
A Hybrid Algorithm for Terrain Simplification

by

Xuanying Li

B.E., Xiamen University, 1998

M.E., Xiamen University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia

May 2003

c© Xuanying Li, 2003

Abstract

Terrain surface simplification or approximation is very important in many terrain-
related applications. Due to a variety of reasons such as the data acquisition method
and more detailed features information, terrain models are extremely, and not nec-
essarily, large nowadays. A fast algorithm that can produce compact yet highly
accurate model would be desirable.

In this thesis, a hybrid algorithm integrating greedy insertion and quadric
error based approximation is given. This algorithm is designed to provide a high-
quality approximation of original model, yet reasonably fast. Experiments show
quality improvements of the approximated models over previous methods.

ii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgements x

Dedication xi

1 Introduction 1

1.1 Terrain Applications and Terrain Simplification 2

1.2 Motivation . 2

1.3 Thesis Outline . 3

2 Background and Related Work 4

2.1 Goal of Terrain Simplification . 4

2.2 Representation of Terrain Surfaces 5

2.2.1 Data Acquisition Methods . 5

2.2.2 Digital Line Graph(DLG) . 6

2.2.3 Digital Elevation Models(DEMs) 6

2.2.4 Triangular Irregular Networks(TINs) 7

iii

2.3 Evaluation of the Quality of Simplified Models 9

2.3.1 Perceptual Similarity of Simplified Model 9

2.3.2 Geometric Error of Simplified Model 10

2.3.3 Evaluating the Quality of Mesh 14

2.4 Review of Terrain Simplification Algorithms 16

2.4.1 View-Dependent Multi-Resolution Terrain Simplification . . . 18

2.4.2 Multi-Processor Parallel Terrain Simplification 21

2.4.3 Out-of-Core Terrain Simplification 22

2.4.4 Appearance(or other feature) Preserving Terrain Simplification 22

2.4.5 Summary of Previous Work 23

3 A Hybrid Algorithm for Terrain Simplification 25

3.1 Greedy Insertion For Middle-Stage Model 26

3.1.1 Triangulation Data Structure 27

3.1.2 Naive Greedy Insertion Algorithm 27

3.1.3 Error Measure . 34

3.1.4 Insertion Strategy . 36

3.1.5 Feature Preserving Greedy Insertion 37

3.1.6 Greedy Insertion Summary 38

3.2 Top-down Decimation simplification 38

3.2.1 Vertex Pair Contraction . 38

3.2.2 Quadric Error Metrics . 39

3.2.3 Vertex Placement Strategy 41

3.2.4 Dealing with Discontinuities and Boundaries 44

3.2.5 Mesh Validity Check . 44

3.3 Combined Strategy . 45

4 Results and Performance Analysis 46

4.1 Time Complexity . 46

iv

4.2 Space Complexity . 47

4.3 Quality of Simplified Models . 49

4.3.1 Geometric Error of Simplified Model 64

4.3.2 Shrinking Effects . 72

4.3.3 Effect of the Size of Middle-Stage Model 78

4.3.4 Effect of Candidate Selection Strategy 78

5 Conclusion and Future work 82

5.1 Summary of Work . 82

5.2 Future Work . 82

5.2.1 Exploring Other Combined Strategy 82

5.2.2 Alternative Hybrid Strategy 83

5.2.3 Exploiting Terrain Features 83

5.2.4 Improve Robustness in the Presence of Noise 84

5.2.5 Supporting Multi−Resolution Represention 84

5.2.6 Exploiting Silhouettes to Improve the Rendering Quality . . 85

Bibliography 88

Appendix A Comparing Crater Models 93

Appendix B Shrinking Effects 107

v

List of Tables

3.1 Volume Error Criteria . 35

4.1 Comparing the VRMS of the cbaker model 67

4.2 Comparing the VRMS of the crater model 67

4.3 Comparing the VMAE of the cbaker model 68

vi

List of Figures

2.1 Comparing signed L2 norm and L2 norm 13

2.2 Comparing signed L2 norm and L2 norm 13

2.3 Invalid Mesh Structure . 14

3.1 Hybrid Algorithm: A two step process 26

3.2 Locality of Insertion . 31

3.3 Comparing Normal Error and Vertical Error 35

3.4 Vertex Pair Contraction . 39

3.5 One Surface with Two Tessellations 42

4.1 Cbaker: Comparing Running Time of Three Methods, with t < 0.15n 47

4.2 Cbaker: Comparing Running Time of Three Methods, with t > 0.15n 48

4.3 Full Model of cbaker; 127600 vertices, 253742 faces 49

4.4 Simplified cbaker; 77445 vertices,153742 faces 50

4.5 Hybrid Simplified cbaker; 5000 vertices, 9814 faces 52

4.6 QSlim Simplified cbaker; 5000 vertices, 9515 faces 53

4.7 Greedy Insertion Simplified cbaker; 5000 vertices, 9826 faces 54

4.8 cbaker: Comparing all 5000 models 55

4.9 Hybrid Simplified cbaker; 1000 vertices, 1865 faces 56

4.10 QSlim Simplified cbaker; 1000 vertices, 1805 faces 57

4.11 Greedy Simplified cbaker; 1000 vertices, 1927 faces 58

4.12 cbaker: Comparing all models with 1000 vertices 59

vii

4.13 Hybrid Simplified cbaker; 500 vertices, 930 faces 60

4.14 QSlim Simplified cbaker; 500 vertices, 869 faces 61

4.15 Greedy Simplified cbaker; 500 vertices, 954 faces 62

4.16 cbaker: Comparing all models with 500 vertices 63

4.17 Sample Terrain Models . 65

4.18 QSlim VRMS over improved Hybrid VRMS, 5 models 66

4.19 QSlim VRMS over Hybrid VRMS, five models 69

4.20 QSlim VRMS over Hybrid VRMS, six models 70

4.21 Greedy VRMS over Hybrid VRMS 71

4.22 Shrinking Points . 73

4.23 Comparing Shrinking Parts . 74

4.24 Comparing greedy points and hybrid points 75

4.25 Comparing QSlim points and hybrid points 76

4.26 Comparing three points set of cbaker 77

4.27 Crater: the Relation between VRMS and the size of Middle-Stage

Model . 79

4.28 Crater: Comparing Different Error Measures 80

4.29 Crater: Comparing the Three Best Error Measures 81

5.1 Two Silhouettes for crater . 86

A.1 Full Model of crater; 154224 vertices, 306860 faces 94

A.2 Hybrid Simplified crater; 5000 vertices, 9798 faces 95

A.3 QSlim Simplified crater; 5000 vertices, 9559 faces 96

A.4 greedy insertion Simplified crater; 5000 vertices, 9851 faces 97

A.5 crater: Comparing three methods for size 5000 98

A.6 Hybrid Simplified cbaker; 1000 vertices, 1883 faces 99

A.7 QSlim Simplified crater; 1000 vertices, 1813 faces 100

A.8 greedy insertion Simplified crater; 1000 vertices, 1935 faces 101

viii

A.9 crater: Comparing three methods for size 1000 102

A.10 Hybrid Simplified crater; 500 vertices, 936 faces 103

A.11 QSlim Simplified crater; 500 vertices, 870 faces 104

A.12 greedy insertion Simplified crater; 500 vertices, 956 faces 105

A.13 crater: Comparing three methods for size 500 106

B.1 Comparing the Shrinking Effect: Point Sets of the Three methods . 108

ix

Acknowledgements

First and foremost, I wish to thank my supervisor Dr. James J. Little. I wish to
thank him for his inspiring guidance and his magnanimousness. For these two years,
Jim has been a great help to me in both my academic and personal life. This work
would have been impossible without his efforts.

I would also like to express my sincere gratitude to my cosupervisor – Dr.
Wolfgang Heidrich. Dr. Heidrich is very patient and full of new ideas, and I benefited
a lot from many stimulating conversations with him. I also want to express my
special thanks to Dr. Will Evans for carefully reading my thesis draft and for his
many helpful suggestions. Thank you all for all your kind help and suggestions.

I also want to thank my many wonderful friends, Jihong Ren, Li Rui, Kejie
Bao, Qi Wei, Juan Li, Shaofeng Bu, Fahong Li, Peng Peng, Cai Kan, Zhimin Chen,
Xiushan Feng and many other friends. Thank you all for making my life in UBC a
wonderful memory.

I also owe a lot to my parents and brothers. Although far from home, I can
always feel their love and support. Knowing that they are always there backing me
up, I’m afraid of nothing.

My final, and most heartful, thanks must go to my husband Tianrun. He
always sees the best in me, and gives me strength and hope. His support, encour-
agement, and companionship have helped me though the hard time studying alone
in Canada. For all these, and for everything I’m now and will be in the future, he
has my everlasting love.

Xuanying Li

The University of British Columbia
May 2003

x

xi

Chapter 1

Introduction

The ability to create terrain models with increasingly greater details has increased

these years. As a result, terrain models tend to be more and more complex, and

extremely large; hundreds of millions of triangles are now common – many models

have billions of triangles. However, hardware performance cannot match the in-

creasing complexity of terrain models in many terrain-related applications, such as

realtime rendering, network transmission and terrain analysis.

Theoretically and ideally, the complexity of a terrain model should be decided

by the frequency of the terrain surface. However, nowadays, the complexity of

a terrain model depends largely on the data acquisition methods (which will be

discussed later) due to the fact that the frequency of a terrain surface is usually

unknown. Therefore, a complex representation is not always necessary, or at least

not necessary for the purpose of a specific application. For example, in computer

rendering applications, for a certain frame, if the viewpoint is far from the terrain,

then a very coarsely representation will suffice; for a closer viewpoint, the part that

lies outside the view-frustum will be totally unnecessary.

Therefore, although high complexity usually means rich details, it is not

always helpful; sometimes some parts of a complex model are totally unnecessary

and redundant, and thus become a burden for applications. Meanwhile, in many

1

applications involving terrain data, such as flight simulation, computer games and

virtual environments, the time and resource demanded by complex terrain models

are intimidating. Therefore, it would be ideal to reduce the complexity of terrain

models, while at the same time maintaining desirable fidelity in the final results.

1.1 Terrain Applications and Terrain Simplification

Terrain data are used in a variety of applications, such as digital topographic maps,

three-dimensional display of terrain for pilot training, virtual reality, games, land-

scape design and planning, viewshed analysis, planning of road or dam locations,

computing of slope and aspect maps to assist geomorphologic studies, and estima-

tion of erosion and run-off. A huge terrain data set will certainly slow down all

applications, therefore the applications will benefit from a compact yet accurate

terrain model. For different applications, the accuracy requirements may be differ-

ent, and they may have other requirements such as the preservation of slope, aspect,

visibility and drainage.

Generally, terrain simplification can be put as: given a set H of points (x, y, z)

that represent a terrain, try to find a set of points H ′ (often, but not necessarily, a

subset of H) to replace the old set H, so that H ′ is smaller and best approximates

H, i.e, for a given application, the result using H ′ is most like the result using H

itself.

1.2 Motivation

A model with a fixed resolution is not good for all applications and all users, due

to their different requirements, computer resources, and available time. Therefore,

it would be ideal for users to have the ability to control the size of the model, the

time needed to process the model, and the accuracy of the model.

Research in terrain simplification field has been active and fruitful for the

2

past years. However, achieving balance in the compactness, fidelity of the simplified

model and the speed of simplification still remains an open issue.

The motivation is to provide rendering applications (but also useful for other

applications) affordable (either in time or resource) terrain models yet with as high

fidelity as possible. We have analyzed pros and cons of many excellent surface

simplification algorithms, and decided to experiment on a hybrid algorithm which

integrates greedy insertion with quadric error based surface simplification[GH97].

We hope that this integration will improve the quality of approximation models

over the individual methods.

1.3 Thesis Outline

Chapter 2 will review some background knowledge, indispensable issues and recent

works in terrain simplification. Chapter 3 will give the details of our hybrid terrain

simplification algorithm. The experiment results and algorithm performance will be

given in Chapter 4. Finally, Chapter 5 will discuss the possible applications and

improvements of the hybrid algorithm.

3

Chapter 2

Background and Related Work

2.1 Goal of Terrain Simplification

For different applications, the goal of terrain simplification is different. For example,

for some viewshed analysis applications, the goal could be to preserve the inter-

point visibility of the simplified model, and thus accuracy in other aspects may be

sacrificed. Some applications or algorithms may emphasize other properties such as

color or texture as well. However geometric accuracy is the most common goal for

all applications, because geometric accuracy is indispensable to the representation

of the terrain either for rendering or for other terrain feature analysis. Geometric

accuracy gives the applications much versatility to do different analysis and yield

good results compared to original terrain models.

There could be two ways to achieve the goal of terrain simplification while

trying to preserve geometric accuracy. First, given a terrain surface T with n ver-

tices, find the most accurate approximation T ′ to T using only m (m ≤ n) vertices.

