Overview of Multimedia Application Development
by
KIRK JONATHAN MARPLE
B.Sc., Kutztown University, 1988

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
in
THE FACULTY OF GRADUATE STUDIES

Department of Computer Science

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
August 1996

O Kirk Jonathan Marple, 1996

TABLE OF CONTENTS

Table of Contents
Abstract

List of TABLES
List of Figures
Acknowledgments
Introduction

1. Planning the Application Development
1.1 User Interface Design
1.2 System Design

1.3 Types of Applications

131 Multimedia Authoring

1.3.2 Multimedia Conferencing

1.3.3 Multimedia Document Browsing
1.34 Video Annotation

2. Content Acquisition and Storage

2.1 Finding Content
2.2 Preparing Content

2.3 Storing Content

2.3.1 Image
2.3.2 Audio
2.3.3 Video
3. Content Delivery

3.1 Using Multimedia Data Delivery in Applications

3.2 Platform Issues

Vi

viii

12

13

17

19

20
24
26

28

30

31

35

36

37
39

43

56

58

61

3.2.1 Apple QuickTime

3.2.2 Intel Audio Video Kernel
3.2.3 UC Berkeley Comet

3.3 Synchronization Issues

3.3.1 Continuous Synchronization
3.3.2 Synthetic Synchronization
3.4 Networking Issues

3.4.1 Continuous Media Player
3.4.2 Rate-based Flow Control Protocol
3.4.3 Multimedia Virtual Circuit
3.4.4 Continuous Media Transport Service and Protocol
3.4.5 AudioFile

3.4.6 Etherphone

3.4.7 X-MOVIE

4, Case Study

4.1 Related Works

4.2 Design Rationale

4.3 Implementation

43.1 User Interface

4.3.2 Networking Protocol

4.3.3 Synchronization Engine

4.4 Application Walkthrough

45 Conclusion

Glossary

Bibliography

62
62
63

63
65
66

67
70
72
72
73
74
75

76

78

79

79

83
84
88

94

100

111

119

120

ABSTRACT

This thesis presents a survey of multimedia application development and a case study of an
implementation of a multimedia application. The steps of multimedia application
development are described including the planning of the application development, content
acquisition and storage, and content delivery. The survey would be useful for multimedia
developers and interactive media designers interested in gaining a broad knowledge of

multimedia application design.

The case study presented is of a networked multimedia playback application and it
illustrates the application development steps in the context of the application. The goals
of the project were to provide synchronized video playback over a network while
leveraging existing technology in order to support extdigjlportability, and

interoperability.

LIST OF TABLES

Table 1: Classes of multimedia applications

Table 2: Sources of image, audio and video data in analog and digital formats
Table 3: Storage demands of uncompressed digital media types [Williams91]
Table 4: Compressed digital image storage formats [Media91] [Murray95]
Table 5: Compressed digital audio storage requirements [Microsoft95]
Table 6: CD-I audio modes [Pohlmann89] [Luther89]

Table 7: Video signal formats with corresponding storage formats [Rubin91]
Table 8: Software-only video compression algorithms [Doyle93]

Table 9: Types of application data delivery advisement [Loeb92]

Table 10: Examples of temporal object relationships [Little90a]

Table 11: Network interface types and corresponding bit-rates [Liebhold91]

Table 12: Application hierarchical menu with complete set of available commands

19

31

37

38

42

43

45

52

60

65

69

88

LIST OF FIGURES

Figure 1. Example of icon-based user interface 14
Figure 2: Example of hierarchical menu user interface 15
Figure 3. CU-SeeMe conferencing application which renders compressed video and audio

streams and out-of-band text “chat” messages. 25
Figure 4: Microsoft Internet Explorer WWW browser showing inline images, formatted

text, and hyperlinks embedded in the HTML page 28
Figure 5: Application window showing client information view, server information view,

and client view areas 85
Figure 6: Client information view showing information about current media sources 86

Figure 7: Server information view showing information about current media servers 86

Figure 8: Application toolbar with buttons for common commands 87
Figure 9: Standard RTP header 89
Figure 10: Basic RTP option header 90
Figure 11: RTP synchronization source header 90
Figure 12: RTCP bye header 91
Figure 13: RTCP source description header 92
Figure 14: RTP application data header 93
Figure 15: RTCP QoS header 94
Figure 16: Rate control calculation 98

