
Motion Doodles

A Sketch-based Interface for Character Animation

by

Matthew E. Thorne

B.Math, The University of Waterloo, 2001

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

. .

. .

THE UNIVERSITY OF BRITISH COLUMBIA

September 30, 2003

c© Matthew E. Thorne, 2003

In presenting this thesis in partial fulfilment of the requirements for an ad-
vanced degree at the University of British Columbia, I agree that the Library
shall make it freely available for reference and study. I further agree that permis-
sion for extensive copying of this thesis for scholarly purposes may be granted
by the head of my department or by his or her representatives. It is understood
that copying or publication of this thesis for financial gain shall not be allowed
without my written permission.

(Signature)

Department of Computer Science

The University Of British Columbia
Vancouver, Canada

Date

Abstract ii

Abstract

This thesis presents a novel sketch-based interface for animating an articulated

human character quickly and with a limited amount of training. The character

is animated by sketching a sequence of simple arcs, loops and lines which are

interpreted as an appropriate sequence of steps, jump, flips and other motions.

The motion synthesis extracts key features from the sketch such as height, dis-

tance and timing information allowing a user to create a variety of styles of

motion. The details of the sketch interpretation process are discussed for both

a 2D and 3D version of the system.

Matthew Thorne.

mthorne@cs.ubc.ca

Contents iii

Contents

Abstract . ii

Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgements . viii

1 Introduction . 1
1.1 A Simple Example . 2
1.2 A Gesture Vocabulary for Animation 4

1.2.1 Quick to Learn . 4
1.2.2 Simplicity . 5
1.2.3 Content . 6

1.3 Organization . 8

2 Previous Work . 9
2.1 Sketch-based Modelling . 11
2.2 Performance Animation and Animation Sketching 11
2.3 Sketch and Gesture Recognition 12

3 System Overview . 14
3.1 System Organization . 14

3.1.1 Sketch Analysis . 16
3.1.2 Motion Controllers and Motion Parsing 16

3.2 The Animated Character . 17

4 2D Motion Sketching . 21
4.1 Motion Sketching Definitions . 21
4.2 Sketch Analysis . 22

4.2.1 Analysis Overview . 22
4.2.2 Rough Segmentation . 23
4.2.3 Corner Detection . 25
4.2.4 Tokenization . 28
4.2.5 Identification . 28

Contents iv

4.3 Motion Controllers . 32
4.3.1 Controller Recognition . 32
4.3.2 Motion Synthesis . 34

5 3D Motion Sketching . 39
5.1 2D Input to 3D Sketch . 40

5.1.1 Mapping from 2D to 3D 40
5.1.2 Resolving Ambiguities . 42

5.2 3D Motion Synthesis . 44
5.2.1 Foot Placement . 44
5.2.2 Direction Smoothing . 44

6 Results . 47
6.1 2D System . 47

6.1.1 Jumping and Variations 47
6.1.2 Front and Back Flips . 50
6.1.3 Walking and Variations 52
6.1.4 Moonwalking and Shuffling 54
6.1.5 Combined Motions . 55

6.2 3D System . 57
6.2.1 Jumping and Leaping . 57
6.2.2 Front and Back Flips . 58
6.2.3 Walking . 59
6.2.4 Combined Motions . 59

6.3 Discussion . 60

7 Conclusions . 62
7.1 Limitations . 62
7.2 Future Work . 63

References . 65

A Controller Details . 68
A.1 Jump, Leap, Hop . 68
A.2 Flipping . 70
A.3 Walking . 72
A.4 Moonwalking and Shuffling . 76
A.5 Sliding . 78

List of Tables v

List of Tables

2.1 Comparison of Previous Work . 10

4.1 Summary of information encoded in a token. 28
4.2 Controllers and their gesture sequences. 34
4.3 Sequential controller states for each motion primitive. 35

A.1 Jump Controller states. 70
A.2 Flip Controller states. 73
A.3 Walk Controller states. 76
A.4 Moonwalking and Shuffling Controller states. 78
A.5 Slide Controller states. 79

List of Figures vi

List of Figures

1.1 Example of a “Motion Doodle” in action 3
1.2 Examples of “Motion Lines” . 5
1.3 Literal vs. Semantic gesture content. 7

3.1 Motion Doodles System Architecture 15
3.2 Sample Characters . 18
3.3 The character hierarchy . 20

4.1 Sketch analysis phases . 23
4.2 Token Types . 24
4.3 Rough Segmentation . 24
4.4 Corner Detection . 25
4.5 Linear Token Classification . 29
4.6 Gesture Types . 30
4.7 System Parameters . 33
4.8 Jump controller state transition 36
4.9 Fitting two half parabolae to an arc gesture. 36

5.1 3D Example . 39
5.2 Sketch local minima projected to the ground plane. 41
5.3 Mapping a 2D sketch to 3D . 41
5.4 Gesture Ambiguities . 42
5.5 Direction Ambiguities . 43
5.6 Foot placement in 3D. 45
5.7 Foot placement during walking in 3D 46

6.1 The Jump . 48
6.2 The Leap . 48
6.3 The Jumping Stomp . 49
6.4 The One-legged Hop Motion . 49
6.5 The Forward-traveling Front Flip 50
6.6 The Backwards-traveling Back Flip 50
6.7 The Forward-traveling Back Flip 51
6.8 The Backwards-traveling Front Flip 51
6.9 Walking Motion . 52
6.10 Tiptoe Motion . 52
6.11 Stomping Motion . 53

List of Figures vii

6.12 Stiff-legged Walk Motion . 53
6.13 The Moonwalk . 54
6.14 The Two-foot Shuffe . 54
6.15 Sliding or Skating Motion . 55
6.16 Shuffle-step Motion . 55
6.17 Stiff-leg Motion . 56
6.18 Step, leap, front-flip, shuffle and hop 56
6.19 Two backwards steps, moonwalk, backwards-traveling front-flip . 56
6.20 3D Jump . 57
6.21 3D Leap . 57
6.22 3D Front Flip . 58
6.23 3D Back Flip . 58
6.24 3D Walking . 59
6.25 Jump, front-flip and two steps . 59
6.26 Double back-flip, jump, two steps and a leap 60
6.27 Strange Leg Proportions . 61
6.28 Random Scribbles . 61

A.1 Jump controller state transition 69
A.2 Flip controller state transition . 71
A.3 Examples of flip parabolae . 72
A.4 Walk controller state transition 73
A.5 Variations in walk styles . 74
A.6 Foot Trajectories . 75
A.7 Moonwalk/shuffle controller state transition 77
A.8 Slide controller state transition 78

Acknowledgements viii

Acknowledgements

First, I would like to thank and acknowledge NSERC for providing the funding

for this research for the past two years.

There are, however, others who also deserve acknowledgement of one form

or another. For one, I would like to thank my supervisor, Michiel, for steering

me onto this topic. It’s been, overall, a fun project to work on and hasn’t been

overly frustrating, for the most part. And I still have too much fun playing with

the animation system. Maybe I’m just easily amused.

I’d also like to thank my parents for their support and encouragement not

just in this endeavour, but in many things over the years. They did something

to make me value an education — I’m still not sure what it was, but regardless,

I am grateful.

−− Matthew Thorne

Chapter 1. Introduction 1

Chapter 1

Introduction

Traditional hand-drawn animation and 3D computer animation is a challeng-

ing task requiring artistic talent and extensive training to create even simple

animations. Further, when creating animation there are a myriad of styles and

goals to be considered. Sometimes the goal is to create physically-realistic and

natural motions, while at other times highly exaggerated, physically implausi-

ble or stylized motions are desired. Indeed, it is often necessary to exaggerate

realistic motions to make them seem alive and to avoid a sense of stiffness and

rigidity. Additionally, varying levels of control over the resulting animation is

required depending on the application. Whatever the needs or goals, however,

they all have one thing in common: animation is time consuming and chal-

lenging, limiting not only how animation is created, but also who is capable of

animating.

This thesis presents a novel technique for creating and controlling animation

using a sketch-based interface. Our sketching system, called “Motion Doodles”,

allows for “quick and dirty” animations and is designed to make animation

accessible to people of all ages, skill levels and experience. Motion Doodles en-

ables the user to draw and animate a 2D articulated figure in tens of seconds,

without the need for the complex rigging and manipulations typical of standard

computer animation packages. Increasing the speed at which one can create

animations also potentially changes the workflow used in creating an anima-

tion. With the ability to rapidly create animation, it becomes much easier to

Chapter 1. Introduction 2

experiment with different motions, their sequencing, and to experiment with the

features of a motion such as the timing, height, or distance of a jump. While the

principal system we describe is targetted at 2D animation, a prototype 3D ani-

mation system has been created which demonstrates the ability of sketch-based

animation control to extend to more complex 3D animation.

The speed and ease of use of the system stems from the concept of motion

sketching. A user, be they a novice or otherwise, creates a motion by using a

stylus or mouse to sketch a sequence of “motion doodles” which simultaneously

convey the sequence and attributes of motions in a desired animation sequence.

1.1 A Simple Example

A motion doodle is a simple curve such as an arc, loop or line which is interpreted

by our system and used to synthesize a motion such as a walk, jump or flip.

Figure 1.1 shows a sample motion doodle and the resulting sequence of mo-

tions. Key features are extracted from each motion doodle gesture which par-

tially specify the character’s motion and serves as a basis for synthesizing the

complete motion through the use of a keyframe database and inverse kinemat-

ics. While many extracted features are directly evident from the input sketch

such as the length of a jump or the location of footfalls, the timing information

associated with the sketch is not apparant in Figure 1.1, but it is an important

feature of the input for our system. The speed at which the sketch is drawn

directly affects the speed of the resulting motion. A quickly drawn scribble

will produce an equally quick motion while a slowly drawn sketch results in an

apparantly slow motion.

Motion doodles are drawn in one continuous stroke (the motion sketch). As

illustrated in Figure 1.1, animating with motion doodles is a simple process.

Motion doodles are easy to learn and require that the user be able to draw no

Chapter 1. Introduction 3

Figure 1.1: In our system a “motion doodle” (top, with parabolic trajectories
fit to sketched motion also shown) is converted into a sequence of
motions (bottom).

more than a sequence of relatively simple curves. The goal is to make anima-

tion accessible to virtually everyone, including children, unskilled novices and

seasoned veterans who just want to experiment with an idea in a quick and

straightforward manner.

Our animation system is not intended to replace established animation tech-

niques but rather to address the particular niche of quick and easy-to-use pro-

totyping tools.

Chapter 1. Introduction 4

1.2 A Gesture Vocabulary for Animation

Animations provide animators with the means to realize motions that initially

exist only in the mind of the animator. Determining an appropriate vocabulary

to describe motions has long been a challenge, one that has led to numerous

motion annotation systems, such as Labanotation [Hut1987], among others. The

vocabulary supported by the tool is an important design decision.

