedings of ACM

SIGGRAPH, August 1996, pp. 155–162.

[22] C. Liu and Z. Popovic, Synthesis of complex dynamic character motion from

simple animations, Proceedings of ACM SIGGRAPH, July 2002, pp. 408–416.

[23] J. Morimoto and K. Doya, Acquisition of stand-up behavior by a real robot using

hierarchical reinforcement learning, 17th International Conference on Machine

Learning, vol. 1, 2000, pp. 623–630.

[24] J. Morimoto, G. Zeglin, and C. G. Atkeson, Minimax differential dynamic pro-

gramming: Application to a biped walking robot, IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, 2003.

[25] Y. Nakamura, M. Sato, and S. Ishii, Reinforcement learning for biped locomo-

tion, International Conference on Artificial Neural Networks, 2002, pp. 777–782.

[26] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and M. Kawato,

Learning from demonstration and adaptation of biped locomotion with dynam-

ical movement primitives, Workshop on Robot Learning by Demonstration,

IEEE International Conference on Intelligent Robots and Systems, 2003.

[27] A. Nakazawa, S. Nakaoka, K. Ikeuchi, and K. Yokoi, Imitating human dance

motions through motion structure analysis, IEEE/RSJ Intl. Conference on In-

telligent Robots and Systems, October 2002, pp. 2539–2544.

[28] S. I. Park, H. J. Shin, and S. Y. Shin, On-line locomotion generation based on

motion blending, SCA, 2002, pp. 105–111.

61

[29] A. Shapiro F. Pighin and P. Faloutsos, Hybrid control for interactive character

animation, Pacific Graphics, 2003, pp. 455–461.

[30] N. S. Pollard and F. Behmaram-Mosavat, Force-based motion editing for loco-

motion tasks, Proceedings of the IEEE International Conference on Robotics

and Automation, April 2000, pp. 663–669.

[31] Z. Popovic and A. Witkin, Physically based motion transformation, Proceedings

of ACM SIGGRAPH, August 1999, pp. 11–20.

[32] J. Pratt, Bipedal walking robots: Advancing the science through killer applica-

tions, replication and validation, standards and common platforms, and compe-

tition, Proceedings of the FIRA Robot World Congress, May 2002, pp. 111–114.

[33] J. Pratt, C.-M. Chew, A. Torres, P. Dilworth, and G. Pratt, An intuitive ap-

proach for bipedal locomotion, International Journal of Robotics Research 20

(2001), no. 2, 129–143.

[34] K. Pullen and C. Bergler, Motion capture assisted animation: Texturing and

synthesis, Proceedings of ACM SIGGRAPH, 2002, pp. 501–508.

[35] M.T. Rosenstein and A.G. Barto, Robot weightlifting by direct policy search,

Proceedings of IJCAI 2001, pp. 839–844.

[36] A. Safanova, J. K. Hodgins, and N. S. Pollard, Synthesizing physically realistic

human motion in low-dimensional, behaviour-specific spaces, Proceedings of

ACM SIGGRAPH, 2004.

[37] S. Schaal, Learning from demonstration, Advances in Neural Information Pro-

cessing Systems 9 (M. Jordan M. C. Mozer and T. Petsche, eds.), 1997,

pp. 1040–1046.

[38] C.-L. Shih, Y. Z. Li, S. Churng, T. T. Lee, and W. A. Gruver, Trajectory

synthesis and physical admissibility for a biped robot during the single-support

phase, IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 1990, pp. 1646–1652.

62

[39] R. Smith, Intelligent motion control with an artificial cerebellum, Ph.D. thesis,

University of Auckland, New Zealand, 1998.

[40] J. C. Spall, Introduction to stochastic search and optimization: Estimation,

simulation, and control, John Wiley and Sons, Hoboken, New Jersey, 2003.

[41] T. Sugihara, Y. Nakamura, and H. Inoue, Realtime humanoid motion generation

through zmp manipulation based on inverted pendulum control, Proceedings of

the IEEE International Conference on Robotics and Automation, May 2002,

pp. 1404 – 1409.

[42] S. Tak, O-Y Song, and H-S Ko, Motion balance filter, Proceedings of Euro-

graphics, vol. 19, 2000, pp. 437–446.

[43] R. Tedrake, T. W. Zhang, and H. S. Seung, Stochastic policy gradient rein-

forcement learning on a simple 3d biped, IEEE International Conference on

Intelligent Robots and Systems, 2004.

[44] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal on

Optimization 7 (1997), no. 1, 1–25.

[45] M. van de Panne, Sensor-actuator networks, Proceedings of ACM SIGGRAPH,

1993, pp. 335–342.

[46] , From footprints to animation, Computer Graphics Forum 16 (1997),

no. 5.

[47] M. van de Panne, R. Kim, and E. Fiume, Virtual wind-up toys for animation,

Graphics Interface, 1994, pp. 208–215.

[48] M. Vukobratovic and D. Juricic, Contribution to the synthesis of biped gait,

IEEE Transactions on Biomedical Engineering, vol. 16, 1969, pp. 1–6.

[49] A. Witkin and M. Kass, Spacetime constraints, Proceedings of SIGGRAPH,

vol. 22, August 1988, pp. 159–168.

63

[50] R. Zhang and P. Vadakkepat, An evolutionary algorithm for trajectory based

gait generation of biped robot, Proceedings of the International Conference on

Computational Intelligence, Robotics and Autonomous Systems, 2003.

[51] , Motion planning of biped robot climbing stairs, Proceedings of FIRA

Robot World Congress, 2003.

[52] V. B. Zordan and J. K. Hodgins, Tracking and modifying upper-body human

motion data with dynamic simulation, Eurographics, 1999, pp. 13–22.

[53] , Motion capture-driven simulations that hit and react, Proceedings of

the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation,

2002, pp. 89–96.

64