Figure 17: Data flow between physical, logical, and compound logical input devices and

logical time system 101

Figure 18: Dialog box used for setting up connection with client 101

Figure 19: Data flow between physical, logical, and compound logical output devices and

logical time system 102
Figure 20: Application window shown after connecting to clieaalhost 103
Figure 21: Dialog box used for editing server information 104
Figure 22: Dialog box used for selecting which media file to play 105
Figure 23: Application window shown after an AVI file is added to server list 106
Figure 24: Dialog box used for editing media file information 107
Figure 25: Dialog box used for editing server frame rate 108
Figure 26: Application window shown during server playback 109

Figure 27: Application window shown after server playback has been stopped 110

ACKNOWLEDGMENTS

To my wife, Laura, for putting up with the long nights at the computer and for persistently

nudging me to finally complete this thesis.

To my thesis supervisor, Dr. Kellogg S. Booth, and faculty reader, Dr. Gerald Neufeld,

for their time spent reviewing this thesis and their insightful suggestions.

To my employer, Microsoft Corporation, for providing an excellent work environment and
for creating the development tools and operating system which were used to implement

the thesis project.

INTRODUCTION

The ability to bring together various types of data - static or dynamic, visual or auditory -
and render them for a user in a useful manner is one definition of thentdtimedia
Multimedia has also been described as “Variety + Integration” [Willams91]. Multimedia
integrates separate data types into a cohesive framework. The individual data types as

well as the relationships between the data types are managed within this framework.

On a dally basis the computer user is involved in performing many different tasks. These
tasks may be as basic as writgélgctronic mail(e-mail), or as complex as editing and
assembling a segment of digitized video. It is common to refer to the objects manipulated
in these tasks atocuments In a word processing task, the set of words and formatting
commands the user enters is called a document. In a video editor, segments of video and
audio, their spatial and temporal layout, and the commands which merge the data can also

be thought of as a document maltimedia document

A word processing document with an embedded image is a multimedia document in its
simplest form. But in common usage, multimedia documents must include at least one
additional media type (other than text and static images). This will normally be audio or

video.

A computer program which assists in the completion of a task can be termed an
application A multimedia applicationsuch as a digital video editor, assists the video

editing process by merging video and audio segments. By supplyinglidapaich as

digital video effects, these applications can surpass the manual abilities of the user. In

general, multimedia applications create, edit and store multimedia documents.

The display of a video segment or the playback of an audio segment can be described as
thedeliveryof the data. This delivery normally occurs from a storage resource, such as a
magnetic disk drive, to a display device, such as a computer monitor. For example, a
video can be played from a hard disk drive through the system bus to the video monitor.
Alternatively, the video can be played from a CD-ROM mounted in a remote computer

over awide-area networWAN) to a video monitor.

Multimedia applications are designed to exploit existing networks and storage resources.
Future plans for faster and wider-bandwidth networks and rapidly increasing quantities of
storage resources should be taken into consideration. But multimedia applications need to
be useful in the present day, not five years from now. As new resources surface in the
marketplace, applicationsililbegin to take advantage of them. However, the majority of
computer applications must still run on computers, networks, and storage resources that
were designed several years ago. This is why building scaleability and adaptive delivery

techniques into multimedia applications today will lengthen their useful lifetime.

The process of creating a multimedia application can be subdivided into three steps:

» Planning the Application Development
» Content Acquisition and Storage
* Content Delivery

10

Application design encompasses both user interface design and system design. These two
areas must be addressed together in order to provide a consistent, useful and successful
application. The complete process of planning a multimedia application is analyzed in

Chapter 1: Planning the Application Development.

Once the concept for the application has been finalized, the creator must decide what
multimedia data will be used by the application. This multimedia data is commonly termed
content Content is generally acquired from a source such as a video camera or a
microphone. The process of acquiring content from various sources and their associated

storage formats is describedGhapter 2: Content Acquisition and Storage

Once content is acquired and stored, the application creator must decide how the data will
be delivered to the user. Also, the creator must decide how and on what platforms the
content will be used. These issues plus inter-media synchronization and networking are

discussed ilChapter 3: Content Delivery

As an example of delivering network-based cont€nhgpter 4: Case Studjustrates the
creation of a video playback application which supports the delivery of video data to inter-

networked computers.