Second, given terrain surface T with n vertices and an absolute global error bound

ε, find the most compact approximation T ′ satisfying |T ′(u, v) − T (u, v)| ≤ ε for

all (u, v, T (u, v)) ∈ T . An approximation T ′ satisfies |T ′(u, v) − T (u, v)| ≤ ε for all

(u, v, T (u, v)) ∈ T is called an ε-bound approximation of T . In [AS], Agarwal and

Desikanhas have proved that finding the smallest ε-bound approximation of a sur-

4

face is NP-hard. Therefore, many algorithms have tried different heuristics methods

to find the best possible results, which, of course, may not be optimal.

2.2 Representation of Terrain Surfaces

We have only finite storage and finite resource to process terrain surfaces. There-

fore, an accurate yet compact representation of a terrain surface would be necessary.

Many representations of the terrain surface have been proposed, and they can be

divided into two categories. The first category uses mathematical functions to repre-

sent a terrain surface. Because usually one mathematical function is far from enough

to represent a natural terrain surface, this method divides the terrain surface into

many small patches, and fits a mathematical function to each patch. This method

is complex, involving many technical difficulties. The second category is much more

popular. This method uses a set of sample points, usually this is called Digital

Terrain Model or DTM, to represent the surface. However, the frequency of a

terrain surface is usually unknown. Therefore, this method tends to over-sample the

terrain surface.

In [Mar78], Mark has given a very detailed classification for DTM based on

the method of elevation representation. Regarding the composing elements of DTM,

he divided DTM (what he called tabular representation) into line representation

(DLG) and point representation. According to point distribution, he further divided

point representation into TIN and DEM.

In this section, the three most common DTMs: DLG, DEM and TIN, are

introduced and their pros and cons compared.

2.2.1 Data Acquisition Methods

Usually terrain surfaces in the real world are continuously variant. How do we

solve the conflict between finite storage resource and the infinite complex real world

terrain surface? Usually DTMs are collected from sampling and digitalizing.[DEM]

5

divides the data source into primary data source and secondary data source. Primary

data sources get terrain data by direct measurement using field sampling or remote

sensing, such as stereo photogrammetry. The resolution of the data is determined by

the density of sampling. Secondary data sources obtain terrain data from existing

maps, tables or other databases. This method is restricted in many ways, because

it needs to know the data acquisition and interpolation methods from which these

maps are made.

2.2.2 Digital Line Graph(DLG)

A Digital Line Graph (DLG) refers to the digital vector data representing carto-

graphic information. DLGs contain a wide variety of information depicting geo-

graphic features (for example, hypsography, hydrography, boundaries, roads, utility

lines, etc). DLGs are derived from hypsographic data (contour lines) using USGS

standards[DLG].

In this method, a terrain surface is represented mainly by a set of contour

lines. Contour lines are curves that connect surface points with the same elevation

value. They can be defined the as projection on the XY plane of intersections

between the surface and horizontal planes[con].

DLG is a very popular, human-oriented terrain representation for maps. It is

widely available, but not flexible for different terrain analysis and machine rendering.

Therefore, this representation has limited direct machine applications.

2.2.3 Digital Elevation Models(DEMs)

A DEM is defined as a raster or regular grid of sampled height values. It is usually

represented by a matrix of z(height) values for each point in a uniform grid. Each

point in the grid represents a point (x, y, z), where (x, y) is implicitly specified by the

position of the point in the grid. For example, the coordinates of top-left point are

usually (0, 0), indicating the origin of the coordinate system. There is a scale along

6

the x axis and y axis to specify the real distance between grid points. The smaller

the scale, the higher the resolution of the DEM, and also the more accurate the

representation of the real terrain surface. Currently, the best resolution commonly

available is 10m along the x and y axes, with 1m vertical resolution. The height of

a point in a terrain can be taken directly from DEM if it lies exactly on the grid or

by interpolation if it lies elsewhere.

The DEM representation is perhaps the simplest method for representing a

terrain surface. DEMs can be derived from both primary data sources, such as stereo

photogrammetry, and secondary data sources, such as conversion of printed contour

lines. DEMs are easy to access, flexible to processing and efficient to store. Different

DEM models cover most of the earth. The wide availability of DEMs makes them

very popular in many commercial or non-commercial applications and software for

features (drainage basin, watershed, drainage network and channels, peaks and pits,

modelling of hydrologic functions, energy flux and forest fires) extraction and other

applications.

However, the DEM model also has its disadvantages. Most DEMs come from

uniform sampling; the sampling density is the same everywhere in the terrain. How-

ever, terrain surfaces are usually highly irregular. This feature of terrain surfaces

usually demands a very dense sampling in order to make a reliable and accurate

DEM representation. The sampling rate is the same for the whole terrain surface,

either jagged surface or flat surface. This results in many unnecessary large and

redundant DEM models.

2.2.4 Triangular Irregular Networks(TINs)

An alternative representation of a terrain, the Triangular Irregular Network(TIN),

was proposed by Fowler and Little in [FL79] to address the limitation of DEM

representation. TIN (Triangulated Irregular Network) is a vector data structure

which depicts geographic surfaces as contiguous non-overlapping triangles. Within

7

each triangle, the terrain surface is approximated by a plane defined by the three

vertices of the triangle.

TINs do not come directly from most data acquisition methods. They are

usually extracted from DEM models using some algorithms. Basically two depen-

dent issues emerge to construct a TIN from a DEM. The first issue is how to choose

a set of sample points as the vertex set of the TIN. The second issue is how to

triangulate this vertex set. Almost all programs tend to choose sample points that

are most important. However, they vary in the measurement of sample points. For

the second issue, several triangulation schemes are available. Different triangulation

algorithms have different preferences when choosing the shapes of the triangles (i.e.,

how to triangulate the vertex set) too. Some may choose to minimize the angle be-

tween the two normals of adjacent triangles in order to enforce a smooth transition,

others may choose to maximize the minimum angle of a triangle, and still some oth-

ers try to minimize the total length of the triangles. The most popular triangulation

is the Delaunay triangulation. The Delaunay triangulation favors fat or equiangular

triangles and tends to choose a triangulation that minimizes total edge length. The

theory behind this is that the surface is more accurately represented at the vertices

than at interpolated points far from a vertex. Therefore, Delaunay triangulation

tries to make all points close to the vertices of the triangle where they are located.

Because the sample points in a TIN are irregularly distributed, more sample

points can be used for jagged areas and fewer for flat areas. Therefore, a TIN

may need fewer sample points than a DEM does to represent a terrain with the

same accuracy. Moreover, the triangle is the most popular primitive for drawing

– almost all graphics libraries and hardware support triangles. From this aspect,

a TIN is very useful for rendering for most computer graphics applications. One

more key advantage of TINs over DEMs is that the edges of triangles in TINs can

be adapted to be aligned with the breaklines (ridges, cliff lines) of the terrain to

better represent the real features of the terrain[FL79, LS01c]. Moreover, TINs are

8

usually more flexible and useful for feature analysis such as silhouette extraction,

visibility analysis and other possible applications. Currently there are also a lot of

commercial and non-commercial software using TINs as input models.

In DEMs, only one coordinate for each point needs to be stored, while for

TINs, three coordinates, and other connectivity information about the triangulation,

are required to aid the access and processing of the whole TIN for each vertex.

Therefore, it is hard to say which one is more efficient in terms of storage. If a DEM

is highly redundant, then its TIN would be more storage-efficient[Mar78].

Compared to DEMs, TINs are more complex, and not so widely available as

DEMs. However, many algorithms are available to convert a DEM to a TIN. So

availability should not restrict the use of TINs. Because TIN models have many

other advantages, they have also become popular input models for many programs.

2.3 Evaluation of the Quality of Simplified Models

There are several ways to evaluate how good a simplified model is. Different ap-

plications have different requirements. Therefore, their measures for the similarity

between the simplified model and the original model are also different. Some may

use one of the measures, while others may combine several of them.

2.3.1 Perceptual Similarity of Simplified Model

If the final purpose of a simplified model is for rendering, then the appearance on the

screen is the thing that matters. Both an over-simplified approximation and changed

topology will cause visual degradation of the simplified model. A very simple way

to measure this similarity is to compare the pixel difference between the rendered

images of the simplified model and the image of the original model. For a viewpoint,

let the image rendered from the original model be Io, and the image rendered from

the simplified model be Is. Suppose the size of the image is n ×m, and I(u, v) is

the intensity or RGB vector of a point (u, v) in image I, let ‖ Io(u, v) − Is(u, v) ‖

9

be the difference of the two intensity values or RGB vectors (L2-norm) Io(u, v) and

Is(u, v), then perceptual similarity measure between the two images can be given

by Equation 2.1.

Eimg =‖ Io − Is ‖= 1
n×m

∑
u

∑
v

‖ Io(u, v) − Is(u, v) ‖2 (2.1)

Of course, Eimg is viewpoint dependent, so for the same pair of a model and

its simplified model, the error measure is different for different view points. If a

simplified model is used for rendering from all directions, then an error measure

considering all view points will be necessary. However, this would not be feasible,

because we have an infinite number of viewpoints. How to select the set of viewpoints

to measure them remains an important problem.

2.3.2 Geometric Error of Simplified Model

Perceptual similarity defined above is only applicable to rendering applications. For

other applications such as feature computing, geometric similarity is the most im-

portant measure. Geometric accuracy also helps improve the perceptual similarity.

Vertical RMS Error(VRMS)

The vertical RMS error for a terrain surface approximation is like the L2 norm for

function approximation. For a function f(t) and its approximation f ′(t), the L2

norm is given by Equation 2.2.

‖ f − f ′ ‖=
√∫ b

a
(f(t)− f ′(t))2dt (2.2)

Assume that a TIN is constructed to approximate the terrain surface repre-

sented by a DEM. To measure the error of the TIN, TINs, compared to the DEM

model Do with size n×m, the VRMS (or L2-norm) can be given by Equation 2.3.

‖ TINs −Do ‖= 1
n×m

√
(
∑
u

∑
v

(HTIN (u, v) −HD(u, v))2) (2.3)

10

The definition of HTIN is given by Equation 2.4.

HTIN =




z if (u,v) is a vertex in the TIN, and z is the height of this point;
−(au+bv+d)

c , if (u, v) is not a vertex, but it is in triangle

with plane equation ax + by + cz + d = 0
(2.4)

Maximum Vertical Error

The maximum vertical error is a very strong error measure, providing a bounded

error control over the whole approximated surface. It limits the approximation

surface to lie between two offset surfaces.

The maximum vertical error for terrain surface approximation is similar to

the L∞-norm for function approximation. Again, the L∞-norm for function f(t)

and its approximation f ′(t) is given by Equation 2.5.

‖ f − f ′ ‖∞= Maxa≤t≤b| f(t)− f ′(t) | (2.5)

Equation 2.6 gives the maximum vertical error (or L∞-norm) of the approx-

imation TINs for original model Do.

‖ TINs −Do ‖∞= Max0≤u≤nMax0≤v≤m | HTIN (u, v)−HD(u, v) | (2.6)

The definition of HTIN(u, v) is given by Equation 2.4.

Signed Vertical RMS Error(SVRMS)

In addition to the two tradition measures mentioned above, we also tried signed

vertical RMS error, which is given by Equation 2.7. For a point (px, py, pz) and a

plane ax + by + cz + d = 0(c > 0), if apx + bpy + cpz + d > 0, then its error is given

a + sign (SIGNpx,py = +1), otherwise a − sign (SIGNpx,py = −1). The signed L2

11

norm is very similar to L2 norm, except that we add a sign before every error item.

‖ TINs −Do ‖SV RMS=
1

n×m

√
| (
∑
u

∑
v

(SIGNu,v)(HTIN (u, v) −HD(u, v))2) |

(2.7)

Vertical Mean Absolute Error

Vertical mean absolute error or VMAE is also a measure to evaluate the accuracy

of simplified models. VMAE gives the average of the absolute values of elevation

differences[JS98]. The VMAE between a DEM terrain HD and its TIN approxima-

tion HTIN is given by Equation 2.8.

‖ TINs −Do ‖V MAE=
1

n×m
(
∑
u

∑
v

|HTIN(u, v) −HD(u, v)|) (2.8)

Vertical Mean Error

If errors with signs are used instead of the absolute errors as in the previous section,

we have vertical mean error. Because signs are used, some errors may cancel each

other; this makes the final error appear smaller than vertical mean absolute error.

The VAE between a DEM terrain HD and its TIN approximation HTIN is given by

Equation 2.9.

‖ TINs −Do ‖V ME=
1

n×m
(
∑
u

∑
v

(HTIN (u, v)−HD(u, v))) (2.9)

Comparison of Different Errors

So far there is no ideal error measure that claims to fully reflect the degree of

fidelity of simplified models. Therefore it is necessary to understand the strength

and weakness of the measures we have right now.

As we can see from its definition, the maximum vertical error is a very

strong error measure, since it gives a global error bound over the simplified model.

