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Abstract

Image-based representations for illumination are able to capture complex

real-world lighting that is difficult to represent in other forms. Current

importance sampling strategies for image-based illumination have difficulties

in the case where both the environment map and the surface BRDF contain

important high-frequency detail, for example, when a specular surface is

illuminated by an environment map containing small light sources.

We introduce the notion of bidirectional importance sampling, in which

samples are drawn from the product distribution of both the surface re-

flectance and the energy in the environment map. Although this makes

the sample selection process more expensive, we show significant quality

improvements over traditional importance sampling strategies for the same

compute time.



Contents iii

Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Environment Mapping . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Prefiltered Environment Mapping . . . . . . . . . . . . . . . . 5

2.3 Alternate Bases and Precomputed Transport . . . . . . . . . 6

2.4 Importance Sampling and Point Relaxation . . . . . . . . . . 7

2.5 Combined Importance Sampling . . . . . . . . . . . . . . . . 9

3 Monte Carlo Rendering . . . . . . . . . . . . . . . . . . . . . . 11

3.1 Environment Mapping . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Monte Carlo Estimators and Sampling . . . . . . . . . . . . . 15

3.2.1 Monte Carlo Integration . . . . . . . . . . . . . . . . . 15

3.2.2 Sampling a General Distribution . . . . . . . . . . . . 19

3.3 Sampling the Environment Map . . . . . . . . . . . . . . . . . 24



Contents iv

3.4 Improving Shadows: Area-weighted Lighting . . . . . . . . . . 27

3.5 Sampling from the BRDF . . . . . . . . . . . . . . . . . . . . 30

4 Sampling the Product Distribution . . . . . . . . . . . . . . . 35

4.1 Bidirectional Importance Sampling . . . . . . . . . . . . . . . 35

4.2 The Challenge of Bidirectional Sampling . . . . . . . . . . . . 42

4.3 Sample Generation Through Rejection . . . . . . . . . . . . . 43

4.4 Sample Generation Through Sampling-Importance Resampling 47

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A Details on the Alias Method for Sampling . . . . . . . . . . 70



List of Figures v

List of Figures

2.1 Environment mapping . . . . . . . . . . . . . . . . . . . . . . 4

3.1 The rendering equation illustrated . . . . . . . . . . . . . . . 13

3.2 The transformation method: sampling via an inverted CDF . 21

3.3 Motivation for the alias method . . . . . . . . . . . . . . . . . 23

3.4 The alias method . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Sampling a 2D intensity image . . . . . . . . . . . . . . . . . 27

3.6 A quantized intensity map . . . . . . . . . . . . . . . . . . . . 29

3.7 Two interpretations for the BRDF . . . . . . . . . . . . . . . 32

3.8 The Phong BRDF . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 Sampling from the cosine term/Phong BRDF product . . . . 34

4.1 Angular maps of the EM, BRDF and product distribution . . 40

4.2 Angular maps contrasting sampling methods . . . . . . . . . 41

4.3 Rejection sampling illustrated . . . . . . . . . . . . . . . . . . 43

4.4 Rejection sampling the product distribution . . . . . . . . . . 44

4.5 Our SIR method for sampling from the product distribution . 49

5.1 David in Grace Cathedral. Phong exp 10, ks = 1.0, kd = 0.0 . 53

5.2 David in Grace Cathedral. Phong exp 50, ks = 1.0, kd = 0.0 . 54

5.3 David in Grace Cathedral. Phong exp 50, ks = 0.5, kd = 0.5 . 55



List of Figures vi

5.4 David in St. Peters. Phong exp 50, ks = 0.5, kd = 0.5 . . . . 57

5.5 David in Grace Cathedral. Diffuse Phong (ks = 0.0, kd = 1.0) 58

5.6 David in Grace Cathedral, unzoomed . . . . . . . . . . . . . . 59

5.7 Comparison with Veach and Guibas(1) . . . . . . . . . . . . . 60

5.8 Comparison with Veach and Guibas(2) . . . . . . . . . . . . . 61

5.9 Comparison between SIR and converged image . . . . . . . . 62



Acknowledgements vii

Acknowledgements

Firstly, I’d like to thank everyone who has contributed ideas, discussion and

proof-reading to this work; in paticular, Wolfgang Heidrich, Abhijeet Ghosh,

Hendrik Kueck, Simon Clavet, Nando de Freitas, and James Slack.

I also want to thank my loved ones for putting up with me: my mother

Elizabeth, my father Wayne, my sister Rebecca, and my dear Amy.

Also, a big shout-out to Imager Small and everyone else who’ve kept me

sane via games of Quake 3, UT2004, Panel de Pon, Bomberman, Netris,

and general lab craziness. In no paticular order: Vlad “Vlady” Kraevoy,

Ben “Tron” Forsyth, Ritchie “spankbot” Argue, Hendrik “Space Cowboy”

Kueck, Eric “*nipple*” Brochu, James “evil” Slack, Fred “Cheerleader”

Kimberly, David “Toasty” Pritchard, Simon “Frog” Clavet, Kristian “zirkus-

direktor” Hildebrand, Ahbijeet Ghosh, Roger “Butt Slammer” Tam, Lisa

Streit, Matt Trentacoste, Lewis “Wurmangst” Johnson, and the ever-snipey

“Grumpy old man” (you know who you are).

Lastly, I’d like to thank der kommuners, past and present, for their

friendship and support: Eric Brochu, Eddy Boxerman, Hendrik Kueck,

David Pritchard, and Tyson Brochu.



Chapter 1. Introduction 1

Chapter 1

Introduction

Image-based representations for illumination, such as environment maps

(EMs) and light fields, have received considerable attention in recent years.

The primary reason for this attention is that images can capture complex

real-world illumination which is difficult to represent in other forms.

When integrating image-based lighting, such as environment maps, into

a rendering system, the employment of a good sampling strategy for illumi-

nation is an important issue. While several researchers have recently worked

on this problem, the basic approach that has been taken by most work is an

importance sampling strategy based on the energy distribution in the envi-

ronment map. Unfortunately, such an approach performs poorly for highly

specular surfaces, since samples chosen this way have a low probability of ly-

ing within the specular lobe. Similarly, if importance sampling is performed

based solely on the reflectance function (BRDF) of the surface, then the

sampling will not perform well for high-frequency environment maps.

This thesis introduces bidirectional importance sampling, a method that

samples visibility according to an importance derived from the product of

BRDF and environment map illumination. The challenge of this approach

is to develop an efficient means of drawing samples from this product distri-

bution. The task is complicated by the fact that the 2D BRDF slice varies

from point to point on the surface. Furthermore, the environment map is
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usually represented relative to a global coordinate frame, while the BRDF is

expressed in a local frame that changes with surface orientation. For these

reasons, precomputation approaches, such as those that employ a table of

the product distribution, are infeasible.

We present two solutions to this problem. The first is a combined re-

jection sampling and importance sampling scheme that initially generates

samples according to the product distribution with rejection sampling, and

then uses the resultant samples to estimate local illumination with stan-

dard importance sampling. The second approach uses a technique called

sampling-importance resampling. In this method, samples are generated

from either the lights or the BRDF and then resampled to distribute them

according to the product distribution.

While both methods increase the cost of sample generation, we demon-

strate significant quality improvements for the same compute time under

the assumption of BRDF representations that support efficient evaluation

and sampling. Our method creates samples on the fly and does not require

expensive precomputation.

The remainder of the thesis is structured in the following manner. In

Chapter 2 we review some of the relevant work in environment map ren-

dering. In Chapter 3 we give an introduction to sampling and Monte Carlo

rendering, before describing our approach in Chapter 4. Chapter 5 discusses

the results of our methods, and we conclude in Chapter 6.

Part of this work has appeared in a different form. Our rejection sam-

pling technique appeared as a Siggraph technical sketch, published with

Abhijeet Ghosh and Wolfgang Heidrich [4].
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Chapter 2

Related Work

All rendering systems, both global and local, must at some point compute

the direct illumination in the scene; that is, the amount of light arriving

at surfaces from primary light sources. Unfortunately, this task remains

expensive; as such, much research effort has focused on the development

of more efficient techniques for computing the direct lighting. Little work

deals directly with sampling from environment maps for global illumination

applications. Debevec [6] describes the use of high dynamic range envi-

ronment maps in global illumination in the context of Ward’s RADIANCE

package [47]; however, no specialized sampling strategies are employed to

reduce variance for this specific light representation.

This thesis focuses on direct lighting from environment maps. In this

chapter, we present an overview of previous work on computing direct il-

lumination from environment maps. After an introduction to environment

mapping in Section 2.1, we address the approach of environment map pre-

filtering in Section 2.2. Section 2.3 summarizes work in alternate bases and

precomputed light transport, and Section 2.4 discusses point set relaxation

techniques.
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2.1 Environment Mapping

Environment mapping was first proposed by Blinn and Newell [3]. Envi-

ronment mapping operates under the assumption of a distant environment:

when the distance between an object and its environment is large compared

to the object’s size, incoming illumination from the environment can be

considered directional. That is, the light sources in the environment can be

thought of as being located at infinity – for example, think of the daytime

sky lighting the surface of the earth. Under this assumption, the incoming

illumination at the object can be efficiently stored in a 2D image called an

environment map (EM). During rendering, the illumination can be indexed

by, for example, the spherical coordinates of the reflected ray, as illustrated

in Figure 2.1.

