
Random Marks on Paper

Non-Photorealistic Rendering with Small Primitives

by

Adrian Joseph Secord

B.Math., University of Waterloo, 2000

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

THE UNIVERSITY OF BRITISH COLUMBIA

October, 2002

c© Adrian Joseph Secord, 2002



In presenting this thesis in partial fulfilment of the requirements for an ad-
vanced degree at the University of British Columbia, I agree that the Library shall
make it freely available for reference and study. I further agree that permission for
extensive copying of this thesis for scholarly purposes may be granted by the head
of my department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

(Signature)

Department of Computer Science

The University of British Columbia
Vancouver, Canada

Date



Abstract ii

Abstract

Non-photorealistic renderingis a branch of computer graphics which draws heav-

ily from the traditional artistic disciplines such as painting, drawing, and etching.

The emphasis of this research area is to provide rendering styles to artists that

communicate, elucidate and express ideas clearly and with style without neces-

sarily reproducing every detail. This dissertation presents two general approaches

to reproducing a greyscale input image with smallprimitives: strokes, stipples or

hatch marks. The first approach probabilistically places primitives on the output

canvas and achieves very fast, “sketchy” renderings. The second approach, com-

plementary to the first and based on weighted centroidal Voronoi diagrams, places

each primitive carefully in relation to the others and minimises unnecessary over-

lap between primitives. The resulting drawings have a very careful appearance and

reproduce the input image faithfully.
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Preface
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scribed in Chapter 3 was achieved by Lisa Streit and the author. Parts of Chapter 4

were previously published in [22]. The entirety of that work is the responsibility

of the author.
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Chapter 1

Introduction

Photorealism has traditionally dominated much of computer graphics research. Us-

ing the physics of light, surfaces and materials, we progress steadily in generating

models and algorithms that mimic nature closely. However, photorealism is not

always desirable, and artists working in traditional media only occasionally use

photorealism. The goals of photorealistic computer graphics are perhaps too en-

compassing. For example, the ultimate photorealistic renderer is perfectly capable

of generating images and animations for cats or extra-terrestrials. While this is a

worthy goal in itself, more often the focus of the artist, graphic designer and typog-

rapher is to communicate an experience, emotion or idea to thehumanobserver.

Artistic techniques in traditional media such as pen-and-ink, water colour, or

pastel abstract detail to focus the viewer’s attention. For example, a hand-drawn

portrait will nearly always include more detail in the subject’s face and hands than

in the background, because these features are important to human viewers. It is rel-

atively rare to illustrate everything in a scene, simply because some aspects have

higher priority than others and the human observer has limited attention. Abstrac-

tion, however, is a very difficult goal since to be effective it requires intent and

knowledge of human attributes. Computer abstraction of human scenes belongs

more properly to artificial intelligence than computer graphics.

However, many of the low-level artistic techniques can be useful to computer

graphics since they rely on relatively simple characteristics of the human visual and
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related systems. For example, human vision places heavy emphasis on edges and

silhouettes, and drawing pictures using only edges gives rise to styles such as car-

tooning. While computers can be used with some success to generate cartoon-style

animations, the intent and focus of such works must still be contributed by a hu-

man artist. Having said that, cartoons are a labour-intensive style and a computer-

generated cartoon style is useful. In particular, in interactive applications such as

immersive environments, there is no other way to generate cartoon styles than to

use the computer.

Such low-level artistic techniques have begun to be explored recently in the

computer graphics literature. While many have focused on generating images from

3D models or user-driven systems, we will examine automatic image-based algo-

rithms that mimic several low-level techniques similar to etching and stippling.

Using simple artistic primitives, we automatically create engaging drawings that

reproduce the tone of arbitrary images. Furthermore, through selection of algo-

rithms and parameters, it is possible to trade image quality for speed, resulting in

real-time performance for animation or video.

In particular, we have developed a fast probabilistic method that places small

arbitrarily-shaped primitives on a blank canvas such that the overall tone repro-

duces that of an input image. The use of the theory of probability density functions

allows us to compensate for the overlap that occurs between primitives. In addi-

tion, for roughly point-shaped primitives, we can modify a coarse placement of

primitives such that overlap is minimised and all primitives are evenly spaced. The

resulting high-quality drawing is accomplished with centroidal Voronoi diagrams,

which should be extendible to more complicated primitive types.
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Chapter 2

Related Work

2.1 Traditional methods

Traditionally, methods such as pen-and-ink have been used illustrations for books

and scientific papers. The amount of detail to depict in these illustrations is eas-

ily controlled and the style blends well with diagrams and other forms of visual

information. Pen-and-ink and stippling illustrations scale and reproduce particu-

larly well, even with low-quality methods such as photocopiers. For current digital

work, if the illustration is encoded using a vector format, then details remain sharp

at all levels of magnification, unlike discrete images. An easily-accessible standard

reference to pen-and-ink is that of Guptill [5], while the more specialised literature

on scientific illustration is well-represented by the standard texts by Wood, Jas-

trzebski, and Hodges, respectively, [31, 12, 10].

2.2 Geometry-based methods

Saito and Takahashi introduced the concept ofG-buffers, additional render buffers

that contain information such as object IDs, object parametric coordinates, perspec-

tive depth, world coordinates and normals [21]. The authors used image processing

techniques on these additional buffers to draw contour lines, silhouette and internal

edges, and hatching lines from 3D rendered models. The examples presented were
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mostly concerned with emphasising information content in renderings. Our hatch-

ing method of Chapter 3 uses object ID’s and normal buffers to enable additional

styles if available.

Winkenbach and Salesin truly introduced pen-and-ink illustration to computer

graphics in 1994 [28]. The authors review pen-and-ink, emphasise the challenges,

and describe a system for computer-generated pen-and-ink. Tones are rendered us-

ing prioritised stroke textures, which are clipped using a 2D BSP tree, and outlines

are drawn to show boundaries. Strokes are straight lines with additional waviness

and pressure functions to perturb the path and line thickness. Prioritised strokes

textures are sets of related strokes that add together to display the texture at increas-

ing tone densities. They also include commonly-used techniques such as indication

to improve the quality of the output. The results are some of the highest-quality

images in NPR to date. Our hatching method, while technically of the same family

of illustration as Winkenbach and Salesin’s work, uses short strokes exclusively

and is more “loose” and “free”.

2.3 Halftoning and dithering

Ulichney introduced the concept of “blue noise” dithering to the halftoning and

dithering community [26, 27]. Blue noise has a power spectrum with no power

in frequencies below a particular cutoff frequency. That is, blue noise is high-

pass filtered white noise1. Blue noise is perceptually useful because low-frequency

components can appear as structure to the eye. This means that blue noise distri-

butions are relatively good substrates for image approximation algorithms, since

they do not impose additional structure of their own on the image. Error diffusion

1Blue noise is named as the complement to pink noise, which has no power in the frequencies

abovea particular cutoff frequency.
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dithering is an example of a method with moderate blue noise properties. The point

distributions of Chapter 4 have been shown to have blue noise properties [2]. In

addition, we expect that the stippling methods of Chapter 4 will produce similar

results to blue noise dithering if the stipple size is forced to be extremely small,

that is, on the order of a single pixel. The particular methods used by Ulichney,

however, are not connected to those presented in this dissertation.

2.4 Image-based methods

Haeberli describes one of the first NPR techniques to use an input image [6]. Our

methods of Chapters 3 and 4 follow this tradition. His technique uses a colour input

image which is approximated with a set of straight coloured strokes. The strokes

are roughly placed by the user with the mouse. The orientation can either be fixed

by the user or extracted from the current mouse movement direction when a stroke

is placed. The size of the stroke can again be either set explicitly, or determined

from the current mouse speed. Faster speeds place larger strokes in keeping with

the spirit of a fast, loose, sketch. The orientation of strokes is either user-specified,

determined from the current mouse direction, or from the gradient of a lowpass-

filtered version of the input image. Haeberli anticipates many techniques to be used

in NPR, including using Voronoi regions as primitives, attaching strokes onto 3D

geometry, and using relaxation techniques2.

Turk and Banks, working from the scientific visualisation field, detailed a

method for placing streamlines over a 2D vector field [25]. Streamlines are lines

that are tangential to the underlying vector field at every point. They focused on

placing the lines evenly in the image to prevent unwanted visual artifacts from

2Haeberli also emphasises the flexibility of using images as input. He calls pre-modifying the

input image “adding spice” or “Video-Sodium Glutamate (VSG)”.
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detracting from the viewer’s understanding of the vector field. In particular, they

aimed for even overall coverage of lines and used tapering to reduce the jarring ef-

fects of a line terminating. They also showed how to express other field attributes

in the line appearance. This relates to the current dissertation because it attempts

to obtain good spacing of lines, much as we do for stipples in Chapter 4. Also, our

fast probabilistic method of Chapter 3 generates a non-uniformly sampled vector

field of positions and orientations, which could be treated with Turk and Banks’

method. The method is an iterative energy-minimisation method which uses a fil-

tered version of the current output as an energy measure. A set of operators that

can improve the energy (lengthening lines, merging lines, etc.) is introduced and

applied randomly to the current set of lines, but only energy-decreasing changes

are kept. A drawback of this method is that the convergence is quite slow. A more

direct approach to this problem is attempted by Jobard and Lefer [13].