It guarantees that the deviation between the approximated surface and the original

surface will be no further than the error bound. Compared to the maximum vertical

12

Figure 2.1: Comparing signed L2 norm and L2 norm

Figure 2.2: Comparing signed L2 norm and L2 norm

error, the RMS vertical error is not so strong, as it allows some big local errors, and

the RMS vertical error is more robust to noise than the maximum vertical error.

It is a good measure for the overall fitting quality of the simplified surface and

the original terrain. In [Gar99a], Garland has carefully compared these two error

measures.

Compared to the other two measures, signed vertical RMS error shares some

properties with RMS vertical error. The signed vertical RMS error favors a more

balanced approximation surface. RMS error is sensitive to noise and outliers. In

[JS98], Jünger and Snoeyink argued that VMAE is a good measure since it is more

robust against isolated errors and infrequent large errors, because VMAE weights

all error equally, while RMS error tend to emphasize large, maybe not infrequent,

errors.

For example, in Figure 2.1, for maximum vertical error, the errors of a and

b would be the same, for signed vertical RMS error, the error of a is zero while the

error of b is large. In Figure 2.2, teh maximum vertical error is teh same, vertical

RMS error favors a, and signed vertical RMS error favors b. Therefore, the signed

VRMS error favors an overall balanced approximated surface while allowing a larger

deviation from the original surface.

13

(a) OriginalMesh (b) Mesh after Contraction

Figure 2.3: Invalid Mesh Structure

2.3.3 Evaluating the Quality of Mesh

Sometimes maximum vertical error and vertical RMS error cannot fully indicate

the quality of an approximation. Because a DEM terrain surface is a 2.5D model,

overlapping is not allowed. Therefore, the validity of the topology of approximated

mesh is also an important measure.

Valid Topology

Sometimes certain operations in the simplifying process will result in unreasonable

mesh structure. Consider the following case in Figure 2.3. The left picture is the

original mesh, which is represented by dashed lines in picture b. After the contraction

operation (v1, v2) → v3, the two vertices v1 and v2 contract to the new point v3.

Then triangle (v2, v4, v5) will flip over to a new triangle A = (v4, v5, v3); Then

(v4, v5, v3) will overlap with another triangle B = (v3, v5, v6). This overlapping is

not a valid topology, because we use a 2D surface in coordinates - not a 2D manifold

in 3D.

14

Therefore, for simplification, it is necessary to check the validity of all opera-

tions to insure the consistency and validity of the topology of the simplified terrain

surface.

Triangle Shape

As we mentioned before, triangulation methods all try to avoid sliver triangles while

favoring fat triangles. There are several reasons behind this bias. One reason is that

the points in a fat triangle have shorter distance to the vertices of the triangles, where

the height value is exactly the same as original DEM. Another reason is that sliver

triangles may cause other problems. In [MP97], the author points out, in addition to

the potential inaccuracy caused by interpolation over a long distance, sliver triangles

may also result in distorted visual effects due to aliasing and ill-conditioned linear

systems which is not easy to solve.

In the triangulation process, there are several strategies to optimize the shape

of local triangles, including

1. Minimize the maximum (or the sum) of longest edge
perimeter

2. Minimize the maximum (or the sum) of the aspect ratios of triangles.

3. Maximize the maximum (or the sum) of the minimal angle of triangles

4. Minimize the maximum (or the sum) of the angles between the normals of

adjacent triangles

The Delaunay Triangulation, introduced by Delaunay[Del34] in 1934, has enjoyed

great popularity for many years. In a Delaunay triangulation, for any triangles abc

and abd, d is not inside the circumcircle of abc. For a vertex set V, the Delaunay

triangulation for it is unique. In 2D, the Delaunay triangulation of a vertex set

maximizes the minimum angle among all possible triangulations of that vertex set.

15

2.4 Review of Terrain Simplification Algorithms

The topology of a height field is relatively simple. Therefore, most surface simplifica-

tion methods should be applicable. However, because general surface simplification

algorithms need to consider many complex properties of different kinds of surfaces,

they are more complex and less efficient compared to those algorithms designed to

deal with only terrain surfaces.

In [HG97], Garland gives a very detailed survey of simplification algorithms

(including those on terrain surfaces) covering the literature before 1996. He divided

them into six categories:

1. Refinement Methods

2. Decimation Methods

3. Feature Methods

4. Regular Grid Methods

5. Hierarchical Subdivision Methods

6. Optimal Methods

Most algorithms accept DEM as input models, construct a compact representation

from it, and usually output the result as a TIN. Refinement methods start from a

very coarse model, and keep seeking the most important terrain point to refine the

model until requirements are met. Decimation algorithms start from the full model,

and keep killing unimportant points to get a compact model. Feature methods

consider the structure lines as the most important part when constructing a compact

representation[FL79], and they can start from both directions. Regular grid methods

are similar to subsampling. Hierarchical subdivision methods start from the full

model, and adaptively subdivide areas that have large errors. These five categories

of algorithms are all heuristic. The algorithms in the last category are optimal

16

methods. They try to find out the optimal approximation to the original model

using a representation with a certain size or satisfying certain requirements.

The six categories of algorithms mentioned above are the basic algorithms

for terrain simplification; there are still other algorithms that combine two or sev-

eral of these methods. One kind of algorithm is a hybrid refinement/decimation

method. In [HDD+93], Hoppe et al. proposed an algorithm which uses both edge

split (for refinement) and collapse (for decimation) to optimize a mesh. In [SC91],

Schmitt and Chen adopted a two-stage process - split-and-merge for range segmen-

tation applications. The split stage refined the triangulated approximation, while

the merge stage merged adjacent triangles with similar normals. In [JS98], Jünger

and Snoeyink present a two-side decimation/refinement. Decimation is done at the

server by ordering the vertices so that the most important vertices are transmitted

to the client first to support fast reconstruction over the network. Then those less

important vertices are transmitted to the client to refine the reconstruction until it

meets the resolution requirement of the user. In this way, decimation and refinement

are combined to support progressive transmission. The algorithm we propose is also

based on a hybrid idea.

In [CMS97], Cignoni et al. give a detailed characterization of mesh simplifica-

tion algorithms and compare the performance of those algorithms. Another survey

on general surface simplification is [Lue01]. Luebke surveys the field from the view-

point of a developer, and gives the strengths and weaknesses of different approaches.

However, both [CMS97] and [Lue01] mainly work on general surface simplification.

Therefore, many recent works and trends on terrain surface simplification are not

reviewed.

In this section, we will review terrain simplification algorithms after 1996.

Since 1996, many new algorithms addressing new issues in terrain simplification have

been proposed. Some tried to address terrain simplification for different application

purposes, and others proposed new triangulation methods and new data structures.

17

For rendering, many terrain applications also adopted other techniques to reduce the

popping artifacts between frame transitions. Basically the main stream in terrain

simplification includes:

1. View-Dependent multi-resolution representation and terrain simplification

2. Appearance(or other feature) preserving terrain simplification

3. Multi-processor parallel terrain simplification

4. Out-of-core terrain simplification

2.4.1 View-Dependent Multi-Resolution Terrain Simplification

For real-time rendering systems, the requirement on resolution varies with viewpoint.

For a close look, the resolution should be high; for a far viewpoint, the resolution

could be very low. An early solution is LOD (Level of Detail)[Cla76]. Represen-

tations with different resolutions are handmade or precomputed and stored. Then

at runtime, the system chooses the resolution according to how far the viewpoint is

from the terrain. This method only offers a fixed number of resolutions, and only

one resolution for the whole model at one time. LOD could be discrete, continu-

ous or view-dependent. View-dependent multi-resolution representation is a more

advanced solution. It allows variant resolutions across one model, and for each view-

point, and the most economical and appropriate combination of resolutions will be

computed. In recently years, hardware developments can hardly match the rendering

demands of many applications. As a good solution to this conflict, view-dependent

multi-resolution representation has been an active research field these years.

View-dependent Combined LOD based on TIN

TIN models are compact and flexible, and have many nice properties. Therefore,

some researchers try to construct multi-resolution TIN representations.

18

In [BFM95], Bertolotto et al. propose a TIN hierarchy. In [dBD95], deBerg

et al. first give a simplification algorithm that builds a hierarchical Delaunay trian-

gulation and combines different levels of detail into a single representation. Surfaces

with different LODs can be extracted in linear time. The algorithm divides the

initial surface into many small groups of Delaunay triangles. Starting from the full

model, the algorithm removes a number of non-adjacent vertices by selecting at

most one candidate point from each group in one simplifying pass. In this way, one

group of Delaunay triangles can be replaced by another group of triangles with lower

resolution. Although the way the candidate points are selected allows preserving

Delaunay properties and the construction of a hierarchy, the error of the next level

is not guaranteed. In [EKT01], Evans et al. also analyze this kind of algorithm,

and suggest dividing them into two subcategories based on whether the algorithm

will preserve the boundaries of coarse triangulations in a finer level representation.

Pros and cons of these two subcategories are also given.

View-dependent Multi-Resolution Representation based on Semi-regular

Subdivision

Semi-regular subdivision restricts the replacement of vertices. It is not as flexible

as a TIN; with the same number of triangles, the accuracy of a semi-regular sub-

division is never superior to the best TIN (because the semi-regular subdivision is

a TIN). But semi-regular subdivision is much simpler and faster to compute than

a TIN. Therefore, it has a better chance to run in a realtime environment than a

TIN. Because of these advantages, semi-regular subdivision terrain simplification

has been a very active research field. For these algorithms, the most popular sub-

division method is Longest Edge Bisection of isoceles right triangles[LKR+96,

RHS98, Ger03, LS01a, LP02]. Similar works include RTIN[EKT01, SP03], quad-tree

triangulation[Paj98, CE01], or bintree[DWS+97]. This subdivision refines an isoce-

les right triangle by bisecting the hypotenuse when higher resolution is necessary

19

for this coarse triangle. Cracks are avoided by some dependent splitting.

In [DWS+97], Duchaineau et al. propose an algorithm that allows real time

rendering of models with thousands of triangles. During preprocessing, a nested

view-independent error-bounded bintree is computed and stored. Then at run-

time, view-frustum culling, view-dependent splitting and merging of triangles are

performed. The triangulation is longest-edge bisection, splitting the hypotenuse of

a right-isosceles triangle to get two new smaller right-isosceles triangles, and doing

the inverse to merge two triangles. The transformation from one triangulation to

another is a sequence of these splits and merges. Two monotonic priority (usually

related to the error bound) queues, one for split and one for merge, are maintained

to sort the error bound of the triangles in the mesh. The split and merge processes

are driven by a greedy strategy. View-frustum culling, incremental T-Stripping,

Deferring Priority recomputation and progressive optimization are used to optimize

the algorithm.

In [CE01], Cline and Egbert propose a decimation algorithm called Q-morph.

Q-morph is very fast, and can run in a real-time interactive environment. The DEM

is subdivided to build quadtrees. When the viewpoint changes, these quadtree nodes

are clipped against the view frustum. Those quadtree nodes that are inside the view

frustum are further subdivided according to the LOD parameter which is controlled

by the viewpoint. As usual, cracks are prevented by enforcing a common boundary

between neighboring nodes. Popping artifacts are eliminated by a position-based

morphing.

In [EKT01], Evans et al. propose an approximation algorithm based on a

hierarchical RTIN(or right-triangulated irregular network). It is fast and supports

multi-resolution representation well. The algorithm in [LKR+96] is similar to this

one. Compared to [EKT01], the method in [LKR+96] is more like a combination

of RTIN and a sub-grid. [LKR+96] may be more storage efficient than [EKT01],

because it stores an error for each vertex, while the method in [EKT01] stores an

20

error per triangle. The benefit of this storage cost is that [EKT01] can guarantee a

given tolerance of the original elevation model. The price for the speed and simplicity

is accuracy. Evans et al. also compare the performance between RTIN and TIN,

finding that the accuracy achieved by a RTIN as a function of the number of points

in the approximation is worse than the accuracy of a TIN.

In [PAL02], the algorithm of Pajarola et al. combines the TIN model with

the Quad tree structure. It constructs a quadtree triangle hierarchy on TIN terrain

to provide adaptive LOD triangulation. The real time rendering of the height field

uses additional Steiner points. To speed up rendering, triangle strips are used to

represent the result.

In [SP03], Surez and Plaza present a very simple refinement and coarsening

algorithm of complexity O(n) and O(logn) based on the RTIN. The error metrics

they use are very interesting. They propose two error measures. The first one

compares the area included in two contour lines between the original mesh and the

simplified mesh. The larger the area difference, the worse the quality of the mesh.

The second one uses a measure called Signal Noise Relation. The time complexity

is similar to those algorithms in [EKT01, LKR+96]. The implementation of both

data structure and algorithms are very simple.