Figure 2.1: Environment mapping. Incoming light is assumed directional,

and can thus be sampled and stored in an image. Rendering involves computing

the amount of light reflected towards the viewer (direction ωr); this requires

considering light incoming from all directions (ωi’s).
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2.2 Prefiltered Environment Mapping

When computing shading for a non-mirrorlike object, it is generally neces-

sary to consider multiple EM light directions. To mitigate this, the notion of

prefiltering the environment maps was suggested, first by Greene [12]. The

idea is for each EM entry to represent not just the incoming radiance from

a single direction, but also the radiance from a larger region that has been

integrated against the BRDF lobe of the surface. With this approach, one

need only perform a single EM look-up to compute approximate shading for

the surface patch. In the case of Greene, the EM was prefiltered with the

surface’s diffuse reflectance. Heidrich and Seidel [15] extended the approach

to glossy BRDFs by prefiltering specular environment maps with radially

symmetric Phong lobes. Kautz and McCool [20] addressed other isotropic

BRDFs by developing a representation for more complex BRDFs that can

still be used to prefilter environment maps.

A drawback of these approaches is the precomputation required. This

drawback was partially reduced by the hierarchical prefiltering algorithm of

Kautz et al. [21] which significantly accelerates the preprocessing time. How-

ever, the situation remains difficult when the scene contains multiple BRDFs

or a surface with a spatially-varying BRDF. In these cases, the environment

must be prefiltered separately against each BRDF model, resulting in large

computational and storage costs. Also, efficient representations do not ex-

ist for many types of BRDFs, particularly anisotropic models or measured

BRDFs.

Regardless of whether or not the environment map has been prefiltered,

when rendering with a single EM lookup, one does not take visibility or

occlusion into account, either during preprocessing or rendering. Thus, one
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cannot produce images that contain such effects as shadows and multiple

scattering.

2.3 Alternate Bases and Precomputed Transport

In some recent work, the illumination and/or BRDF are projected into finite

bases, such as spherical harmonics (SH) and wavelets. These finite bases

support efficient compression, as only a small number of terms are necessary

for representing the source functions to a reasonable fidelity.

For example, Ramamoorthi and Hanrahan [33] express the lighting in

a spherical harmonics basis and then use only the first nine coefficients to

render diffuse objects. However, because ringing artifacts occur when high-

frequency lighting is expressed in the SH basis, they must heavily down-

sample and blur their environment maps before applying their technique.

This also implies their technique is unusable for high dynamic range envi-

ronments. They extend their work in [34] from Lambertian BRDFs to more

complex isotropic BRDFs.

Sloan et al. [39] introduces precomputed radiance transfer, where visibil-

ity and self-transfer effects are taken into account during an offline process.

The precomputed radiance is then expressed in spherical harmonics so that

it can be compressed and used for interactive rendering. Like Ramamoorthi,

their technique is limited to very low frequency lighting. Ng et al. [29] and

Liu et al. [27] factorize with wavelet representations which better preserve

frequency detail in the environment, albeit at resolutions that are consider-

ably lower than our technique can handle. Ng et al. [30] presents a formula-

tion for factorizing the rendering equation into separate terms, each of which

is expressed in a wavelet basis. Their rendering times are non-interactive.
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Conceptually, what these techniques do is essentially render the scene

from all viewpoints and then store a compressed version of these images for

access at render time. As such, all flavours of factorization and precomputed

transport require hours of preprocessing and huge amounts of storage, often

in the gigabytes. What is more, the preprocessing must be repeated every

time new geometry or material properties are introduced. Such massive

precomputation is prohibitive in most every setting, especially in anima-

tion when geometry is constantly changing. Our approach can handle high

resolution all-frequency lighting and requires virtually no precomputation.

Geometry, environment maps, and surface materials can be substituted on

the fly at essentially no cost. While our rendering times are longer, at per-

haps twenty seconds instead of two seconds, our algorithm comes with the

flexibility of requiring no precomputation.

2.4 Importance Sampling and Point Relaxation

A common approach for rendering from environment maps is a technique

called importance sampling, where the full illumination integral is approxi-

mated by considering only a small set of sample directions. These directions

are chosen according to their contribution to the reflected radiance. One

way to achieve this is to approximate the EM with a small number of point

lights representing bright regions in the environment. For example, Kollig

and Keller [23] propose a scheme that is based on relaxing a point set until

its distribution fits the energy distribution of the environment map. Relax-

ation schemes attempt to serve as a compromise between light intensity and

reasonable spatial coverage. Kollig’s algorithm is similar to earlier work by

Deussen et al. [8] on distributing stipples for digital halftoning. There is
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also LightGen [5], which seeks to reduce the diffuse illumination from high

dynamic range environments into a set of directional light sources using a

similar relaxation technique.

The problem with point relaxation methods is that they are not proven

to converge in 2D, and they are often time consuming for a sufficiently

large number of points. As a consequence, techniques that use relaxation

precompute only a single relaxed point set, and then use this set to shade

all points in the scene. Ostromoukhov et al. [31] presented a technique for

distributing 2D point samples which is much faster than relaxation-based

approaches, and also appears to produce a good spatial distribution for the

points.

Agarwal et al. [1] introduced a sampling method for environment maps

where the sampled importance takes into account both the energy in the

environment map and the solid angle separating the samples. This way, close

clustering of environment map samples is avoided, which reduces redundant

shadow tests. Like Argarwal et al., we have included the solid angle in the

importance term for the lights; see Section 3.4.

To distribute their samples, Agarwal et al. use a point relaxation algo-

rithm which is different from that of Kollig and Keller; however, a downside

of their approach is that the environment map has to be quantized to gen-

erate the distribution.

As an extension to their work, Agarwal et al. sort the samples for each

shading operation by the magnitude of their contribution to the final illu-

mination. They sample all point lights deterministically, in order of con-

tribution, until the contrast that the remaining lights can add falls below

some threshold. This use of the product of BRDF and environment map

value is a step towards our approach of drawing samples according to an
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importance that is the product of BRDF and light distribution. However,

because they precompute a point set via relaxation, they are limited to

choosing directions only from a set of precomputed samples, thereby in-

troducing quantization artifacts (aliasing and banding). Also, the sorting

introduces bias. In contrast, our methods are asymptotically unbiased, and

can create samples efficiently on the fly, so that different sampling patterns

can be used throughout the scene.

Secord et al. [36] describes a fast algorithm for distributing stipples ac-

cording to image intensities based on pre-integrating and inverting the prob-

ability density function (PDF) derived from image intensities. This same ap-

proach applies to drawing samples efficiently from environment maps, which

are themselves images. We use a variant of this method in our current work;

see Section 3.3 for details.

2.5 Combined Importance Sampling

Also similar in spirit to our approach is the work by Veach and Guibas [44] in

which they combine sampling from the light sources and sampling from the

BRDF to reduce the variance of the results. Prior to rendering, a decision is

made as to how many samples to draw from each distribution. The general

strategy is to draw more samples from the distribution with higher variance.

Unfortunately, employing combined sampling results only in a blend between

the variances of the individual distributions (see Section 4.1). Our method

goes further than their work to reduce variance in that we sample directly

from the product distribution, rather than just mixing samples taken from

the individual distributions.

The work of Szecsi et al. [42] selects sample weights with correlated
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sampling, a technique that seeks to separate Monte-Carlo estimators into low

and high variance components and combine samples from the components to

reduce the overall variance. Unfortunately, their results are not convincing.

Furthermore, as with Veach and Guibas, decisions must still be made a

priori as to how samples are combined. Our approach is mathematically

straightforward and allows for direct sampling of the product distribution

without any arbitrary guesswork.
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Chapter 3

Monte Carlo Rendering

The general goal of global illumination is the computation of all light in-

teractions in a scene to generate realistic images. Many global illumina-

tion algorithms, such as radiosity [11], irradiance gradients [47], and photon

mapping [16] consist of two phases: first distributing radiance from the light

sources onto surfaces, and then gathering the local radiances to construct

an image for a specific viewpoint. A thorough distribution step will permit

for a fast gather step, one which can produce quality images in a handful

seconds. To date, computing the direct illumination remains the expensive

aspect of global illumination; as such, much research effort has focused on

coming up with efficient techniques for direct lighting.

The work described in this thesis is an approach for tackling the direct

illumination problem in the case where both the light sources and the mate-

rials are complex – that is, of arbitrarily high frequency. This chapter builds

a foundation for the presentation of our methods. Section 3.1 introduces the

mathematics of direct illumination rendering from an environment map. In

Section 3.4 extends the method for light sampling to include area considera-

tions. Section 3.2 presents some basic notions of sampling and Monte Carlo

integration. From these, we construct methods in Sections 3.3 and 3.5 for

drawing samples according to the environment map and BRDF.
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3.1 Environment Mapping

While following the discussion in this section, refer to Figure 3.1 for a dia-

gram of the geometry involved. The convention is to denote directions with

ω. The subscripts i and r denote quantities that are incoming and reflected

(outgoing), respectively; for example, ωi and ωr.

The integral for direct illumination is given by the following expression:

Lr(x, ωr) =

∫

Ω
fr(x, ωi → ωr)Li(ωi)(n(x) · ωi)V (ωi)dωi. (3.1)

Equation 3.1 describes the amount of radiance (light) being reflected at a

surface point x towards some outgoing direction ωr. This reflected radiance

is computed by integrating the incoming radiance Li(ωi) over the hemi-

sphere centered at x of incoming directions ωi. The reflectance properties

of the surface are described with the bidirectional reflectance distribution

function (BRDF), denoted fr(x, ωi → ωr). The BRDF is a function indi-

cating how much of the light incident to x along the direction ωi is reflected

away towards ωr. The n(x) · ωi term is known as the cosine term; it is an

area foreshortening term that scales the incoming radiance Li(ωi) based on

orientation of the surface normal n(x) with respect to the incoming light

direction ωi. V (ωi) is the visibility term, which in our case is binary; that is,

V (ωi) is 1 if the surface point x can see the light along ωi and 0 otherwise.