The first step involved in creating our sketch-based animation system was

to design a “language” of gestures which represent different motions and, when

strung together in an input sketch, are converted into an animation sequence.

We have used three main considerations in designing the gestures used by our

animation system.

Before discussing how our gestures have been designed it is necessary to be

precise about what is meant by a “gesture”. The term gesture refers to motions

such as hand gestures as in [Hon2000] and has also been used to refer to simple

glyphs drawn with an input device as in [Rub1991]. In our system, a gesture is

defined as the smallest unit of a sketch which can be translated into a motion

such as a single arc or loop. This is similar to the glyphs of [Rub1991] except

that several gestures are typically drawn with a single continous motion of the

input device.

1.2.1 Quick to Learn

The gestures representing each motion need to be chosen such that the corre-

spondence between gesture and motion seems natural, allowing a novice user to

quickly and easily learn the gestural vocabulary of the system. This means that

a gesture should be “self-explanatory” and “evocative” of the desired motion.

An arc, for example, naturally lends itself to a jumping or stepping motion since

the arc itself suggests the trajectory of a jump in its flight phase or the path fol-

Chapter 1. Introduction 5

lowed by a foot during a step. Determining appropriate mappings is, arguably,

one of the most difficult aspects of designing a gesture-based animation system,

especially as the vocabulary becomes richer.

For our animation system, one of the sources of inspiration for gestures has

been the “motion lines” often found in hand drawings, as shown in Figure 1.2.

For example, loops often represent tumbling, falling, spinning or some similar

motion and arcs often represent the flight of objects through the air.

Figure 1.2: An example of “motion lines” illustrating a tumbling motion.

1.2.2 Simplicity

The second of our design goals presents two considerations. First, as the goals of

our animation system are to empower novice users, including children to create

and experiment with animation and to increase the speed at which animation

may be created, we have chosen to keep each gesture as simple to draw as

possible. Complex shapes and patterns are more difficult to learn and master

(conflicting with our first design goal) and may also serve to discourage the less

artistically inclined.

Chapter 1. Introduction 6

Second, requiring that gestures be as simple as possible presents a trade-off.

Simple gestures limit the complexity of motions that can be represented and the

number of degrees of freedom of a character that can be directly controlled. In

our system, a gesture provides a partial specification of a motion, such as the

approximate trajectory during the flight of a jump or the location of foot contact

with the ground. A keyframe database then serves to fill in the remaining details.

Databases of motion capture data could also be used. If more complexity or a

greater degree of control is desired, the most common actions should be kept as

simple as possible while less common actions could be assigned to more complex

gestures.

1.2.3 Content

The last step in designing the gestures for our system is to determine the spe-

cific details of how a gesture is mapped to a motion. There are two types of

information that can be encoded in a gesture: literal information such as height,

distance, or timing and semantic information such as the number of loops in a

flip or other stylistic information.

The way in which a gesture’s literal information is used depends on the

desired style of animation. In our system, we want to allow for exaggerated

cartoon-like actions such as leaping a tall building in a single bound, thus the

literal information extracted from a gesture directly specifies the exact height,

distance, timing and foot placement associated with a motion. This has the

added advantage of allowing the user to sketch directly within the scene in

which the animated character exists, thereby providing immediate feedback on

how motions will interact with the world. If more realistic, physically-based

motions were desired then the interpretation of the gesture’s literal information

would likely need to be relaxed.

Chapter 1. Introduction 7

Semantic information is much more flexible (and more subjective). The

main examples of how this type of information is encoded in our system are

the number of spins in a flip and the mapping from gestures to specific types

of motion. Flips are specified by loop gestures and the number of loops strung

together specify the number of spins that should be included in a flip, but do

not directly influence the height or distance of a flip. Similarly, stylistic infor-

mation is extracted from arcs making up a walking motion to allow tiptoeing

and stomping in addition to a regular walk, but these stylistic modifications

are encoded in such a way that they do not impact on the literal information

extracted from the gestures.

Figure 1.3: Literal vs. Semantic gesture content.

An example of a double loop gesture, representing a double forward flip, is

shown in Figure 1.3. The length, d, and maximum height, h, of the gesture

directly specify the height and length of the flip action. The two loops in the

gesture indicate that two forward flips should be performed while in the air.

Chapter 1. Introduction 8

1.3 Organization

The organization of the remainder of this thesis is as follows. Previous and

related work is discussed in Chapter 2. An overview of the system architecture is

provided in Chapter 3. The details of transforming an input sketch to a sequence

of motions are described in Chapter 4. The 3D extensions to the system are

detailed in Chapter 5. The results for both the 2D and 3D systems are shown

in Chapter 6. We conclude with a summary of benefits, limitations and possible

future directions in Chapter 7. Finally, Appendix A provides additional details

on the implementation of the various motion controllers.

Chapter 2. Previous Work 9

Chapter 2

Previous Work

Animation has a wide range of applications including film, games, simulation,

choreography and many others. Each of these different applications have dif-

fering requirements in terms of animator involvement and hence the controls

presented to the end user. Games, for example, typically trigger a pre-scripted

animation sequence in response to buttons pressed by the player. On the other

hand, production animation for films requires a fine level of control over all

aspects of the animation by the animator but provides no control to the audi-

ence. Table 2.1 summarizes and compares some common animation and motion

planning techniques with our system.

The tools used for offline animation production typically use successive stages

to allow for various levels of detail. This often begins with storyboards and

animatics1 and eventually proceeds to keyframes for the detailed design of the

desired final animation. Going from the early animatic-based concepts to well

designed animated motions is still a significant task that would benefit from a

system allowing the most relevant features of a desired motion to be used as

input with remaining details being filled in automatically.

There have been two broad classes of techniques used to approach this prob-

lem. The first class consists of algorithmic approaches involving either simula-

tions or trajectory optimizations using a mixture of hard and soft constraints, in-

1Animatics are still frames or rough animations containing key poses used to help determine

camera positions and timing of the animation

Chapter 2. Previous Work 10

cluding those imposed by physics. The second class of approaches uses databases

of motion capture data or other pre-existing motion data by modifying, inter-

polating or stitching together segments of motions. In our system we utilize an

underlying set of keyframes and so it is related to the second class of techniques.

However, we focus specificly on providing interactive control to the user over

the properties and sequence of resulting animation. In the remainder of the

chapter, techniques in graphics and animation that are most closely related to

our system are examined.

Control Realism Interactivity

Storyboards and ani-
matics

Sparse overview
of desired ani-
mation

Low; con-
cerned with
global posi-
tioning, timing
and camera
positioning

Not real-time

Keyframing Detailed, low-
level

As desired Not real-time

Performance Anima-
tion, Motion Capture

Directly control
DOFs

High Real-time,
may require
offline post-
processing

Dance choreography,
Labanotation

Manual specifi-
cation of motion

Not directly
applicable

Time consum-
ing

Spacetime con-
straints, Optimiza-
tion

High-level con-
trol by specify-
ing constraints

Variable Not real-time

Physics-based control
and simulation

User may con-
trol some DOFs

Variable Real-time

Games Button presses
trigger pre-
scripted anima-
tion

Varies from
game to game

Real-time

Motion Doodles Sketch-based
interface pro-
vides high-level
control

cartoon-like Real-time,
with delay

Table 2.1: A comparison of animation and motion planning techniques.

Chapter 2. Previous Work 11

2.1 Sketch-based Modelling

Sketch-based interfaces have been used for a variety of geometric modeling sys-

tems starting with the SketchPad system [Sut1963]. More recent sketch-based

modeling systems include SKETCH [Zel1996] which allows for 3D modelling

using simple gestures or sequences of gestures to create, place and manipu-

late geometric primitives; and Teddy [Iga1999] in which a user draws freehand

curves, combined with simple gestures for special modeling operations, to cre-

ate 3D models which resemble stuffed animals. While none of these systems is

directly related to our animation sketching system, they do nevertheless serve

as inspiration and show the potential that sketch-based interfaces provide for

quick-and-dirty design. Teddy especially shows the potential these types of

interfaces have for making normally complex tasks accessible to novice users,

including children.

2.2 Performance Animation and Animation

Sketching

The idea of sketching an animation can be thought of as a type of performance

animation or puppetry in which an animator’s gestures are transformed into the

actions of a character [Stu1998]. Mappings from the performer to the character

range from direct joint-to-joint mappings such as is standard in motion capture

to more abstract mappings such as using a dataglove in conjunction with a

phoneme synthesizer [Fel1995].

Other research in performance animation and digital puppetry has explored

the use of more abstract mappings between user input and output animation.

[Oor2002] used two 6-DOF tracking devices to provide interactive, bimanual

control over stepping and walking motions of a character. The work of [Las2000]

Chapter 2. Previous Work 12

provides a series of interfaces for controlling characters within a dynamical sim-

ulation using the mouse and keyboard for input. [Don2003] presents a system

for character animation which uses motion-capture to map an animator’s ac-

tions onto an animated character using several passes, or layers. Our system

also belongs to this more abstract end of the spectrum in that it maps high-level

information extracted from a 2D input sketch onto an 18-DOF character.

There exist some published techniques for using sketching to directly spec-

ify animated motions. The work of [Bal1995] investigates the sketching of 3D

animation paths of a single 3D point, which are then automatically fit by spline

curves. Several systems allow sketching of a desired walking path for a charac-

ter, from which the specification of foot location and timing of foot placements

can be estimated and then used to create animation [Gir1987, van1997]. Work

has also been done in sketching the desired trajectory for a single rigid body

and then using optimization techniques to find the physically-based motion that

best fits the sketched trajectory [Pop2001].

2.3 Sketch and Gesture Recognition

There are two main areas of research in gesture recognition. One body of work

aims at supporting 2D sketching applications by taking drawn input and either

interpreting shapes drawn as gestures or geometric primitives. The second body

of work looks at gesture recognition for hand and arm movements as captured

using video. It is the first, sketch-based class of work which which we are

concerned and on which we focus our discussion.

Any system utilizing a sketch or gesture-based interface needs to be able

to analyze and make some sense of the sketch drawn by the user. The work

of [Rub1991] presents a trainable gesture recognizer that treats each individual

input stroke as a single gesture, which is different from the requirements of our

Chapter 2. Previous Work 13

system, in which an entire sketch is itself a single stroke which typically consists

of several gestures strung together. More recently, [Sez2001] presents an algo-

rithm for finding corner points in a sketch based on speed and curvature data,

and uses this data to clean up sketches in a CAD-like system for engineering dia-

grams. [Cal2002] also segments input sketches by finding corner points but uses

a trainable recognizer based on semantic networks. Fuzzy sets have also been

used to recognize shapes by [Fon2000]. Our current system does not incorporate

a trainable recognizer and, instead, like in [Cal2002], it relies on segmenting the

input sketch based on identifying corner points, as will be explained in detail

in Chapter 4. Before getting to such details, the next chapter first outlines our

system.