11

1. PLANNING THE APPLICATION DEVELOPMENT

Before beginning any task, one must decide what is to be accomplished, and what the end
product should be. In this way, the process of creating multimedia applications is no
different from any other task. The creator begins by creating a design for the application.
The first attempts will likely be crude “back of the envelope” designs. But as the design
process proceeds theyliveecome more well-defined and specific. In addition, a set of
specifications is created for most applications. These specifications will be the “recipe
book” which the application’s development will follow. Each application will have

different specifications, and different application creators will design specifications
differently. The degree of detail in the specifications will depend on the type of

application being created and on the time allotted for its completion.

Before generating specifications, it is common to generate prototypes of the final
application. A few examples of prototyping methods are storyboards, authored
prototypes, and visual programming. Storyboards can be hand-drawn or computer-
generated visual representations of an application’s user interface and program flow. An
authored prototype will normally provide a detailed example of a useraicgeotut will

only support dimited amount of programming logic, if any. The next step past an
authored prototype would be to use a visual programming tool such as Microsoft Visual
Basic or Borland Delphi. This type of tool allows the creator to layout an example of the
user interface, but also include a subset of the pnagiag logic for usability testing and
demonstration purposes. Prototypes allow the application creator to brainstorm and

validate various design principles with a minimum of development effort. Some tools even
12

allow visually programmed prototypes to be leveraged towards the final application by

translating it into a low-level programming language such as C or C++.

1.1 User Interface Design

For applications which incorporate user interaction, the design of the user interface is of
primary importance. It will affect the user’s efficiency, as well as his satisfaction with and

understanding of the application.

User interface design is a well-researched area, and as a result there are many opinions on
user interface requirements. For example, it has been suggested that all interaction must
be done via a simple device with intuitive operation and requiring little manipulation
[Rosenberg92]. Devices such as touch screens are commonly used for inexperienced
users because of their uncomplicated design. Typically, input devices such as mice and
keyboards are not used when the application is aimed at inexperienced users, because
these types of input devices require a substantial learning curve before efficient use is

possible.

Intuitive operation is important for the inexperienced user because the best applications do
not require instruction manuals or training. If the user can understand an application
within seconds rather than minutes or hours, its usefulness is greatly enhanced. Similarly,
applications which use simple manipulation methods do not require as much training as
applications which have complex manipulation methods. Using a mouse to double-click
an icon, in aVindows-Icon-Mouse-Point¢wWIMP) interface, requires more dexterity and

skill than simply using one’s finger to push a button on a touch screen (see Figure 1).

13

I icrosoft Officens

Filz Edit Wiew Help

|_~1Min:rcusu:uft[lffiu:395 j ?E|"f:::| ,:',%,|
LA -

By
Microsoft Microzoft Microzaoft Microzoft Microzoft
i Binder : Ewcel Office Shortcut PowerPaint Wwiond
Bar
5 object(z) 1.64KE

Figure 1: Example of icon-based user interface

This icon-based interface shows a Microsoft Windows 95 Explorer window containing
five icons. The icons act as shortcuts to software applications and launch the referenced

application when double-clicked.

It has been stated that application interfaces must present simple choices that do not
require navigation [Rosenberg92]. An interface should present options to the user in such
a way that, given the visible information, a decision can be made by the user. An example
of this is an information kiosk with a touch screen, in which all available options are visible

to the user at once on a single screen.

One interface technique which does not follow this guideline is the hierarchical menu
structure (see Figure 2). With hierarchical menus, an option that a user desires will be
hidden from view until its parent option is selected. Some training is needed to inform the
user as to how to view the hidden options and how to choose the desired option. This is

the navigation requirement. In hierarchical menus, an option is normally chosen with a

14

single-click at each level of the hierarchy. This interface technique is useful when many
options must be provided to the user, but it has the drawback of being more complex than

a “one finger” approach.