In this work, we express the incoming illumination Li with an environ-

ment map (EM), a discrete representation of the continuous hemisphere

of lights surrounding x. The environment map in our case is a latitude-

longitude map – that is, a 2D image that is projected onto the hemisphere.

Recall that environment mapping operates under the assumption of distant

illumination; that is, each pixel in the EM is treated as a point light source
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Figure 3.1: Shading for surface point x is computed by considering the light

from all incoming directions ωi of the hemisphere Ω. Each light L(ωi) is

weighted by the BRDF (circled in red), describing the probability that the

surface at x reflects that light towards the viewing direction ωr.

corresponding to the incoming light summed over a differential patch on

the hemisphere. An EM pixel can be uniquely indexed with a direction ωi

expressed in spherical coordinates.

Under illumination from an environment map, we can rewrite the direct

illumination integral as an explicit summation over the EM entries:

Lr(x, ωr) =
N
∑

j=1

fr(x, ωi(j) → ωr)Li(ωi(j))(n(x) · ωi(j))V (ωi(j))S(ωi(j)),

(3.2)

where the incoming light direction ωi is now a function of the EM pixel index

j. The additional weighting term S(j) represents the solid angle subtended

by the spherical patch corresponding to element j.

Computing the direct illumination integral involves the evaluation of the
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visibility term V (ωi). Determining whether or not the surface point x can

see the light at ωi typically involves a ray cast. A ray r with origin x and

direction ωi is intersected with the scene geometry. If no intersection occurs,

x can see the light Li(ωi), and so V (ωi) is set to 1. Otherwise, some part

of the scene is occluding x’s line of sight to the distant environment along

ωi. V (ωi) is thus set to 0, negating the light Li(ωi)’s contribution to the

reflected radiance.

Performing the ray-scene intersection test makes up the bulk of the work

during rendering. Even with the aid of hierarchical acceleration structures,

visibility queries dominate the rendering time. In our implementation, for

example, typical timings for ray intersection queries with scenes of modest

complexity – half a million triangles – are on the order of 4-5 microseconds

on our test machine. If one was to precisely evaluate the reflected radi-

ance as indicated in Equation 3.2 by summing over the entire EM, then

for sufficiently interesting environment map resolutions (1024x512 pixels),

one would have to wait for a couple of seconds to light a single pixel in the

output image. A small output image of size 128x128 would take 12 hours

to render; this is obviously far too slow.

Intuitively, one realizes that it is not necessary to sum over the entire

environment map when computing direct illumination, because there are

certain regions of the environment that contribute far less light than others.

As an example, think of a night scene lit by a full moon in a clear sky. A

vast majority of the light received by the scene will be coming only from the

small set of directions corresponding to the location of the moon in the sky.

In fact, for most real-world lighting conditions, the contrast ratio between

the lightest and darkest points in the environment is very high, typically

five to eight orders of magnitude [7].
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This leads us to the notion of Monte Carlo ray tracing. When rendering

from environment maps, one need only consider a small set of incoming light

directions. If these directions are carefully chosen in such a way that their

contributions make up a significant amount of the reflected radiance, then

one can expect to have computed a decent approximation to the illumination

integral.

The challenge is to decide how to distribute this small set of sample

rays effectively. Possible approaches are to distribute rays according to the

intensity of the lights, as suggested above, or according to the reflectance

of the surface. In practice, we do this randomly – hence the name Monte

Carlo. These topics are discussed in detail in Sections 3.3 and 3.5. First, we

require valid mathematics for approximating integrals; this is the subject of

the next section.

3.2 Monte Carlo Estimators and Sampling

We present here an overview of Monte Carlo (MC) integration and basic

sampling theory. Many introductory treatises of probability theory and

Monte Carlo methods exist in the literature. The reader is pointed to Kalos

and Whitlock [19] and Hammersley and Handscomb [14] for basic texts

on probability theory and Monte Carlo methods, including Monte Carlo

integration, rejection sampling and importance sampling. For introductions

to Monte Carlo methods in ray tracing and rendering, see [9, 17, 18, 37].

3.2.1 Monte Carlo Integration

The goal in rendering is to compute the reflected radiance for every surface

point visible to the viewer. In our case, this amounts to evaluating the direct
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illumination integral for every pixel in the resulting image. As described in

the previous section, this is too computationally intense to solve directly.

Instead, we employ Monte Carlo integration, a stochastic technique that

allows us to compute approximations for integrals such as the illumination

integral for which an exact evaluation is intractable.

Suppose we wish to evaluate the integral

I(f) =

∫

χ

f(x)p(x)dx, (3.3)

where the space χ is the domain of definition of the function. Of course,

I(f) need not necessarily be a continuous integral. As is the case molecular

dynamics, for example, I(f) could be a very large sum and χ the perhaps

uncountable set of possible configurations of the system. In any case, when χ

is high-dimensional, I(f) becomes infeasible to compute with deterministic

integration methods.

One can approximate such integrals or large sums I(f) with tractable

sums IN (f). Given a set of identically independently distributed samples

X = {x1, x2, . . . , xN} drawn from some density p(x) defined over the space

χ, the tractable sum

IN (f) =
1

N

N
∑

i=1

f(xi) (3.4)

converges asymptotically as N → ∞ to

I(f) =

∫

χ

f(x)p(x)dx.

Let us evaluate the expectation value of our estimator IN (f). The ex-

pectation of a function f(x) is defined by

〈f(x)〉 ≡

∫

f(x)p(x)dx. (3.5)
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for a continuous variable and

〈f(x)〉 ≡
∑

x

f(x)p(x)

for a discrete variable. Among the properties satisfied by expectation values

are the following:

〈aX〉 = a〈X〉; (3.6)

〈
∑

i

Xi〉 =
∑

i

〈Xi〉, (3.7)

where X is the random quantity and a is any constant.

We wish to evaluate the expectation of our estimator IN (f) from Equa-

tion 3.4:

〈IN (f)〉 = 〈
1

N

N
∑

i=1

f(xi)〉. (3.8)

Applying Equations 3.6 and 3.7 to the right side of Equation 3.8 yields

〈IN (f)〉 =
1

N

N
∑

i=1

〈f(xi)〉.

By the definition of expectation given in Equation 3.5, this can be rewrit-

ten as

〈IN (f)〉 =
1

N

N
∑

i=1

∫

f(x)p(x)dx;

=
1

N

N
∑

i=1

I(f);

= I(f).

The expectation of IN (f) is therefore I(f). IN (f) is an unbiased estimate

of I(f), and by the strong law of large numbers, will almost surely converge

to the target integral I(f) [2].
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The strength of Monte Carlo integration over deterministic integration

schemes is essentially that MC integration seeks to evaluate f(x) only in

those areas where probability is high – that is, where the contributions of

f(x) to the integral I(f) are most significant.

Let us now examine the variance of IN (f). The variance of a random

quantity X, written var(X), is the expected squared difference between a

realization of the variable and its expectation. That is,

var(X) ≡ 〈(X − 〈X〉)2〉;

= 〈X2〉 − 〈X〉2.

For independent random variables Xi, variance observes the following

properties:

var

(

∑

i

Xi

)

=
∑

i

var(Xi);

var(aX) = a2var(X).

With these relations in mind, we see that

var (IN (f)) = var

(

1

N

N
∑

i=1

f(xi)

)

;

=
1

N2

N
∑

i=1

var (f(xi));

=
1

N
var (f(x)) . (3.9)

In rendering, variance manifests itself as per-pixel noise in the output

image. Equation 3.9 shows that the variance in a Monte Carlo estimator

of an integral I(f) is inversely proportional to the sample size N . This

result tells us that we can reduce noise in the output image by increasing the

number of sample directions we use to approximate the illumination integral.
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However, the error in our estimate actually behaves similarly to the standard

deviation of the samples; that is, the square root of the variance. Thus is

demonstrated the fundamental problem with Monte Carlo integration: the

notion of diminishing returns. Because image quality depends on N 2, one

must quadruple N to halve the error.

3.2.2 Sampling a General Distribution

So far, we have not mentioned how to choose the density function p(x) for

distributing samples during Monte Carlo integration. Let us defer this dis-

cussion for a time, assuming for the moment that we know a good distribu-

tion p(x) to sample from. This section presents two methods for redistribut-

ing a uniformly distributed variate according to some arbitrary probability

density p(x).

Cumulative Distribution Functions and the Transformation

Method

A common technique for sampling from general PDFs is known as the trans-

formation method, which requires the notion of the cumulative distribution

function.

The cumulative distribution function (CDF) is an alternate way of com-

pletely describing the distribution of a real-valued random variable X ∼

p(x). For every real number x, the CDF is given by

C(x) = p(X ≤ x).

In other words, C(x) is the probability that the random variable X takes on

a value less than or equal to x.
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The CDF can be computed with

C(x) =

∫ x

x0

p(x)dx,

where x0 is the smallest value that the variable X may take on, generally

−∞. If x0 is finite, the random variable can always be translated so that

x0 = 0.