Chapter 3. System Overview 14

Chapter 3

System Overview

Our animation system is divided into a number of functional blocks: sketch

analysis, the motion controllers which then synthesize the motion data to drive

the animated character, and the system manager. The role of each component

is elaborated in this chapter.

3.1 System Organization

The organization of our animation system and the path of user input through

the system is illustrated in Figure 3.1. A system manager (not shown) coordi-

nates the activities of all components. It handles all communication between

components and maintains and coordinates the list of known controllers.

The functional blocks of our system serve to support two main tasks: sketch

analysis and motion parsing. Sketch analysis takes a sketch which consists of a

sequential list of time-stamped input points generated by the user and converts

it into a sequence of gestures such as an arc or a loop. Motion parsing then

interprets these gestures and transforms them into a sequence of motions which

are synthesized by the motion controllers. These two tasks are discussed further

in the following sections.

Chapter 3. System Overview 15

Figure 3.1: An overview of the Motion Doodles system architecture.

Chapter 3. System Overview 16

3.1.1 Sketch Analysis

The sketch analysis subsystem receives a sequence of time-stamped points, the

sketch, as input. The input points are grouped into segments which are delim-

ited by changes in the direction of motion of the input device. These segments

are then analyzed further, broken into smaller segments at sharp corners and

converted into tokens which are used to identify the gesture primitives recog-

nized by the system. Finally, a sequence of identified gestures is passed on to

the motion parsing stage. The sketch analysis process is described in further

detail in Chapter 4.

3.1.2 Motion Controllers and Motion Parsing

Each motion supported by our animation system is implemented by a motion

controller. Internally, the motion controllers are hard-coded finite state ma-

chines with each state associated with a single keyframe from the underlying

keyframe database. Each controller in our system has between four and eight

states, most of them proceeding in a linear sequence from one state to the next.

Transitions from one state to the next are triggered either by contact between

the ground and some part of the foot or based upon timing information derived

from the input sketch and the controller definition. The workings of the motion

controllers are discussed in detail in section 4.3 and Appendix A

The sketch analysis component of our system produces a sequence of gestures

as its output. The mapping between gestures and motions is not a one-to-one as

some gestures may be used to represent more than one motion and gestures may

also have a different meaning depending on the gestures immediately preceeding

or following them in the sequence. For example an arc may normally indicate

one motion, but when occuring in the sequence arc-line-arc it becomes part of

a larger gesture. For these reasons the gesture sequence must be parsed by

Chapter 3. System Overview 17

the motion controllers. As the gesture sequence is parsed, the controllers that

are associated with a particular gesture or sequence of gestures are placed on a

queue of controllers awaiting execution. The process of parsing the gestures is

described in more detail in the next chapter.

3.2 The Animated Character

Figure 3.2 shows examples of the characters rendered in both the 2D and 3D

versions of the system. The 2D character is shown rendered in a 3D world.

The animated character is assumed to consist of sixteen links, arranged

hierarchically as shown in Figure 3.3. There are three links in the torso, one for

the head, two for each arm, two for each leg and two in each foot. The extra

links in the torso and feet give added flexibility to the character and making the

animation seem less rigid.

The same hierarchies used in both the 2D and 3D versions of our system,

except that the 3D character has extra joints at the hips and shoulders to offest

the arms and legs from the torso, and extra joints at the ankles. These extra

joints are illustrated as shaded nodes in the hierarchy and are not present in

the 2D versions.

Character Sketching

A system that allows a user to quickly sketch a desired character of the type

shown in Figure 3.2 (bottom) has been implemented as described in [Tho2003].

The front-end allows a user to sketch a custom character for use with the an-

imation system. A summary of the character sketching system is presented

here.

The user sketches a character by sketching seven links, one for the head,

body, upper and lower arm, upper and lower leg and foot. Each of these links

Chapter 3. System Overview 18

Figure 3.2: Rendered versions of the 2D Character (top left), 3D Character
(top right) and a sketched character (bottom).

is drawn as a single continuous stroke and may be a simple shape such as an

ellipse or may be more complex, containing surface details such as noses or

fingers. The links can be drawn in any order and in any of a wide range of

initial poses. Some poses are prone to problems and should be avoided, such

Chapter 3. System Overview 19

as poses with the arms too close to the head or with the arms hanging straight

down at the sides of the character. The body is automatically subdivided into

three separate links and the foot is also automatically subdivided into heel and

toes. This is done according to simple predefined proportions, such as assuming

that the toes are 15% of the length of the foot. Links belonging to the arm or

leg are mirrored to create the second arm and leg, giving the full sixteen links

needed for the animation system’s character hierarchy.

Once the character has been drawn, the character sketching system auto-

matically infers the locations of joints and determines the connectivity between

links. Joint locations are found using the major-axis of oriented bounding boxes

fit to each link. The link connectivity is easily determined using the fact that

we are working with a humanoid character of known topology. These two steps

are described in detail in [Tho2003].

Even though our animation system requires a fixed character hierarchy, an-

imated characters having a wide variety of limb sizes may be animated through

the use of the character sketching front-end. The system is able to successfully

handle characters with a wide variety of proportions through the use of inverse

kinematics when ground interactions are involved. The details of this will be

elaborated in Chapter 4 and Appendix A.

Chapter 3. System Overview 20

Figure 3.3: Each link in the character hierarchy has a length and one rotational
degree of freedom. The shaded links are only present in the 3D
character and are of zero length, allowing for additional degrees of
freedom at the hips and ankles.

Chapter 4. 2D Motion Sketching 21

Chapter 4

2D Motion Sketching

The previous chapter discussed the organization of the system, how its compo-

nents interact with each other and gave an overview of the process of taking

an input sketch and transforming it into an animation sequence. There are

several phases in interpreting an input sketch, or “motion doodle” as drawn

by a user and converting it into a form that can be used for motion synthesis.

This chapter discusses this transformation process in detail and how the motion

controllers produce the final motions.

4.1 Motion Sketching Definitions

The terms used in discussing the successive stages of the sketch analysis and

motion synthesis process are defined below:

Point A point is a single 2D position sampled from an input device.

Segment A segment is a contiguous group of points in the input sketch whose

end points mark important feature points in the sketch such as corners or

the transition from ascending to descending y-coordinates of input points.

Token A token is an abstract label applied to a segment based on shape (curved

versus linear) and slope.

Gesture A gesture is the smallest unit of a sketch which is translated into a

type of motion, and they are classified according to curve type – arc, loop,

Chapter 4. 2D Motion Sketching 22

line, for example, which are shown in Figure 4.6. Gestures are built out

of multiple tokens but no token may contribute to more than one gesture.

Controller Each motion that the animated character can perform, such as a

jump or step, is handled by a controller. A controller is identified by a

sequence of one or more gestures.

These definitions are used throughout the remainder of this chapter.

4.2 Sketch Analysis

In our animation system, a sketch is a sequence of time-stamped points, pi =

(xi, yi, ti), i = 0...N − 1 where N is the number of points, collected between a

single stylus1 down event and a stylus up event. Input points are first filtered

to discard incoming points that are less than a predetermined distance from

the previous input point. This helps to smooth out noise that may result from

jittery movement of the stylus.

4.2.1 Analysis Overview

The sketch analysis process itself consists of several sequential steps as illus-

trated in Figure 4.1: rough segmentation, corner detection, corner post-processing,

merging of (nearly) colinear segments and identifying stylus pauses in linear seg-

ments. Sketch analysis is performed on-the-fly. That is, as each input point is

received, it is examined to see if a new rough segmentation point can be created

and, if so, further analysis is performed immediately on the new segment.

As segments are identified they are classified as tokens. The types of tokens

used in our system are illustrated in Figure 4.2. The sequence of segments shown

1In this thesis we assume that ‘stylus’ can refer to a mouse, tablet stylus, electronic white-

board or other similar input device.

Chapter 4. 2D Motion Sketching 23

Figure 4.1: A summary of the sketch analysis phases. 1. The input sketch with
sampled stylus points marked by solid circles. 2. Hollow circles
mark boundaries in the rough segmentation. 3. Hollow squares
mark corners detected by curvature analysis. 4. The corner at the
‘x’ is discarded in corner post-processing. 5. The hollow triangle
where two neighbouring, nearly colinear segments are merged. 6.
The solid triangle marks where a linear segment is split due to a
pause in stylus motion. Box 6 shows the final segments with each
boundary point marked.

in Figure 4.1 ultimately produces the token sequence: efghgbbhh, assuming the

sketch is drawn from left-to-right.

We now describe each phase of the analysis process in greater detail.

4.2.2 Rough Segmentation

The first step in analyzing the input sketch is to segment it based on changes

in stylus motion as shown in Figure 4.3. Since the gesture primitives in our

animation system can be viewed as leaving the ground plane (upwards motion)

and then, eventually, returning to the ground plane (downwards motion) an

Chapter 4. 2D Motion Sketching 24

Figure 4.2: Tokens are shown labelled with their character encoding. Note that
tokens for curved segments have an associated direction (clockwise
or counter-clockwise) but tokens for linear segments do not.

initial rough segmentation is created by segmenting the sketch at points where

the stylus motion changes direction from downwards to upwards or vice-versa.

Figure 4.3: Example of the rough segmentation scheme. Solid circles mark
segment boundaries determined by changes between upwards and
downwards stylus motion. The hollow circle marks a corner point
which is missed when using only the rough segmentation scheme.

As each initial segment is identified by this rough segmentation scheme,

it is passed to a corner detector for further analysis. Additional analysis is

Chapter 4. 2D Motion Sketching 25

necessary because the rough segmentation may miss features in the sketch which

are important for identifying gestures. For example, Figure 4.3 shows a sketch

with a sequence of four gestures – arc, loop, spike and hat from left to right.

These and other gestures recognized by the system are shown separately in

Figure 4.6. The hat gesture is broken into two segments, the first (leftmost) of

which contains a corner point that is not identified by the rough segmentation

step (refer to the marked point in Figure 4.3). Without further analysis to

detect this corner the gesture would be misinterpreted by the system.

4.2.3 Corner Detection

To catch important features such as the above mentioned corner point missed by

the rough segmentation phase, each segment found is passed through a corner

detection algorithm based on the one given by [Che1999] and explained below.

The basic idea of the algorithm is to identify points along a curve where it is

possible to inscribe a sufficiently narrow angle, as shown in Figure 4.4.