7

Recycle Bin

_'| ACCESIOries r
@ 7 bigital Video Producer *
Inbox _'| Enhanced CU-Seete 4
_'| Fractal Dezsign »
I’ _1 Sames 3
a _'| Microsoft Sames »
The Intemet _'| Microsoft Kids F
_'| Microzoft sultimedio r
soft Office?5 28 Microsoft Excel
_'| Microsoft Reference L4 E Microsoft Office Shortcut Bar
_'| StartUp » Microsoft PowerPoint
Programs 7 ¥hobhone Microsoft Wiord
ﬂ — R _'| Wideno for Windows 1.1 4
E Famnily Tree Maker Deluxe
E'}_;. Settings ¥ g Internet Explorer

Microzoft Developer Studio
@ Microsoft Exchangs
Browse the Web ¥ % microsoft money

f'A] Find C

@ Help i@ Microsoft Nettesting
B microsoft Schedule+

izl fe .5-DOS Prompt

@ Photoshop 3.0

4 @ Vifindows Explorer

i Elsicrosoft Office 5 EJ winZip 6.0 32-bit

dowsob

Run...

Shut Down...

S wp

Figure 2: Example of hierarchical menu user interface

This hierarchical menu interface contains multiple sub-menus each of which contain a set

of icons. The icons act as shortcuts to software applications and launch the referenced

15

application when single-clicked. By selecting Bregramsitem from theStart menu, and
then selectingviicrosoft Office95the same five applications from Figure 1 are accessible.
By highlightingMicrosoft Wordin this sub-menu and clicking on the item with the mouse,
the application is launched. This type of menu interface allows access to many more

applications in a smaller screen space than in an icon-based interface.

For inexperienced users, it is often a difficult task to navigate through the interface to find
the desired option, so it follows that users will often make unintended selections. A well-
designed application interface can heldifmting the user’s chance of making incorrect
selections [Rosenberg92]. For example, an interface can help users recover from mistakes
by allowing them to undo mistaken selections. The application creator can focus the

user’s attention by only displaying currently available options. The interface can also aid

the user in making the correct choice by not littering the screen with useless information.

Other user interface features that aid the user are real-time feedback, favorites, history lists
and navigation context. As the user is navigating the interface, it helps to have real-time
feedback of available options, help text, or shortcuts the user can take the next time to
complete the same task more quickly. Favorites (a.k.a. bookmarks) are references to
locations in an application which the user can save. This allows the user to quickly return
to the same location in the application. A history list enumerates the previous locations

the user has navigated to and allows him to return directly to a previously visited location.
Similarly, navigation context provides the user with information about where in the

application he is located, with respect to an overall application hierarchy or structure.

16

1.2 System Design

When designing an application, the application creator has to look beyond the user
interface. The creator must consider the underlying technologies wiliibke wsed to
deliver the media to the user, as well as the technology to deliver different media types.
The various media types are discusse@hapter 2: Content Acquisition and Storage

and delivery mechanisms are discussedhapter 3: Content Delivery

In addition, one must consider the time vs. space trade-off when comparing the available
delivery bandwidth to the available storage space. The delivery bandwidth may be
supplied by a computer’s system bus, an Ethernet LAN, an analog telephone line, a high-
speed network connection suchf8dM (Asynchronous Transfer Mode), or a WAN such

as the Internet. The storage space may consist of primary, secondary or tertiary storage.
The storage is categorized by its relative access time. Primary storage is a computer’s
residentrandom access memofiRAM). Secondary storage may be a computer’s

magnetic hard disk drive or removable optical disk drive. Tertiary storage is normally a

slower device, such as an 8-mm magnetic tape drive.

When designing a multimedia application, security issues may be important if the
application needs to protect its storage resources [Smith92]. When the storage resources
are connected to a network, security is always an important concern. Password
protection, encryption, and physical separation from outside networks are solutions which
strengthen system security. Another concern is the difference between publishing security

and viewing security. Limiting the users who can publish (write) data to your storage

17

resources and limiting the users who can view (read) the data on your storage resources

are two different problems.

Two other goals are hardware independence and scaleability. Scaleability can lengthen the
useful lifetime of an application. Building ad-hoc solutions to problems, and building an
application tightly bound to a particular hardware platform are scenarios an application
creator should avoid. An intermediate ad-hoc solution might solve a problem but will not
provide for scaleability or hardware/software evolution. Similarly, building a
hardware-dependent application might severely limit the lifetime of the application

[Williams91].