Deussenet al. make good use of centroidal Voronoi diagrams to generate stip-

ple drawings from a grayscale image and user input [2]. The grayscale reference

image is first dithered to produce stipple positions, and the stipple positions are

then relaxed using Lloyd’s algorithm (see Section 2). However, during the relax-

ation step, no reference is made to the underlying input image, so Lloyd’s algo-

rithm would spread the stipples evenly across the image if not checked. To avoid

this, the stipple positions are constrained to stay with user-defined regions of the

image. This allows the user to control the diffusion of the stipples and produce

sharp edges. The results are quite attractive, but require significant user input. In

comparison, our method of Chapter 4 integrates the input image into the relaxation

step, which allows us to dispense with the tiresome user entirely.

In a very similar technique, applied to a different domain, Hausner produces

simple decorative mosaics from a colour input image [9]. The tiles of the mosaic

are square in shape and aligned with a direction field. Again, Lloyd’s algorithm is
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used to avoid overlap between the tiles, but with the novel use of a Manhattan (or

lattice) metric, corresponding nicely to the placement of squares. The user defines

edges in the image that the tiles are not allowed to overlap, and the direction field

can be generated from the edges by examining the gradient of the distance field of

the edges. The final colour of a tile is point-sampled from the input image at the

tile’s centre.
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Chapter 3

Probabilistic Drawings

We need to represent continuous tone images with a set of spatially- and tonally-

discrete primitives. We wish to place more primitives in areas where the input

image is dark and less where it is light. However, for the first pass at the problem,

the exact placement of every primitive does not matter. This intuitive statement

is the motivation for treating the input image as a 2D probability density func-

tion (PDF). We will generate random positions for the primitives according to the

darkness of the input image.

Formally, a PDF describes the differential probability that some event will oc-

cur at any point. Ifq(x) is a 2D PDF, then the probability of some event occurring

within an infinitesimal regiondA at x is q(x)dA. Note that there in no notion of

probability at a point — that probability is always zero. Only probability of a re-

gion makes sense in this continuous setup. In general, the probability of an event

occurring in some regionR is
∫

Rq(x)dA. The “events” described by our PDF’s

will be the placement of a primitive at that location.

We generate a PDF from the input image and then generate a set of samples

distributed according to that PDF. The samples come from a uniformly-distributed

set that are transformed to fit the target PDF. These samples are the positions of the

primitives which make up the output drawing.
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Figure 3.1: Ratio of samples selected uniformly at random versus total number set.

3.1 Deriving a PDF from an image

In stippling, hatching and other applications, the samples that we would like to

place have finite area. It is possible, and with increasing density quite likely, that

two randomly placed primitives will overlap. Once a pixel has been covered by a

primitive, further overlap has no effect. Thus the area covered by all samples does

not change linearly with the number of samples. For example, if we were to setN

pixels uniformly at random in an image ofM total pixels, the ratio of the number of

pixels set to the number of pixels chosen is nonlinear and reaches only about 60%

whenN = M. The non-linearity is solely due to overlap — pixels chosen more

than once do not change the resulting image. Figure 3.1 demonstrates this simple

situation. It is, however, possible to correct for overlap by modifying the density

function accordingly. We will first consider the simple case where each primitive

is a single pixel.
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3.1.1 PDF correction for single-pixel primitives

Let I(xi) be the intensity of the base image at pixelxi represented as a value be-

tween 0 and 1. Note that 2D pixel positions do not play a role in the case of single

pixel primitives, so we use the simpler notation with a single subscript to distin-

guish between pixels. The drawing process should create a binary image where the

probability that a pixelxi is set is identical to the intensity of the corresponding

pixel in the base image, that is,p(xi = 1) = I(xi). We will use the shorter notation

p(xi) to meanp(xi = 1) where there is no possibility of confusion. Furthermore,

we want to be able to independently place random samples for generating this bi-

nary image. We need to find a PDFq(x) that can be used with the algorithm from

Section 3.2.4 such that once primitives have been placed and overlap taken into

consideration, the probability of each pixel being set is as above.

After placingN samples according to the density functionq(x), the probability

that pixelxi hasnot been set is(1−q(xi))
N. Therefore, we require that

p(xi) = 1− (1−q(xi))
N

q(xi) = 1− N
√

1− p(xi)

= 1− N
√

1− I(xi) (3.1)

(3.2)

for i = 1,2, . . . ,n. We also require thatq(xi) integrate to one so that it satisfies

the definition of a probability density function. Combining this constraint with
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Equation 3.1 gives us

n

∑
i=1

q(xi) = 1

⇒
n

∑
i=1

1− N
√

1− I(xi) = 1

⇒
n

∑
i=1

N
√

1− I(xi) = n−1 (3.3)

This non-linear equation forN can only be solved directly for a constant intensity

imageI(xi) = I0. For general images this equation system cannot be solved di-

rectly, however standard numerical methods work well. We bracket the value ofN

between a minimum and maximum value and perform a binary search. The max-

imum can be chosen as the number of samples that would be required to cover an

image of constant intensity very close to black.

In practice this binary search does not have to extend over the full sum in

Equation 3.3. Every term in the sum only depends on the probabilityp(xi) for

each pixel, which in turn depends only on the intensityI(xi) of the base image, and

that is usually quantised, for example to 256 levels. Therefore, if we denote the

quantised intensity levels asI j , j = 1,2, . . . ,K, and the histogram of the intensities

in the base image asH(I j), we can rewrite Equations 3.1 and 3.3 as

q(I j) = 1− N

√
1− I j (3.4)

and
K

∑
j=1

H(I j) N

√
1− I j = n−1 (3.5)

which involves sums over onlyK levels rather thann pixels.

Solving Equations 3.4 and 3.5 gives us bothN, the total number of primitives

to place, andq(xi), the modified PDF value for each intensity level. We can then

generate the positions of the primitives using the methods of Section 3.2 and draw

the final output.
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3.1.2 PDF correction for large stroke sizes

The method of Section 3.1.1 assumed that the primitives to be placed were each

single single pixels. The theory guarantees that the probability of a particular pixel

being set to black equals the greyscale intensity of the input pixel. This is a prob-

abilistic dithering algorithm. Tone reproduction for larger primitives is possible

under two assumptions. First, it is clear that drawing styles that require strokes to

cross discontinuities cannotpreciselypreserve tone around those discontinuities.

We can therefore only hope for exact tone reproduction if we either align strokes

parallel to discontinuities, or clip them accordingly. Second, we can only hope to

preserve feature sizes that are no smaller than the width of the primitives used. We

are willing to sacrifice exact per-pixel tone reproduction if the style is sufficiently

interesting. The resulting output drawing will reproduce tone down to, but not

below, the level of a single primitive.

With these limitations in mind, the tone correction procedure from Section 3.1

can be extended to primitives of larger size. Where we could previously ignore

spatial relationships between the different pixels, these now have to be taken into

account. We adapt our notation to 2D indices for the images and probability tables

(e.g. p(xi, j) rather thanp(xi)). In the new notation the image has a width ofnx

pixels and a height ofny pixels.

We can then describe the probabilityp(xi, j) that a pixel is set after renderingN

primitives as

p(xi, j) = 1−

(
1−

nx

∑
k=1

ny

∑
l=1

q(xk,l )s(xk−i,l− j)

)N

(3.6)

wheres(xk−i,l− j) is the image of a primitive placed at positionxk,l . The value of

s(x) at any point is either one or zero; we do not consider intermediate values.

Comparing Equation 3.1 with Equation 3.6, we see that the simple probability
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of a primitive being placed atxi, j is replaced with the summed probability of a

primitive being placed anywhere such that the primitive coversxi, j . The constraint

from Equation 3.3 becomes

nx

∑
k=1

ny

∑
l=1

q(xk,l ) = 1 (3.7)

To determineq(xi, j) and the number of samplesN, Equations 3.6 and 3.7 have

to be solved simultaneously. However, this system of equations does not in general

have a solution: consider an image with a one-pixel wide dark line on white back-

ground, and a circular primitive of radius larger than a single pixel. Since the line

is very dark, the primitives have to be densely spaced on it. However, since each

individual primitive is wider than the line itself, it will also automatically cover

adjacent parts of the image which should be white, i.e.p(xi, j) = 0. Thus it is ob-

vious that the system of Equations 3.6 and 3.7 is not solvable if the image contains

features narrower than the primitives used for hatching.

An alternative strategy would be to minimise the difference between the left

and the right side of Equation 3.6 subject to Equation 3.7 with the additional con-

straint thatq(xk,l )≥ 0 for all k, l . This is a non-linear constraint optimisation prob-

lem with a large number of variables (equal to the number of pixels in the final

image). While this system is rather sparse for reasonable stroke sizes, it is beyond

hope of solving in real time.

However, we can simplify Equation 3.6 by assuming the target tone is approx-

imately constant over the support of a primitive. This may sound restrictive, but is

easily achieved by aligning the strokes orthogonal to the gradient field of the input

image or otherwise preventing the stroke from crossing discontinuities as described
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above. With this simplification, Equation 3.6 becomes

p(xi j ) = 1−

(
1−

nx

∑
k=1

ny

∑
l=1

q(xk,l )s(xk−i,l− j)

)N

≈ 1−

(
1−q(xi, j)

nx

∑
k=1

ny

∑
l=1

s(xk−i,l− j)

)N

= 1−
(

1−q(xi, j)si, j

)N
(3.8)

wheresi, j ≡ ∑nx
k=1 ∑ny

l=1
s(xk−i,l− j). Intuitively, si, j is the number of positionsxk,l

that would cause pixelxi, j to be covered if a primitive was placed atxk,l . Note that

this relationship allows for different stroke sizes and orientations depending on the

local intensity or even pixel position. However, this relationship should be simple

to compute in order to facilitate a rapid calculation of thesi, j .