Figure 4.4: Corner Detection. Points at which it is possible to inscribe suffi-
ciently small angles are identified as corner candidates.

Chapter 4. 2D Motion Sketching 26

Corner Detection Algorithm

At each curve point, pi, we attempt to inscribe a triangle (p−, pi, p
+) which

satisfies the following constraints:

d2
min ≤ |pi − p+|2 ≤ d2

max

d2
min ≤ |pi − p−|2 ≤ d2

max

α ≤ αmax

where dmin and dmax are parameters which determine the region of the

sketch around point pi which affect the detection of a corner at that point.

Smaller values of dmin make the algorithm more susceptible to flagging jitters

in the sketch as corners, while larger values of dmax make it more likely to detect

corners in areas of high curvature. αmax is the maximum angle considered to

be a corner.

For each input point pi, we search outward for potential triangles that sat-

isfy the above constraints. The search stops either at segment boundaries (as

determined by the rough segmentation step) or when one of the constraints is

violated. If at least one triangle was found that satisfied the constraints, pi is

recorded as a corner candidate, otherwise it is ignored.

Corner Post-processing

By itself, this algorithm still tends to identify too many false positives and also

some false negatives. Sections of the sketch intended to be smoothly curved

generate false positives due to the noisy nature of the input sketch and some

areas perceived as corners to the human eye are missed because they are too

rounded to be identified as corners by the detection algorithm.

In order to alleviate the problem of false positives, potential corners found

Chapter 4. 2D Motion Sketching 27

by the detection algorithm are verified using knowledge about the speed at

which the curve segments were drawn. Since drawing speed tends to decrease

when drawing a corner, corner points at which the stylus speed is greater than

some threshold are discarded as being unlikely corner candidates. The default

threshold is about 30% of the average stylus velocity along the segment.

The original sketch segment is divided into smaller segments at each of the

identified corner points. These refined segments passed along for classification

and testing for two special cases.

Special Segmentation Steps

After corner detection is complete there are two special steps that occur before

segments can be converted into tokens. First, segments are classified as either

curved or linear. The method for doing this classification is based on [Sez2001].

The arclength along the sketch segment is compared to the Euclidean distance

between the endpoints of the segment. For a linear segment, this ratio will be

close to 1 (in our system the range [1, 1.025] for this ratio indicates a linear

segment), otherwise the segment is curved. Curved segments are passed on

without further modification to the tokenization step.

Linear segments are compared to neighbouring segments. Pairs of linear

segments which are nearly colinear are merged into a single segment. This

step is necessary since jitters in the up/down motion of the input device may

cause portions of the input sketch that are intended to be horizontal (or nearly

horizontal) to be split in the rough segmentation phase rather than leaving them

as a single segment. It is possible that, after merging several nearly colinear

segments, we may end up with an arc rather than a linear segment although in

practice this does not appear to happen.

Further, linear segments are subdivided at points where the stylus comes to

a momentary stop in order to provide a mechanism to allow multiple sequential

Chapter 4. 2D Motion Sketching 28

straight line segments that are nearly colinear.

4.2.4 Tokenization

In order to facilitate the identification step, sketch segments are converted into a

sequence of tokens which encode some high-level information about the segment

that they represent. The types of tokens are summarized in Figure 4.2 and the

information encoded in a token is summarized in Table 4.1.

Figure 4.2 shows each token along with its character encoding. Tokens a and

b represent curved segments drawn in a clockwise or counterclockwise direction

respectively. The linear tokens are based only on the slope of a segment, not the

direction it is drawn. The ranges of slopes used to classify each linear segment

are illustrated in Figure 4.5.

type a single character uniquely identifying a token
angle the net angle traversed along the length of a segment (linear

segments have angle 0); for curved segments this value is cal-
culated by summing the angle formed by successive pairs of
points along the length of the segment

vDir binary value which encodes the net vertical direction of the
segment underlying the token (UP/DOWN)

sPt, ePt pointers to the starting and ending points of the segment in
the input sketch

Table 4.1: Summary of information encoded in a token.

4.2.5 Identification

The final step in sketch analysis is to parse the token stream into recognized

gestures. The gestures currently recognized by our animation system are shown

in Figure 4.6.

Gesture identification uses a combination of information from the sequence

of tokens. The identifying features, namely the acceptable grammar expressions,

of each gesture type are summarized below. If more than one gesture matches a

Chapter 4. 2D Motion Sketching 29

Figure 4.5: The “bins” used for classifying linear tokens. The dark, solid lines
represent the actual tokens (and are labelled with the token they
represent) and the lighter, dashed lines mark boundaries between
bins.

portion of the token sequence then the gesture containing more tokens is taken

or, if they are the same length, then the gesture with higher priority is used.

Gesture priority is defined implicitly by the order in which they are added to

the system.

Arc

An arc gesture consists of two tokens: an upward token followed by a downward

token, one of which must be curved. Accepted token sequences (refering to

Figure 4.2) are, when drawing left-to-right: aa, af, ag, ah, ea, ga, ha. When

drawing right-to-left these become: bb, be, bg, bh, fb, gb, hb. Note also, that

Chapter 4. 2D Motion Sketching 30

Figure 4.6: Gestures recognized in the animation system. Gestures may be
drawn left-to-right or right-to-left.

the overall direction of rotation of the tangent to the sketch must be the same

over both tokens – that is, both tokens must be clockwise or both must be

counter clockwise. For our purposes, linear segments are considered to have

the same rotation as both clockwise and counter-clockwise curved segments

since linear segments introduce no net rotation. This means that the only

token combinations that are not considered arcs are ab, ba or any pair of linear

segments.

Up Loop

Like the arc, the up loop is an upward token followed by a downward token, one

of which must be curved. However, the direction of rotation of the tangent is

opposite to that of the arc and the up loop is also expected to intersect itself.

To be considered an up loop, either a self-intersection must be detected or there

must be a net rotation of at least 245◦ in the sketch. Acceptible token sequences

(drawn left-to-right) are bb, gb, fb, eb, bg, bf, and be. From right-to-left these

become aa, ga, fa, ea, ag, af and ae.

Chapter 4. 2D Motion Sketching 31

Down Loop

The down loop is the most difficult gesture to recognize since it is the most

complex and the first half of a down loop can easily be mistaken for an arc. The

direction of rotation of the tangent is the same for a down loop as for an arc, but

like an up loop we expect to find a self-intersection somewhere along the length

of the loop. The ambiguities between arcs and down loops do, however, result

in delaying in the recognition of arcs until a down loop can be either discarded,

in which case one or more arcs may be recognized, or a down-loop is positively

identified. The acceptible token sequence, drawn left-to-right, is a(aa)∗a and

drawn right-to-left is b(bb)∗b.

Spike

A spike is similar to an arc in that it consists of an upward token followed by

a downward token. Unlike an arc, both tokens must represent straight lines.

Accepted token sequences are: ef, eg, ee, gf, gg, gf, ff, fe, fg.

Hat

A hat is defined as a sequence of three straight lines: one upward, one horizontal

and one downward. The corresponding possible sequences of tokens include:

(f|e|g|a|b)hh∗(f|g|e|a|b). Note that curved segments are allowed in the up-

wards and downwards strokes since, especially when drawing quickly, these can

sometimes appear curved to the system, even if this is not intended by the user.

Line

The line is the simplest gesture, being any straight line token that is not recog-

nized as part of another gesture.

Chapter 4. 2D Motion Sketching 32

4.3 Motion Controllers

Each motion controller is responsible for examining the sequence of gestures

that is output by the sketch analysis subsystem and identifying the gesture

(or gestures) that apply to it, and secondly, is responsible for synthesizing the

resulting output motion.

4.3.1 Controller Recognition

Each individual motion controller communicates with the system as described

in Chapter 3.1 and, indirectly, with each other. A controller must be registered

with the system before the system can make use of it. As an input sketch

is drawn and analyzed, the gesture sequence produced by the sketch analysis

component of the system is presented to each registered controller in the order

that they were registered. Thus the order in which controllers are registered

defines an implicit priority among the controllers, although there is currently

one exception to this case in our system.

The gesture sequence resulting from sketch analysis is presented to each

controller in the order they were registered with the system. If more than one

controller recognizes a portion of the gesture sequence, then the longest sequence

is always given priority, otherwise the first controller to recognize a gesture

sequence is used. For example, the walking controller recognizes a sequence of

one or more ARC gestures and the moonwalk controller recognizes the gesture

sequence ARC-LINE-ARC. By selecting the controller that recognizes the longer

sequence, in this case the moonwalk, we ensure that the initial gesture will not

be interpreted as belonging to a different motion regardless of priority.

It is also possible for a single type of gesture to be associated with more

than one controller such as is the case with the ARC which by itself can be inter-

preted as either a jump or a step, or the SPIKE which can be either a jumping

Chapter 4. 2D Motion Sketching 33

stomp or stiff-legged step. A pair of system parameters are used to deal with

these cases. The jumpThreshold and maxStepLength parameters determine the

cut-off between walking and jumping motions. In general, a gesture with maxi-

mum height below jumpThreshold and horizontal distance between the starting

and ending points less than maxStepLength are considered to be step-like mo-

tions, otherwise they are jump-like motions. In our system jumpThreshold is

an arbitrary distance above the ground height and maxStepLength is set to the

distance between the character’s heels with the legs forming a 70◦ angle. These

two parameters are illustrated in Figure 4.7

Figure 4.7: The two system parameters maxStepLength and jumpThreshold are
used to differentiate between walking and jumping.

Table 4.2 summarizes the motion controllers, the sequence of gestures as-

sociated with each controller and any special considerations for that motion

type.

Dealing with this sort of ambiguity means that the analysis and recognition

process will lag behind the input sketch. Also, a new controller may be recog-

nized before the current one has completed its animation, especially if, say, the

ARC-LINE-ARC sequence turns out not to be a moonwalk after all but a step,

shuffle, step or step, shuffle, leap instead, for example. Therefore, the manager

Chapter 4. 2D Motion Sketching 34

maintains a queue of identified controllers which are processed in order.

Gesture(s) Motion Special

ARC Jump Maximum height above
jumpThreshold or total distance
longer than maxStepLength

ARC Leap As with Jump, but requires hav-
ing an initial state having one foot
ahead of the other (such as occurs
after a step)

ARC Step Height of arc below jumpThresh-

old and horizontal distance
shorter than maxStepLength

ARC-LINE-ARC Moonwalk Both ARCs need to satisfy the
step criteria, and the LINE must
have an opposite horizontal direc-
tion to the ARCs

HAT Hop None
LINE Shuffle Horizontal distance covered

by line must be shorter than
maxStepLength

LINE Slide Horizontal distance covered by
line must be larger than (or equal
to) maxStepLength

LOOP UP Back Flip/Front Flip Back Flip when drawn left to
right, otherwise Front Flip

LOOP DOWN Front Flip/Back Flip Front Flip when drawn right to
left, otherwise Back Flip

SPIKE Jump-stomp Spike peak higher than
jumpThreshold or horizontal dis-
tance longer than maxStepLength

SPIKE Stiff-legged Step Spike peak below jumpThreshold

and horizontal distance shorter
than maxStepLength

Table 4.2: Controllers and their gesture sequences.