2.4.2 Multi-Processor Parallel Terrain Simplification

Simplifying extremely large models demands a huge amount of memory and other

computer resources. This demand, however, often cannot be satisfied by current

hardware. Therefore, many researchers now try to partition a huge data set into

small workable pieces, and simplify them either separately or sequentially, and then

stitch the results from each small piece together.

In [GS], Ghodsi and Sack propose a solution to use more than one processor

to compute terrain simplification. The algorithm begins with partitioning the terrain

into small pieces, and simplifies them separately, and then combines them together.

21

In [KLYP00], Kang et al. partition a DEM into rectangular blocks of the

same size, and simplify each of them separately with greedy insertion and Delaunay

triangulation. The process for each block only refers to the points in the local block,

rather than points in the whole DEM. They claim that to reach the same accuracy

as greedy insertion for the whole DEM, their algorithm is about four to more than

twenty times faster than greedy insertion. However, they did not give a scheme on

how to choose the number of blocks. Also, we do not know which greedy algorithm

they are comparing against.

2.4.3 Out-of-Core Terrain Simplification

Due to the huge amount of memory needed to simplify extremely large models, sev-

eral “out-of-core” or “memory-insensitive” simplification algorithms are proposed.

These algorithms use disk to replace memory, and store some intermediate results on

disk. Because disk access is usually slow, external sorting and sequential access are

used to minimize random access and minimize disk access time. A typical algorithm

is OoCSx by Lindstrom et al. in [LS01a, LP02].

In [LP02], scalable out-of-core simplification and view-dependent visualiza-

tion of general surfaces using external memory are presented. The whole process

has three phases: the first two are off-line simplification and off-line LOD hierarchy

construction, and the last phase is run-time view-dependent refinement and render-

ing. In the algorithm, an Octree is constructed over a uniform grid, each node of the

Octree representing an expandable vertex node for certain LOD level. Simplification

and refinement are done by collapsing or expanding vertex nodes.

2.4.4 Appearance(or other feature) Preserving Terrain Simplifica-

tion

In [BMKN02], Ben-Moshe et al. propose a new method for terrain simplification

based on a new quality measure. Because it addresses applications such as facility

22

location which relies on inter-point visibility relationships, the most important goal

of their algorithm is to preserve the inter-point visibility. Their basic idea is that

the view between points is usually blocked by ridges. Therefore, they compute and

approximate the ridge network first. This ridge network forms a natural subdivision

of the terrain. Then each patch in the subdivision is simplified independently using

one of the standard terrain simplification methods.

In rendering application, some terrain simplification algorithms also try to

preserve some appearance features such as color or texture, not only geometric

accuracy. The idea behind this is that color or texture is more important than

purely geometric accuracy. In [Sug00], Suglobov sacrifices a little geometric accuracy

for the sake of better textures of the simplified model in computer entertainment

applications. However, these algorithms do not eliminate the demand on geometric

accuracy; instead, they are usually based on geometric accuracy.

Miscellaneous Algorithms

In [AD97], Agarwal et al. propose a randomized algorithm to compute an ε−approximation

of size O(c2log2c) in O(n2+ε + c3log2clogn
c) expected time where c is the size of the

smallest ε-approximation and n is the number of terrain vertices. They formulate

the terrain simplification problem as a 2D hitting set problem and adapt the ran-

domized algorithm of Clarkson[Cla87] to compute a small hitting set. This is a

suboptimal algorithm that guarantees an error bound. It has high time complexity

and is hard to code. This kind of algorithms does not seem to guarantee better

results than heuristics methods.

2.4.5 Summary of Previous Work

View-dependent multi-resolution representation is the trend of future terrain simpli-

fication, because it lowers the demand on computer hardware of many applications

with huge terrain data sets. However, the basic simplification techniques remain

23

the same. They are combined with other techniques to allow fast view-dependent

rendering and multi-resolution in a single representation.

24

Chapter 3

A Hybrid Algorithm for Terrain

Simplification

The hybrid algorithm is motivated by two basic terrain approximation algorithms.

The first one is a refinement method – greedy insertion[FL79]. It starts from a very

simple model, usually a model with only two triangles, and then keeps looking for

the worst fit point and inserts it into the mesh.

The second algorithm is Qslim by Michael Garland in [GH97]. It is quadric

error based decimation. Starting from the full DEM model, it calculates the cost

to contract all valid vertex pairs (mostly pairs connected by an edge), and then

contracts the vertex pair with lowest cost, usually, the least important points.

Decimation removes details whereas greedy insertion adds points to represent

detail. Both methods are very popular, and QSlim is a good balance between

accuracy and speed. However, both algorithms make irrevocable decisions as they

go, and they never get a chance to review their decisions, while backtracking is too

expensive. We suspect that there may be some shortsighted moves.

We thus propose a hybrid terrain simplification algorithm. The hybrid algo-

rithm integrates the above two algorithms with the hope that this integration can

retain the advantages of both while avoiding some disadvantages.

25

Figure 3.1: Hybrid Algorithm: A two step process

We assume the input data set is a DEM - a discrete two-dimensional set of

samples D. The output of the algorithm will be a TIN. The hybrid algorithm is a

two-step simplification process. The target model T has t vertices. First, a middle-

stage model M with m vertices is constructed using greedy insertion; usually, the

size of the middle stage model M is bigger than the target model T (m > t).

In the second stage, the middle stage model M is shrunk to the target model T

using iterative quadric error based vertex pair contraction. This process is shown

in Figure 3.1. In the first step, we adopt Delaunay triangulation; for the second

step, because of the optimal target vertex placement strategy, we do not enforce

Delaunay constraints any more.

3.1 Greedy Insertion For Middle-Stage Model

Greedy insertion terrain simplification is a kind of refinement algorithm. This kind

of algorithm has been developed for over two decades, and has many variants. De-

pending on how many points are inserted in one pass, it can be divided into two

subcategories, sequential greedy insertion and parallel greedy insertion. Sequential

greedy insertion inserts only one point in one pass, as in [FFP83], while parallel

greedy insertion inserts a set of points in one pass as in [FL79]. Usually the candi-

date points are selected as the worst fit point in the current model, but some other

26

feature points (points located in ridges, peaks, or valleys) are also added to the

mesh by some algorithms[FL79, Hel90]. Greedy insertion is a basic idea in terrain

construction, which can be combined with other techniques to allow hierarchical

representation and view-dependent LOD representation of terrain models.

3.1.1 Triangulation Data Structure

There could be several ways to store a triangulation, such as a list (array) of tri-

angles. However, this list does not provide topological information that records

connectedness (adjacencies) between vertices, edges, and faces. Without topologi-

cal information, many operations would be very clumsy. For example, finding the

vertices adjacent to a given vertex and edge flipping. In [GS85], Guibas and Stolfi

proposed the Quad-Edge data structure and discussed it together with its topo-

logical operators in great detail. In our implementation, we adapt the Quad-Edge

structure to store the basic triangulation results.

3.1.2 Naive Greedy Insertion Algorithm

Let the target model T have t vertices, and the input model D be a DEM with n

vertices. The pseudo code of a naive greedy insertion algorithm controlled by vertex

number is:

27

Algorithm 3.1.1: GreedyInsertion(D, t)

/ ∗ initialize mesh (using the 4 corners of D) to 2 triangles ∗ /

mesh(D.se,D.ne,D.nw,D.sw);

/ ∗ set current vertex number ∗ /

i← 4;

while (i ≤ t){
max error← 0;

candidate← NULL;

for each (p∈D){
tri← locate(mesh, p);

/ ∗Calculating the error of the point with respect to the triangle where it is located ∗ /

p.error← tri.error(p);

if (p.error > max error){
max error← p.error;

candidate← p;

}
}
mesh.insert(candidate);

i + +;

}

Obviously, this naive algorithm is very slow and inefficient. Each time we

insert a new point, all the points in the DEM will be recalculated to update their

errors. To calculate the error of a point, first, we need to find out which triangle

this point is located in. This is done by a routine called locate(mesh, p). A simple

solution is to use the “walking method” by Guibas and Stolfi. Starting from an edge

in the mesh, this method walks toward the target along the edges in the mesh. In

the implementation, the algorithm will maintain a starting edge to start the walking.

For a mesh with i vertices, the worst time for locating p is O(i). Since there are

28

n points in the DEM, therefore, the cost will be O(ni) in the worst case for each

insertion. Usually, the starting edge is set to be an edge of the triangle that has

the newest inserted point. This does not guarantee good performance. To estimate

the time cost, let us assume that a random starting edge is selected. Guibas and

Stolfi estimate the expected cost for this random locating operation to be O(
√

i) for

a Delaunay mesh with i vertices. A better solution is to set the starting edge to be

the edge that is returned by the last locating operation. This reduces the time to

near constant, because we follow the raster order in the DEM when we process the

points. In this case, we can expect the time for one location to be constant O(1),

and for one loop, the total cost for n points would be O(n).

Then, the interpolation of each point in its corresponding triangle needs to

be calculated to get its error. After all errors are calculated, they need to be sorted

to find out the k points with highest errors in parallel greedy insertion. Without

using a heap, the total cost per pass (including cost for quick sorting) would cost us

O(nlog(n)) in the average case, and O(n2) in the worst case. However, if we only

need to find the point with maximum error, the cost will be reduced to O(n) per

pass.

The last step is to insert the point(s) with highest error to refine the current

coarse mesh. When inserting a point, edge swappings are necessary to maintain the

Delaunay triangulation. The time for an insertion depends on how many edge we

need to swap. In the worst case all the edges are swapped, which will take O(i)

time for a mesh with size i. Therefore, for sequential single-point greedy insertion,

the worst case time complexity per pass would be O(ni) for locating points, O(n)

for selecting the worst point, and O(i) for insertion. The entire algorithm takes∑t
i=1 O(in) = O(t2n) time. In practice, we expect the time per pass will be O(n)

for locating points, O(n) for selecting candidate point, and O(i) for inserting a point,

making the total time
∑t

i=1 O(n) = O(tn). For a large terrain model, this cost is

still too prohibitive. Therefore, we adopted several optimizations to speed up the

29

algorithm. After all the optimizations, the algorithm is very similar to the greedy

insertion in [GS95].

Exploiting Locality using Triangle Structure

In addition to the mesh (quad-edge) structure to store the topological information,

we add one more basic data structure – triangle. The triangle is a very basic element

in our implementation. We make the triangle an “intelligent agent”. Each triangle

is responsible for selecting its candidate point, updating the errors of the points

when the triangle is newly created, and maintaining its error measure.

When a new point is inserted into the mesh, the affected region is called

the update region. The size of the update region varies with different meshes and

different parts of the mesh, but usually only a very small part of a mesh needs to

be updated for one insertion. For example, consider the insertion in Figure 3.2.

When point D is inserted, only triangle ABC and the three triangles around

it need to be retriangulated, and only the points that are in these four previous

triangles need to update their errors.

Using triangles, the update region can be easily tracked. Each time we insert

a new vertex, some old triangles, which contain the inserted point or had their edges

swapped, will be killed, and their contribution to the total error statistics (such as

highest error, total volume error) will be cancelled, and a new set of triangles will

be there to replace them. The update region, obviously, consists of only those newly

created triangles. Upon the creation of a new triangle, the triangle will scan itself

to update the errors of those points located in its territory, search for its highest

error and corresponding candidate point, keep a record of its volume error, and also

update the error statistics with its appropriate parts. Therefore, after we finish the

triangulation of the update region, the update region has already been updated.

By using this mechanism, upon each insertion, the huge effort to recalculate

every triangle’s error at every pass is avoided.

30

(a) Insertion

(b) After Swapping

Figure 3.2: Locality of Insertion

31

Heap Structure for Faster Candidate Selection

In Section 3.1.2, without heap, the smallest cost for one selection in a sequential

greedy insertion algorithm will be O(n) for an input model with n vertices. For a

parallel greedy insertion, the cost will be O(nlogn) per selection when using quick

sort. We need an efficient way other than scanning the entire grid to find the ideal

candidate in each pass, for both sequential and parallel greedy insertion.

A heap is very appropriate structure here because of its relatively low cost

for operations such as insertion and deletion and constant time to extract the top

element. For a heap with size i, the cost for an insertion and a deletion will be

O(logi), and cost for extraction of top element will be O(logi). Therefore, we use

a heap to store necessary information to select candidates for insertions. Usually a

heap node stores a pointer to a triangle, and the error of the triangle’s candidate

as its key value. Each time a new vertex is inserted, some obsolete triangles will be

replaced by some new triangles, and the heap structure will maintain the sorting

information of all the current triangles in current mesh.

So how many insertions and deletions will we do in one insertion? Basically,

for an insertion, one big triangle (the top triangle in the heap) where this point

is inserted will be deleted from the heap, and three new triangles will be inserted,

and for each edge swap, two old triangles will be deleted and two new ones will be

inserted. Therefore, for each insertion, the size of the heap will grow by two. Letting

the number of total edge flips be k, the total deletion and insertion operations will

be (3 + 4 ∗ k). However, we expect this k to be a small constant number, as we

have seen from tracking how many times heap delete and heap insert are called.