Oncesi, j has been computed, we can solve Equation 3.8 forq(xi, j) just as in

Section 3.1. The search for the correct number of primitives to be placed can again

be sped up by using a histogram-based approach, where the size of the histogram

is the product of the number of quantisation levels for the image intensity and the

number of different sizes used for strokes during rendering. For a small set of

differently sized strokes this will still be more efficient than a search directly on

the full resolution image.

3.2 Generating samples according to a given PDF

Once we have generated an appropriate PDF from an input image using the meth-

ods in Section 3.1, we must generate a set of sample points that are distributed

according to that PDF. A set of samplesS is distributed according to a PDFq if

for anyregionR, the fraction of samples inRequals
∫

RqdA. No particular finite set

of samples can represent a continuous PDF, since it will nearly always be possible
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to find some regionR such that the integral of the PDF is non-zero, but there are

no samples inR. However, we can still distribute a finite set of sample if the prob-

ability of placing a sample in some regionR is equal to
∫

RqdA. There are several

standard methods of generating samples according to a given PDF [19, 20]. We

present them in the following sections along with a hybrid approach.

3.2.1 Generating samples analytically

The only common directly-generated distribution is the uniform distributionU0,1

and its trivial scalings and translations. However, using the transformation method

(see Section 3.2.3), it is possible to generate analytical transformations that map

points fromU0,1 to some easily-solved distributions. An example, given without

derivation, is the random variabley(x) ≡ − ln(x), wherex∼ U0,1, which has an

exponential distribution. That is, its PDF ise−y. Note, however, that this method

is limited to distributions with an analytical expression for the PDF, and even then

only certain easily-solved forms of expression.

3.2.2 The rejection method

The rejection method is a simple and very powerful method to generate samples

distributed according to some PDFq(x). Assume that we have a method of gen-

erating points from a different distributionr, whereq(x) ≤Mr(x) everywhere for

some constantM. In generalr is chosen so that generatingr-distributed points is

particularly simple or convenient. For example, in one dimensionr is often the

uniform distributionU0,1 andM = max(q(x)).

To generate theq-distributed set ofN pointsSq, we use Algorithm 1.

The average efficiency of this procedure, as measured by the ratio ofN to the

total number of tested points, is the ratio of areas ofMr andq, or M, sincer andq
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Algorithm 1: The rejection method.

while |Sq|< N do

Samplex∼ r

Samplel ∼U0,1

if q(x)/Mr(x)≤ l then

Sq←Sq ∪ x

end if

end while

have unit area by definition.

3.2.3 The transformation method in one dimension

Given a one-dimensional probability density functionq(x), x ∈ [0,1], and a set

of uniformly distributed random samples{xi} over [0,1], we can redistribute the

samples according toq(x). An example of a 1D probability density function is

shown in Figure 3.2(a). We compute thecumulative density function

C(x) =
∫ x

0
q(t)dt

as shown in Figure 3.2(b). We then invertC(x) and transform each samplexi to

get x′i = C−1(xi). This is shown graphically in Figure 3.2(c) by mapping a set of

samples on they-axis through to thex-axis. The set{x′i}, drawn as circles on the

x-axis of Figure 3.2(c), is distributed according to the original probability density

functionq(x). Note that for the purposes of the illustration, the input sample set is

regularly distributed, but it should be chosen from a uniform random distribution.

Also, an intuitive explanation of the mechanics of the transformation method is

possible with Figure 3.2. The peaks in the probability density function are trans-

formed through integration into areas of high slope. These areas of high slope
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Figure 3.2: 1D example of redistributing points according to a probability density

function. Compare the samples (circles) at the bottom of 3.2(c) to the

density function in 3.2(a).

consequently gather more input samples than other areas. Symmetrically, valleys

in the density function correspond to areas of low slope in the cumulative density

function, which intersect fewer input samples.

It should be noted that computing the inverse of the cumulative density function

is not necessarily straight-forward. Figure 3.3 illustrates the problem. If the PDF

has any regions of zero probability, then they integrate to regions of zero slope

in the cumulative density function. These regions of zero slope make the inver-

sion impossible since manyx-values map to a singley-value. The transformation

method is only well-posed if the PDF is strictly positive over its support. Worse

still, in general, the vertical section of the inverted graph cannot be represented

on a fixed grid, in general. If the cumulative density function is forcibly inverted

and stored in a standard array of values, the vertical jump will be distorted from

a segment of infinite slope to one of merely high slope. The equivalent effect on

the original PDF would be to change the regions of zero probability to have some
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Figure 3.3: 1D example of the transformation method with zero regions in the

PDF. Note that 3.3(c) is no longer a function.

small but positive probability which will generate samples. This introduction of

spurious samples is very disturbing since zero-probability regions usually come

from visually important areas such as light backgrounds or object highlights.

One correct solution would be to split the original PDF into a set of strictly

positive PDF’s and generate samples from each PDF independently. However,

this is complex, especially for PDF’s of greater than one dimension, where the

introduction of zero probability “holes” does not conveniently disconnect the PDF.

Stepping back from the formalism, zero probability regions in the PDF mean that

we should never generate samples in those regions. Generating a sample in a flat

region of the CDF is equivalent to generating a sample outside the support of the

PDF. If we invert the cumulative density functionon the flyfor each sample, then

we can detect when an input sample falls in a flat region and discard that sample.

The inversion is accomplished by searching the cumulative density function table

for the x-value which maps to a particular inputy-value. Since the cumulative

density function is increasing, a simple binary search algorithm can do this task
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in O(log2N) table accesses, whereN is the number of entries in the table. This

also solves the problems associated with discretising the inverse of the cumulative

density function, since the inverse is never explicitly calculated and stored, only

implicitly accessed in the search.

3.2.4 The transformation method in two dimensions

Given a 2D probability density functionq(x), x ∈ [0,1]2, and a set of uniformly

distributed random points{pi} over[0,1]2, we can redistribute the points according

to q(x) using the transformation method.

To find they-coordinatep′i,y of a redistributed pointp′i we compute thecumu-

lative density function

M(y) =
∫ y

0
m(t)dt, wherem(y) =

∫ 1

0
q(x)dx,

and obtainp′i,y = M−1(pi,y). The functionm(y) is themarginal density function

of q(x). In a 2D image,m(y) can be considered the total intensity of the scanline

y. Note thatM(y) is monotonic, but not necessarily strictly monotonic if some

scanlines have zero intensity. Hence, the inverseM−1(y) exists almost everywhere

except at isolated points.

Given p′i,y, we can now determine thex-coordinatep′i,x by redistributingpi,x

according to the PDF of the respective scanline. Mathematically, this is described

by a conditional PDF

c(x|p′i,y) =
q(x,p′i,y)
m(p′i,y)

and its cumulative density function

C(x|p′i,y) =
∫ x

0
c(t |p′i,y)dt.

As before, thex-component of the new point is given by the inverse of that function:

p′i,x = C−1(pi,x |p′i,y).
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Figure 3.4: A 2D PDF along with its cumulative density functionM(y) (right) and

a 1D scanline PDF (top).

For a discrete PDFq(x), such as one arising from an image,M(y) andC(x|y)

are easily precomputed as a 1D and a 2D table, respectively.

To illustrate the above procedure, Figure 3.4 shows an example 2D PDF, where

dark values map to low probabilities and light values map to high probabilities. On

the right is the marginal density functionm(y) obtained by integrating in thex-

direction, and at the top is one of the many scanline PDF’s,c(x|y) for somey,

highlighted in the 2D PDF.
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3.2.5 Computational concerns for sample generation

The most efficient method of generating samples would be the analytical method

from Section 3.2.1. However, in our application the PDF is neither known in ad-

vance nor expressed in analytical form, making the analytical method impossible.

When the rejection method is used with PDF’s that are not known in advance, the

“enveloping” distributionr(x) is often chosen to be the uniform distribution, and

the scaling factor is chosen as the maximum of the target PDF. While this allows

the rejection method to work for arbitrary distributions, it can be quite inefficient.

The further the target PDF differs from the flat uniform distribution, the largerM

must be and the lower the efficiency of the sample tests. On average,M samples

must be tested to get one output sample. However, the rejection method has no

fixed costs, unlike the transformation method with its integrations. If only a small

number of samples are needed, then the relatively expensive testing process of the

rejection method will still be faster than the complete integration required by the

transformation method. In general, however, the integrations required by the trans-

formation method are not disastrous because they are highly memory-coherent: es-

sentially running sums of linear tracts of memory. This allows the memory caching

algorithms found on modern computers to work very efficiently.

3.3 Generating samples for differential PDF’s

While Section 3.2.3 and Section 3.2.2 gave us methods of generating a set of points

that are distributed according to some probability density function (PDF)q, we

would also like to consider the situation where we have two PDF’s,q1 andq2, and

a set of pointsS1 that distributed according toq1. From this set we would like to add

and subtract points so that the resulting setS2 is distributed according toq2. This is
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what we call generating adifferentialdistribution. A differential distribution will

add and delete the minimum number of points required to generate the PDFq2. If

the distributions are used in the rendering of consecutive frames in an animation,

the frame-to-frame coherence will be maximised. To do this we will examine the

positive and negative regions produced by subtracting the first distribution from the

second distribution.