We can now use the transformation method to sample from p(x). Specif-

ically, we choose uniform deviates ui ∼ U(0,1) and transform them according

to xi = C−1(ui). Refer to Figure 3.2 for an illustration. Note that since

p(x) ≥ 0, C(x) is monotone increasing, and so C−1(x) exists everywhere.

Discrete Distributions

We now examine the case where X is a discrete random variable. Here, the

probability distribution p(x) describing X is represented by a table of values

p[i] = Pr[X = i], where i = 1, . . . , N runs through the set of all possible

values of X. Such a PDF representation can be created from any discretely

sampled function f [i] in O(n) time via the expression:

p[i] =
f [i]

∑N
i=1 f [i]

.

We can evaluate a discrete CDF C[i] according to

C[i] =

N
∑

i=1

p[i].

Now, to sample from p(x), we use the transformation method as before.

That is, choose u ∼ U(0,1) and find the table index i that satisfies C[i] ≤ u >

C[i + 1]. This requires a binary search through C[i], and so sampling this

way takes O(log N) time per generated sample. Practically speaking, one
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can often do fairly well to use i = buNc as a starting point for the search. A

O(1) sampling can be achieved by pre-inverting C, which takes O(N) time.

Depending on the scenario, this may not be worth the effort. For example,

if C is constantly changing, or if only a small number of samples will be

drawn, sampling directly from C in O(log N) time may well be faster than

pre-inverting C and sampling in O(1) time.

Figure 3.2: Sampling via CDF inversion. Left: a 1D PDF, P (x). Middle: the

corresponding CDF, C(x). Right: uniform samples transformed by C−1(x).

Note along the x-axis how samples have been redistributed according to P (x).

Image courtesy of [36].

Faster Sampling: the Alias Method

Another method for sampling from discrete distributions is the alias method,

which was proposed by Walker [46]. This ingeniously simple technique com-

putes samples in O(1) time, but with an initialization that is less costly than

the CDF inversion and pre-normalization of the transformation method.

Strangely, the alias method has been largely overlooked by the graphics

community, where the transformation method seems to be the standard

technique for sampling from discrete distributions. As such, this section
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presents the idea behind the method of aliases, and the variant of Vose [45]

that we use in this work.

Let x be a discrete random variable distributed over the set S = {0, 1, 2, 3}

with corresponding probabilities P = {0.1, 0.2, 0.4, 0.3} (see Figure 3.3, left).

We want to generate sample values for x according to the distribution P .

Marsaglia [28] introduced the following simple approach. Assuming we have

a uniform random number generator, one way to sample from P is to gen-

erate a uniform random integer i in [1, 10] and use it to index into the set

L = {0, 1, 1, 2, 2, 2, 2, 3, 3, 3} (see Figure 3.3, right). L has been chosen such

that the number of times each element of S appears in L is proportional

to the probability of that element occurring, as described by P . Note that

the size of L depends on the probabilities in P . If, for example, x was

distributed over {0, 1} with probabilities {1/2953, 1 − 1/2953}, this method

would require L to have 2954 elements. This simple example distribution

can obviously be sampled more efficiently; however, for arbitrarily complex

discrete distributions, the required size of L is bounded only by the precision

of the random number generator – generally several orders of magnitude.

Marsaglia’s approach was how arbitrary discrete distributions were sam-

pled prior to Walker’s method of aliases, which introduced storage costs that

are only linear in the input size while maintaining constant-time sampling.

We now describe the sampling approach behind the alias method. Let

S = {0, . . . , N − 1} be the domain of distribution of x, as before, with

corresponding probabilities P = {p0, . . . , pN−1}. The method operates on

two lists, prob and alias, to generate an integer x from S as follows: given a

real-valued uniform variate u ∼ [0, N), let j = buc. If (u − j) ≤ probj, then

choose x = j; otherwise, choose x = aliasj.

The particular technique we use to create the lists prob and alias is
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Figure 3.3: Marsaglia’s sampling method [28]. Left: the target distribution

P . Right: Sampling is achieved by redistributing a uniform random integer i

in [1, 10] according to L.

that of Vose [45]. Consider again the distribution S = {0, 1, 2, 3} ∼ P =

{0.1, 0.2, 0.4, 0.3}, as illustrated on the left side of Figure 3.4. Vose’s algo-

rithm can be visualized by drawing a horizontal line in the plot of P at

probability 1
N

. Elements of P that are over this line are “chopped off” and

their contributions redistributed to elements which have a smaller probabil-

ity, creating tables prob and alias. On the right side of Figure 3.4, the x-axis

corresponds to table indices. The heights of the shaded regions correspond

to the real-valued entries of prob, while the numbers in the lighter regions

correspond to the indices stored in alias. For those elements Pj that are

<= 1
N

, probj = NPj . For those elements that are > 1
N

., probj = 1 and j

appears in alias. Sampling amounts to picking a random index j and deter-

mining if it falls within probj. If so, return j, otherwise return the reference

aliasj to a value whose probability overflowed into bin j.
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Figure 3.4: Walker’s alias method [46]. Left: the target distribution P

and the cutoff line at 1

N
= 0.25. Right: Values with large probabilities have

references distributed to bins where probabilities are small.

Refer to Appendix A for a discussion and implementation of the alias

method, including Vose’s linear-time algorithm for initializing the lists alias

and probs.

3.3 Sampling the Environment Map

In situations where we need to draw samples according to the importance

of the environment map image, we employ an approach similar to Secord

et al. [36] for sampling from a 2D PDF. For an RGB image, our notion of

importance is the intensity of each pixel – that is, the sum of the intensities

of each color channel.

We begin with an overview of the method, followed by a detailed de-

scription.
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Overview of 2D Sampling

Preprocessing

Given an NxM RGB image, we perform the following precomputation:

1. For each pixel, compute an intensity I(x, y) = red(x, y)+green(x, y)+

blue(x, y)

2. For each of the y = [1, . . . ,M ] scanlines, create a PDF based on the

intensities of the pixels in that scanline. At the same time, com-

pute the average intensity of the pixels in that scanline: Iavg(y) =

1
N

∑N
i=1 I(i, y)

3. Finally, create a PDF from the distribution of M scanline averages

Iavg

Sampling

One can now generate samples according to the image intensities:

1. Generate ui ∼ U(0,1)2 .

2. Redistribute ui,y according to the PDF of scanline averages to select

a scanline xi,y.

3. Redistribute ui,x according to the PDF of the pixel intensities in scan-

line xi,y, to select pixel location xi,x.

2D Sampling in Detail

Our goal is to redistribute a set of uniform 2D samples U = {u1, . . . , un}

where ui ∼ U(0,1)2 according to a PDF p(x), generating a set X = {x1, . . . , xn}
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with xi ∼ p(x). Let xi,x and xi,y denote the x and y coordinate of sample

xi. To determine xi,y, we compute the cumulative density function

C(y) =

∫ y

0
m(t)dt, (3.10)

where m(y) is the marginal density function of p(x). In our case, we have a

2D image, and so m(y) can be thought of as the average intensity of scanline

y in the environment map. Note that M(y) is non-zero for those scanlines

containing non-zero intensity, and so using the transformation method we

obtain xi,y = C−1(ui,y).

Given xi,y, the uniform sample ui,x is now redistributed according to the

PDF of the respective scanline, pxi,y
(x). This can be accomplished via the

conditional probability distribution

c(x|xi,y) =
pxi,y

(x)

m(xi,y)
(3.11)

and the corresponding cumulative distribution

C(x|xi,y) =

∫ x

0
c(s|xi,y)ds (3.12)

As before, the x coordinate of the new point can be found through xi,x =

C−1(ui,x|xi,y)

Our 2D environment map is a discrete PDF, and so we use either the

transformation method or the alias method for sampling in O(1) time. The

precomputation of scanline PDFs and data structures have linear require-

ments in both space and time. The precomputation need only be done once

per environment map. Also, the preprocessing is fast, at only milliseconds

even for large images; it can thus performed on-the-fly as the image is loaded.

Importance sampling from the EM is now just a simple table lookup,

where the table indices are uniformly random points. Practically speaking,
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Figure 3.5: Sampling a 2D intensity image. Two 1D passes are performed:

a scanline is selected according to the distribution of scanline averages, and a

pixel is then sampled from within that scanline.

rather than transforming a uniform distribution, one can use points taken

from a low-discrepancy sequence such as the Halton sequence [36] or a blue-

noise distribution [31]. These choices will result in a sample set which is more

evenly distributed in space, with fewer clusters of close points. For further

information, the reader is referred to Keller’s thesis [22] for an excellent

presentation of quasi Monte Carlo methods and their use in rendering.

3.4 Improving Shadows: Area-weighted Lighting

In principle, there is always a practical lower-bound on the number of visi-

bility tests one can perform per pixel and still achieve a low-variance image.

For example, consider a high-frequency environment map that is dark ev-

erywhere except for N small, bright area light sources. For a surface patch
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which can see all N lights, the best thing to do would be to draw a single

sample from each of the light sources. If ever we render with less than N

samples, there will always be some amount of variance in the resulting im-

age, because visibility will not have been tested for each light. This noise

is particularly noticeable in penumbra regions (soft shadow boundaries), as

each pixel is seeing a different random sampling of the lights. In practice,

this is often acceptable; as will be shown in Chapter 5, our approaches for

sampling from the product distribution still give us nice images even for

an extremely small number of samples. Sampling purely from the EM or

BRDF takes many more samples (hundreds), and thus implicitly generates

shadow boundaries which are generally good.