4.3.2 Motion Synthesis

Once the appropriate motion controller has been identified, the last step is for

the motion controller to synthesize the motion. Internally, a controller is divided

into a fixed number of stages and implemented as a finite state machine. The

Chapter 4. 2D Motion Sketching 35

states for each controller in our system are summarized in Table 4.3. Each

controller may have a different number of states. Additionally, each state applies

a number of tools: a keyframe database, a keyframe interpolator, an inverse-

kinematics solver and the ability to place the character’s centre-of-mass at a

specified point.

Controller States

Jump, Leap, Hop ANTICIPATE, LAUNCH, ASCENT, DESCENT,
LANDING, FOLLOWTHROUGH

Front Flip, Back Flip CROUCH, LAUNCH, ASCENT, CURL, SPIN, UN-
CURL, LANDING, FOLLOWTHROUGH

Walk, Tip-toe, Stomp CONTACT LEFT, DOWN LEFT, PASSING LEFT,
UP LEFT (mirrored for right leg)

Moonwalk, Shuffle LIFT, DRAG
Slide PREP, PUSH, GLIDE

Table 4.3: Sequential controller states for each motion primitive.

Controllers directly or indirectly extract a number of parameters from the

input sketch. These include the timing of a motion, height, distance, number of

loops and so forth. Details on the controller internals and the information they

extract from the sketch are summarized here for the jump controller; the full

details for all controllers are given in Appendix A.

Jump Controller Example

The jump motion is broken down into six states: ANTICIPATE, LAUNCH, ASCENT,

DESCENT, LANDING and FOLLOWTHROUGH, shown in Figure 4.8. Interally, the jump

controller functions as a finite state machine, as do all others. In general, there

are two types of events which may trigger a state change: contact between

feet and the ground and timing information. For the jump controller, only

the transition from DESCENT to LANDING is triggered by ground contact. All

other transitions are triggered by timing information. For time-based states,

the duration of that state is defined as a fixed percentage of the total time for

Chapter 4. 2D Motion Sketching 36

the entire motion.

Figure 4.8: Jump controller state transition.

For a jump, three main pieces of information are extracted from a sketched

arc: the arc start point, the arc end point, and the arc apex and the timing

information for these three points. Two half parabolae are fit to these points

as shown in Figure 4.9, one for ascent, the other for descent, and the slope of

these parabolae at the start and end points are used to set the overall angle of

the character for LAUNCH and LANDING respectively.

Figure 4.9: Fitting two half parabolae to an arc gesture.

Chapter 4. 2D Motion Sketching 37

Because the start and end points of the arc specify the foot location, and

the apex indicates the location of the character’s centre-of-mass at the peak of

the jump, the two parabolae fit to these points are adjusted during the course

of the jump. At the transition point between LAUNCH and ASCENT, the current

centre-of-mass location becomes the start of the ascending parabola and at

the transition between ASCENT and DESCENT, the end point of the descending

parabola is adjusted so that it gives the position for the centre-of-mass such

that the character’s feet will land in the spot indicated by the sketch.

Keyframe Database

The input sketch is only a partial specification of the motion of the character at

any one time. As well, different parts of a single gesture may specify different

constraints on the character. This can be seen in the jump example where

we have a specification of the location of the feet at the start and end of the

jump, and the location of the centre-of-mass at the peak of the jump. This

leaves many details of the motion unspecified. The keyframe database helps

to fill in these missing details. A single keyframe is associated with each state

of each controller, resulting in a fairly sparse collection of keyframes. Many of

the keyframes used in the Motion Doodles system were inspired by [Wil2001]

(walking, tiptoeing and jumping) and [Muy1955] (front and back flips).

The keyframe for each controller state is defined in terms of a set of joint

angles and defines the target pose for the character at the end of the state.

Catmull-Rom interpolation is used to interpolate between successive keyframes,

treating the keyframes as forming a loop. For any state in which one of the

character’s feet touches the ground, inverse-kinematics is used to pose the leg,

overriding the interpolated angles for the affected joints. Since the character’s

legs are composed of two segments and three joints (for simplicity we allow

the character’s feet to follow the keyframes) the cosine law is used to perform

Chapter 4. 2D Motion Sketching 38

inverse-kinematics although other IK algorithms such as the Cyclic Coordinate

Descent (CCD) method [Wel1993] could easily be used to handle more complex

characters or to extend IK manipulation to other parts of the character.

If desired, other back-ends for generating motion data may be substituted

for the keyframes depending on the needs of the application, such as a motion

capture database. However, methods that result in more realistic motion syn-

thesis would require either a less literal interpretation of the motion sketch or

some alternate interpretation for phyically implausible motions such as a leap

that no mere mortal could accomplish.

Our 2D sketch-based animation system, as described in detail in this chapter,

allows a user to experiment with a wide variety of motions. One of the most

obvious ways to extend our system is to allow for motion sketching in a 3D

environment. The next chapter presents an initial 3D implementation of our

system and, as shall be seen, the basic mechanics of the 2D system can be

adapted to 3D.

Chapter 5. 3D Motion Sketching 39

Chapter 5

3D Motion Sketching

While the 2D Motion Doodles system provides an interesting starting point

for exploring sketch-based animation, an obvious question to ask is whether

it can be exteded to 3D. Is it possible to extend the basic mechanisms used

in the 2D system to work in a 3D setting? The answer is “yes”, but with

some reservations. As shall be seen, the sketching paradigm can be carried over

into a 3D environment, although the addition of an extra dimension introduces

ambiguities into the interpretation of the 2D input sketch. Figure 5.1 shows an

example of our 3D system in action.

Figure 5.1: 3D Example: We wish to be able to draw a sketch (left) as with
our 2D system and transform it into an animation sequence in a 3D
environment (right).

One solution to the ambiguities inherent in interpreting 2D input in a 3D

environment is to use 3D input devices such as a Polhemus tracker. While this

option has not been explored for the purposes of this thesis, it is suggested as

Chapter 5. 3D Motion Sketching 40

an avenue for future work as discussed briefly in Chapter 7.

5.1 2D Input to 3D Sketch

In extending the 2D sketch-based system to a 3D system, the main goal is to

keep the same style of interaction as was used for the 2D system. That is, we

want to take a 2D input sketch and convert it into motion in three-dimensional

space. Preserving the 2D-sketching paradigm introduces two related issues to

overcome:

• Mapping 2D points to 3D points

• Resolving ambiguities in the interpretation of the input

5.1.1 Mapping from 2D to 3D

The first challenge in extending our 2D sketch-based animation system to 3D

is mapping input from a 2D input device to allow interactions with a 3D en-

vironment. To do this, we start by identifying the local minima of the sketch

in screen space (points where the stylus motion switches from downward to up-

ward motion) which define the start and end of a gesture and map those points

to corresponding 3D points on the ground plane or height field. The 3D points

are obtained by taking a ray from the eye point that passes through the minima

point on the image plane and intersecting that ray with the ground plane as

shown in Figure 5.2.

Once the start and end points of a gesture have been identified and have

been mapped to the 3D world, the rest of the gesture must also be transformed

into 3D space. This process is illustrated in Figure 5.3. The start and end points

of the gesture (sP t and eP t) define a plane, Q, perpendicular to the ground.

Each point, p, on the gesture is mapped to the near and far clipping planes as

Chapter 5. 3D Motion Sketching 41

Figure 5.2: Sketch local minima projected to the ground plane.

pn and pf respectively. The line joining pn and pf is intersected with plane Q

and this intersection point gives the location of pt in the 3D world.

Figure 5.3: Mapping a 2D sketch to 3D. Start and end points of a gesture are
projected onto the ground plane in order to establish the location
of a vertical plane in the 3D world that then embeds the rest of the
gesture.

Chapter 5. 3D Motion Sketching 42

5.1.2 Resolving Ambiguities

The transition from 2D to 3D introduces two further types of ambiguities that

do not exist in the 2D system. These are gesture ambiguities and direction

ambiguities. We now describe what these are and how we cope with them.

Gesture Ambiguities

The limitations inherent in using a 2D input device to specify 3D motions means

that not all gestures can be easily distinguished from one another. As a simple

example, the input shown in Figure 5.4 can be interpreted as a spike producing

either a stiff-legged walk or a stomping jump, or it could be interpreted as two

line gestures, which would produce a long slide back away from the camera

followed by a turn and a slide towards the camera. An ideal system should

allow for both possibilities since a user may intend for either case in different

instances.

Figure 5.4: Gesture Ambiguities: The input sketch (left) can be interpreted as
a single spike gesture in a plane parallel to the impage plane, or as
two separate line gestures along the 3D ground plane. Our system
(right) interprets this as a single spike gesture, producing a jumping
action.

One potential solutions to resolve this situation is to assume one case or the

other, or perhaps select between cases using a threshold value. The user might

Chapter 5. 3D Motion Sketching 43

then override this behaviour in a post-processing phase, if desired. An alternate

solution is to add an auxilliary gesture or event, such as a keypress to indicate

a break between gestures.

Direction Ambiguities

The extra degrees of movement afforded by a 3D environment also add ambiguity

in terms of the direction of movement. As illustrated in Figure 5.5, an arc in

one direction followed by an arc in the opposite direction could be interpreted

as: (1) a forward step (facing right) followed by a backward step; (2) as two

forward steps involving a sharp, nearly 180◦ turn; or (3) as a backward step

(facing left) followed by a forward step. This ambiguity occurs because while

the direction of travel is specified by the direction in which the gesture is drawn,

the current facing direction is unknown.

Figure 5.5: Direction Ambiguities: Two successive arcs drawn in opposite di-
rections (left) can be interpreted in several ways. Our system (right)
interprets this as two forward facing steps with a sharp turn between
them.

Techniques such as a keypress to disambiguate the facing direction could

also be used in this case. As another option, a two-pass system could be used in

which, the user first draws a general path of travel through the scene, followed

by a sketch of the motion along that path as they would do in the 2D system.

Chapter 5. 3D Motion Sketching 44

For the implemented 3D prototype, motion is always forward; the character

may turn sharply at times, but it never walks backwards.