It is important to note that the we cannot use the PDF’s directly for this sub-

traction since, by definition, the PDF’s are scaled such that their integrals are unity.

Imagine two point distributions, both uniformly distributed, but the first with 1000

points and the second with 100. The difference of their PDF’s is identically zero,

however, it is clear that to transform the first set of points into the second, many

points must be deleted. Instead, we need to look at the PDF’s augmented with the

total number of points in their distributions. That is, we need to examine number

density functions (NDF’s) instead of raw probability density functions.

A number density function is defined as a scaling of a PDF by the total num-

ber of points in the distribution. All the properties of PDF’s carry over to NDF’s

with the addition of this simple scale. For example, while the integral of a PDF

over a particular region gives the probability of a point existing in that region, the

integral of a NDF of a region gives the expected number of points found in that

region. To illustrate the importance of using NDF’s over PDF’s in differences, Fig-

ure 3.5 shows two NDF’s, Figure 3.6(a) shows the incorrect result of using only

the corresponding PDF’s, and Figure 3.6(b) shows the correct result using the full

NDF’s.

For a particular set of pointsS that is distributed according to a probability

density functionq, we define a number density function byn≡Nq, whereN = |S|.

In particular, assume that we have two frames of an animation, processed according

to Section 3.1 to give us two PDF’sq1, q2, and their respective number of primitives
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Figure 3.5: Two number density functions.PSfrag replacements

Space

Pr
ob

ab
ili

ty
de

ns
ity

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

(a) Difference of PDF’s (incorrect).

PSfrag replacements

N
um

be
r

de
ns

ity

Space
0 0.5 1

0

20

40

60

80

100

120

(b) Difference of NDF’s (correct).

Figure 3.6: Comparison between differences of PDF’s and NDF’s.
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N1 andN2. Then we examine the difference function

d = N2q2−N1q1

and define thepositive difference regionto beR⊕≡{x | d(x) > 0} and thenegative

difference regionto beR	 ≡{x | d(x) < 0}. We define thepositive difference NDF

to ben⊕≡max(d,0) and thenegative difference NDFto ben	≡−min(d,0). Note

the minus sign in the definition ofn	. The regions wheren⊕ andn	 are non-zero

areR⊕ andR	, respectively.

3.3.1 Processing difference regions

After calculating the difference NDF’sn⊕ andn	, we know that|n⊕| points must

be added to regionR⊕, distributed according to the PDFn⊕/|n⊕|. Formally, we are

doing the following:

N1q1 +n⊕−n	 = N1q1 +max(N2q2−N1q1,0)+min(N2q2−N1q1,0)

= N1q1 +N2q2−N1q1

= N2q2

Where we use max(a,b) + min(a,b) = a+ b in the first step. To add points we

simply use the transformation method as in Section 3.2 to distribute the new points

according to the PDF. The PDF has zero probability outside ofR⊕, so points will

not be distributed outside the positive difference region.

However, we must also remove|n	| points from regionR	 according to the

negative difference PDF. Note that since we are only removing points from a fixed

set, the problem is best represented by a probability distribution over a discrete set

of points. The standard rejection method applies naturally here to select points for

removal.
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3.3.2 Algorithm summary

We summarise the algorithm used to generate the differential probability distribu-

tions:

1. Calculate the positive and negative difference NDF’sn⊕ andn	, identify the

regionsR⊕ andR	

2. Assign points inR	 probabilities proportional ton	 and scale so that the

sum of probabilities is one

3. Use the transformation method to generaten⊕ new points inR⊕ according

to the PDFn⊕/|n⊕|

4. Use rejection sampling to choose points to remove fromR	

3.4 Input point distributions

To this point we have assumed that the input points are Poisson distributed, i.e. are

independently chosen, uniformly distributed random points. This does not neces-

sarily have to be the case; we can choose the input points from a variety of different

random distributions and quasi-random sequences.

Poisson distributions tend to form small clusters of points that are relatively

close together. It is widely accepted in the stippling and halftoning literature that a

more uniform point spacing yields more visually pleasing results, so that Poisson

disk distributions (“blue noise”) are usually preferred [26, 2].

Our method maps any given input point set through a distribution function to

determine the final location of primitives. If the base image used to generate the

distribution function is approximately constant locally around a given point, then

the mapping obtained by the distribution function is approximately linear locally.
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(a) Poisson distribution (b) Halton distribution

(c) Sobol sequence (d) Poisson disk distribution

Figure 3.7: Comparison of different input distributions with a point distribution

and a grayscale ramp.

This indicates that desirable properties such as minimal distances in a Poisson disk

distribution should belocally preserved in regions of approximately constant in-

tensity. This property breaks down in regions of strong changes such as edges, but

that is also the case for traditional images.

We use the firstN samples of a precomputed point sequence (whereN is de-

termined according to Section 3.1) for every frame in order to maintain frame-to-

frame coherence. This means that we are restricted to point sequences where any

subset consisting of the firstN samples is well distributed. This eliminates, for ex-

ample, the Hammersley point set [8], which is only well-distributed in its entirety,

but allows us to use the Halton [7] or Sobol sequences [24].

In addition, we experimented with Poisson disk distributed points generated

with the hierarchical approach of McCool and Fiume [16]. Besides being faster

than other methods for generating Poisson disk distributed points, this approach

also has the advantage of producing a sequence of points that are Poisson disk dis-

tributed with a decreasing disk radius. In Figure 3.7 we compare the performance

of the different approaches by applying them to a simple grayscale ramp.
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It can be seen that the Poisson distribution clusters the individual samples,

resulting in a very noisy and irregular image. The other distributions avoid exces-

sive clustering and achieve more uniform sample spacing. The Sobol sequence,

however, sometimes tends to form undesirable patterns. The Halton sequence and

the hierarchical Poisson disk distribution are free of those artifacts. Based on this

experience, we usually choose the Halton sequence for our method since it is com-

putationally more efficient to generate. The other images in this paper are rendered

using the Halton sequence unless otherwise noted.

3.5 Drawing styles

The algorithms from Sections 3.1 and 3.2 can be used to determine stroke positions

from input images. What remains open are issues of acquiring the input images

from 3D models and orienting the strokes. Different choices of methods for these

tasks give rise to a large variety of rendering styles.

The basic algorithm for placing the strokes only requires a grayscale input

image to generate a PDF. Hence, our algorithm is able to work from data like pho-

tographs or paintings. These can be preprocessed with any kind of image process-

ing tool to achieve the desired effect. For example,indicationcan be achieved by

increasing or decreasing the brightness in selected parts of the input image [5, 28].

In addition, we include a transfer function in our system, which allows for on-the-

fly adjustments of contrast or tone on the whole image.

Starting from a 3D model rather than an input image, we first use an OpenGL

rendering pass with traditional shading and specular and diffuse lighting to gen-

erate an image. However, by starting from a 3D model we can easily generate

additional information, encode it into the image, and later use it to drive different

drawing styles. For example, we can draw silhouette outlines either using environ-
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ment maps, as in the work of Goochet al. [4] or by explicitly traversing the input

mesh and finding silhouette edges. Similarly, we can encode additional informa-

tion for determining the strokedirection into other colour channels. In an RGBA

framebuffer, this gives us three channels to be used for such additional information.

We have experimented with the following options and more are certainly possible:

• Computing a per-vertex tangent or parametric direction, projecting it into

image space, and interpolating it for every pixel (all steps are possible in a

single pass in hardware) to be used as a stroke direction. This yields results

similar to the ones described by Winkenbach and Salesin [29].

• Computing and encoding a normal direction in much the same way. This is

an interesting way of drawing short fur or grass.

• Encoding 2D stroke directions into a camera-aligned environment map. This

can be used to give areas facing different directions different stroke proper-

ties.

• Encoding object or material identifications for individual parts of the scene,

which can then be used to render different objects in different styles.

Based on this information, we can generate variations on three basic drawing

styles:

3.5.1 Point stippling

The simplest rendering style is point stippling, which does not require any direc-

tional information. We simply place OpenGL points or scanned stipple textures at

the positions obtained with the method described in Sections 3.1 and 3.2.
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Figure 3.8: A stippled image of foot bones.
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Figure 3.9: A tiger model hatched with large strokes to achieve a furry look. The

stroke orientations are perpendicular to the value at the object’s normal

map.

3.5.2 Hatching

For hatching we either use OpenGL lines of different widths and lengths, or scanned

texture maps of real pen-and-ink strokes. For the stroke orientation we can choose

between a constant direction or any kind of direction encoded into colour channels

as described above. Finally, we can also compute the gradient field of the image

intensity, and orient strokes orthogonal to it. This works both for images and 3D

models, and orients strokes parallel to discontinuity edges, which helps preserving

the tone of the input image as described above. In areas in which the intensity

gradient is not strong enough, we can either default to a constant stroke direction,

or search for a stronger gradient in an image pyramid.

3.5.3 Cross hatching

For cross hatching we can vary the hatch direction probabilistically. Say we want

to start cross hatching for some intensity thresholdI(x) > α. Whenever we place a
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stroke at pixelxi, j , we choose the orientation as follows: if the intensity of the input

imageI(xi, j) at that location is less then the threshold, we compute the stroke direc-

tion with any of the methods described above. IfI(xi, j) is larger than the threshold,

however, then we choose the original orientation with a probability ofα/I(xi, j),

and a secondary direction with probability(1−α)/I(xi, j). This secondary orien-

tation can either be a fixed direction, the original direction rotated by some fixed

angle, or any rotation inferred from an encoding of an object-space property as

discussed above.