Up to this point, sampling from the environment map has meant select-

ing directions (pixels) based solely on pixel intensity – that is, based on light

brightness. In practice, however, it is desirable to distribute light samples

with a good spatial distribution as well as by intensity.

The motivation for including an area factor is to address the oversam-

pling of small, bright light sources. Once a small light source has been

sampled from, there is little additional gain in drawing another sample from

this light, because it is behaving essentially as a point source. By drawing

a single sample from it, we already have an idea of the intensity and color

of the light coming from this source. Furthermore, our shadow quality will

not improve or smoothen, because the spatial extent of the light is small,

and the visibility function is not likely to vary across the light.

As an example, consider an environment map containing several small

light sources with equal area, with one light being significantly brighter than

the others. If directions are chosen based solely on EM pixel intensity, the

majority of the samples will come from the bright light. However, because
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this light source is small, only one or two samples from this light would be

enough. We’re better off casting a few samples to some of the dimmer lights

in order to smooth out shadow boundaries.

To this end, we take the approach of Agarwal et al. [1] and modulate

the light intensity by an area term based on the solid angle of the light.

The basic idea is to first identify the light sources in the environment map.

Then, the importance of all pixels making up a light source are scaled based

on the area of that light. In effect, we want to penalize small light sources

more than large ones, so that small sources are not oversampled.

Figure 3.6: The Grace Cathedral environment after quantization based on the

logarithm of pixel intensity. Observe how area light sources in the environment,

such as the altar and windows, have been localized.

Our light classification scheme proceeds in the following manner. We first

compute the histogram of the image and quantize it into N intensity levels.

The binning is performed on the logarithm of pixel intensity. Because we’re

interested in high-frequency HDR environment maps, where the contrast
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ratio is 5-7 orders of magnitude, the majority of EM pixels are low intensity.

So, this classification is performed logarithmically rather than linearly.

Next, connected components are found in the quantized image by run-

ning a breadth-first search. The area (solid angle) of each connected com-

ponent is found by summing the areas (solid angles) of each pixel making

up the light source. Importances Li of the pixels, originally taken just from

intensity, are now scaled by this solid angle area. The new importance is

given by L ∝ L∆ω. Specifically, we employ the conclusions of Agarwal et

al. [1] and select L = L (min(0.01,∆ω))b, where b is in the range [0.1, 0.2],

depending on the average size of the light sources in the environment map.

The time complexity of the area-weighting algorithm is linear in the size

of the EM, and is sufficiently fast so that it can be performed in negligible

time during loading.

In practice, the bright areas in measured environments are often reason-

ably well distributed across the sky, and so this factor does not significantly

affect the quality of the sample distribution. Nevertheless, the results pre-

sented in Chapter 5 were generated using this augmented light importance.

3.5 Sampling from the BRDF

Another method for choosing sample directions for visibility testing is to

distribute rays according to surface reflectances (BRDFs). This is partic-

ularly helpful in scenes that have, for example, rather uniform light dis-

tributions (think outdoor scenes). Sampling based on lighting intensity in

such a scene does not significantly localize important directions. However,

sampling from glossy or shiny materials in the scene will do well because of

their non-uniform reflection properties. Examples of such surfaces include
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metals, plastics, anything with a finish or polish, or surfaces such as asphalt

or water when viewed at grazing angles.

Recall that the BRDF fr(x, ωi → ωr) states what fraction of the power

arriving at a surface point x from an incoming direction ωi will be reflected

along an outgoing direction ωr (see Figure 3.7). We assume that the BRDF

is energy preserving; that is,
∫

Ω
P (ωr|ωi, x)dωr =

∫

Ω
fr(x, ωi → ωr)dωr = 1. (3.13)

In other words, we assume that the BRDF reflects all energy incident upon

it, and that no energy is generated or absorbed. While not strictly necessary

for computing single-bounce direct illumination, this restriction allows for

an alternative interpretation of the BRDF: the BRDF fr can be thought of

as a probability density that describes the probability that an incoming ray

of light will be randomly scattered towards a particular outgoing direction.

Under this view, each incoming ray maps to a single outgoing ray with equal

intensity, but directed along directions sampled according to the magnitude

of the BRDF. Furthermore, the BRDF is reciprocal, and so incoming and

outgoing directions can be exchanged. Hence, another interpretation is to

view the BRDF as a function which describes which incoming light directions

ωi will contribute to the light reflecting along ωr.

There has been much previous work in efficient sampling from BRDFs

(for example, [24, 25, 40] ). There are several analytical representations

for the BRDF that support sampling directly. In particular, we use the

energy-preserving (normalized) form [26] of the Phong model [32]:

fr(x, ωi → ωr) =
ks

2π
(n + 1) cosn θ +

kd

π
. (3.14)

θ is the angle between the view direction ωr and the reflected light ray

R, where R is the incoming light direction ωi reflected across the surface
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Figure 3.7: Two interpretations for the BRDF. The BRDF describes: (a) the

distribution of scattering directions ωr for light which is incoming along ωi; or,

(b) the distribution of incoming light directions ωi that send light towards ωr.

normal n(x). See Figure 3.8 for an illustration. ks(n + 1) cosn θ is called

the specular term; it describes the width of shiny highlights observed in the

material. ks and kd are referred to as the specular and diffuse coefficients,

respectively. When ks = 0; kd = 1, the BRDF reduces to a constant, and

the surface is said to be diffuse, meaning that light is reflected uniformly in

all directions. When ks = 1; kd = 0, incoming light is reflected according to

the cosine lobe. As such, some reflected directions are preferred over others,

and so the reflected radiance is non-uniform over the surface, resulting in a

glint or highlight. As the specular exponent n is increased, the highlights

become taller (brighter) and more concentrated. In order that the BRDF

preserves energy, its terms are normalized by 1
2π

and 1
π
, and the coefficients

constrained to ks + kd = 1.

One can sample the Phong PDF by sampling from the PDF

p(θ, φ) =
n + 1

2π
cosn θ. (3.15)
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Figure 3.8: The Phong BRDF. (a) The amount of light a viewer sees depends

on the angle θ with respect to the reflected light direction R. (b) The diffuse

and specular lobes. The specular lobe shape depends on the exponent n.

The pair (θ, φ) is a direction expressed in spherical coordinates; θ is the

polar angle constrained to the upper hemisphere (θ ∈ [0, π/2]), and φ is

the azimuthal angle (φ ∈ [0, 2π]). We can sample from Equation 3.15 by

transforming a pair of uniform variates (u1, u2) according to

(θ, φ) = (arccos((1 − u1)
1

n+1 ), 2πu2). (3.16)

Note that our sample directions (θ, φ) are distributed about the polar axis.

However, the specular term in the BRDF is parameterized about the reflec-

tion direction. So, the final step in sampling is to transform our directions

from the global polar axis to the local frame of the BRDF.

It is common practice to incorporate the cosine term from the illumina-

tion integral (Equation 3.1) into the BRDF, yielding

f ′

r(x, ωi → ωr) =

[

ks

2π
(n + 1) cosn θ +

kd

π

]

n(x) · ωi. (3.17)

Recall that the cosine term n(x) · ωi serves to scale incoming light based on

the orientation of the surface with respect to the incoming light direction.
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Observe that the Phong lobe is parameterized about the reflection di-

rection, whereas the cosine term is parameterized about the surface normal.

This difference in parameterization makes sampling from the product of the

BRDF and cosine term more challenging. In fact, to date, there is no an-

alytical method for directly sampling from Equation 3.17 [38]. Instead, we

sample according to f ′

r by combing samples drawn exclusively from either

the specular term or the diffuse term. The ratio of samples drawn from each

term depends on the values ks and kd; in other words, N BRDF samples

will be drawn as ksN specular samples and kdN diffuse samples. Deciding

which term to sample from is made randomly in order to remain unbiased.

Figure 3.9: Sampling from the product of the Phong BRDF and the area term

involves combing samples drawn individually from the diffuse and specular

terms. In this case, ks = kd = 0.5, resulting in (approximately) an equal

number of samples being drawn from each term.
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Chapter 4

Sampling the Product

Distribution

The main contribution of this thesis addresses the problem of direct illu-

mination from environment maps. We propose a bidirectional sampling

approach in which both the energy distribution in the environment map

and the reflectance of the BRDF are taken into account.

4.1 Bidirectional Importance Sampling

We operate on the assumption that creating samples from only the environ-

ment map or only the BRDF model is inexpensive, and that the visibility

test dominates the cost. This assumption holds for scenes with complex

geometry and for BRDF models optimized for sampling. In the case of pro-

cedural shaders, for example, importance sampling is always difficult, but we

can still operate if the shader provides information to support efficient im-

portance sampling as proposed by Slusallek et al. [40]. In any case, visibility

is typically evaluated by casting a ray through the scene and intersecting it

with geometry. A ray cast operation is orders of magnitude more expensive

than drawing samples in virtually every case.

Under these assumptions, one can benefit from extra time spent in at-
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taining a good sample distribution that takes both the BRDF and envi-

ronment map into account. Such a distribution selects only directions for

visibility testing that have significant contribution to the reflected radiance

of the surface under evaluation.