5.2 3D Motion Synthesis

Synthesizing motion in 3D occurs much as it does in the 2D case. The same

features are extracted from the sketch as with the 2D system and a keyframe

database serves as a back-end to fill in details of the motion that are not provided

directly from the sketch or through inverse kinematics. For our prototype 3D

system we use the same set of keyframes as in the 2D system.

There are two main points in which 3D motion synthesis differs from its 2D

counterpart: foot placement and direction smoothing.

5.2.1 Foot Placement

In the 2D system, the start and end point of each gesture marks where the foot

(or feet) strikes the ground. This has been relaxed slightly in the 3D system.

Instead of falling exactly on the points taken from the sketch, the feet are offset

from the vertical plane embedding the sketch to allow for separate left and right

foot placements. This is illustrated in Figure 5.6 for the case of a single jump.

5.2.2 Direction Smoothing

The direction that the character is facing does not change in the 2D system

but it may do so in the 3D system. A vector from the start point to the end

point of a gesture is used to define the character’s direction of travel. However,

simply setting the character’s heading to this direction vector results in sharp

discontinuities in the character’s direction as it snaps to the new heading for each

gesture which is an undesirable artifact. Some form of smoothing is required.

Chapter 5. 3D Motion Sketching 45

Figure 5.6: Foot placement in 3D.

There are several possible ways to approach this, such as carefully selecting a

foot orientation to suit both the present motion and the upcoming motion. The

method implemented in our prototype is to simply interpolate the heading over

a small portion of a motion. This gives the character the appearance of rotating

on its heel.

As a side effect of the foot placement and interpolating of the character’s

heading, the heading may not be exactly the direction specified by the direction

of the gesture during walking motions. Figure 5.7 illustrates the situation with

a sequence of three steps. Figure 5.7.a shows what happens if we adhere to

the gesture’s direction vector. The foot position drifts and is no longer centred

around the gesture’s start and end points – this is particularly noticable after

Chapter 5. 3D Motion Sketching 46

a sharp turn. Figure 5.7.b shows how the target heading is modified to ensure

that foot placement occurs as desired.

Figure 5.7: A sequence of three steps shown from an overhead view with foot
positions marked by circles. In (a) the character’s heading adheres
to that defined by the gesture but as a result the foot location ex-
hibits drift from the desired position. In (b) the character’s heading
is modified so that the feet are always placed in the correct position.

Having discussed the details of our system, we now present the results in

Chapter 6.

Chapter 6. Results 47

Chapter 6

Results

This section presents a selection of results generated with our animation sys-

tem, showing each of the individual motions, their variations, as well as longer

compound motion sequences containing several types of motions.

Time is an important input dimension that cannot be seen in the figures

presented in this chapter. Our system produces animations that mimic the

timing of the input sketch so that a sketch may be drawn with different timings

to produce different animated motions.

The figures in this chapter show character instances that are not equally

spaced in time in order to maximize the clarity of the figures.

6.1 2D System

The motions available in the 2D animation system are illustrated below and are

rendered using the character sketching front-end described in [Tho2003].

6.1.1 Jumping and Variations

Figures 6.1 through 6.4 illustrate the basic two-footed jump, a leap, an angry

jumping stomp, and a hop.

The leap motion in Figure 6.2 is preceeded by a single step since in order

to recognize an arc as a leap rather than a jump, the character’s feet must be

separated when starting the jump.

Chapter 6. Results 48

Figure 6.1: The Jump: Arc gesture (left) and resulting jump motion (right).

Figure 6.2: The Leap: Arc gesture of a small step and then a leap (left) and
the resulting step and leap motion (right).

Chapter 6. Results 49

Figure 6.3: The Jumping Stomp: Spike gesture (left) and the resulting jumping
stomp motion (right)

Figure 6.4: The One-legged Hop: Hat gesture (left) and resulting hopping mo-
tion (right)

Chapter 6. Results 50

6.1.2 Front and Back Flips

Figures 6.5 through 6.8 illustrate the front and back flips.

Figure 6.5: The Forward-traveling Front Flip: A down loop gesture containing
two loops (left) and the resulting double front flip (right)

Figure 6.6: The Backwards-traveling Back Flip: A down loop gesture drawn
right to left (left) and the resulting backwards back flip (right)

When drawn left-to-right (Figure 6.5) the down loop translates into the front

flip action but if drawn right-to-left (Figure 6.6) it produces a back flip.

A forward-traveling back flip and a backwards-traveling front flip have ges-

tures which preserve the desired mapping from the direction of rotation of the

motion doodle to the rotation of the body during the flip. These motions are

illustrated in Figure 6.7 and Figure 6.8.

Chapter 6. Results 51

Figure 6.7: The Forward-traveling Back Flip: An up loop gesture containing
three loops (left) and the resulting triple back flip (right).

Figure 6.8: The Backwards-traveling Front Flip: Up loop gesture drawn right
to left (left) and the resulting backwards back flip (right).

Chapter 6. Results 52

6.1.3 Walking and Variations

Figures 6.9 through 6.12 illustrate the basic walking motion and its variations.

The first three types of walking – normal, tiptoeing and stomping – are all

identified by the arc gesture. The location of the peak of the arc discriminates

between the three styles. For a tiptoe, the arc is shifted towards the beginning

of the step and for a stomp it is shifted towards the end of a step. For a normal

walk it should be placed near the middle.

Figure 6.9: A Walk: A sequence of arc gestures (left) and the resulting walking
motion (right).

Figure 6.10: A Tiptoe: A sequence of arc gestures (left) and the resulting tiptoe
motion (right).

As seen in Figure 6.12, the stiff-legged walk is specified by the spike gesture.

Chapter 6. Results 53

Figure 6.11: A Stomp: A sequence of arc gestures (left) and the resulting
stomping motion (right).

Figure 6.12: A Stiff-legged Walk: Sequence of spike gestures (left) and the
resulting stiff-legged walking motion (right).

Chapter 6. Results 54

6.1.4 Moonwalking and Shuffling

These two motions are similar in that they both involve dragging the feet along

the ground. Figure 6.13 through 6.15 illustrates the moonwalk, shuffling and

sliding, respectively.

Figure 6.13: The Moonwalk: Arc-line-arc gesture sequence (left) and the re-
sulting moonwalk motion (right).

The moonwalk is unique from other motions in that it can only be performed

moving backwards. It is specified by an arc-line-arc sequence as shown above.

Figure 6.14: The Two-foot Shuffle: Line gestures (left) and the resulting shuf-
fling motion (right). The two dark dots indicate points at which
the stylus motion has paused.

Both shuffling and sliding are indicated by horizontal line gestures. Pauses in

mouse motion delimit different shuffling or sliding steps. A slide is distinguished

Chapter 6. Results 55

Figure 6.15: Sliding or Skating: Line gestures (left) and the resulting sliding
motion (right). The dark dot marks a point at which the stylus
motion has paused.

from a shuffle by its length; a line longer than the character’s maximum stride

length becomes a slide, otherwise it is a shuffle.

6.1.5 Combined Motions

Figures 6.16 through 6.19 show a series of combined motions. Figure 6.16 shows

a combination normal steps and shuffling and Figure 6.17 shows a combination

of normal steps interspersed with stiff-legged steps.

Figure 6.16: Shuffle-step: Arc-line gesture sequence (left) and the resulting
motion (right).

Figure 6.18 shows a sequence of step, leap, flip, shufle, jump and Figure 6.19

Chapter 6. Results 56

Figure 6.17: Stiff-leg: Spike-arc gesture sequence (left) and the resulting motion
(right).

shows a sequence (right-to-left) of stiff-legged step, normal step, moonwalk, flip.

Figure 6.18: Step, leap, front-flip shuffle, and hop: Sequence of gestures (left)
and the resulting motion (right).

Figure 6.19: Two backwards steps, moonwalk, backwards-traveling front-flip:
Sequence of gestures (left) and the resulting motion (right).

Chapter 6. Results 57

6.2 3D System

The motions available in the 3D system are illustrated below.

6.2.1 Jumping and Leaping

Jumping and leaping in 3D are shown in Figures 6.20 and 6.21 respectively. As

in the 2D system, a leap must be preceded by a step.

Figure 6.20: 3D Jump: Arc gesture (left) and the resulting jump motion (right).

Figure 6.21: 3D Leap: Arc gestures (left) and the resulting step and leap motion
(right).

Chapter 6. Results 58

6.2.2 Front and Back Flips

The front and back flips are illustrated in figures 6.22 and 6.23 respectively.

Unlike in the 2D system, the direction in which the gestures are drawn does not

affect its interpretation – the flips are assumed to always be traveling forward.

Figure 6.22: 3D Front Flip: Input sketch (left) containing three loops and the
resulting triple front flip (right)

Figure 6.23: 3D Back Flip: Input sketch (left) and the resulting back flip (right)

Chapter 6. Results 59

6.2.3 Walking

Figure 6.24 illustrates two walking sequences, each containing three steps. The

sequence on the left shows a more gradually curved path. The sequence on the

right shows a path with sharper turns.

Figure 6.24: 3D Walking: Two three-step sequences.

6.2.4 Combined Motions

Figures 6.25 and 6.26 illustrate sequences of combined motions in 3D.

Figure 6.25: Jump, front-flip and two steps: Sequence of gestures (left) and
resulting motion (right).

Figure 6.25 illustrates a sequence consisting of a jump, front flip and a couple

of steps. Figure 6.26 illustrates a double back flip, jump, two steps and a leap.

Chapter 6. Results 60

Figure 6.26: Double back-flip, jump, two steps and a leap: Sequence of gestures
(left) and the resulting motion (right).

6.3 Discussion

The animation system allows for animations to be produced very quickly by both

experienced and novice users alike, opening up animation to a new audience of

potential animators. A variety of motions and variations can be produced as

has been illustrated in this chapter. Animations can also be produced in both

2D and 3D using the same interface, although due to limitations inherent in

using a 2D input device in a 3D environment, the 3D version of the system has

a smaller repertoire of motions.

Although the results presented in this chapter show a normally proportioned

character, we can also create and animate characters having strange propor-

tions through the use of the character sketching front-end [Tho2003]. Figure

6.27 shows an example of a character with strangely proportioned legs. The

animation produced is still reasonable.

The main weakness of the system as currently implemented lies in the sketch

analysis algorithm. Corner detection is still less reliable than it should be which

leads to some problems in correctly identifying hat gestures or the moonwalk

gesture sequence, especially when drawn quickly.

The system expects to receive an input sketch composed of a sequence of

Chapter 6. Results 61

Figure 6.27: Strange Leg Proportions: An example of a character with very long
upper legs and very short lower legs. The sketch (left) produces
the animation on the right.

recognizable gestures. If it is given a random scribble as input the system does

its best to make some sense out of it, an example of which is shown in Figure

6.28. Generally this results in some random sequence of jumps and flips. The

system does occassionally break when faced with nonsensical input.