3.6 Results

We have implemented a system demonstrating our approach to distributing primi-

tives that preserves continuous tone in a scale-independent manner. We can either

load images or 3D scenes as a starting point for our method. The different drawing

methods described in the previous section, as well as the parameters for the initial

rendering of the 3D model, can produce a multitude of different styles of which we

can only show a small subset.

Figure 3.11 shows a bust model rendered with hatching, where the hatches are

aligned against the image gradient. Only the rendered scene is used to align the

strokes, and not the 3D model information. Figure 3.11 shows a good preserva-

tion of sharp features. Figure 3.8 and 3.9 show results for stippling and hatching,

respectively. Figure 3.10 shows a bee rendered with cross hatching, which gives

the legs and the antennae a hairy appearance. Figure 3.13 shows how our system

accurately preserves continuous tone. Figure 3.14 (Top) shows every fifth frame

of an twenty-five frame animation. All of the primitives in the frame on the far

left appear in the frame on the far right at adjusted locations. Extra primitives have

been added over the twenty-five frames since the image darkens. The primitives
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Figure 3.10: Cross hatching in very dark areas together with silhouette extraction

cause a hairy appearance of the legs and antennae.
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Figure 3.11: A hatched pen-and-ink illustration using the image gradient for prim-

itive orientation.

have been “shape-encoded” to help trace their movement. More examples can be

found at the end of this paper.

The performance of our method depends on several factors. The first one is

the size of the table used for the PDF and the distribution functions. This size is

algorithmically independent of the resolution of the final image, so small table sizes

can be used to reduce rendering cost. However, if the table gets too small, sharp

edges will start to alias. The resolution at which these artifacts start to be visible

depends on the size of strokes, but we generally found that using a PDF table of

half the size of the target image produces good results except for stippling with

very small point sizes. The second factor for performance is the rendering style.

Computing image-space gradients for orienting the strokes is relatively expensive,

while generating the orientation from encoding a 3D direction is practically free.

The cost of rendering the initial 3D model is negligible since the meshes do not

need to be very detailed to serve as a basis for pen-and-ink illustration. The number

of strokes rendered is another cost factor. Very dark images take longer than light
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ones, and images with large strokes render faster than images with very small ones.

The major cost here is the rendering of the individual points, lines, or texture-

mapped strokes using OpenGL (which is a geometry-bound operation on current

graphics hardware).

Depending on the above parameters, we were able to achieve between 2 frames

per second and 15 frames per second on a 1.5GHz Pentium with a GeForce 3 card,

using PDF sizes between 256× 256 and 512× 512 for the scenes shown in this

paper. No specialised hardware was used with our software implementation to

obtain these frame rates.

A common goal of many real-time NPR techniques is to achieve frame-to-

frame coherence of primitive placement. In our approach individual primitives are

placed in image-space, are therefore not attached to 3D geometry and can move

around freely. Thus, we cannot expect them to move exactly with the 3D object

points. However, since we re-use the same set of uniformly distributed points,

small changes in the input image (and therefore in the PDF) will only result in

small adjustments of the point positions. For example, if a highlight moves across

a 3D object due to a moving light source, then the individual strokes will rearrange

themselves continuously around the highlight as shown in the top of Figure 3.14.

Similarly, if the transfer function is adjusted continuously, the strokes will slowly

move across the image to adapt for the changes. These effects are demonstrated

in the video. Since our approach distributes primitives in real-time based on inten-

sity and primitive size, continuous tone is precisely replicated. Even with the use

of slightly larger primitives the global tone is accurately preserved and is scale-

independent. Our method is based entirely on the location of primitives, allowing

us to easily simulate many drawing styles by altering the primitive type or direc-

tion.
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Figure 3.12: Rendering of the Lena image using hatching and cross hatching. Pri-

mary strokes are aligned perpendicular to the gradient in regions of

strong gradients and at a 45◦ angle in areas where the gradient is

small.
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Figure 3.13: A bust stippled with pixel-sized stipples. The left image is the original

greyscale input and the right is the stippled image. This result is sim-

ilar to the ones that would be obtained by halftoning methods. Any

apparent differences in tone between these two images, when viewed

from a distance of several feet, is due to the halftoning screen of the

individual printer.

Figure 3.14: Frames of an animation of a moving highlight showing stroke move-

ment.
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Figure 3.15: A simple 3D scene rendered with different stroke directions for the

different objects using material ID’s and object-coded directions.

Figure 3.16: Stanford bunny hatched with curved strokes.
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Figure 3.17: A hatched rendering using Cezanne’s “Still Life With Apples” as in-

put. The stroke directions are a function of the colour in the original

image.
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Figure 3.18: A hatched rendering using Van Gogh’s “Self Portrait With Felt Hat,

1888” as input. The stroke directions are a function of the colour in

the original image.
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Chapter 4

Voronoi-based Drawings

Stippling as a technique came into existence to give artists control over the half-

toning processes used when printing images in books was a new and difficult

task [12]. The technique consists of carefully placing many small dots of ink on

paper to approximate different tones. Stipples are placed closer together to form

dark regions and further apart to form lighter regions. The stipples must be placed

evenly yet randomly so that the human eye does not see spurious patterns that are

not a part of the intended impression. The stipples may vary in size and occasion-

ally shape to convey subtle details.

The original advantage of stippling was its ease of reproduction. The half-

toning used to print images in books was of highly variable quality and often draw-

ings were drastically resized to meet space requirements. While normal drawings

suffered from such treatment stipple drawings retained their attributes more faith-

fully. In addition, printing a stippled drawing requires only the ability to produce

dots of a single colour, making it an inexpensive technique [31].

However, stippling has significant artistic merit independent of its utility. The

stipples can represent fine detail and texture with little cost in complexity. Stippling

is particularly good at clearly representing smooth, rounded objects without sharp

edges and so is often used in medical and archaeological texts.

We wish to generate stipple drawings from images with as little user input as

possible. The goal is to develop a tool which can generate high-quality stipple
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drawings from any source whatsoever, which implies that we use images as input

and not 3D models. While this limits the amount of information we have to work

with, it allows us a greater variety of input sources. For example, a user could

start from a scanned pencil sketch, a photograph, the output of a 3D interactive

application, frames of an animation, etc.

One of the features of a good stipple drawing is that the stipples arewell-

spaced, that is, the stipples do not clump together, leave uneven voids, or form

unwanted patterns. The artist achieves this by carefully placing each stipple onto

the page, explaining why stipple drawings often take weeks to create by hand.

Central to our approach is the use of centroidal Voronoi diagrams to produce

good distributions of points, as explained in Section 4.1.1. The input image can

be used directly as a weighting function to create a distribution of points that ap-

proximate its tones. This method produces images of high quality but takes more

processing time than the algorithm of Chapter 3, as explained in Section 4.2.

4.1 Voronoi diagrams

An ordinary Voronoi diagram is formed by a set of points in the plane called the

generatorsor generating points. Every point in the plane is identified with the

generator which is closest to it by some metric. The common choice is to use the

EuclideanL2 distance metric

|x1−x2|=
√

(x1−x2)2 +(y1−y2)2

wherex1 = (x1,y1) and x2 = (x2,y2) are any two points in the plane. The set

of points in the plane identified with a particular generator form that generator’s

Voronoi region, and the set of Voronoi regions covers the entire plane. Figure

4.1(a) illustrates a set of generating points and their associated Voronoi regions.
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(a) Voronoi diagram generated by

the set of generators (large dots).

Centroids of each Voronoi region

are marked by the small dots.

(b) Centroidal Voronoi diagram

Figure 4.1: General and centroidal Voronoi diagrams.

There existO(nlogn) algorithms for the geometric computation of 2D Voronoi

diagrams.

We implemented the fast 3D graphics hardware-based algorithm in Hoff [11]

and originally suggested in [30] to compute our Voronoi diagrams. The algorithm

draws a set of right cones with their apexes at each generator. The cones all have

the same height and are viewed from above the apexes with an orthogonal projec-

tion. In addition, each cone is given a unique colour which acts as the generator’s

identity. Since the cones must intersect if there is more than one generator, the

z-buffer determines for each pixel which cone is closer to the viewer and assigns

that pixel the appropriate colour value. We can then scan the resulting image and

determine which generator is closest to each pixel by using the unique colours.

This technique allows us to compute discrete Voronoi diagrams extremely quickly
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and perform computations on the resulting regions.

4.1.1 Centroidal Voronoi diagrams

A centroidal Voronoi diagram has the interesting property that each generating

point lies exactly on the centroid of its Voronoi region. The centroid of a region is

defined as

Ci =
∫

Axρ(x)dA∫
A ρ(x)dA

(4.1)

whereA is the region,x is the position andρ(x) is the density function. For a

region of constant densityρ, the centroid can be considered as the “centre of mass.”

Figure 4.1(a) has the centroids of each region marked with small circles.

A centroidal Voronoi diagram is a minimum-energy configuration in the sense

that it minimises
∫

A ρ(x)|Ci−x|2 [3]. Practically speaking, a centroidal distribu-

tion of points is useful because the points arewell-spacedin a definite sense. Figure

4.1(b) shows a centroidal Voronoi diagram.