An example of the latter mistake took place around 1991 when several multimedia
applications were built which relied on the Intel/IBM ActionMedia Il video capture and
playback card. These applications relied on the hardware support for digital video which
this card supplied. The ActionMedia Il card had the capabilities of digitizing analog audio
and video then playing back digitized video in real time. The card provided very high
guality digital video but it cost more than US$1,500. As a result of its high price, sales of

the capture card and of its complementary applications were poor.

Beginning around the same time, with the release of Apple QuickTime and Microsoft
Video for Windows, software-only digital video became a very popular option. Users
could play digital video at acceptable speeds without purchasing an expensive piece of

hardware, because the playback was done solely by the CPU of the user’'s computer.

18

Applications which were dependent on the ActionMedia Il card for digital video support
could not adapt to use software-only digital video. Users wanted applications that could
support both modes of playing back digital video (in software and in hardware) and the
dwindling sales of these complementary applications reflected the users’ reactions. Soon
new applications were designed explicitly to take advantage of the new software-only
digital video technology while stilupporting the pre-existing hardware. Sales of these

applications grew dramatically as a result.

1.3 Types of Applications

Multimedia applications can be creation tools, presentation tools, or editing tools.
Examples of these classes of applications are multimedia authoring, multimedia

conferencing, multimedia document browsing, and video annotation (see Table 1).

Application Description

Authoring Used to build end-user applications from a se} of
multimedia data.
Conferencing Used for one-to-one, one-to-many or

many-to-many communications using real-time
audio or video data transmission.
Document browsing Used to view pre-published multimedia contgnt
over a network.
Video annotation Used for the real-time annotation of video data

and for the detailed analysis of the collected dfta.

Table 1: Classes of multimedia applications

In the following sections, for a variety of applications, we analyze the user interface, the
types of multimedia data used, the networking and storage resources used, and the manner

in which the multimedia data is delivered to the user.

19

1.3.1 Multimedia Authoring

One of the most common uses of multimedia is in the creatiantbbred applications
Examples of these applications are information kiosks, consumer entertainment software,

and educational courseware. These authored applications are tidlered

A title is built from a set of multimedia data usinghaltimedia authoring applicationA

typical multimedia authoring application allows the title creator to display multimedia data,
to accept user input, and to create navigation paths for the user. Examples of multimedia
authoring applications are Macromedia Director and AimTech IconAuthor. A user views
a title by moving from one visual display to another, a process commonly called
navigation Most authoring applications allow the creation of titles in which the user can
randomly move between visual displays, also cédiigeerlink navigation Highlighted

words, buttons, and areas within images are ushgpeslinksin titles. When a user

clicks on a hyperlink, the title navigates to another location within the title.

A common type of authored applicatiorcsursewarewhich is customized software for a
particular instructional or research domain [Drapeau9l]. It can inCladguter-Based

Training andComputer-Adaptive TrainingThe computer version of tii&aduate

Record Exan{GRE) is an example of Computer-Adaptive Training courseware
[Educational95]. As the user completes the questions in the examination, the courseware
generates a user model which provides an extrapolated final examination score. The
courseware chooses the upcoming questions based on the user model in order to tailor the
examination to the user’s ability. Thus it is designed to generate a valid final score from a

smaller number of questions than the written test .

20

There also exists another type of authoring application which allows @inkeaa

navigationof the title. Linear navigation permits one-dimensional navigation of a title, so
the user can only move forward or backward in the title as with a slide show. These
applications are typically calledultimedia presentation applicationdlicrosoft

PowerPoint and Aldus Persuasion are examples of this type of application. Titles made

with multimedia presentation applications are knowprasentations

A feature normally not found in multimedia presentation applications is the processing of
user input. Presentations usually contain no interactive elements other than what is used
for linear navigation. Other types of titles can process user input for various tasks: an
information kiosk may accept a user’s choice of which stored musical selection to play, a
courseware title may accept a user’s answer to a question posed by the title, or a
consumer entertainment title may accept a user’s input for determining which virtual world

the user would like to explore next.