Therefore we can expect that for each pass, the cost for heap operations will be

O(log(i)).

32

Algorithm 3.1.2: Optimized Greedy Insertion(F, t)

/ ∗ initialize mesh using the 4 corners of F to a 2 triangles ∗ /

mesh(D.se,D.ne,D.nw,D.sw);

/ ∗ set current vertex number ∗ /

i← 4;

while (i ≤ t){
/ ∗ process all the changed edges to retriangulate update region;

New triangles will be created here; ∗ /

Process UpdateRegion();

toptri← heap.extracttop();

toptri.insertcandidate();

i + +;

}

Algorithm 3.1.3: ProcessUpdateRegion()

Edge e← mesh.UpdateEdgeList.extract first();

while (e! = NULL){
/ ∗ remove the next edge in its triangle ∗ /

UpdateEdgeList.remove(e.next);

UpdateEdgeList.remove(e.prev);

ntri← CreateNewTriangle(e);

ntri.ScanTriangle();

heap.insert(ntri);

e← mesh.UpdateEdgeList.extract first();

}

Worst Case Time Cost

In the worst case, when we insert a new point, all the old triangles are affected by

33

this new insertion, therefore, the update region will be O(i). In this case, the cost of

heap operations can reach O(ilog(i)). Since these triangles cover all the points in the

input model, we need to calculate the new errors of all n points, taking O(n) time.

Therefore, the worst case time cost will be
∑t

i=1 O(ilog(i)+n) = O(max{t2lgt, tn}).
Expected Case Time Cost

How big is the update region? In [GS95], Garland pointed out that, for most sur-

faces, the update region has expected area O(n/i), since n points divided among ap-

proximately 2i triangles gives an average area of O(n/i). As we analyzed previously,

in each pass, the cost of the heap operations is O(log(i)), and the cost for updating

the mesh is O(1). Therefore, the cost on the average will be
∑t

i=1 O(n/i + logi) =

O((n + t)logt)

3.1.3 Error Measure

In Chapter 2, we have given two commonly used error measures (vertical maximum

error and vertical root mean squared error) and a short comparison between them.

In this section, the error measures we use in our algorithm will be discussed in full

detail.

We have experimented with ten error measures to evaluate the quality of

the mesh and to select the next insertion candidate, based on work of Little and

Shi[LS01c]. In Table 3.1, a summary of these measures are given.

Orthogonal Error

Orthogonal error (or normal error) is defined as the perpendicular distance between

a point and a plane.

In Figure 3.3, the normal distance between point p and plane A is Na, and

Nb is the normal distance between point p and plane B, while Va and Vb are their

vertical correspondents.

34

Name Meaning
M2 Max Vertical Error
V2 Sum of Norm Error
V3 Sum of Signed Norm Error
V4 Sum of Vertical Error
V5 Sum of Signed Vertical Error
V6 Triangle Area
V7 Sum of Squared Norm Error
V8 Sum of Squared Vertical Error
V9 Sum of Signed Squared Vertical Error
v10 Sum of Signed Squared Norm Error

Table 3.1: Volume Error Criteria

Figure 3.3: Comparing Normal Error and Vertical Error

35

Vertical Error

In Figure 3.3, Va and Vb are vertical errors.

The vertical error of a triangle is the highest vertical error among all the

points in its territory. If the vertical error is chosen to be the error criteria, then the

key value of the heap will be the vertical error of each triangle. The algorithm will

choose the triangle that has highest vertical error and insert its candidate point.

Volume error

The two methods mentioned above consider the point that has the highest error in

a triangle, while volume errors take all the points in a triangle into consideration. In

Table 3.1, letter V means volume error. When one volume error is selected, it will

be the key value in the heap, and the top triangle in the heap has the highest volume

error. However, the criteria for selecting a candidate in a triangle still remains the

same – the candidate point always has the highest vertical error among all the points

in this triangle.

V 2 uses the sum of normal error as the volume error of the triangle. V 3 uses

the sum of signed normal error. V 7 is the sum of squared normal error. V 10 is

the sum of signed squared normal error. V 4 and V 5 are the correspondents of V 7

and V 10 with vertical error. V 8 is the sum of squared vertical error and V 9 is the

sum of signed squared vertical error. V 6 uses the area of a triangle as the key value

in the heap. The algorithm will always select the biggest triangle to insert a new

point. However, for flat area, a big triangle is not a problem. We do not expect the

performance of V 6 to be high. We are curious to know which one is best.

3.1.4 Insertion Strategy

With the heap and triangle data structure, the hybrid algorithm can support both

sequential and parallel greedy insertion very easily.

36

Sequential Greedy Insertion

On each pass, the top triangle in the heap will be selected to insert its candidate

point. Then after insertion, the update region is retriangulated and the errors of

those points in this area will be updated.

Partially Parallel Greedy Insertion

In one pass, the strategy for parallel greedy insertion is to insert a predefined number

of points or insert points that have error bigger than some threshold all together.

This may not be good, as many researchers have pointed out, because it is easy to

cause unnecessary dense sample points in one area. One insertion in this area may

bring down all the local errors. However, because we insert at most one point for

one triangle, the parallel greedy insertion in our hybrid algorithm is not the same

as the parallel greedy insertion in the traditional meaning.

In the hybrid algorithm, we will select a bunch of triangles, either a prede-

fined number or according to their highest error, and insert their candidate points.

Because our new set of triangles is created after all new points are inserted, this

parallel insertion of points is seamlessly supported by the hybrid algorithm. We are

curious about how well this partially parallel greedy insertion works. Because of the

previous analysis on parallel greedy insertion, we expect the result of partially par-

allel greedy insertion to be inferior to sequential insertion. We will give our results

in a later chapter.

3.1.5 Feature Preserving Greedy Insertion

Based on work of Little and Shi in [LS01c], feature preserving is also supported in our

algorithm. To make our program more flexible, we separate the feature extraction

from mesh reconstruction. As a result, our algorithm would accept a feature file

consisting of feature vertices and features edges as input, and those features will

remain intact during mesh reconstruction.

37

3.1.6 Greedy Insertion Summary

Our algorithm is similar to the optimized algorithm III in [GS95]. However, our

algorithm is more powerful and flexible, and yet maintains a good time complexity.

3.2 Top-down Decimation simplification

Many simplification algorithms employ decimation. Refinement mostly works on

curves and height fields. However, decimation can work on more general surface

such as polygonal surfaces. Decimation methods include vertex clustering, region

merging, wavelet decomposition and vertex decimation. In [GH97], Garland and

Heckbert proposed a new vertex decimation algorithm using quadric error metrics.

Their algorithm is kind of “vertex-pair contraction”, but the error measure they use

is new and interesting. This algorithm is widely acknowledged because of its good

balance between accuracy and speed.

3.2.1 Vertex Pair Contraction

The algorithm begins with the original full model. It iteratively removes vertices and

degenerate faces from the mesh to simplify the original model. The whole procedure

is performed in a greedy way; each time, it selects the best candidate pair of vertices,

and contracts them. To perform contraction on a pair of vertices (vi, vj), it simply

performs the following steps, as illustrated in Figure 3.4.

1. Based on error metrics, compute an optimal position using quadric error met-

rics for this pair of vertices, and change the coordinates of vi to that optimal

position.

2. Replace all vj with vi.

3. Delete vj and the degenerate faces (usually two triangles that share edge

< vi, vj >)

38

Figure 3.4: Vertex Pair Contraction

Vertex pair contraction is a generalization of edge contraction. In Garland’s

algorithm, contraction of a vertex pair that is not connected is allowed. This will

sometimes change the topology of the surface. However, our hybrid algorithm only

allows vertex pairs that are connected by an edge to be contracted. Therefore, in our

case, it is in fact an edge contraction. This preserves the topology of the simplified

surface.

3.2.2 Quadric Error Metrics

To evaluate the cost to contract a vertex pair, Garland et al. propose a new error

measure – Quadric Error Metrics. Their idea is to find an error measure that is cheap

to evaluate yet still good enough to provide a sufficient accuracy of approximation.

They associate a set of planes with every vertex of the model. Those planes represent

the faces that are incident to this vertex.

For a vertex in the original surface, the distance from this vertex to all

the incident planes in the original surface will be zero. As many vertex pairs are

contracted, the resulted vertices from these contractions may move away from the

original surface. The further these resulted vertices move away from the original

planes, the farther the approximation surface deviates from the original surface. Let

39

us assume that those original planes are represented by (ni, di), where ni = (ai, bi, ci)

and a2
i + b2

i + c2
i = 1, and the equation for this plane is aix + biy + ciz + di = 0.

Therefore, the sum of the distances between the vertex and the planes will be a

good measure for how far the point (x, y, z) has deviated from the original surface.

This measure is given by Q(v) in Equation 3.1.

Q(v) =
∑

i

(nT
i + di)2 =

∑
i

(aix + biy + ciz + di)2 (3.1)

When two vertices (vi, vj) are contracted to a new vertex v′i, the plane set

for v′i should be planes(vi) ∪ planes(vj). One solution is to explicitly track all the

planes associated with each vertex. However, this may consume too much storage

and time. Garland invented a very convenient way to represent this error using a

matrix. Let pi = [ai bi ci di]T , then Q(v) can be rewritten as in Equation 3.2.

Q(v) =
∑

i

(nT
i + di)2

=
∑

i

(pT
i v)2

=
∑

i

vT (pip
T
i)v

= vT

(∑
i

Ki

)
v. (3.2)

where K is called fundamental error quadric matrix for a plane p = [a b c d]T , given

by Equation 3.3.

Ki = ppT =




a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2




(3.3)

To avoid tracking the planes that are associated with a vertex, when a edge

(vi, vj) is contracted to a new vertex vk, the algorithm assigns the fundamental error

40

quadric matrix of the new vertex vk to be the sum of the fundamental error quadric

matrix of its two parents, that is, Q(vk) = vT
k (Ki + Kj)vk. This method introduces

some inaccuracy, because if the two plane sets of the two parent vertices are not

disjoint, then the two planes that have (vi, vj) as one of their edges will be counted

twice; Garland has analyzed that in the worst case, a plane could be counted three

times. The benefit from this compromise is the great savings in storage and time

used for tracking the plane set that is associated with a vertex.

It is ideal that with the same surface, different tessellation will not affect the

quadric error metrics. However, with the above quadric error matrix, this is not the

case. For example, in Figure 3.5, because all the triangles come from the same plane,

therefore, the plane equations are the same, and their fundamental error quadric

matrices will also be the same, let it be K. For the left tessellation, the sum of

all the plane matrices will be 2K, while for the right tessellation, the sum will be

4K. As a result, for the same vertex v, and the same new target position v′, the

error of the right tessellation will be two times that of the left tessellation, which

is not reasonable. To solve this problem, Garland uses area weighted quadrics.

Letting Q be the quadric determined by plane f , he divides the face f into three

fragments, and constructs three fundamental quadrics w1Q, w2Q,w3Q for the three

fragments. Each vertex v of f will receive the fundamental quadrics wiQ of the

fragment adjacent to the vertex. He also proposes using area as the weight, that

is, wi is assigned a value according to the area of the fragments. His solution is to

divide the face f into 3 equal parts. Therefore, each fragment will receive weight

wi = areaf/3. Back in Figure 3.5, both tessellations will receive a quadrics areafQ

and the quadrics will be tessellation-independent.

3.2.3 Vertex Placement Strategy

As we mentioned in 3.2.1, in vertex pair contraction, we are going to use a new vertex

vk to replace the original vertex pair (vi, vj). The choice for vk will be a critical part

41

Figure 3.5: One Surface with Two Tessellations

to ensure a good approximation. In [GH97], one strategy is subset placement. The

target position vk is chosen to be either vi or vj , depending on which one, Qvi or Qvj ,

is better (smaller). Subset placement tends to be more storage efficient compared to

other strategies we will discuss later, because we can store the contraction pair in

such a way that the first vertex will be the vertex that replaces the original vertex

pair. For example, if we are going to contract vertex pair (vi, vj) to (vj), we will

save the vertex pair as (vj , vi), so that we know that vj replaces the pair. By doing

so, no extra storage is needed. Meanwhile, using subset placement will produce an

incremental representation.

An alternative strategy is optimal placement. We know that Q is a matrix,

so an optimal placement will try to find a vertex vk which makes Q(vk) minimal.

Let

Q =


 A b

bT c




42

then we will have Equation 3.4.

vk = −A−1b (3.4)

However, A could be singular when all the planes in Q are parallel. In this

case we can not get vk using Equation 3.4. For this case, Garland et al. suggest to

find the best position along line segment between vi and vj. If this does not produce a

unique solution, then use subset placement. Compared to subset placement, optimal

placement needs extra space to store the new vertex vk. However, the approximation

produced by optimal placement tends to deviate less from the original, and mesh

quality is better too–with better shaped triangles.