4.1.2 Generating centroidal Voronoi diagrams

Lloyd’s method [18] is an iterative algorithm to generate a centroidal Voronoi dia-

gram from any set of generating points. The algorithm can simply be stated:

while Generating pointsxi not converged to centroidsdo

Compute the Voronoi diagram ofxi

Compute the centroidsCi using equation (4.1)

Move each generating pointxi to its centroidCi

end while

Algorithm 2: Lloyd’s method.
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Figure 4.1(a) relaxes under Lloyd’s algorithm to become Figure 4.1(b). The

convergence of Lloyd’s algorithm to a centroidal Voronoi diagram has been proven

for the one-dimensional case. The higher dimensional cases seem to act similarly in

practice, though no proof is known [3]. There are several different convergence cri-

teria which should be equivalent in the limiting case as the algorithm runs forever.

The obvious criterion to use would be that the computed centroids are numerically

equal to the generating points. However, for most applications this criterion is far

too stringent and it would be perhaps better to look at the average distance moved

by all generating points. Since we are interested in generating well-spaced sets of

points, we look at the average change in inter-point distance, or equivalently, the

average change in Voronoi region area.

Efficient computation of centroids

Calculating the centroids requires efficiently evaluating the integrals in equation (4.1).

Since the integrals are over arbitrary Voronoi regions, we convert to iterated inte-

grals and integrate the region row by row. In this manner we can precompute much

of the integral.

The denominator of the centroid is transformed as follows:∫
A

ρ(x)dA =
∫ y2

y1

∫ x2(y)

x1(y)
ρ(x)dxdy

=
∫ y2

y1

[P]x2
x1

dy

whereP≡ P(x) ≡
∫ x

0 ρ(s,y)ds can be precomputed from the density function1.

Note that we cannot precompute the entire integral because we do not know the

boundaries of the Voronoi regions beforehand.

1Recall that[
∫ x
0 f (s)ds]ba =

∫ b
0 f (s)ds−

∫ a
0 f (s)ds=

∫ b
a f (s)ds
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The numerator of the y-coordinate of the centroid is transformed similarly:∫
A

yρ(x)dA =
∫ y2

y1

∫ x2(y)

x1(y)
yρ(x)dxdy

=
∫ y2

y1

y[P]x2
x1

dy

The numerator of the x-coordinate of the centroid involves integration by parts:∫
A

xρ(x)dA =
∫ y2

y1

∫ x2(y)

x1(y)
xρ(x)dxdy

=
∫ y2

y1

{
[xP]x2

x1
−
∫ x2

x1

Pdx

}
dy

=
∫ y2

y1

[xP−Q]x2
x1

dy

whereQ≡Q(x)≡
∫ x

0 P(s,y)dscan also be precomputed from the density function.

Note that the final expressions require numerical integration only in the y-

direction and otherwise involve expressions only at the region boundariesx1 and

x2. P andQ are precomputed once from the density function and then evaluated at

the horizontal end pointsx1 andx2 as needed. This allows us to compute the inte-

grands only at region boundaries and not at every pixel. Otherwise we would have

to compute the integrandsxρ andyρ for every span of pixels across a region and

numerically integrated. The above integrand computation is particularly simple —

at worst two look-ups forP andQ, a multiplication and a subtraction. In addition,

if the Voronoi region is non-convex for numerical reasons, the scan conversion ef-

fectively decomposes the region into convex sub-regions, that is, single spans of

pixels.



Chapter 4. Voronoi-based Drawings 47

4.1.3 Resolution of Voronoi calculation

One disadvantage of using a discrete calculation of the Voronoi regions is the cal-

culation of the centroids is affected by the resolution of the diagram. The relative

error of the calculated centroid location will increase as the number of pixels per

Voronoi region decreases. A related problem is that if the resolution is low enough,

two generating points can effectively overlap and one of the regions will disappear.

The solution is to split the diagram into tiles and compute each tile at the full res-

olution available and then stitch the full diagram back together at a higher virtual

resolution [11]. The virtual resolution can be increased arbitrarily to meet a lower

bound on Voronoi region pixel area.

4.2 Stippling with weighted CVDs

The centroidal Voronoi diagrams in Section 4.1.1 incorporate the idea of a density

functionρ(x) which weights the centroid calculation. Regions with higher values

of ρ will pack generating points closer than regions with lower values. During the

iteration of Algorithm 2, the darker regions of the image appear to “attract” more

points. We can use Algorithm 2 directly to generate high-quality stippling images

by treating a grayscale image as a discrete two-dimensional functionf (x) where

x ∈ [0,1]2 and 0≤ f (x)≤ 1 is the range from a black pixel to a white pixel. Define

a density functionρ(x) = 1− f (x). We can then stipple a given image by first

distributingn points in the image and using Algorithm 2. Although any distribution

of initial points will eventually converge, it is useful to start with a distribution that

approximates the final form. Deussenet al. use a dithering algorithm and we use

simple rejection sampling to generate an initial distribution [2].
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4.3 Non-linearity of the density/area relationship

One difficulty that the reader will notice is that we have no well-defined relation-

ship betweeninput densityand the resultingareaof a Voronoi region. The previous

discussion makes clear that areas with higher density will attract more generators,

which in turn will cause the Voronoi regions in that area to shrink. Smaller Voronoi

regions mean that the generators are closer together, but in no well-defined way

with respect to the density. Ideally, we would like a linear inverse relationship be-

tween region area and region density: that is, the greater the integrated density in

a particular Voronoi region, the smaller the region’s area. If a fixed-sized primitive

is placed in each Voronoi region, then the coverage of ink on the paper would scale

linearly with input density, which is our ultimate goal. Figure 4.2 shows a scatter

plot of the ink coverage versus the input image density of 5000 Voronoi regions.

The scatter plot is obtained by using an input image consisting of a linear ramp

which goes from zero density to full density. The system is then seeded with 5000

points and allowed to relax. The integrated density, area, and other attributes of

each Voronoi region are then written to file for examination. The ink coverage for

a particular primitive is estimated by dividing the primitive’s area by the uncovered

area surrounding the primitive, that is, the area of the Voronoi region. In Figure 4.2

the primitive is fixed as a disc whose area equals the area of the smallest Voronoi

region. This value is chosen so that in black regions, where the Voronoi regions

are smallest, the primitive completely covers its Voronoi region. No fixed primitive

size is ideal, however, and different sizes could be chosen.

There are several notable features of Figure 4.2. First, the relationship between

input density and output ink coverage is far from linear. In particular, the ink cover-

age is too low for most of the input density range, which would result in washed-out

midtones and shadows. Second, the output coverages become more scattered with
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Figure 4.2: Input image density and corresponding ink coverage using reasonable

fixed-radius stipples.

increased input density. The reason for this is that the Voronoi regions for higher-

density areas are quite small and close to the resolution of the discrete Voronoi

diagram. Fitting a single curve to the coverage relationship would be difficult. In-

creasing the resolution of the diagram and allowing it to relax for more iterations

reduces the variation in the higher density areas because the Voronoi regions be-

come better formed and closer to true hexagons. However, increasing the regularity

of the smallest Voronoi regions is undesirable for several reasons: large memory

usage, long computation times, and overly-regular patterns in the output. Reducing

the variability present in Figure 4.2 is not a viable option.

The practical consequence of the non-linearity between input image density

and output ink coverage is that any particular fixed primitive size cannot faithfully

reproduce the input image tones. Changing the primitive size is equivalent to scal-

ing the points in Figure 4.2 by a constant factor, but it is tedious to find a reason-

able value even if some non-linearity is accepted. Figure 4.3 shows the resulting

ink coverage if the user happens to select a primitive size half that of Figure 4.2.
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Figure 4.3: Input image density and corresponding ink coverage using fixed-radius

stipples half of reasonable value.

Clearly input tones are not being reproduced linearly.

A solution is to set the primitive size individually for each Voronoi region such

that the ratio of the primitive’s area to the Voronoi region’s area equals the input

density. The details for doing so for disc-shaped stipple primitives can be found

in Section 4.4. Figure 4.4 shows the ink coverage if this method is applied. Note

that the coverage is almost ideal for most values of input density and only slightly

deviates from linear. Also, the over-coverage for input densities greater than 0.9

compensates for the overlap between primitives. If overlap is not compensated

for, then very dark shadow regions will wash out. The actual coverage of ink is

very nearly linear for all values of input density. The size calculations, overlap

compensation and reasons for small non-linearities are explained in Section 4.4.



Chapter 4. Voronoi-based Drawings 51

PSfrag replacements

Input Density

E
st

im
at

ed
O

ut
pu

tI
nk

C
ov

er
ag

e

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.4: Input image density and corresponding ink coverage using variable-

radius stipples.

4.4 Correlating primitive size and ink coverage

We have the desired ink coverage for each primitive over its Voronoi region by

integrating the input image. We will adjust the scale of each primitive to achieve

this coverage, but we need to know the relationship between primitive scale and

coverage. Note that we will be only using simple scales to increase or decrease

the ink coverage of a particular “base” primitive. We could adjust the ink opacity

or even the colour of the background Voronoi region, but these effects are not

easily achievable on many common devices such as printers. Furthermore, keeping

at least one eye on tradition, adjusting the opacity of the ink for each of several

thousand primitives violates the spirit of our endeavour.

In general, this problem is hard, since many scales will cause primitives to

overlap with each other, and this overlap affects the ink coverage. This was dis-

cussed previously with respect to modifying the probability density functions in

Section 3.1. In the worst case, the overlap between any particular primitive de-
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pends on all the primitives which surround it, includingtheir individual scales.

Clearly the general problem must be solved for all primitives simultaneously, and

not for each primitive individually. In this most general case, it is difficult to de-

couple the ink coverage of any particular primitive from its neighbours.