Consider again the direct illumination integral

Lr(ωr) =

∫

Ω
fr(ωi → ωr) cos θiLi(ωi)V (ωi)dωi, (4.1)

where Li is the illumination from the environment map, fr is the BRDF, and

V is the binary visibility term. Conventional approaches perform importance

sampling either from the intensity in the environment map according to the

probability density

qL(ωi) :=
Li(ωi)

∫

Ω Li(ωi)dωi

, (4.2)

or from the BRDF according to

qf (ωi) :=
fr(ωi → ωr) cos θi

∫

Ω fr(ωi → ωr) cos θidωi

. (4.3)

Notice that in Equation 4.3 the cosine term has been included in the PDF,

as discussed in Section 3.5.

Let us derive estimators for the reflected radiance Lr. When choosing

sample directions ωi,j ∼ qL(ωi), Equation 4.1 can be estimated with LN,L:

LN,L(ωr) =
1

N

N
∑

j=1

fr(ωi,j → ωr) cos θi,jLi(ωi,j)V (ωi,j)

qL(ωi,j)
;

=
1

N

N
∑

j=1

fr(ωi,j → ωr) cos θi,jLi(ωi,j)V (ωi,j)

Li(ωi)

∫

Ω
Li(ωi)dωi;

=

∫

Ω Li(ωi)dωi

N

N
∑

j=1

fr(ωi,j → ωr) cos θi,jV (ωi,j).
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When sampling according to the BRDF with ωi,j ∼ qf (ωi), the corre-

sponding estimator LN,f is

LN,f (ωr) =
1

N

N
∑

j=1

fr(ωi,j → ωr) cos θi,jLi(ωi,j)V (ωi,j)

qf(ωi,j)
;

=
1

N

N
∑

j=1

fr(ωi,j → ωr) cos θi,jLi(ωi,j)V (ωi,j)

fr(ωi,j → ωr) cos θi,j

∫

Ω
fr(ωi → ωr) cos θidωi;

=

∫

Ω fr(ωi → ωr) cos θi,jdωi

N

N
∑

j=1

Li(ωi,j)V (ωi,j).

Evaluating the variance of these estimators yields

ωi,j ∼ qL(ωi) → var(LN,L) =

∫

Li
2

N
var(fr(ωi → ωr) cos θiV (ωi));

ωi,j ∼ qf (ωi) → var(LN,f ) =

∫

fr(ωi → ωr) cos θi
2

N
var(Li(ωi)V (ωi)).

When proposing samples from the environment, variance in the result is

proportional to the variance in the BRDF. Similarly, when proposing from

the BRDF, variance is proportional to the lights. It follows that the greatest

reduction in image noise occurs when samples are drawn from the function

with greater variance. This is verified by intuition. If the BRDFs are dif-

fuse but the lighting spotty, then directions should be chosen according to

the importance of the lights. On the other hand, if light sources in the en-

vironment map are relatively broad but the surfaces glossy or shiny, then

proposing from the BRDF will be the better thing to do.

Either approach will produce significant noise if both the BRDF and the

illumination contain any high frequency information. The solution of Veach

and Guibas [44] was to linearly combine samples drawn exclusively from the

lights or BRDF. However, a mix of samples still suffers from dependence on
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the variances of the individual techniques, because the variance of a sum of

terms equates to the sum of the variances of each term.

Our approach is to reduce variance by sampling directly from the product

distribution,

p(ωi) :=
fr(ωi → ωr) cos θiLi(ωi)

∫

Ω fr(ωi → ωr) cos θiLi(ωi)dωi

. (4.4)

Observe that the normalization term in Equation 4.4 is the direct illu-

mination integral with the visibility term V (ωi) omitted. In other words,

this term is the exitant radiance in the absence of shadows. We refer to it

as Lns (”radiance, no shadows”):

Lns :=

∫

Ω
fr(ωi → ωr) cos θiLi(ωi)dωi. (4.5)

If we draw sample directions ωi,j ∼ p(ωi) according to the product dis-

tribution in Equation 4.4, we can estimate Equation 4.1 with LN,p, where

LN,p(ωr) =
1

N

N
∑

j=1

fr(ωi,j → ωr) cos θi,jLi(ωi,j)V (ωi,j)

p(ωi,j)
;

=
1

N

N
∑

j=1

Lns

fr(ωi,j → ωr) cos θi,jLi(ωi,j)V (ωi,j)

fr(ωi,j → ωr) cos θi,jLi(ωi,j)
;

LN,p(ωr) =
Lns

N

N
∑

j=1

V (ωi,j). (4.6)

We refer to LN,p as the bidirectional estimator for the direct illumination

integral. The evaluation of Equation 4.6 can be interpreted as taking the

unoccluded reflected radiance Lns and scaling it by the average result of N

visibility tests performed along directions that contribute most significantly

to the radiance.
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Evaluating the variance,

ωi,j ∼ p(ωi) → var(LN,p) =
L2

ns

N
var(V (ωi))

Observe that the variance of the bidirectional estimator for the reflected

radiance depends only on the variance in the visibility function. Variance

in the lighting and BRDF has been completely factored away by sampling

directly from the product distribution. The remaining question is how these

samples can be drawn.

Figure 4.1 contains angular plots of the probability densities correspond-

ing to the various proposal distributions. The top image of Figure 4.1 is an

image of the importance derived from environment map intensity. The cen-

ter image is a plot of the BRDF for a surface patch whose normal is pointing

at the horizon. The BRDF plotted here is a specular Phong BRDF with

exponent 50. The bottom image is the product of the EM and BRDF. It is

this product distribution that we’d like to sample from, because it directly

corresponds to the reflected radiance of the surface patch.

Figure 4.2 illustrates the benefit of sampling from the product distri-

bution, as opposed to sampling from the EM or the BRDF individually.

Sampling from the BRDF alone misses the bright lights in the environment

(top image), while samples drawn from the environment do not lie in the

BRDF (middle image). The bottom image, however, shows samples drawn

according to the product distribution using our SIR technique, as described

in Section 4.4.
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Figure 4.1: From top to bottom: angular plots of the importance function

of the Grace Cathedral EM, a specular Phong BRDF of exp 50, and their

product.
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Figure 4.2: Samples drawn solely from the BRDF (top) or the environment

(middle) vastly undersample the product distribution (bottom). The sample

set in the bottom image was generated with our SIR technique; see Section 4.4.
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4.2 The Challenge of Bidirectional Sampling

The challenge in realizing the idea of bidirectional importance sampling

is that the product of the BRDF and environment map is too high dimen-

sional to precompute. The BRDF is a 4D function that maps from incoming

directions to outgoing directions. The relevant 2D slice of the BRDF, corre-

sponding to a specific outgoing light direction ωr, varies from point to point

in the scene due to changes in the local surface orientation. The environment

map is two dimensional, and thus the BRDF-EM product has six dimen-

sions. Even with a coarse discretization of the BRDF, which might cause

high frequency features in the BRDF to be lost, precomputing the product

distribution and storing it in a table for sampling is obviously prohibitively

expensive.

Complicating matters further is the fact that the BRDF and environment

map are usually specified relative to different coordinate frames. Typical pa-

rameterizations for the BRDF are local, either about the surface normal or

the reflected light direction. The EM, on the other hand, is expressed in a

global frame. Thus, precomputing the product of the BRDF and the envi-

ronment for a single BRDF orientation is insufficient. One must either com-

pute a sample rotation or add another two dimensions to the precomputed

table, corresponding to a discrete sampling of possible surface orientations.

The high-dimensional nature of the problem makes it difficult to use pre-

computation for sample generation. We simply cannot afford to premultiply

the two functions together.

We suggest the following process for sampling from the product of the

lights and the BRDF. First, create samples according to either the environ-

ment map or the BRDF. Then, adjust the sample distribution such that the
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directions chosen for visibility testing will be proportional to the product

distribution.

We have developed two solutions that realize this approach, one based

on rejection sampling and the other on the sampling-importance resampling

(SIR) algorithm. Note that the complete algorithm is a two-stage approach.

That is, the local illumination integral is always estimated with importance

sampling, but individual subproblems are solved with either rejection sam-

pling or SIR.

Our two sampling methods are detailed in the following two sections.

4.3 Sample Generation Through Rejection

Figure 4.3: Rejection sampling. A sample xi ∼ q(x) is accepted as being a

valid sample of the target distribution p(x) if a uniform variate in [0, cq(x)]

falls under p(x).

Our first approach for sampling from the product distribution is through

rejection sampling. Rejection sampling is a technique which allows us to
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sample from a probability distribution known only up to a proportionality

constant. This allows us to sample according to distributions, where the

normalization constant is too expensive to compute explicitly (as is the case

with the product distribution from Equation 4.4). Also, rejection sampling

provides a simple procedure for sampling from arbitrary distributions that

do not have simple analytical forms for sampling.

Rejection sampling is illustrated in Figure 4.3. In order to create samples

ωi,j ∼ p(ωi), we can approximate p(ωi) with a PDF q(ωi), such that p(ωi) <

c ·q(ωi) for some constant c. We then generate random samples ωi,j ∼ q(ωi),

and accept them with a probability of p(ωi,j)/(c · q(ωi,j)).

Figure 4.4: Rejection sampling the product distribution. Both fmaxL and

Lmaxf bound the product distribution fL. However, fmaxL is a tighter fit

for this particular BRDF and EM. Thus, the acceptance rate is higher by

proposing samples from the lights and rejecting against the max of the BRDF.

In our case, one simple way of bounding p(ωi) from Equation 4.4 is to
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use the global maximum of the BRDF as a conservative estimate for its

contribution as illustrated in Figure 4.4. If Lmax and fmax refer to the

maximum values of both distributions, i.e.