Garland has demonstrated the connection between the quadric measure and

surface curvature. He visualizes the quadric isosurfaces, which reflect the local shape

of the surface. The isosurfaces are long in the direction of low curvature while short

in the direction of high curvature. The author also demonstrates that the solution

given by Equation 3.4 is the center of the quadric isosurface, and also coincides with

the optimal position derived using the least squares method to solve the normal

equations [Gar99b]:

Nvk = −d

where d is a vector of length k which satisfies nT
i v + di = 0(the plane equation) and

N is the k × 3 matrix of the normals of the set of the planes:

N =




nT
1

nT
2

...

nT
k




=




a1 b1 c1

a2 b2 c2

...

ak bk ck




and vk is the target placement of the vertex. His further analysis finds out that the

eigenvectors of the quadric matrix A (which is given in Section 3.2.3) are roughly in

the directions of the average normal, the direction of maximum curvature, and the

direction of minimum curvature. These will be the axes of the resulting ellipsoidal

isosurface.

43

3.2.4 Dealing with Discontinuities and Boundaries

Discontinuity usually indicates a significant feature such as a crease or a ridge. Dec-

imation should avoid destroying these features to preserve visual fidelity. Quadric

error metrics implicitly preserve discontinuity, because the algorithm is designed to

be strongly biased against altering the shape of sharp edges. Let us take a sharp

edge of a cube for example. A point on the edge will have two or more perpendicular

planes adjoining it. Therefore, quadric metrics will favor the target point moving

along the edge while punishing (giving high cost to) the contraction that moves

the target point outside the edge. As for boundaries, special constraints should

be enforced, because boundary the itself does not mean any natural discontinuity.

Garland solves this problem by making it act as if it were a discontinuity edge. We

make them sharp edges by adding a “virtual” perpendicular plane to a boundary

face. To make it even stronger, we can add a big penalty factor. To avoid the tessel-

lation affecting the weight for the quadrics of the boundary edges, the author uses

squared edge length instead of using area to weight it. The author also generalizes

this method to preserve arbitrary contours and points.

3.2.5 Mesh Validity Check

Sometimes a vertex pair contraction may result in undesirable changes, such as

overlap, to the mesh. For example, in Figure 2.3, after contraction, triangle A and

B fold over each other. Because all of our faces are pointing up with the z component

of the normal positive, each time we plan to do a contraction, we will do a false

contraction first, and if we find that one of the resulted faces will flip over, then we

add a huge penalty factor to its cost, and reinsert it into the heap.

44

3.3 Combined Strategy

We have tried several strategies to integrate greedy insertion with quadric error

based decimation. The two-step process we mentioned is just one strategy that

works best. Let the target model have t vertices, let m satisfies (m > t), we test

three strategies. The first one is to do the shrinking once, that is, grow the coarse

model to size m, then shrink it to size t. The idea of the second strategy is to aim

to t, the steps are given as following:

1. Grow to m0

2. Shrink to t0

3. Grow to mi

4. Shrink to ti

5. Repeat (3) and (4) until ti = t

The third strategy is given as following steps:

1. Grow to m0

2. Shrink to t0

3. Grow to mi

4. Shrink to ti

5. Repeat (3) and (4) until ti = k (k > t)

6. Shrink the model from step (5) to size t

45

Chapter 4

Results and Performance

Analysis

4.1 Time Complexity

In Section 3.1.2, we have analyzed the time complexity for the greedy insertion

stage. To construct a middle stage model with size m from a DEM with size n,

the worst case time cost for greedy insertion is O(max{m2logm, nm}), and the

“expected” time cost is O((m + n)logm). For the second stage, the job is shrinking

the middle stage model with size m to target size t. In [GH97], Garland has stated

that the time complexity to shrink a model of size m to target size t is expected

to be O(mlogm − tlogt). Therefore, the overall expected time complexity will be

O((m + n)logm). Section 4.3.3 will further demonstrate that m will usually be no

more than 2t, which makes the final expected time complexity be O((t + n)logt).

Figures 4.1 and 4.2 give a comparison of empirical running times between the

Greedy Insertion, Qslim and hybrid algorithms for the cbaker terrain model. Figure

4.1 compares the time of the three methods when the target size is no larger than

19000 for the cbaker model, while Figure 4.2 compares the time of the three methods

when the target size is larger than 19000 for the cbaker model. The hybrid algorithm

46

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Comparing Running Time of Three Methods

Vertex Number in Target Model

R
un

ni
ng

 T
im

e(
se

co
nd

)

Greedy
Hybrid
QSlim

Figure 4.1: Cbaker: Comparing Running Time of Three Methods, with t < 0.15n

is faster than QSlim when we use less than 15% of the vertices of the original full

model. However, after that, QSlim runs faster than the other two methods.

4.2 Space Complexity

In the greedy insertion stage, the memory usage is distributed among four data

structures: they are the height field, the mesh, the heap, and the triangles. Let the

size of the height field be n; the size of mesh, heap and triangles are all proportional

to the number of vertices of the mesh m, therefore, the memory cost is O(m + n).

For the second stage, in [Gar99b], Garland has analyzed the space cost. He

gives his storage cost as 268 bytes per vertex, which is huge, and it is uniquely

47

21000 26000 31000 37000 42000 47000 52000 57000
1

2

3

4

5

6

7

8
Comparing Running Time of Three Methods

Vertex Number in Target Model

R
un

ni
ng

 T
im

e(
se

co
nd

)

Greedy
Hybrid
QSlim

Figure 4.2: Cbaker: Comparing Running Time of Three Methods, with t > 0.15n

48

Figure 4.3: Full Model of cbaker; 127600 vertices, 253742 faces

decided by the input model itself. In the hybrid algorithm, the size of middle stage

model is usually much smaller than n itself. As a result, the hybrid algorithm has

an advantage in the space cost. The overall space cost will still be O(n + m).

4.3 Quality of Simplified Models

One very important goal of terrain simplification is the high fidelity of the simplified

models. Any algorithm, however fast it is, would be meaningless if it does not

resemble the original model at all. In this section, I will give several pictures of the

cbaker terrain model and its simplified versions produced by the hybrid algorithm,

QSlim and greedy insertion.

The full model converted from DEM file is given in Figure 4.3. The mesh is

obviously over-dense for the current view. Because the density of vertices is so high,

the mesh can hardly be recognized. The model in Figure 4.4 is about half of the

size of the full model. For the current view, it is hard to tell the difference between

49

Figure 4.4: Simplified cbaker; 77445 vertices,153742 faces

it and the full model.

To compare the simplified models from three methods, the full model is

simplified by a large degree to make the difference between the three methods dis-

tinguishable. Figures 4.5, 4.6 and 4.7 give the three simplified models with size

about 4% of original model. In these three pictures, all of the three simplified mod-

els have good visual fidelity to the original model. It is hard to tell the difference by

shading. Careful examination shows that the silhouettes from Figure 4.7 (by greedy

insertion) and Figure 4.5 (by hybrid) are very similar and accurate compared to the

original model, while the silhouette in Figure 4.6(by QSlim) has one missed peak

and one incorrect round curve patch in the silhouette. Figures 4.9, 4.10 and 4.11

give the simplified models using only 1000 vertices. All three silhouettes are not

accurate any more, but for the overall shading, Figure 4.9 is the best among the

three. Figures 4.13, 4.14 and 4.15 give the simplified models using only 500 ver-

tices. Greedy insertion captures one peak better than the other two, and the hybrid

50

works better than QSlim, because the simplified model from QSlim has degraded

very much. Again, for the overall shading, Figure 4.13 is the best among the three.

Better shading means the model has more accurate curvature along the terrain sur-

face, therefore, the fidelity of surface is higher. Those differences can be even more

easily seen in Figures 4.8, 4.12, 4.16.

51

(a) FullModel

(b) Surface

(c) Mesh

Figure 4.5: Hybrid Simplified cbaker; 5000 vertices, 9814 faces
52

(a) FullModel

(b) Surface

(c) Mesh

Figure 4.6: QSlim Simplified cbaker; 5000 vertices, 9515 faces

53

(a) FullModel

(b) Surface

(c) Mesh

Figure 4.7: Greedy Insertion Simplified cbaker; 5000 vertices, 9826 faces

54

(a
)

Fu
llM

od
el

(b
)

H
yb

ri
d

(c
)

Q
Sl

im
(d

)
G

re
ed

y

F
ig

ur
e

4.
8:

cb
ak

er
:

C
om

pa
ri

ng
al

l
50

00
m

od
el

s

55

(a) FullModel

(b) Surface

(c) Mesh

Figure 4.9: Hybrid Simplified cbaker; 1000 vertices, 1865 faces

56

(a) FullModel

(b) Surface

(c) Mesh

Figure 4.10: QSlim Simplified cbaker; 1000 vertices, 1805 faces

57

(a) FullModel

(b) Surface

(c) Mesh

Figure 4.11: Greedy Simplified cbaker; 1000 vertices, 1927 faces

58

(a
)

Fu
llM

od
el

(b
)

H
yb

ri
d

(c
)

Q
Sl

im
(d

)
G

re
ed

y

F
ig

ur
e

4.
12

:
cb

ak
er

:
C

om
pa

ri
ng

al
l
m

od
el

s
w

it
h

10
00

ve
rt

ic
es

59

(a) FullModel

(b) Surface

(c) Mesh

Figure 4.13: Hybrid Simplified cbaker; 500 vertices, 930 faces

60

(a) FullModel

(b) Surface

(c) Mesh

Figure 4.14: QSlim Simplified cbaker; 500 vertices, 869 faces

61

(a) FullModel

(b) Surface

(c) Mesh

Figure 4.15: Greedy Simplified cbaker; 500 vertices, 954 faces

62

(a
)

Fu
llM

od
el

(b
)

H
yb

ri
d

(c
)

Q
Sl

im
(d

)
G

re
ed

yI
ns

er
ti

on

F
ig

ur
e

4.
16

:
cb

ak
er

:
C

om
pa

ri
ng

al
l
m

od
el

s
w

it
h

50
0

ve
rt

ic
es

63

A similar result can also be derived from another model, as shown in the

figures in the Appendix.

4.3.1 Geometric Error of Simplified Model

Visual similarity is only one aspect of fidelity, and it is very subjective and vague.

Geometric error provides a more objective and more precise way to measure the

fidelity of simplified models.

Some typical sample terrain models and their sizes are given in Figure 4.17.

cbaker is a very jagged model. crater is a model full of different features such as

valleys, peaks and lakes. lcrater is part of crater, only without the lake. Ritz1 is

very flat. Yakima2 is a terraced model, and yakima3 is a model that is mostly flat,

but with a small number of high peaks with steep cliffs.

Table 4.1 gives a comparison of the VRMSs from the three methods for

the model cbaker. Column “Target size” gives the size of the target models. The

VRMSs from the hybrid algorithm are the smallest among the results of the three

methods. Table 4.2 gives similar results for the terrain model crater. Table 4.3 gives

a comparison of the VMAEs from the three methods for the terrain cbaker. The

results of hybrid are the best for all the three tables.

64

(a) cbaker, 290x440 (b) crater, 336x459

(c) lcrater, 230x459 (d) ritz1, 300x300

(e) yakima2, 256x256 (f) yakima3, 256x256

Figure 4.17: Sample Terrain Models

65

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

1.5

2

2.5

3

3.5

4

4.5
qslim vrms/hybrid vrms

vertices in simplified model

qs
lim

 v
rm

s/
hy

br
id

 v
rm

s

cbaker
crater
lcrater
ritz1
yakima2

Figure 4.18: QSlim VRMS over improved Hybrid VRMS, 5 models

66

Target size hybrid VRMS QSlim VRMS greedy insertion VRMS
1000 9.4299 10.6784 13.7980
2000 5.7039 6.5290 8.5539
3000 4.2354 4.7840 6.5259
4000 3.4276 3.8018 5.3646
5000 2.8636 3.1661 4.5771
6000 2.4956 2.7283 3.9834
7000 2.1976 2.4000 3.5104
8000 1.9645 2.1411 3.1738
9000 1.7837 1.9323 2.8832
10000 1.6301 1.7660 2.6300

Table 4.1: Comparing the VRMS of the cbaker model

Target size hybrid VRMS QSlim VRMS greedy insertion VRMS
1000 5.1621 6.0398 7.0222
2000 3.2191 3.6889 4.5065
3000 2.3989 3.2581 3.3853
4000 1.9968 2.9158 2.7544
5000 1.7096 2.5659 2.3520
6000 1.5437 2.2677 2.0555
7000 1.3667 1.7380 1.8441
8000 1.2568 1.5869 1.6709
9000 1.1702 1.4903 1.5332
10000 1.0729 1.4049 1.4106

Table 4.2: Comparing the VRMS of the crater model

Let us define error ratio as the ratio of the VRMS of the QSlim result to

the hybrid result. Figure 4.19 shows the error ratio of the VRMS of the simplified

model produced by Qslim to that produced by the hybrid algorithm. The numbers

on the x axis are the size of the simplified models, while the y axis gives the error

ratio. Note that the y axis starts with coordinate 1.05, which means for all models,

the result of the hybrid algorithm is superior to that of QSlim. Improvement varies

67

Target size hybrid VMAE QSlim VMAE greedy insertion VMAE
1000 0.7450 0.8569 1.3890
2000 0.4622 0.5237 0.8715
3000 0.3552 0.3746 0.6645
4000 0.2865 0.3110 0.5635
5000 0.2434 0.2614 0.4835
6000 0.2123 0.2303 0.4210
7000 0.1898 0.2025 0.3677
8000 0.1681 0.1814 0.3343
9000 0.1543 0.1630 0.3064
10000 0.1414 0.1484 0.2822

Table 4.3: Comparing the VMAE of the cbaker model

with different models, ranging from 7.5% to 10 times less error. Figure 4.19 only

gives the error ratios for five sample models; the ratio of yakima3 reaches 10.00,

much bigger than the other models. Figure 4.20 gives the error ratios of all six

models. Great improvement is obvious for models with very huge cliffs, while the

improvement for flat models with low curvature is relatively small.