Multimedia authoring applications also allow the incorporation of programmatic logic into
the title. This allows the title to perform calculations and make decisions during the
execution of the title. The multimedia authoring application will usuafhpert some

form of programming language. This may be a proprietary script-based language, such as
Macromedia Director Lingo, or a common programming language, such as Microsoft
Visual Basic. At most, multimedia presentation applications will give the user an ‘if-then-
goto’ type of logical capability. The logical capabilities of multimedia authoring

applications greatly exceed tlmited logical capabilities found in multimedia presentation

applications.
21

Each individual visual display can be thought of as the temporal partitioning of the
application. These displays are commonly calletes frames or scenes Most

multimedia presentation applications use the term slide, while some multimedia authoring
applications use the term scene. The collection of slides, frames, or scenes in a multimedia

application can be termedaovie title, or presentation

An alternate form of temporal partitioning is based orsgmentwhich is a temporal

element which contains some semantic significancehukikis a segment of arbitrary

length. The smallest addressable unit which represents continuous action in time and
space is termed tl#hot The shot consists of one or more frames generated and recorded
contiguously. Asequencés a collection of shots which contain temporal, spatial, and
perceptual continuity and form a natural unit [Davenport91]. It should be noted that these

terms are drawn from cinematic techniques: cinematography, directing, and editing.

A multimedia authoring application usually incorporates several components: media
manager, media editors, title editor, and title viewer. mbkdia manageprovides a

repository for the multimedia data used by the title. This can be thought of as a database
which stores the audio, video, and image data the title creator uses while authoring the
title. Media editorsare used for editing and preparing the multimedia data.tifldne

editor is used for editing the spatial and temporal layout of each scene. This involves
placing the multimedia data within the scene as well as providing the ability to manipulate
the multiple scenes in the title. Ttide viewerprovides the ability to view a finished title,

but not to edit it. This component is shipped with the title in cases where the title creator

does not want the user to be able to change or alter the title. In some multimedia
22

authoring applications, the title can be optimized for playback speed and storage size.

But, after optimization, the title will lose the capabilities for further editing.

Some multimedia authoring applications dictate a managerial approach to development.
They provide a single method of managing multiple forms of media, which gives the
benefits of a common user interface and ease of uskmistthe flexibility and power of
managing any one media type. Because of this common approach to authoring, these
applications often only supportlimited set of media. In addition, this managerial

approach will usually be linked to a single style of authoring and will not give the option of

authoring in other styles [Drapeau91].

Some other key issues for a multimedia authoring application are extensibility, portability,
and interoperability [Drape®1]. Extensibilityis as important for the progressive
development of the applications as it is for its adjustment to changing software and
hardware platforms. A component-based approach is optimal for logically separating the
hardware- and software-dependent portions of the application and allowing the application

programmer to redesign and/or rewrite out-of-date portions of the application.

In the current computer industgyortability is an important issue for multimedia

authoring applications. The ability to author a single title and, without any recoding, view
the title on multiple software and hardware platforms is a major selling point. Porting a
title to other platforms takes time away from refining the application design and its
content. Also the title loses any platform-specific capabilities by being designed to the

lowest common denominator.

23

In networked applicationsnteroperabilitycan be acquired by defining strict protocols by
which multiple machines will communicate. The definition of standard protocols allows
multiple machines with differing hardware and software platforms to interoperate and
cooperative. Examples of this are multimedia conferencing (T.120 and RTP), the World
Wide Web (HTTP and HTML), and Internet electronic mail (MIME, SMTP, and POP3)

and news delivery (NNTP).

1.3.2 Multimedia Conferencing

As the available bandwidth between network-connected sites grows, the use of multimedia
conferencing has expanded. It began as early as 1988 with the Etherphone system
[Terry88]. Multimedia conferencing can be as simple as Internet Voice Chat which
transmits pre-recorded audio segments between a pair of participants using
Windows-based computers [Ahrens94], or as complex as CU-SeeMe which supports
multi-party video and audio conferencing between both Macintosh and Windows-based
computers [Cogger94] (see Figure 3). Other similar applications are SGI InPerson and

Microsoft NetMeeting.

Many multimedia conferencing applications are built upon the TCP/IP networking
protocol, which is théingua francaof the Internet. Other applications support network
connections using physical links suchPTS(“Plain Old Telephone ServicelSDN

(Integrated Service Digital Network), Ethernet cable, or optical fiber.

24

*=laime Smith C.=: Oviedo, Florida
*Mildone=: Mice picture italianali
*=Jdaime Smith C.=: Still trving to getthis...
*=Jdaime Smmith C.=: Strider..