Lmax := maxωi
qL(ωi), and

fmax := maxωi
qf (ωi),

then we can bound the target PDF p(ωi) as p(ωi) < fmax ·qL(ωi). Note that

qL is just the usual importance from the environment map alone, and so we

can sample from it in constant time using CDF pre-integration and inversion

or the alias method, as discussed in Section 3.2.2. In order to accept N

visibility samples, we will thus have to create M ≈ fmax · N environment

map samples ωi,j through importance sampling, and then accept each sample

individually with probability

fr(ωi,j) cos θi,j ·
∫

Ω Li(ωi)dωi

fmax · Lns

.

Both this formula and the final radiance estimate from Equation 4.6

require the normalization term Lns from Equation 4.5. We can estimate

this term using information that has already been computed during the

rejection sampling. Since we already evaluate both BRDF and environment

map for M directions ωi,j ∼ qL(ωi), we can estimate Lns as

Lns ≈

∫

Ω Li(ωi)dωi

M

M
∑

j=1

fr(ωi,j → ωo) cos θi,j. (4.7)

Another interpretation of this method is that we estimate the unoc-

cluded illumination Lns with M samples, using importance sampling from

the environment map. However, we only evaluate the visibility for N of
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those samples whose light contribution is significant enough to make visibil-

ity tests worthwhile. The directions for the visibility tests are chosen in an

unbiased fashion.

So far, we have bounded the actual target PDF as a constant times the

environment map PDF. This is appropriate if the BRDF contains mostly

low frequencies, i.e. if fmax is a close bound of the real BRDF. If this is

not the case, then most samples will be rejected and the rejection sampling

will become inefficient. Instead, we can perform the same rejection sam-

pling algorithm by approximating the environment map with a conservative

bound and then selecting samples according to the real BRDF. Under this

scheme, we now have p(ωi) < Lmax · qf (ωi), which amounts to generating

samples from the BRDF alone, and then rejecting according to the product

distribution as before.

Given these two ways of rejection sampling, we usually want to draw

the initial samples in such a way that the bounding constant is minimized.

That is, if fmax < Lmax we importance sample from the environment map;

otherwise, we importance sample from the BRDF. In practice, we randomly

choose which of the two methods to use, where the method with the smaller

bounding constant is chosen with a higher probability. This is similar in

spirit to the combination of sampling strategies proposed by Veach and

Guibas [44].

Our rejection sampling approach has worked well in the experiments that

we have performed (see Chapter 5). However, the inherent downside of using

rejection sampling is that one cannot guarantee bounds on the execution

time for creating a new sample. That is, if the area between c · q(ωi,j) and

p(ωi,j) is large, the probability of sample acceptance will be low. One way

of dealing with this is to choose a maximum number of sample attempts in



Chapter 4. Sampling the Product Distribution 47

the rejection sampling. So long as at least one sample is accepted, this will

still yield an asymptotically unbiased estimate of the reflected radiance.

If no samples are accepted, a possible strategy could be to test visibil-

ity for a random subset. Another possibility which is less expensive is to

use the unoccluded illumination, where visibility has not been tested at all.

While this introduces bias, it will only happen in very dark areas, where

the product of illumination and BRDF is very small. In these areas, the

visibility term will not have significant impact anyway. In practice, even in

the presence of high specular BRDFs and environments, the rejection sam-

pling acceptance probability has been sufficiently high so as to not require

resorting to these biased methods. See Chapter 5 for a complete discussion.

The next section presents our second method for sampling from the

product distribution, which does not suffer from the unbounded execution

time of the rejection sampling.

4.4 Sample Generation Through

Sampling-Importance Resampling

In this section, we describe our second technique for sampling from the

product distribution by motivating with a description of the importance

sampling algorithm.

Recall that the idea behind Monte Carlo integration is to approximate

the integral I(f) =
∫

f(x)dx by sampling from a target density p(x) and

computing an estimate to I(f),

〈IN (f)〉 =
1

N

N
∑

j=1

f(xj)

p(xj)
. (4.8)
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In our case, p(x) is the BRDF-EM product distribution of Equation 4.4.

The idea behind the importance sampling algorithm [35] is to sample

from p(x) by introducing an arbitrary proposal distribution q(x) that is eas-

ier to sample from than p(x) and whose support includes p(x). Equation 4.8

can be rewritten as

〈IN (f)〉 =
1

N

N
∑

j=1

f(xj)

w(xj)q(xj)
,

where w(xj) ∝
p(xj)
q(xj)

is a measure of the importance of sample xj. Conse-

quently, if one can draw samples according to q(x) and evaluate w(xj), a

possible Monte Carlo estimate of I(f) is

〈IN (f)〉 =
1

N

N
∑

j=1

f(xj)w(xj). (4.9)

This leads to the sampling-importance resampling (SIR) algorithm [10,

41, 43]. The goal of SIR is to introduce a resampling step to eliminate

samples with low importance ratios w(x). SIR proceeds in two stages. In

the first stage, a set of independent random samples X = {x1, . . . , xM} is

drawn from a proposal distribution q(x). In the second stage, a smaller set of

samples Y = {y1, . . . , yN} is drawn from X with sample probabilities w(xi)

proportional to their importance ratio p(xi)
q(xi)

. As the number of first-round

samples M approaches infinity, the sample set Y can be shown to have been

drawn directly from p. A requirement for the algorithm to be efficient is

that q(x) be a good approximation to p(x) in the region of visibility.

We can apply SIR as a solution to the problem of drawing samples from

the lighting-BRDF product distribution. It is desirable for q(x), the proposal

density for the first round of sampling, to be a reasonable approximation of
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p(x). Because p(x) in our case is the product distribution, natural choices for

q(x) are probability densities based on either the BRDF or the environment

map. In the second SIR stage, we resample the first-round draws according

to w(xi) ∝ p(xi)
q(xi)

. The basic intuition here is that directions are proposed

from a single distribution, then resampled (filtered) based on their value to

the second distribution.

Figure 4.5: Our resampling method. First, M samples are proposed from qf ,

the PDF of the BRDF. The candidate directions are then resampled based on

the incoming light along those directions, producing N samples for visibility

testing. N is generally much less than M .

This leads to our second method for approximating the illumination in-

tegral, which proceeds in two stages. In the first stage, M sample directions

ωi,j are drawn according to qL(ωi) or qf (ωi). We store the sample and as-

sociated weight w(ωi,j), chosen to be w(ωi,j) = fr(ωi,j) when ωi,j ∼ qL(ωi)
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and w(ωi,j) = Li(ωi,j) when ωi,j ∼ qf (ωi). The second stage then resamples

the stored sample directions according to the distribution of their weights

w(ωi). Visibility is tested along each of the N resampled directions.

The total number of samples generated for each pixel is exactly M + N .

This an improvement over rejection sampling for two reasons. Firstly, exe-

cution time is tightly bounded. We no longer have to wait an indeterminate

amount of time (possibly even indefinitely) for the acceptance criteria to

pass and accept a sample as being valid. Using the SIR algorithm, samples

can be drawn directly from the product distribution in constant time.

The second improvement over rejection sampling is that the sample sizes

M and N can be freely chosen, yielding fine control over the tradeoff between

quality and time. For example, the BRDF sample size can be adjusted based

on the expense of sampling from the BRDF model. Also, it is possible to

directly select N – the target number of visibility rays traced per pixel –

based on, for example, scene complexity. Because the cost of ray tracing

typically dominates rendering time, our general approach for generating

results has been to fix N and adjust M so as to increase or decrease the

variance in resampled directions. As discussed in the next chapter, typical

values of M we use are one to two orders of magnitude larger than N .

It is interesting to note that prior strategies for sampling, which draw

directly from the EM or BRDF alone, are just special cases of our SIR

technique where M = N = 1. For example, proposing samples only from

the lights can be achieved by SIR sampling with a single first-round sample

drawn from the EM, and then trivially resampled in the second round with

probability 1.0 because it is the only sample.
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Chapter 5

Results

This chapter presents the results of our techniques in comparison with pre-

vious sampling strategies for rendering from environment maps. While both

the rejection sampling and SIR methods increase the cost of sample genera-

tion, we demonstrate significant quality improvements for the same compute

time under the assumption of BRDF representations that support efficient

evaluation.

In all of our tests, the illumination comes from high dynamic range

(HDR) environment maps, where the contrast ratio between bright and dark

areas of the environment is high (several orders of magnitude). In principle,

our techniques would work equally well under low dynamic range (LDR)

lighting, where the ratio of bright to dark is at most 255 : 1. However, LDR

EMs are not of sufficiently high-frequency to be interesting. Furthermore,

the trend in rendering is to use HDR environments, which serve as a more

accurate representation of real lighting conditions.

The images in this chapter were generated with our ray tracer which uses

a voxel grid as the acceleration data structure for intersection queries. Our

comparisons examine the output quality of the various rendering algorithms

for a fixed amount of computation time. We performed these tests on a

single-processor 3.0GHz P4 running Linux.
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Figures 5.1, 5.2 and 5.3 contain images of Michaelangelo’s David in the

Grace Cathedral environment. We use here the 700k-triangle version of the

David model acquired from the Digital Michaelangelo Project [13]. In our

implementation, intersecting a ray with the David model takes on average

6.1 µs on our test machine. The Grace Cathedral environment is a 1024x512

HDR map with a contrast ratio of 107 : 1. In these tests, each algorithm

was given 12.0 seconds to render a 176x248 image. This image resolution

was chosen in order to be able to distinguish differences between the images

when presented in print form.