68

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55
qslim vrms/hybrid vrms

vertices in simplified model

qs
lim

 v
rm

s/
hy

br
id

 v
rm

s

cbaker
crater
lcrater
ritz1
yakima2

Figure 4.19: QSlim VRMS over Hybrid VRMS, five models

69

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

2

3

4

5

6

7

8

9

10

11
qslim vrms/hybrid vrms

vertices in simplified model

qs
lim

 v
rm

s/
hy

br
id

 v
rm

s

cbaker
crater
lcrater
ritz1
yakima2
yakima3

Figure 4.20: QSlim VRMS over Hybrid VRMS, six models

Figure 4.21 shows the error ratio of the VRMS of the simplified model pro-

duced by greedy insertion to that produced by the hybrid algorithm. The x axis

and the y axis are set up the same as in Figure 4.19. The y axis starts at 1; the

simplified models from the hybrid algorithm have smaller error than their corre-

sponding error produced by greedy insertion; the improvement ranges from 5% to

80%. On the contrary to Figure 4.20, the two models with the highest improvement

– yakima3 and crater – have the lowest improvement in Figure 4.21. The reason

why this happens still needs to be explored.

70

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

← cbaker

← crater

← lcrater

← ritz1

← yakima2

← yakima3

greedy vrms/hybrid vrms

vertices in simplified model

gr
ee

dy
 v

rm
s/

hy
br

id
 v

rm
s

cbaker
crater
lcrater
ritz1
yakima2
yakima3

Figure 4.21: Greedy VRMS over Hybrid VRMS

71

4.3.2 Shrinking Effects

The hybrid algorithm has an overall better performance than the other two algo-

rithms. We are curious about why the hybrid algorithm performs better than the

other two. Figure 4.22 gives a comparison between two point sets of the cbaker

model: one is before shrinking, the other is after shrinking. a is the point set shrunk

from a point set of size 600 from the Greedy method, which is shown in subfigure c,

using QSlim; b and d are their corresponding meshes. A more detailed comparison

is given in Figure 4.23. a gives the original point set before shrinking; vertices are

represented by black dots. b plots out the two point sets in the same picture with a

grey background, with black dots representing points before shrinking, white dots

representing points after shrinking. Comparing these two sets of points, we can see

that Qslim only makes changes where there are small triangles, i.e, where edges

are short and vertices are densely distributed. Similarly, Figure 4.24 compares the

greedy point set with the hybrid point set of the size 500 and Figure 4.25 compares

the QSlim point set with the hybrid point set. Figure 4.26 gives the three point

sets derived from the three methods with size 500. In the Appendix, color pictures

showing the first point set, the second point set and their interaction are given in

Figure B.1. From those pictures, we can clearly see the difference between the point

sets. Compared to the Greedy method, the hybrid method tends to balance the

distribution of vertices. It removes some parts of greedy points in dense areas, and

adjusts the position of some greedy points to give a more balanced representation

of the original model. Compared to the Greedy method, the vertices of QSlim are

more evenly distributed. The hybrid method alters the QSlim point set in some

parts of the terrain such as areas with acute elevation changes, which possibly leads

to a more accurate represented terrain representation.

72

(a) hybrid600-500points (b) hybrid600-500mesh

(c) greedy600points (d) greedy600mesh

Figure 4.22: Shrinking Points

73

(a) cbakergreedy600points (b) cbakerhybrid600-500points

Figure 4.23: Comparing Shrinking Parts

74

(a) cbakergreedy500points (b) cbakerhybrid600-500points

Figure 4.24: Comparing greedy points and hybrid points

75

(a) cbakerqslim500points (b) cbakerhybrid600-500points

Figure 4.25: Comparing QSlim points and hybrid points

76

(a
)

cb
ak

er
hy

br
id

60
0-

50
0p

oi
nt

s
(b

)
cb

ak
er

qs
lim

50
0p

oi
nt

s
(c

)
cb

ak
er

gr
ee

dy
50

0p
oi

nt
s

F
ig

ur
e

4.
26

:
C

om
pa

ri
ng

th
re

e
po

in
ts

se
t

of
cb

ak
er

77

4.3.3 Effect of the Size of Middle-Stage Model

As we mentioned before, the hybrid algorithm uses a two-stage process. Instead of

constructing the target model T with t vertices directly, a middle-stage model M

with m (m > t) vertices is first constructed. Therefore, the choice of the size m of

the middle-stage model T is a natural concern.

Figure 4.27 shows the relation between the candidate size of the middle stage

model and the VRMS of the target model. Analysis of other terrain models also

gives similar results. The x axis shows the size of middle stage models; the number

on each curve is the size of the target model; the y axis gives the VRMS of the

target model. In Figure 4.27, the VRMS error becomes stable after the size of

middle-stage model grows big enough; usually twice of the target size is enough.

Therefore, the cost of greedy insertion is bounded. Therefore, good VRMS can

be achieved without using a big size original model, which is also why the hybrid

algorithm can be superior to QSlim.

4.3.4 Effect of Candidate Selection Strategy

In Section 3.1.3, different error measures for triangles have been discussed; they are

M2, V 2, V 3, V 4, V 5, V 6, V 7, V 8, V 9 and V 10. These error measures directly

affect the way candidate points are chosen, because the triangle is the basic unit to

insert new points as the model grows.

In Section 3.1.3, I conjectured that M2, V 4, V 5, V 8 and V 9 would have

better performance than other measures. Which one is the best among M2, V 4,

V 5, V 8 and V 9 is still unknown. From Figure 4.28, V 8, V 9 and M2 are found to be

the best ones. Because VRMS is used as the error criteria to measure the accuracy

of approximated models, it is not surprising that they perform the best, since V 8

and V 9 tend to choose insertions that favor decreasing deviation, which is directly

related to VRMS. Figure 4.29 gives clearer details between the three best measures.

It is hard to tell which is the best from this figure. V 9 seems to have overall the

78

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

← 2000

← 3000

← 4000

← 5000
← 6000

← 7000
← 8000

← 9000
← 10000

← 1000

crater model vrms

shrink from

vr
m

s

Figure 4.27: Crater: the Relation between VRMS and the size of Middle-Stage
Model

79

5000 10000 15000 20000 25000 30000
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2
Comparing Error Measures

vertices in simplified model

V
R

M
S

v2
v3
v4
v5
v6
v7
v8
v9
v10
m2

Figure 4.28: Crater: Comparing Different Error Measures

best quality. The hypothesis is that V 9 tends to build a more balanced surface,

which will help greedy insertion to chose the possible most appropriate candidate

point to insert. Little and Shi have given a more detailed comparison and much

more experimental results [LS01b].

80

5000 10000 15000 20000 25000 30000
1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1
Comparing V8, V9 and M2

vertices in simplified model

V
R

M
S

v8
v9
m2

Figure 4.29: Crater: Comparing the Three Best Error Measures

81

Chapter 5

Conclusion and Future work

5.1 Summary of Work

I have given a hybrid algorithm which integrates greedy TIN generation with quadric

simplification. Experiments prove that the hybrid algorithm improves the overall

approximation performance over both previous algorithms in both geometric error

and visual fidelity, and also in time compared to quadric simplification when using

a small approximation.

5.2 Future Work

5.2.1 Exploring Other Combined Strategy

Intuitively, the last two combined strategies we mentioned in Section 3.3 should be

effective. However, it is mysterious that they do not seem to be so. Due to our

tight schedule, we did not find the reason, which could be very helpful for choosing

a combined strategy.

82

5.2.2 Alternative Hybrid Strategy

The current hybrid algorithm is a two-step process. For a target model T with t

vertices, a middle-stage model M with m (m > t) vertices is first constructed, then

shrunk to the target model T . One alternative is to do this in the reverse direction.

First, shrink the full model DEM D with n vertices to a middle stage model M

with m vertices (m < t), then use greedy insertion to grow the model M to the

target model T . The early insertions of the greedy insertion algorithm are very

costly, because they need to scan large areas of terrain in order to select candidates

and update errors. With this construction order, when the greedy insertion begins,

the terrain region has been divided into many small regions, so the greedy insertion

can avoid scanning large areas and the running time would speed up. In the first

strategy, we are saving time for QSlim. With this alternative, we are saving time for

greedy insertion. Because QSlim runs much faster than greedy insertion when the

target model is large, we would expect a large improvement in the time performance

for the hybrid algorithm. We can combine these two strategies together: if the target

model is small, use greedy− qslim; if the target model is large, use qslim− greedy.

Whether this strategy helps improve the approximation quality still needs to be

explored.

5.2.3 Exploiting Terrain Features

Little and Shi have studied how to exploit terrain features in terrain simplification in

[LS01c]. They have shown structure lines and feature points help improve the accu-

racy of approximated models. The hybrid algorithm inherits the ability to include

structure lines and feature points into an approximation model as in their work.

However, surprisingly, using structure lines and feature points does not improve

performance in the hybrid algorithm, and in most cases the results are worse. We

are very eager to explore how structures lines and feature points and their selection

affect the hybrid algorithm. If the problem can be identified, then the performance

83

of the hybrid algorithm can be further improved.

5.2.4 Improve Robustness in the Presence of Noise

Both greedy insertion and quadric decimation have no mechanism to deal with noise.

Both methods simply treat noise as surface features. In [Gar99a], Garland has shown

that approximations from quadric decimation degrade gracefully for noisy models.

But greedy insertion certainly does not do well on noisy models. It simply picks

the point with highest error and inserts it into current mesh, without considering

whether it is noise or a real data item. Furthermore, it uses the plane decided by

the three vertices of the triangle to approximate the local surface. Therefore, a noise

datum can survive in the approximation and has no chance to be found. To improve

the tolerance of the hybrid algorithm to noisy data, prefiltering of the surface model

and better plane selection to fit a set of points located in the triangle will be needed.

5.2.5 Supporting Multi−Resolution Represention

As mentioned in Chapter 2, view dependent LOD approximations (multi−resolution

representions) have been very popular in recent years because they produce faster

and better approximations for a certain view point. They provide a more balanced

solution to address the requirements of current computer rendering applications –

high frame rate and acceptable image quality.

The greedy insertion algorithm does not naturally support a multi-resolution

representation. However we can divide a big terrain into many smaller blocks, com-

pute multiple levels of detail for each of them, and then combine them to get a

multi−resolution representation for a given view point. As for QSlim, Garland[Gar99a]

has proposed to use vertex hierarchies to address the problem of multi-resolution

representation, similar to the methods in [Hop98, Hop97, KT96, XV96].

In order to make the hybrid algorithm support multi−resolution representa-

tion, we can still use the solution mentioned above for greedy insertion. However,

84

this method is not as flexible as progressive mesh and vertex hierarchies methods.

How to improve the hybrid algorithm to flexibly support multi−resolution represen-

tation still needs to be explored.

5.2.6 Exploiting Silhouettes to Improve the Rendering Quality

For polygonal meshes, the silhouette is defined as the set of all edges that connect

back-facing polygons to front-facing (possibly visible) polygons. For a smooth sur-

face, the silhouette can be defined as those surface points xi with a surface normal

ni perpendicular to the view vector:

ni · (xi − C) = 0

where C is the camera center.

Due to the properties of human perception, a detailed silhouette in a coarsely

modeled surface may be sufficient for recognition and navigation purposes for cer-

tain applications such as flight simulation. Therefore, if accurate silhouettes for

terrain models can be extracted in realtime, combining them with approximated

models will improve the visual fidelity, or at least visual recognizability for ren-

dering applications. Silhouettes may also help guide and enhance view-dependent

simplification.