Figure 6.28: Random Scribbles: A random scribble as input (left) with the
parabolae that the system has attempted to fit to the sketch. The
results (right) showing three jumps and two flips. Note that the
first flip changes direction in mid-air.

Chapter 7. Conclusions 62

Chapter 7

Conclusions

The current implementation of our animation system provides a starting point

for further exploration of sketch-based animation systems and strives to make

animation accessible to a wider audience of potential animators. As with the

first iteration of any concept, ours system has a number of limitations and areas

for further work.

7.1 Limitations

The current repertoire of motions in the system and the level of control provided

over those motions is limited. While adding new gestures and motions is a fairly

straightforward process, it does require a significant amount of hand-tuning,

particularly in the control scheme used by new motion controllers. Much of this

could likely be simplified through the use of scripting for controllers and other

techniques for gesture recognition.

While the sketch and gesture analysis has been made as flexible as possible to

facilitate the addition of new gesture and motion types, there is still more work

that can be done in this area, particularly in integrating a statistically-based

gesture recognition algorithm. The gesture recognition technique described in

this thesis relies heavily on hand tuned values, most notably those used in

detecting corners in the input sketch as this is where the current algorithm is

most likely to fail. The use of a statistical based algorithm could avoid much of

Chapter 7. Conclusions 63

this hand tuning, although selecting an appropriate set of features to reliably

distinguish between gestures such as required by [Rub1991] becomes an issue.

Further, such schemes interpret single strokes or a group of strokes (such as in

[Cal2002]) as a single gesture or object, whereas our system extracts multiple

gestures from a single stroke of the stylus and thus a method for dividing a

sketch into its component gestures is still required.

The 3D prototype currently only implements a subset of the motions avail-

able in the 2D system. The limitations of the 3D system are due in large part

to the ambiguities inherent in using a 2D input device to control 3D motion.

Both the 2D and 3D systems are presently limited to bipedal human char-

acters. It would be interesting to extend our system to quadrupeds such as cats

and horses or other types of bipeds such as birds or bipedal robots in the “mech

warrior” or Star Wars styles.

7.2 Future Work

Most of the suggestions for future work attempt to address the limitations and

shortcomings of the system. An immediate way to extend the system is through

the addition of new motion types. There are many opportunites to extend the

repertoire of motions in Motion Doodles. Actions from everyday life, or more

specialized areas such as gymnastics, dancing, skating, karate, trampolining and

other types of choreography provide many examples that could be used to enrich

the vocabulary of the system. An example of such a motion is a twist or lateral

spin which occurs in gymnastic routines.

We have built the system on a single set of keyframes for each motion. The

ability to easily edit new sets of keyframes and use them in place of the default

set would provide the ability to change the style of motion produced by the

system.

Chapter 7. Conclusions 64

Presently, the environment is static, with flat terrain and serves only as a

backdrop on which a character moves around. The ability to manipulate objects

– such as picking up and moving objects or opening doors – in an environment

is another important area of future work.

In connection to environment interactions, the ability to interact with rugged,

non-flat terrain would be an interesting extension of the current system.

The 3D prototype could be extended in many of the same ways as the 2D sys-

tem, though the ambiguities discussed in Chapter 5 would need to be addressed.

Testing with users to determine which assumptions are best and making use of

domain dependent assumptions – limiting the system to a particular class of

motions such as those found in gymnastic routines – would help to resolve some

of these issues.

As discussed in Chapter 5, using a 2D input device to control animation in

a 3D environment introduces several ambiguities. Using a 3D input device for

3D sketching, such as a Phantom or Polhemus tracker could solve some of the

ambiguities in the current 3D system, although using expensive or exotic input

devices would reduce the potential user base. Future camera-based tracking

devices would also provide more complex 3D input geared towards a performance

animation based version of the system.

The current system only handles bipedal human characters but there is po-

tential in extending the system to other non-human types of characters such as

quadrupeds or other types of bipeds such as birds.

Finally, the ability to control and synchronize multiple characters would

allow a user to choreograph much more complex scenes.

References 65

References

[Bal1995] Balaguer, J. and Gobbetti, E. 1995. Sketching 3D animations. Com-

puter Graphics Forum 14, 3, 241-258.

[Cal2002] Calhoun, C., Stahovich, T. F., Kurtoglu, T., and Kara, L. B. 2002.

Recognizing Multi-Stroke Symbols.

[Che1999] Chetverikov, D., and Szabó, Z. 1999. Detec-

tion of High Curvature Points in Planar Curves.

http://www.dai.ed.ac.uk/CVonline/LOCAL COPIES/

CHETVERIKOV2/cornerweb.html

[Don2003] Dontcheva, M., Yngve, G. and Popović, Z. 2003. Layered Acting

For Character Animation. In Proceedings of SIGGRAPH 2003, ACM

SIGGRAPH.

[Fel1995] Fels, S., and Hinton, G. 1995. Glove-talk ii: An adaptive gesture-

to-format interface. In Proceedings of CHI’95: Human Factors in

Computing Systems, ACM Press, 456-463.

[Fon2000] Fonseca, M. J., and Jorge, J. A. 2000. Using Fuzzy Logic to Recog-

nize Geometric Shapes Interactively. In Proceedings of the 9th Int.

Conference on Fuzzy Systems, FUZZ-IEEE’00, San Antonia, USA,

191-196.

References 66

[Gir1987] Girard, M. 1987. Interactive design of computer-animated legged an-

imal motion. IEEE Computer Graphics and Applications 7, 6, 39-51.

[Hon2000] Hong, P., Turk, M. and Huang, T. S. 2000. Gesture Modeling and

Recognition Using Finite State Machines. In Proceedings of IEEE

Conference on Face and Gesture Recognition, Grenoble, France.

[Hut1987] Hutchinson, A. Labanotation: The System of Analyzing and Record-

ing Movement. Routledge, 1987.

[Iga1999] Igarashi, T. Matsuoka, S., and Tanaka, H. 1999. Teddy: A sketching

interface for 3d freeform design. In Proceedings of SIGGRAPH 99,

ACM SIGGRAPH / Addison Wesley Longman, Los Angeles, Cali-

fornia, Computer Graphics Proceedings, Annual Conference Series,

409-416.

[Las2000] Laszlo, J., van de Panne, M. and Fiume, E. L. 2000. Interactive

control for physically-based animation. In Proceedings of ACM SIG-

GRAPH 2000, ACM Press / ACM SIGGRAPH / Addison Wesley

Longman, Computer Graphics Proceedings, Annual Conference Se-

ries, 201-208.

[Muy1955] Muybridge, E. The Human Figure in Motion Dover Publications,

Inc., 1955.

[Oor2002] Oore, S., Terzopoulos, D., and Hinton, G. 2002. A Desktop Input De-

vice and Interface for Interactive 3D Character Animation. In Proc.

Graphics Interface, 133-140.

[Pop2001] Popović, J. 2001. Interactive Design of Rigid-Body Simulations for

Computer Animation. PhD thesis, Carnegie Mellon University.

References 67

[Rub1991] Rubine, R. 1991. Specifying Gestures by Example. Computer Graph-

ics 25, 4 (July), 329-337.

[Sez2001] Sezgin, T. M., Stahovich, T., and Davis, R. 2001. Sketch Based In-

terfaces: Early Processing for Sketch Understanding.

[Stu1998] Sturman, D. J. 1998. Computer Puppetry. IEEE Computer Graphics

and Applications 18, 1 (Jan-Feb), 38-45.

[Sut1963] Sutherland, I. E. 1963. Sketchpad: A man-machine graphical com-

munication system. In Proceedings AFIPS Spring Joint Computer

Conference, vol. 23, 329-346.

[Tho2003] Thorne, M., Burke, D., and van de Panne, M. 2003. Motion Doodles:

A Sketching Interface for Character Animation. Technical Report,

TR-2003-09, University of British Columbia.

[van1997] van de Panne, M. 1997. From footprints to animation. Computer

Graphics Forum 16, 4, 211-224.

[Wel1993] Welman, C. Inverse Kinematics and Geometric Constraints for Ar-

ticulated Figure Manipulation. Masters Thesis, Simon Fraser Univer-

sity.

[Wil2001] Williams, R. The Animator’s Survival Kit. Faber and Faber.

[Zel1996] Zeleznik, R. C., Herndon, K. P., and Hughes, J. F. 1996. Sketch:

An interface for sketching 3d scenes. In Proceedings of SIGGRAPH

96, ACM SIGGRAPH / Addison Wesley, New Orleans, Louisiana,

Computer Graphics Proceedings, Annual Conference Series, 163-170.

Appendix A. Controller Details 68

Appendix A

Controller Details

Each motion is broken down into a series of states as outlined in table 4.3.

Internally, each controller functions as a finite state machine.

In general, there are two mechanisms which trigger a state change: (1)

contact between a foot and the ground, and (2) timing data. During any state

in which contact between the foot and ground occur, inverse kinematics is used

on the leg or legs involved in the contact. The joint angles of the underlying

keyframe database is used to drive all joints of the character that are not under

the control of inverse kinematics.

A.1 Jump, Leap, Hop

The jumping motion and its variations (leaping, hopping and the more energetic

stomping jump) are all governed by the same controller. The state transition

diagram for this controller is shown in Figure A.1.

The jump and leap actions are both specified using an arc input gesture

while the hop action corresponds to the square wave-like hat gesture and the

stomping jump is a spike (see Figure 4.6). While the leap and jump both share

the same input gesture they are distinguished by looking at the separation of

the character’s feet at the start of the action. If the character’s feet are together

then a jump is performed, but if the feet are separated such as would occur after

a step, a leap occurs instead. Regardless of the action, the same information is

Appendix A. Controller Details 69

Figure A.1: Jump controller state transition.

taken from each of the arc, spike and hat gestures: the start and end points,

and the maximum y-value within the gesture. If the maximum point does not

lie between the start and end points (when projected onto the ground plane) it

is repositioned to be half-way between the other two points.

Once extracted, two half parabolae are fit to the start, maximum (or apex)

and end points, one for ascent and one for descent, as documented in Figure

4.9. The slope at the start and end of these two half parabolae give the angle of

the character’s body at the end of the LAUNCH and DESCENT states respectively.