In these three figures, the images on the top row show previous sampling

strategies, while the images on the bottom row present our techniques. In

each case, the upper-left image was rendered with 100 samples drawn from

the environment map, while the upper-right image was rendered with 75

samples from the BRDF. The images on the bottom row were each rendered

with 15 visibility samples, chosen from 800 candidates; on the left is the SIR

approach, and on the right, rejection sampling.

Figure 5.1 shows the David rendered with a Phong BRDF model with

coefficients ks = 1.0, kd = 0.0 and a specular exponent of 10. The BRDF

in this case is a broad-lobed gloss. Observe that sampling from the EM

produces a nicer image than sampling from the BRDF. This is because Grace

is a highly specular environment map, and the BRDF here is glossy but still

broad; drawing samples according to the BRDF is less informative than

sampling according to the high-frequency lighting. The images generated

by our techniques, however, are much better than either simple sampling

strategy. Observe also that our methods are able to achieve this quality

with several times fewer ray casts – in this case only 15 as opposed to 75 or

100.
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Figure 5.1: David in Grace Cathedral. Phong exp 10, ks = 1.0, kd = 0.0.

176x248 image rendered in 12.0 seconds. Clockwise from top left: 100 EM

samples; 75 BRDF samples; 15/800 rejection samples; 15/800 SIR samples.
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Figure 5.2: David in Grace Cathedral. Phong exp 50, ks = 1.0, kd = 0.0.

176x248 image rendered in 12.0 seconds. Clockwise from top left: 100 EM

samples; 75 BRDF samples; 15/800 rejection samples; 15/800 SIR samples.
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Figure 5.3: David in Grace Cathedral. Phong exp 50, ks = 0.5, kd = 0.5.

176x248 image rendered in 12.0 seconds. Clockwise from top left: 100 EM

samples; 75 BRDF samples; 15/800 rejection samples; 15/800 SIR samples.
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In Figure 5.2, David’s BRDF is still a purely specular Phong (ks =

1.0, kd = 0.0), but here the Phong exponent has been increased to 50. Here,

the model’s surface is very shiny; accordingly, sampling purely from the

BRDF produces a better image than sampling from the environment map.

Again, however, our techniques go further. Both the lighting and the BRDF

in this scene are high-frequency, and yet our methods produce images that

are of much higher quality.

In Figure 5.3, David is again given a shiny Phong BRDF with exponent

50. This time, however, we add a diffuse term (ks = 0.5, kd = 0.5). Observe

how noisy the image produced by sampling purely from the BRDF has be-

come. BRDF sampling makes little sense in this case, because the presence

of a diffuse term sends samples in all directions, making the variance high.

Our methods still outperform the straightforward sampling strategies, be-

cause by sampling directly from the product distribution we disregard those

directions which the BRDF accepts but the EM does not.

Figure 5.4 shows David appearing with the same Phong BRDF as in

Figure 5.3, but under a different lighting scheme, the St. Peter’s Basilica

environment map. Like the Grace Cathedral environment, St. Peter’s is

a 1024x512 EM with a contrast ratio of 107 : 1. However, the content of

St. Peter’s is somewhat lower frequency than Grace, and as such sampling

solely from the EM does not perform as well for this scene as it did in Grace.

Consequent, our technique stands out even more.
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Figure 5.4: David in St. Peters. Phong exp 50, ks = 0.5, kd = 0.5. 176x248

image rendered in 12.0 seconds. Clockwise from top left: 100 EM samples; 75

BRDF samples; 15/800 rejection samples; 15/800 SIR samples.



Chapter 5. Results 58

How do our techniques do in situations where the BRDF is very low

frequency? The images in Figure 5.5 shows a purely diffuse David (Phong

coefficients ks = 1.0, kd = 0.1)) in Grace Cathedral. On the left is the image

resulting from 100 samples drawn purely EM samples. On the right is the

SIR technique with 25 samples (M = 800, N = 25). In this case, because

the BRDF is purely diffuse and thus smoothly varying, one might think

that sampling from the EM alone would be all that is necessary to render

a decent image. Nevertheless, our SIR technique produces a comparable

image with a quarter of the rays, indicating that sampling from the product

distribution is always desirable.

Figure 5.5: David in Grace Cathedral. Diffuse Phong (ks = 0.0, kd = 1.0).

176x248, 12.0 seconds. Left: 100 EM samples; Right: 25/800 SIR samples.
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Figure 5.6 contains unzoomed images of David in Grace Cathedral.

Figures 5.7 and 5.8 contain a comparison of our algorithm to that of

Veach and Guibas [44], in which samples drawn from the individual EM

and BRDF distributions are combined via a weighted sum to produce an

estimate of the reflected radiance. Our technique is able to achieve superior

image quality with far fewer rays. The results obtained from the combined

sampling approach are an improvement over straightforward sampling ap-

proaches; however, our method goes further to reduce variance than simply

blending between the variances in the individual distributions.

In summary, the results presented here clearly demonstrate that the

approach of sampling directly from the product distribution outperforms

previous sampling strategies. What is more, we are able to achieve compa-

rable quality with far fewer rays, meaning that our techniques are particu-

larly beneficial to renderings of complex scenes where ray-scene intersection

queries are expensive.

Figure 5.6: David in Grace Cathedral, viewed unzoomed. Phong exp 50,

ks = 0.5, kd = 0.5. 228x272 image rendered in 18.0 seconds. From left to

right: 110 EM samples; 13/900 SIR samples; 80 BRDF samples
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Figure 5.7: Comparison between Veach and Guibas [44] (left column, 100

samples) and our SIR technique (right column, 15/800 samples). 176x248 im-

age rendered in 12.0 seconds. Specular Phong (ks = 0.5, kd = 0.5), exponents

10 (top row) and 50 (bottom row).
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Figure 5.8: Comparison between Veach and Guibas [44] (left column, 100

samples) and our SIR technique (right column, 15/800 samples). 176x248

image rendered in 12.0 seconds. Phong BRDF, exp 50, ks = 1.0, kd = 0.0
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Figure 5.9: Our SIR algorithm compared to the full solution. 268x220 image

of the Dragon model (871k triangles) in Grace Cathedral. Top: converged

image (hours); Bottom: SIR algorithm using 150/3000 samples (90 sec)
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Chapter 6

Conclusions

We have presented two Monte Carlo strategies for sampling the incident

illumination from environment maps that take into account the product of

the light and the surface reflectance. By providing a means of sampling

from a more complex target distribution, our methods are able to achieve

lower variance in the renderings of scenes with high frequency lighting and

specular BRDFs, as compared to traditional importance sampling strategies.

Note that although our proposed bidirectional methods take longer to

generate samples than simpler approaches, the number of samples required

to achieve good quality is considerably less than when sampling according

to a simple function. For large datasets with complex structures, the time

required to trace shadow rays will dominate the rendering time. In such

cases, our methods will provide greater benefit over importance sampling

from the EM or BRDF alone.

On-going work for us is the examination of other sampling strategies

that exist in the literature, such as iterative SIR, Metropolis-Hastings, and

particle filtering [2]. The general idea behind these strategies is to use sam-

ples that have already been drawn as a basis for proposing further, fitter

samples. It would be interesting to explore how these methods of sampling

from more complicated distributions could be applied to other problems in

computer graphics.
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Appendix A

Details on the Alias Method

for Sampling

As mentioned in Section 3.2.2, we use the alias method of Vose [45] for sam-

pling from discrete random distributions. Surprisingly, Vose’s work appears

to have been overlooked by the graphics community, where the transforma-

tion method is the de facto standard for importance sampling. The alias

method offers a number of advantages over CDF inversion, the most notable

being a fast O(N)-time initialization algorithm.

In his paper, Vose’s description of the approach contains ambiguous pseu-

docode; we therefore present a class called DiscreteDistribution which

is similar to the class used in our implementation. DiscreteDistribution

contains two methods: a constructor for initialization, and a method for

drawing samples called sample(). The constructor operates on an input

array of non-negative values which are used as distribution weights:

DiscreteDistribution::DiscreteDistribution(double *probs,

unsigned num):

m_num( num ), m_probs( probs )

{

// Classify the normalized weights as being

// either large ( > 1/N ) or small ( <= 1/N ).

const double stdWeight = 1.0 / m_num;

Vector small, large;

for ( unsigned i = 0 ; i < m_num ; ++i )

if ( m_probs[i] > stdWeight )
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large.addObject( i );

else

small.addObject( i );

// Assign alias indices.

m_alias = new unsigned[m_num];

while ( !large.isEmpty() && !small.isEmpty() ) {

const unsigned sm = small.getAndRemoveLastObject();

const unsigned lg = large.getAndRemoveLastObject();

m_probs[lg] -= stdWeight - m_probs[sm];

m_probs[sm] *= static_cast<double>( m_num );

m_alias[sm] = lg;

if ( m_probs[lg] > stdWeight )

large.addObject( lg );

else

small.addObject( lg );

}

for ( unsigned i = 0 ; i < small.size() ; ++i )

m_probs[ small[i] ] = 1.0;

for ( unsigned i = 0 ; i < large.size() ; ++i )

m_probs[ large[i] ] = 1.0;

}

One can now draw samples from the distribution by calling the sample()

method, which returns an index in [0, N − 1].

unsigned CDiscreteDistribution::sample() const

{

// Generate a random number in [0, m_num).

const double u = uniform() * m_num;

const unsigned i = static_cast<unsigned>( u );

return ( u - i > m_probs[i] ) ? m_alias[i] : i;

}
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