However, in the case of stippling with relaxed point distributions, there is a

nice simplification which allows the problem to be treated analytically. The opti-

mal packing of discs in the plane is a hexagonal grid, like that of a honeycomb.

The Voronoi regions produced by Lloyd’s algorithm are approximately congru-

ent to hexagons, depending on how many iterations are used [17]. Indeed, in the

constant-density case on the infinite plane, Lloyd’s algorithm will produce a per-

fectly regular hexagonal grid.2 Even when a non-constant density function is used,

such as is the case for our stippling algorithm, the Voronoi regions form near-

hexagonal shapes of various scales.

We will assume that when the generators have become sufficiently relaxed,

each Voronoi region approximates a regular hexagon. Furthermore, we will as-

sume that the scales of the Voronoi region do not change drastically over the scale

of a single hexagon. These assumptions let us assume that any Voronoi region is

surrounded by a regular hexagonal grid of identical size, denoted bys, wheres is

measured from the centre of the hexagon to the centre of a side. Clearly this as-

sumption becomes more valid with larger numbers of generators, since the density

variation a particular Voronoi region covers will shrink. To illustrate the validity

of this assumption for a typical input image, Figure 4.5(a) shows a test input im-

age and the centroidal Voronoi diagram of 400 generators. This is a very small

number of stipples to use for the test image, as is illustrated its stipple drawing

in Figure 4.5(b). Note that in the central region the Voronoi regions are indeed

2Finite regions, such as the ones used in this dissertation, show slight edge effects near the bound-

aries. This does not change our argument.
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roughly hexagonal, but the regions centred on the horizontal lines are far from

hexagonal. The regions on these lines violate our assumption that each Voronoi

region is approximately in a grid of hexagons, but any deviations from correct tone

reproduction near edges is very difficult to detect in practice.

To calculate the relationship between coverage and stipple scale, we centre a

disc of radiusr in each hexagon. Figure 4.5 shows the configuration. Note that

the disc will completely cover the hexagon whenr/s = 2/
√

3. As we increase

the radius of the disc from zero to 2/
√

3s, there are clearly three distinct regimes:

the disc is completely contained in the hexagon, the disc touches or overlaps the

hexagon’s edges, and the disc completely covers the hexagon. These are conve-

niently parameterised byσ2≡ r2/s2 in the following ranges:

0≤ σ2 < 1 disc contained,

1≤ σ2 < 4/3 disc overlapping,

σ2 > 4/3 disc covers.

4.4.1 Disc completely contained in hexagon

If σ2 ≤ 1, then we have the simplest case, shown in Figure 4.5, where the disc

is completely contained in the hexagon. In this case each disc in the assumed

hexagonal grid is independent and does not overlap any other. The disc coverage

is then just the ratio of areas:

area of disc
area of hex

=
πr2

2
√

3s2
=

π

2
√

3
σ

2 (4.2)

where we have used the area of a hexagon as 2
√

3s2.
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(a) Test input image and resulting centroidal Voronoi diagram of 400 generators.

(b) Stipple drawing of the test input

image.
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Figure 4.5: The general case of a single tile of the disc packing.

4.4.2 Disc completely covers hexagon

If σ2≥ 4/3 then the disc completely covers the hexagon and we have

area of disc
area of hex

= 1. (4.3)

4.4.3 Disc overlaps hexagon edges

If 1 < σ2 < 4/3 then the disc will overlap the edges of the hexagon and the neigh-

bouring discs. This case is shown in Figure 4.6. The area of the wedgeA1 +A2 is

simply πr2 α

2π
= αr2/2 whereα is the angle contained byr ands: α = arccoss/r.

The areaA1 of the triangle iss
2

√
r2−s2. Hence,A2, the partial overlap region

is (αr2− s
√

r2−s2)/2. There are twelve such regions about the hexagon, so the

effective area of the disc isπr2−12A2 or

Adisc = πr2−6(αr2−s
√

r2−s2). (4.4)

The ratio of areas covered by the disc is (after some shuffling)

area of disc
area of hex

=
(π−6α)σ2 +6

√
σ2−1

2
√

3
(4.5)
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Figure 4.6: A single tile of the disc packing where the disc overlaps the hexagon

edges (left). Detail of the overlapping region (right).

The two base cases are when the disc just touches the hexagon (σ2 = 1) and

when the disc fully covers the hexagon (σ2 = 4/3). If σ2 = 1 thenα = 0 and the

square root cancels, leaving just

area of disc
area of hex

=
πσ2

2
√

3
(4.6)

which matches Equation 4.2. Ifσ2 = 4/3 thenα = π/6 and we have

area of disc
area of hex

=
(π−6(π/6))4/3+6

√
4/3−1

2
√

3

=
2
√

3

2
√

3
= 1

which matches Equation 4.3.

Figure 4.7 shows the complete disc coverage function for all pertinent values

of σ2. Note thatσ2 has units of dimensionless area, the same as coverage. If we

plottedr/s, which has units of dimensionless length, then the plot would show a

typicalx2-like shape.
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4.4.4 Correcting non-linear tone reproduction

In Section 4.4 we showed how to calculate the coverage of a disc in a hexagon for

any radiusr relative to a hexagon radiuss. This relationship can be analytically

inverted to give a radius that a disc must be to achieve a given coverage for a

given hexagon radius. We use this relationship to set the size of each stipple based

on the integrated input image darkness and the Voronoi region’s area. Using the

assumption that every Voronoi region is approximately hexagonal, we compute the

radius of a hexagon with the same area as the Voronoi region. We want the ratio of

area covered by ink to area not covered by ink to match the integrated darkness of

the input image for every Voronoi region. Once we have calculated this integrated

darkness, we invert the relationship shown in Figure 4.7 to getσ2, and then use

our estimated value of the hexagon radiuss to getr. This radius is used to set the

size of each stipple in the output. Note the correspondence between the overlap

regions in Figures 4.7 and 4.4 from the previous section. Figures 4.11 and 4.12 in

the next section compares a stipple drawing with fixed-sized stipples to one with

variable-sized stipples.

4.5 Results

We expect that at the limit of large numbers of very small stipples, the stipple draw-

ing will approximate the grayscale image. Centroidal Voronoi diagrams produce

distributions of points that approximate a blue noise distribution, that is, a random

distribution with a constraint on the minimum distance between points. Blue noise

distributions are useful because they do not introduce spurious patterns such as

lines or grids. They can also approximate a constant tone because of the minimum

distance constraint. Blue noise distributions have been used to create very high-
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quality dither patterns for colour reduction [27]. Figure 4.8 shows a grey-scale

close-up image of some Peperomia leaves with a drawing of 20000 stipples. The

fine stippling approximates the tones of the image very well, including the textures

inside the leaves.

Figure 4.9 shows a different small Peperomia plant, lit from the side, with

20000 stipples. Although the number of stipples per square inch is less than in

Figure 4.8, the large number of stipples still renders a faithful image. In particular,

note the hard edges maintained by the stipple drawing. Figure 4.10 shows the full

Peperomia plant from Figure 4.8 with 20000 stipples. Observe the colouration of

the centre of the leaf facing the viewer. While the method of Deussenet al. can

easily produce sharp edges through user interaction, producing the gradual change

in tone visible on the leaf would be difficult. The even spacing of points along

the edges of the leaves is the result of the interaction of the centroidal Voronoi

diagram, which attempts to space all points evenly, and the density functionρ,

which restricts points to the essentially one-dimensional edge.

However, a more interesting test is to apply the method with low stipple counts.

Smaller numbers of stipples mean that we cannot rely upon the eye to fuse the tiny

size and spacing of the dots into a continuous tone. Figure 4.11 shows an image

of an artist’s mannequin and the stippled version with 1000 stipples. Figure 4.12

shows a climbing shoe in the same format. Note that both the stipple drawings are

quite recognisable, especially in comparison to Figure 4.13, where the source im-

ages have been reduced in resolution until they contain approximately 1000 pixels

each3.

Finally, we note that the most striking drawings come from neither very-high

3This comparison is not quite fair, as the 1000 pixels are forced to be equally spread across the

image whereas the stipples are free to move. The point is that the stippling maintains edges and

silhouettes even at very low resolutions.
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Figure 4.8: Close-up of large Peperomia leaves with 20000 stipples.
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Figure 4.9: Small Peperomia plant, lit brightly from the right, with 20000 stipples

of fixed radius 1.0×10−3.
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Figure 4.10: Large Peperomia plant with 20000 stipples.
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Figure 4.11: Figure with 1000 stipples. Stipples in the bottom left have fixed radius

5×10−3 and those in the bottom right have variable radius.
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Figure 4.12: Climbing shoe with 1000 stipples. Stipples in the bottom left have

fixed radius 5×10−3 and those in the bottom right have variable ra-

dius.
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Figure 4.13: Source images of Figures 4.11 and 4.12 rendered with approximately

1000 pixels instead of stipples

nor very-low numbers of stipples, but medium ranges. Figure 4.14 shows the

climbing shoe of Figure 4.12 rendered with 5000 stipples. This drawing seems

to both reproduce the range of tones from the original and have the “feel” of a real

stipple drawing. Figure 4.15 shows a corn plant rendered with 20000 stipples and

displaying both colouration on the leaves and sharp boundaries on the edges. We

feel that this image begins to live up to the quote by Hodges in [10], page 111, in

which he attests to the vibrancy of stippled images: “Like a pointallist painting, the

drawing will appear to vibrate slightly.”