We derive a separate centre-of-mass curve from the fit parabolae which shares

the same maximum point. This is because the sketch indicates where the foot

(or feet) is to be placed at the start and end of the jump, but it is the centre-

of-mass which follows the parabolic flight path, not the feet. At the end of the

LAUNCH state we create the CoM curve such that the start point is at the location

of the centre-of-mass at the point of time where the character is just about to

take off of the ground. At this point we also check the apex point to make sure

that it is above the new starting point, otherwise the character would appear to

Appendix A. Controller Details 70

State Transition Notes

ANTICIPATE Timing Legs controlled by IK
LAUNCH Timing No special processing
ASCENT Timing Centre-of-mass (CoM) follows

parabolic arc from its position at
the start of the state to the apex
of the sketched arc at the end of
the state

DESCENT Ground contact Project where CoM must be to put
feet at end of arc at ground contact
and have CoM follow parabolic arc
from apex to that point

LANDING Timing Legs controlled by IK as CoM
continues downward, maintaining
ground contact velocity; degree
of crouch modified according to
height/distance of jump

FOLLOWTHROUGH Timing Same as LANDING

Table A.1: Jump Controller states.

jump in the wrong vertical direction. If the apex lies below the starting height

of the CoM then the target apex is readjusted upwards so that it will be above

the CoM’s starting height. At the beginning of the DESCENT state we must also

determine where the centre-of-mass needs to be at the end of DESCENT so that

the foot (or feet) will land at the point indicated in the sketch.

Table A.1 summarizes the details of each state and the special processing

that occurs in each state and on state transitions.

A.2 Flipping

The front and back flips were implemented as two separate controllers, although

the structure of both is similar. The state transition diagram is shown in Fig-

ure A.2.

The flip controller is similar to the jump controller. Indeed, jumping could be

viewed as a flip with no loops. The loops, or spins, that the character performs is

Appendix A. Controller Details 71

Figure A.2: Flip controller state transition.

what differentiates a flip from a normal jump. The time taken for a character to

do one flip is the average time, per loop, taken to draw all the loops in the loop

gesture. This is done to prevent abrupt changes in the angular velocity of the

character. Also because of the loops, unlike jumps, flips have no specific ASCENT

or DESCENT states since travelling along the upward and downward half of the

arcs is divided among the ASCENT, CURL, SPIN and UNCURL states. Whether the

character is ascending or descending depends on which half of the overall motion

the character is currently being performed. During the first half the character

ascends and during the second half it descends.

The two half parabolae tracked by the character’s centre-of-mass are created

in different ways for the flips and for the jump. Because a single flip may use

several loop gestures we find the maximum point over all the loops and use that

as the maximum for the parabolae. The first point of the first loop and last

point of the last loop provide the other two points for forming the parabolae.

Figure A.3 show some examples. As with the jump, the start and end point of

the fit parabolae indicate the placement of the feet and the centre-of-mass curve

Appendix A. Controller Details 72

is created from these parabolae as described for the jump.

Figure A.3: Example of flip parabolae. The two half parabolae, p1 and p2, are
labelled and the apex point is marked by a circle.

Table A.2 summarizes the details of each state and the special processing

that occurs in each state and on state transitions.

A.3 Walking

The walking controller is responsible for walking, tiptoeing and stomping. The

stiff-legged walk was implemented using a separate controller which has a similar

structure. Figure A.4 shows the state transition diagram.

The controller has eight states, consisting of two sets of four states which have

left-right symmetry. While the keyframes for each leg in our system are mirror

images of those for the opposite leg, this need not be the case if an asymmetrical

gait were desired. Under the current implementation, asymmetrical gaits can

be produced by mixing the different walk styles with each other and with the

Appendix A. Controller Details 73

State Transition Notes

CROUCH Timing Same as for jumping
LAUNCH Timing Same as for jumping
ASCENT Timing Same as for jumping, but only

traverses part of the upward
parabola

CURL Timing CoM continues traversing upward
arc as character curls into a ball

SPIN Number of Loops CoM finishes traversing upward
arc and switches to downward
arc; does same projection for
landing as with jumping (at the
point where the switch between
the upward and downward arcs
occur); remains in SPIN state
until all loops indicated in the
sketch have been performed

UNCURL Ground contact CoM finished traversing the
downward arc as the character
straightens out

LANDING Timing Same as for jumping
FOLLOWTHROUGH Timing Same as for jumping

Table A.2: Flip Controller states.

Figure A.4: Walk controller state transition.

Appendix A. Controller Details 74

shuffling motion, as described in section A.4. Examples of such mixed gaits are

illustrated in section 6.1.5.

A sequence of arcs produces a series of steps/tiptoes/stomps. The placement

of the apex of each arc determines which style is used for a given step. An apex

occuring close to the start of a step indicates a tiptoe. If the apex occurs close

to the end of the step it indicates a stomp and otherwise it is a normal step.

These differences are illustrated in figure A.5

Figure A.5: Variations in walk styles: Gestures (drawn left-to-right) for normal
walk (top), stomping (2nd line), tiptoeing (3rd line) and the stiff-
legged walk (bottom).

The end point of an arc indicates where the swing foot (the foot being

controlled by that arc) should be placed at the end of the step. The height of the

Appendix A. Controller Details 75

arc indicates how high the foot should be lifted off of the ground at mid-stance.

The starting point of an arc does not normally coincide with the location of the

swing foot at the start of the step so the arc as drawn is, in essence, stretched

so that the positions will match and it is this stretched version of the arc which

is used to guide the swing foot during a step. This is illustrated by Figure A.6.

Figure A.6: Foot Trajectories: the top shows a sequence of four arcs represent-
ing four walking steps. The bottom shows how the drawn arcs are
converted to foot trajectories. Arcs are labelled as corresponding
to the left (L) or right (R) foot. The character is assumed to start
at rest and end at rest after taking the four steps.

The positions of both feet are specified during a step: the support foot

does not move and the swing foot is guided by an arc derived from the input

sketch. The hips, however, still needs to be placed. In our system, the hips

are placed to be above the midpoint of the two feet. The vertical placement is

then constrained by the support leg which has its pose determined by the walk

keyframes.

The stiff-legged walk is specified by a sequence of spike gestures. As both

legs are kept straight in this version of the walk, the height of a spike does not

indicate how high the swing foot should be lifted off of the ground, although

Appendix A. Controller Details 76

State Transition Notes

CONTACT LEFT/RIGHT Ground Contact Support leg kept straight (if
possible) with IK done on
each leg as needed; swap
support and swing legs at
end of state

DOWN LEFT/RIGHT Timing Support leg allowed to fol-
low keyframes, swing leg
controlled by IK

PASSING LEFT/RIGHT Timing Same as with DOWN
LEFT/RIGHT

UP LEFT/RIGHT Timing Same as with CONTACT
LEFT/RIGHT

Table A.3: Walk Controller states.

this could be done to yield some highly exaggerated motions. Instead, the swing

leg is made to lie on the ray from the character’s hip to the point where the foot

would be for one of the other walk variations.

Table A.3 summarizes the details of each state and special processing the

occurs in each state and on state transitions. The names for these states were

taken from [Wil2001].

A.4 Moonwalking and Shuffling

The moonwalk and shuffle use separate controllers but are structured similarly.

The state transition diagram for these controllers a shown in Figure A.7.

Both the moonwalk and shuffling motion involve sliding both feet along the

ground so the only points that need to be extracted from the input sketch are

the start and end points of the gesture or gestures marking a single moonwalk

step or shuffle. The moonwalk is a highly stylized type of motion and is only

done moving backwards. A moonwalk consists of the following actions:

1. Right leg bent, heel up with toe on ground, left foot flat on ground

Appendix A. Controller Details 77

Figure A.7: Moonwalk/shuffle controller state transition. In the lift left and
lift right states the heel is lifted of the ground and in the drag left
and drag right states the left or right leg respectively is dragged
backwards along the ground.

2. Drag left foot backwards, right foot fixed

3. Straighten the right leg, putting heel on floor, put left leg in the right leg’s

former pose

4. Drag right foot backwards, left foot fixed

5. Repeat from 1

The LIFT states correspond to steps 1 and 3 where we position each leg

using IK. Neither foot moves at this time. Steps 2 and 4 are handled by the

DRAG states where the leg being dragged is kept straight and the other leg is

controlled through IK.

Shuffling is handled similarly to moonwalking except that neither heel is

lifted from the ground. Instead, foot sliding occurs in both LIFT and DRAG

states. Also, shuffling may proceed either forwards or backwards.

Table A.4 summarizes the details of each state and special processing that

occurs in each state and on state transitions.

Appendix A. Controller Details 78

State Transition Notes

LIFT LEFT/RIGHT Timing Heel of support leg is lifted off the
ground (moonwalk only); IK applied
to both legs

DRAG LEFT/RIGHT Timing Leg being dragged is kept unbent
with support leg being controlled by
IK

Table A.4: Moonwalking and Shuffling Controller states.

A.5 Sliding

The sliding motion is similar to shuffling, but different enough to warrant its

own controller. The state transition diagram is shown in Figure A.8.

Figure A.8: Slide controller state transition.

Sliding resembles a skating style of action where one glides along on one

foot with the other foot raised behind the body. The left and right PREP states

(short for preparation) allow for the support to shift from one leg to the other.

The left and right PUSH states are where the character pushes off and starts to

glide, raising the non-support leg to the bent, gliding position. Finally, during

the GLIDE states the character maintains its pose, sliding along the ground for

Appendix A. Controller Details 79

the remainder of the action.

Table A.5 summarizes the details of each state and special processing that

occurs in each state and on state transitions.

State Transition Notes

PREP LEFT/RIGHT Timing Switch support from one leg to the
other

PUSH LEFT/RIGHT Timing Begin sliding as non-support leg is
being raised

GLIDE LEFT/RIGHT Timing Maintain pose while sliding

Table A.5: Slide Controller states.

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Introduction
	A Simple Example
	A Gesture Vocabulary for Animation
	Quick to Learn
	Simplicity
	Content

	Organization

	Previous Work
	Sketch-based Modelling
	Performance Animation and Animation Sketching
	Sketch and Gesture Recognition

	System Overview
	System Organization
	Sketch Analysis
	Motion Controllers and Motion Parsing

	The Animated Character

	2D Motion Sketching
	Motion Sketching Definitions
	Sketch Analysis
	Analysis Overview
	Rough Segmentation
	Corner Detection
	Tokenization
	Identification

	Motion Controllers
	Controller Recognition
	Motion Synthesis

	3D Motion Sketching
	2D Input to 3D Sketch
	Mapping from 2D to 3D
	Resolving Ambiguities

	3D Motion Synthesis
	Foot Placement
	Direction Smoothing

	Results
	2D System
	Jumping and Variations
	Front and Back Flips
	Walking and Variations
	Moonwalking and Shuffling
	Combined Motions

	3D System
	Jumping and Leaping
	Front and Back Flips
	Walking
	Combined Motions

	Discussion

	Conclusions
	Limitations
	Future Work

	References
	Controller Details
	Jump, Leap, Hop
	Flipping
	Walking
	Moonwalking and Shuffling
	Sliding