Basically there are two categories of algorithms to extract silhouettes. One

category is rendering-based silhouette extraction, and a typical work is by Raskar

and Cohen in [RC99]. Because this method needs to render the whole image to get

the silhouette edges, it will not help up to improve the accuracy of the silhouettes

of approximated models because actually the approximated models instead of the

original full models will be rendered. Only the silhouette of the original full model

helps improve the rendering results of a coarse model. The second category is geom-

etry based silhouette extraction. A typical work is by Barequet et al. in [BDG+99].

Neat silhouettes can be extracted, as shown in Figure 5.1. Their algorithm is fast,

but for huge terrain models, realtime extraction remains a problem.

85

(a) Silhouette one for crater

(b) Silhouette two for crater

Figure 5.1: Two Silhouettes for crater

86

Therefore, realtime silhouette extraction, silhouette guided simplification and

rendering are open problems that deserve further research.

87

Bibliography

[AD97] Pankaj Kumar Agarwal and Pavan Kumar Desikan. An efficient al-
gorithm for terrain simplification. In SODA: ACM-SIAM Symposium
on Discrete Algorithms (A Conference on Theoretical and Experimental
Analysis of Discrete Algorithms), pages 139–147, Jan 1997.

[AS] Pankaj K. Agarwal and Subhash Suri. Surface approximation and ge-
ometric partitions. In SODA: ACM-SIAM Symposium on Discrete Al-
gorithms (A Conference on Theoretical and Experimental Analysis of
Discrete Algorithms), pages 24–33.

[BDG+99] Gill Barequet, Christian A. Duncan, Michael T. Goodrich, S. Kumar,
and M. Pop. Efficient perspective-accurate silhouette computation. In
Symposium on Computational Geometry, pages 417–418, 1999.

[BFM95] Michela Bertolotto, Leila De Floriani, and Paola Marzano. Pyramidal
simplicial complexes. Symposium on Solid Modeling and Applications,
1995.

[BMKN02] Boaz BenMoshe, Joseph S. B. Mitchell, Matthew J. Katz, and Yu-
val Nir. Visibility preserving terrain simplification an experimental
study. In ACM Symposium on Computational Geometry, pages 303–
311, Barcelona,Spain, June 2002. SoCG.

[CE01] David Cline and Parris K. Egbert. Terrain decimation through quadtree
morphing. In IEEE Transactions on Visualization and Computer Graph-
ics, volume 7, pages 62–69. IEEE, 2001.

[Cla76] James H. Clark. Hierarchical geometric models for visible surface algo-
rithms. In CACM, volume 19 of 10, pages 547–554, 1976.

[Cla87] K. L. Clarkson. New application of random sampling in computational
geometry. Discrete and Comput. Geom., 2:195–222, 1987.

88

[CMS97] P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh sim-
plification algorithms. Technical report, Istituto di Elaborazione dell’
Informazione-Consiglio Nazionale delle Ricerche, 1997.

[con] http://sputnik.dpi.inpe.br/teoria/mnt/mnteng.htm.

[dBD95] Mark T. de Berg and Katrin T. G. Dobrindt. On levels of detail in
terrains. Technical report, Department of Computer Science, Utrecht
University, April 1995.

[Del34] Boris N. Delaunay. Sur la sphère vide. Izvestia Akademia Nauk SSSR,
VII Seria, Otdelenie Matematicheskii i Estestvenny ka Nauk 7, pages
793–800, 1934.

[DEM] http://www.geog.ubc.ca/courses/klink/gis.notes/ncgia/u06.html/unit6.

[DLG] http://tahoe.usgs.gov/dlg.html.

[DWS+97] Mark Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller,
Charles Aldrich, and Mark B. Mineev-Weinstein. Roaming terrain:
Real-time optimally adapting meshes. In 8th IEEE Visualization ’97
Conference, page 81, Phoenix, AZ, October 1997.

[EKT01] William S. Evans, David G. Kirkpatrick, and G. Townsend. Right-
triangulated irregular networks. Algorithmica, 30(2):264–286, 2001.

[FFP83] Leila De Floriani, Bianca Falcidieno, and Caterina Pienovi. A delaunay-
based method for surface approximation. In Eurographics ’83, pages
333–350, 1983.

[FL79] R. J. Fowler and J. J. Little. Automatic extraction of irregular network
digital terrain models. In SIGGRAPH ’79 Proceedings, volume 13, pages
199–207, August 1979.

[Gar99a] Michael Garland. Quadric-Based Polygonal Surface Simplification. PhD
thesis, Carnegie Mellon University, May 1999.

[Gar99b] Michael Garland. Quadric-Based Polygonal Surface Simplification. Ph.d
dissertation, Computer Science Department, Carnegie Mellon Univer-
sity, May 1999.

[Ger03] Thomas Gerstner. Multiresolution visualization and compression of
global topographic data. GeoInformatica, 7(1):7–32, March 2003.

89

[GH97] Michael Garland and Paul S. Heckbert. Surface simplification us-
ing quadric error metrics. Computer Graphics, 31(Annual Conference
Series):209–216, 1997.

[GS] M. Ghodsi and Jrg-Rdiger Sack. A coarse grained parallel solution to
terrain simplification.

[GS85] Leonidas Guibas and Jorge Stolfi. Primitives for the manipulation of
general subdivisions and the computation of voronoi diagrams. ACM
Transactions on Graphics, 4(2):75–123, 1985.

[GS95] Michael Garland and Paul S.Heckbert. Fast polygonal approximation
of terrains and height fields. TechReport CMU-CS-95-181, School of
Computer Science,Carnegie Mellon University, 1995.

[HDD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Mesh optimization. Computer Graphics, 27(Annual
Conference Series):19–26, 1993.

[Hel90] M. Heller. Triangulation algorithms for adaptive terrain modeling. In
Proc. 4th Internat. Sympos. Spatial Data Handling, pages 163–174, 1990.

[HG97] P. Heckbert and M. Garland. Survey of polygonal surface simplification
algorithms. In SIGGRAPH 97 Course Notes: Multiresolution Surface
Modeling, 1997.

[Hop97] Hugues Hoppe. View-dependent refinement of progressive meshes. In
SIGGRAPH 97 Proc., pages 189–198, 1997.

[Hop98] Hugues Hoppe. Smooth view-dependent level-of-detail control and its
application to terrain rendering. In In IEEE Visualization 98 Conference
Proceedings, pages 35–42, 1998.

[JS98] Bernd Jüenger and Jack Snoeyink. Selecting independent vertices for
terrain simplification. In WSCG ’98, pages 157–164, Plzen, Cz, 1998.

[KLYP00] Y. Kang, T. Lee, S. Yang, and W. Park. A fast digital terrain simplifica-
tion algorithm with a partitioning method. In The Fourth International
Conference on High-Performance Computing in the Asia-Pacific Region,
volume 2, page 613. IEEE, Beijing, China, May 2000.

[KT96] Alan D. Kalvin and Russell H. Taylor. Superfaces: Polygonal mesh
simplification with bounded error. IEEE Computer Graphics and Appl.,
16(3), 1996.

90

[LKR+96] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and
G. Turner. Real-time continuous level of detail rendering of height fields.
Proceedings of SIGGRAPH’96, pages 109–118, 1996.

[LP02] P. Lindstrom and V. Pascucci. Terrain simplification simplified: A gen-
eral framework for view-dependent out-of-core visualization. Report,
Lawrence Livemore National Laboratory, May 2002.

[LS01a] Peter Lindstrom and Claudio T. Silva. A memory insensitive technique
for large model simplification. In IEEE Visualization 2001, pages 121–
126, October 2001.

[LS01b] James J. Little and Ping Shi. Ordering points for incremental tin con-
struction from dems. Geoinformatica, 2001.

[LS01c] James J. Little and Ping Shi. Structural lines, tins and dems. Al-
gorithmica, Special Issue on Algorithms for Geographical Information,
30(2):243–263, 2001.

[Lue01] David P. Luebke. A developers survey of polygonal simplification algo-
rithms. In IEEE Computer Graphics and Applications, May 2001.

[Mar78] David M. Mark. Concepts of ”data structure” for digital elevation mod-
els. In Proceedings, American Society of Photogrammetry, Digital Ter-
rain Models Symposium, pages 24–31, St.Louis, Missouri, May 1978.

[MP97] David M. McKeown and Michael F. Polis. Some evaluation metrics for
terrain representation using triangulated irregular networks(tins). Tech-
nical report, School of Computer Science, Carnegie Mellon University,
1997.

[Paj98] Renato B. Pajarola. Large scale terrain visualization using the restricted
quadtree triangulation. In David Ebert, Hans Hagen, and Holly Rush-
meier, editors, IEEE Visualization ’98, pages 19–26, 1998.

[PAL02] Renato Pajarola, Marc Antonijuan, and Roberto Lario. Quadtin:
Quadtree based triangulated irregular networks. In In Proceedings IEEE
Visualization 2002, page 395402. IEEE Computer Society Press, 2002.

[RC99] Ramesh Raskar and Michael Cohen. Image precision silhouette edges.
In Symposium on Interactive 3D Graphics (I3DG), Atlanta, April 1999.

[RHS98] S. Roettger, W. Heidrich, and P. Slussallek. Real–time generation of
continuous levels of detail for height fields, 1998.

91

[SC91] Francis Schmitt and Xin Chen. Fast segmentation of range images into
planar regions. In Conf. on Computer Vision and Pattern Recognition
(CVPR ’91), pages 710–711. IEEE Comput. Soc. Press, June 1991.

[SP03] Jose P. Surez and Angel Plaza. Refinement and hierarchical coarsening
schemes for triangulated surfaces. Journal of WSCG, 11(1), 2003.

[Sug00] Vladislav I. Suglobov. Appearance-preserving terrain simplification.
Tech report, Lomonosov Moscow State University, Moscow, Russia,
2000.

[XV96] Julie C. Xia and Amitabh Varshney. Dynamic view-dependent simpli-
fication for polygonal models. In In Proceedings of Visualization ’96,
pages 327–334, 1996.

92

Appendix A

Comparing Crater Models

93

Figure A.1: Full Model of crater; 154224 vertices, 306860 faces

94

(a) Surface

(b) Mesh

Figure A.2: Hybrid Simplified crater; 5000 vertices, 9798 faces

95

(a) Surface

(b) Mesh

Figure A.3: QSlim Simplified crater; 5000 vertices, 9559 faces

96

(a) Surface

(b) Mesh

Figure A.4: greedy insertion Simplified crater; 5000 vertices, 9851 faces

97

(a
)

cr
at

er
fu

ll
(b

)
hy

br
id

(c
)

Q
Sl

im
(d

)
G

re
ed

yI
ns

er
ti

on

F
ig

ur
e

A
.5

:
cr

at
er

:
C

om
pa

ri
ng

th
re

e
m

et
ho

ds
fo

r
si

ze
50

00

98

(a) Surface

(b) Mesh

Figure A.6: Hybrid Simplified cbaker; 1000 vertices, 1883 faces

99

(a) Surface

(b) Mesh

Figure A.7: QSlim Simplified crater; 1000 vertices, 1813 faces

100

(a) Surface

(b) Mesh

Figure A.8: greedy insertion Simplified crater; 1000 vertices, 1935 faces

101

(a
)

fu
ll

(b
)

hy
br

id

(c
)

Q
Sl

im
(d

)
G

re
ed

yI
ns

er
ti

on

F
ig

ur
e

A
.9

:
cr

at
er

:
C

om
pa

ri
ng

th
re

e
m

et
ho

ds
fo

r
si

ze
10

00

102

(a) Surface

(b) Mesh

Figure A.10: Hybrid Simplified crater; 500 vertices, 936 faces

103

(a) Surface

(b) Mesh

Figure A.11: QSlim Simplified crater; 500 vertices, 870 faces

104

(a) Surface

(b) Mesh

Figure A.12: greedy insertion Simplified crater; 500 vertices, 956 faces

105

(a
)

cr
at

er
fu

ll
m

od
el

(b
)

hy
br

id
50

0
po

in
ts

(c
)

Q
Sl

im
50

0
po

in
ts

(d
)

G
re

ed
y

In
se

rt
io

n

F
ig

ur
e

A
.1

3:
cr

at
er

:
C

om
pa

ri
ng

th
re

e
m

et
ho

ds
fo

r
si

ze
50

0

106

Appendix B

Shrinking Effects

The following pictures are converted from color images. The darkest points (orig-

inally represented by red color) represent the removed points of the first point set

by the hybrid algorithm, the lightest points (originally represented by green color)

represent new points added by the hybrid algorithm. The point set with grey scale

in between the above two represent the unchanged points by the hybrid algorithm

(or intersection of the two point sets).

107

(a
)

gr
ee

dy
60

0
vs

hy
br

id
50

0
(b

)
gr

ee
dy

50
0

vs
hy

br
id

50
0

(c
)

Q
Sl

im
50

0
vs

hy
br

id
50

0

F
ig

ur
e

B
.1

:
C

om
pa

ri
ng

th
e

Sh
ri

nk
in

g
E

ffe
ct

:
P
oi

nt
Se

ts
of

th
e

T
hr

ee
m

et
ho

ds

108