Filter | Fleset| Cunfiq|

STATS Rcy'd

packets 1

K.Butez 930
Senders

e o 2] |40 [|2] weosr
00% O EPCOT@DISNEY
Reset I Festore | Senders [not showing)

Lurkers

Participants

Figure 3: CU-SeeMe conferencing application which renders compressed video and

audio streams and out-of-band text “chat” messages.

Key factors in the movement of multimedia data, especially when it is used for multimedia
conferencing, are the asynchronous exchange of the data, real-time constraints on the
movement, and the fact that the communication system must provide for the timely
transmission of the data [Ahuja92]. The pipelining effect of asynchronous data exchange

is key to the timely transmission of multimedia data. Newer advances in multimedia data
transmission bypass the send/receive/acknowledgment cycle of the TCP/IP protocol by not
requiring the acknowledgment of sent multimedia data packets. In this situation, alternate
provisions are made for the reliable transmission of the data and packet retransmission that
TCP/IP would typically provide. More discussion of these techniques ocahapter

3: Content Delivery

25

Three features of most multimedia conferencing systems are the user interface, call
control, and multi-point communications [Ahuja92]. Every application generally will have
a user interface and call control, by which the user can specify the endpoint of the
conference. Some applications support point-to-point communications, which is
analogous to a private phone call, while others support multi-point communications,

which is analogous to a conference phone call.

Multimedia conferencing systems can be used in conjunction with other network-aware
applications, such as word processing applications. If the word processing application
possesses concurrent multi-user capabilities, it can be used with a multi-point video

(and/or audio) conferencing application for cooperative document authoring [Baecker92].

1.3.3 Multimedia Document Browsing

As a result of the explosion of activity on the Internet, there recently has been a
corresponding explosion in both the supply and demand of multimedia documents. The
World Wide WelfWWW) is a global publishing system which uses the resources of inter-
networked computers on the Internet. Users can create their own multimedia documents
(Web pagesfor publishing. These documents can be publishedWwelaserver a

computer which is directly connected to the Internet and which sug{poiits

(HyperText Transfer Protocol). Web browsers used to access Web pages published on
remote computers. The World Wide Web Initiative, baséCERN(European Particle

Physics Laboratory) in Geneva, Switzerland, was begun in 1990 and is responsible for the

protocols that make up the Web [Lemay95].

26

Web pages support textual information, images, and other media types by the use of
viewers Viewers are applications whose sole purpose is to display multimedia data.
Viewers commonly exist for displaying video and sound data. Textual information must
be formatted usingiTML (HyperText Markup Language, which is derived from SGML).
Images are typically iGIF (Graphics Interchange Format) 3*EG (Joint Photographic
Experts Group) format. Other media types, sudMREG (Motion Picture Experts

Group) or AppleQuickTimeformat video, can be downloaded and viewed on the user’s

local machine if an appropriate software player is present.

A Web page can be authored by inserting the HTML codes by hand into an ASCII
document, or by using a HTML editor to format the pageWA\Y&SIWY Q“what you see
is what you get”) fashion. Several WYSIWYG HTML editors are currently available such

as Microsoft Internet Assistant for Word and SoftQuad HoTMetalL.

Images can be inserted directly into a Web pagmé¢ image$ by specifying a dynamic

link to the image file. The Web Browser is responsible for displaying these inline images.
Audio and video files can also be inserted, but these data types will use an external viewer
to render the data. Links to another location in the current Web page, to another Web
page on the current machine, or to another Web page on a remote machine can be
specified in the HTML document. These links are all dynamic links - i.e. a reference to the
location of the required file is embedded in the Web page itself, not the actual data from

the file.

27

O BN Yww o Fovoriler He

slélal 1| | DD alel| ois] v ileel @

5 L i"‘p Frvvers mcTooc COmY'

ft: «+ A © O 7?7 4

Wrats Wem Sasch I FALY Hep Fopaaitack

&

JAMUARY

Welcome to Microsoft
33-_ The worldwide leader in software for PCs.

% ForDowelopera Oy — Microsoft Announces Second Quarter Resuits
hicrosoft annownces Bnancial resuls for Oclober

Pasinars & fhrough December. the second quarder of the
company's liscal year. Informaion includes the

breral Brodutly earnings press release_ financial tables, and addonal

o b W ﬁ financial highlghts.