4.6 Parameters and timings

We computed all the stipple drawings of Section 4.2 on an Intel Pentium III 1000

MHz machine with 256 Mb of RAM and a NVIDIA GeForce2 MX graphics ac-

celerator. As discussed in Section 4.1.3, we require the Voronoi regions to have

an average area of at least 500 pixels, which forces a virtual resolution of up to

3600 by 3600 pixels for the 20000 stipple drawings. Since we precompute the in-
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Figure 4.14: Climbing shoe with 5000 stipples.

tegralsP andQ from Section 4.1.2 at full virtual resolution, this requires upwards

of 100 Mb of memory. The memory requirement could be reduced by an order

of magnitude by computing the integrals in tiles in the same way that the Voronoi

diagrams are computed, but this did not seem necessary.

The iterations were stopped and the stipple drawing output when the difference

in the standard deviation of the area of the Voronoi regions in successive iterations

was less than 1×10−4. Because the background of the input images was not always

pure white, stipples were only output if the input image value at that location was

greater than 99% of pure white.

On the system used, the stipple drawings with up to 5000 stipples completed in

under a minute and the drawings with 40000 stipples complete in about 20 minutes

on an otherwise unloaded machine. The 1× 10−4 stopping limit was arbitrarily

chosen and different values will lead to different runtimes.
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Figure 4.15: Corn plant with 20000 stipples.
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4.7 Extensions and future work

Lloyd’s algorithm involves an averaging filter. The movement of a generator is

based solely on its computed centroid, which is essentially the weighted average

position of the Voronoi region. This should not be surprising, since many non-

linear solvers use some form of filtering of their data, particularly if the data is

noisy. Lloyd’s algorithm is interesting, however, because as the iteration continues,

areas with higher weights will accumulate more generators than areas with lower

weights. In turn, the Voronoi regions must shrink in area, and so the averaging

filter will operate on smaller regions. The result is that areas with higher density

will be filtered less than areas with lower density. In the language normally used

with filters, the width of the filter kernel adapts to the underlying region’s weight.

We can illustrate this easily in our image context by generating a “mosaic”.

Mosaics are an art form where images are made from small ceramic, glass or stone

tiles, often decorating walls or table surfaces. Hoffet al. made extremely simple

Voronoi-based image mosaics by generating a Voronoi diagram with an arbitrary

number of points [11]. Each Voronoi region is then replaced with the average

colour of an input image over that region. The result is an image with a number of

roughly hexagonal constant-colour regions that represent the image.

We generate an image in which the pixels belonging to a particular Voronoi

region are replaced with the average pixel value in the region. Figure 4.16 shows an

example mosaic and Voronoi diagram. Note that the density function is the same as

the input image, as we have previously presented, so the size of the Voronoi regions

are smaller where the input image is darker. The original motivation for this was

to packconstant-sizedstipples closer together in darker regions to increase the ink

coverage in the output. However, since we are dynamically adjusting the stipple

sizes to reproduce tone linearly, we are no longer required to use the input image as
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the density function. Figure 4.17 shows a mosaic and Voronoi diagram for the same

input image, but in this example the density function is the arbitrary image shown

at top. Clearly the Voronoi regions at the top of the mosaic and diagram are much

smaller than the bottom. That is, the density function can control the “resolution”

of the output drawing. Here we intend the term resolution to roughly mean the

scale of smallest features detectable. Finally, Figure 4.18 shows a possibly more

fruitful use of the density image. The density image in this example was created

by filtering the input image with a Sobel filter and processing the resulting edge

pixels with a Gaussian filter of width 25 pixels. The result is related to a distance

function from the edges. From the diagram, it is clear that the density image is

forming smaller Voronoi regions, and hence higher “resolution”, near the edges.

In general, however, we would like to associate higher resolution with “interest-

ing” features of the image, as is generally done in many other areas. For example,

using a portrait as an input image, the density image could be darker around the

face of the subject, bringing higher resolution to that area.
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Figure 4.16: Sample image with mosaic and Voronoi diagram. The density image

is the same as the input image.
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Figure 4.17: Sample image mosaic and Voronoi diagram. The density image is at

the top.
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Figure 4.18: Sample image mosaic and Voronoi diagram. The density image at

the top was obtained by applying the Sobel filter to the original image

and blurring with a Gaussian kernel of width 25 pixels.
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Chapter 5

Discussion

We have presented two flexible image-space algorithms for non-photorealistic ren-

dering with small primitives. Our probabilistic algorithm generates continuous

tone illustrations at interactive frame rates. Our approach for distributing primi-

tives naturally provides scale independent results with some measure of frame-to-

frame coherency. That is, individual strokes move continuously as the input image

changes. We demonstrate that a number of different drawing styles are possible

using only an image as an input. More styles are possible if additional information

such as silhouette edges or material IDs can be derived from a 3D model.

Preservation of continuous tone with our approach is dependent on the size of

the primitive, the feature to be preserved (i.e. edges) and the viewing distance.

This is a standard limitation, since, as with any halftoning technique, the formation

of continuous tone from a discrete palette relies on the spatial integration of the

eye. Thus, our approach preserves tone if the choice of drawing primitive, image

or model and viewing distance is reasonable. Our frame rate depends on several

factors (brightness, size of PDF table, drawing style etc.) and is thus not con-

stant. This could limit the applicability of our method in some situations. A final

limitation is the distance a primitive moves from frame to frame. While primitives

move continuously, the apparent movement from frame to frame can be distracting,

especially at the lower frame rates.

In the future we would like to extend the tone correction method to work for
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grayscale and colour primitives or graftals [14]. Grayscale or semi-transparent

strokes or brushes could be used to simulate other non-photorealistic rendering

effects such as watercolour [1]. Additional pen-and-ink styles could also be in-

corporated into our method. For example, it would be easy to clip strokes against

object masks rendered using an ID buffer algorithm. This would preserve disconti-

nuities in the image without having to align strokes orthogonal to the gradient field.

Finally, it should be possible in the future to offload the placement of the stipples

onto the graphics chip, which would drastically reduce the bandwidth requirements

of the method. This would require a programmable vertex engine similar to the one

described by Lindholmet al. [15], but with the additional possibility to perform

per-vertex table lookups.

Our weighted centroidal Voronoi-based algorithm has very few user-specified

parameters and requires no user interaction. The input data are grayscale images

which can be produced by a wide variety of sources. Apart from simply requir-

ing less work to generate a given stipple drawing, this independence allows cheap

stippling to be used in a wider variety of situations than before.

A fundamental problem with weighted centroidal Voronoi diagrams is the un-

known relationship between the underlying density and the size of the Voronoi

regions. This problem is general and not specific to our application. It is this prob-

lem that is discussed in Section 4.3 and required the per-primitive size adjustments

to maintain a linear tone mapping from input image to output drawing. Although

adjusting the size of the primitives does fix the problem, in a sense it is redun-

dant. That is, the stipple positions could be arbitrarily placed in the output image,

and linear tone could still be achieved by the brute-force changing the size of each

primitive. However, using Lloyd’s algorithm to position the stipples ensures that a

reasonable drawing is produced even if constant-sized stipples are used. Further-

more, a good placement of stipples reduces the variation in stipple size required to
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reproduce the input tone.

Several interesting extensions to the current algorithm could be investigated

including the use of colour stipples, and stippled animations should be investigated,

as well.
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Chapter 6

Conclusions

We have presented two novel and complementary non-photorealistic rendering

methods which use arbitrary greyscale images as input. Our fast, probabilistic

method generates a probability density function (PDF) from the input image which

is constructed to compensate for the overlap of primitives. The PDF is then used

to distribute the primitives on a canvas, reproducing the input greyscale tone. The

style of the final rendering is controlled by the user through the type, scale and ori-

entation of the primitives. The probabilistic algorithm is capable of real-time per-

formance on modern hardware and many different styles. Using centroidal Voronoi

diagrams weighted with the input image, our iterative algorithm positions stipples

carefully to avoid overlap. We use Lloyd’s algorithm to relax an initial distribution

of positions into a well-spaced arrangement. Finally, the sizes of the resulting stip-

ples are adjusted to produce linear tone mapping from the input image to the output

drawing. The result is that of a carefully-stippled drawing of the input image.
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Appendix A

Implementation Notes

A.1 Colour and gamma issues

We attempt to ensure that the entire system is linear in converting encoded values

from the input images into ratios of coverage of black regions to white regions in

the output. Whether or not this results in a linear mapping from encoded values to

perceived lightness is entirely dependent on the input encodings themselves and the

methods used to render the black and white regions. Since we wanted our system

to handle a wide variety of input images, many of which have no context at all with

respect to the interpretation of their values, we believe that this is the best we can

do at present. If the characteristics of the output medium are known (for example,

dot-gain curves for a particular printer or gamma values for a monitor), then the

inverseof that transfer function can be applied to the input image encoded values.

Since the system is linear, the inverse transfer function will be carried through the

system unmodified and the rendered output will be appropriately compensated.

The stippling system can read 16-bit image channels for image types that sup-

port them, and internally represents images with 32-bit IEEE floating points num-

bers. Thus images can have transfer functions applied to them, stored in a 16-bit

format such as TIFF or PNG, and then loaded normally. If this 16-bit precision is

still not enough for a particular transfer function, then the system could be trivially

modified to load a separate transfer function from an arbitrary format that uses full
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32-bit IEEE floating point for storage.

The hatching system includes a transfer function that could be used for the

same purpose.
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