- & 5 Microsoft Aequires Vermeer Technologies, Ine,

Maicac! FronPage, he ertically acelaimed Wb publishang ool
will camplement this Intemel oferings Irom Microsolls
Dazkton Aooloaions Dhision I orovides users e =l

L]

Figure 4: Microsoft Internet Explorer WWW browser showing inline images,

formatted text, and hyperlinks embedded in the HTML page

Web pages can be browsed on Microsoft Windows, Apple Macintosh or various UNIX
platforms with Microsoft Internet Explorer (see Figure 4), Netscape Communications
Netscape Navigator, NCSA (National Center for Supercomputer Applications) Mosaic,
Lynx, or other freely available public domain browsers. These applications provide
methods for navigating the hyperspace created by Web pages and their hyperlinks.
Common features are: history lists, so the user can see past links; configurable viewers, so
the user can add viewers for other data types at a later time; and bookmarks, so the user

can easily return to an interesting page in future.

1.3.4 Video Annotation

One multimedia application that is designed to assist usersvglg@annotation system

A video annotation system provides for real-time annotation of video data and for the

28

detailed analysis of the collected data [Harrison92]. The basic functions of a video
annotation system include the recording of events such as mouse and keypress logging,
symbolic annotation of multimedia data (video snapshots, sound bites), spatial viewing of
temporal events, synchronization of streams of different media, and the reordering of
video segments. Spatial viewing of temporal events refers to the on-screen display of
multiple video snapshots using techniques such as video icons. Commercial digital video

editors provide several of the desired features of a video annotation system [Mackay89].

The user interface of the system must allow for continuous visual attention in order to
provide consistent analysis. The use of non-speech auditory and visual feedback enhances
the analysis process. The user interface should also give control over the source media by

direct manipulation. Often this is done using a virtual VCR-type control [Harrison92].

29

2. CONTENT ACQUISITION AND STORAGE

All multimedia applications have at least one feature in common: the ability to display one
or more multimedia data types. This image, audio, or video data is aatieght A
multimedia presentation application can integrate content such as bitmapped images,
formatted text, MIDI (Musical Instrument Digital Interface) audio stream, or live video
streams. A multimedia conferencing application, for example, supports only networked

audio and video streams as content.

Content can be separated into static or dynamic media types, and into digital or analog
media types.Dynamic datachanges over time (i.e. the notes played by a MIDI audio
stream change over time), whiatic dataremains constant (i.e. an image which does not
change during a multimedia presentatioD)gital mediais maintained in a digital form

and the data can be accessed and stored by devices such as a computer file system.
Analog datacan only be accessed and stored by an analog storage device such as a VCR

or an audio cassette recorder.

Media types can be converted from analog to digital by a processdigiezing. Video

can be acquired from an analog video source, such as a video camera, and stored in a
digital format, such as MPEG. It is also possible to convert digital media to analog. A
digital audio file can be played by a computer’s sound card and output through an analog

cable to speakers.

30

2.1 Finding Content

There are many ways to find content for a multimedia application. For examples of

sources for image, audio, and video content, see Table 2.

Format Mediatype Source
Analog | Image Computer-controlled 35 mm slide caroudel
Audio Live audio
CD-Audio

Video Live video

Video tape
LaserDisc

Digital Image Stock footage
Image capture
Scanning

Digital photography
Kodak PhotoCD
Audio Stock footage
Audio capture
CD-Audio

MIDI audio

Live MIDI audio
Video Stock footage
Video capture

Table 2: Sources of image, audio and video data in analog and digital formats

An analog media source provides the visual or auditory effect of multimedia without
requiring digital storage space on the user’'s machine. Thefedsssbrage requirement
however, since the user’'s machine must support some form of analog storage. Video
LaserDisc technology and magnetic video tape are analog video sources. The analog
video output can be directed into the user’'s computer by usiittpa overlay board

Video overlay boards mix an external analog video signal with the video stream from a

computer’s video display board.

31

Any existing technology that plays audio through an analog cable, such as a radio receiver
or a record player, is an analog audio source. In multimedia applications, the microphone
and the compact disc are two of the most common analog sources. The microphone is
useful for capturing the user’s speech or ambient sounds. The compact disc is a digital
technology but is most commonly used as an analog source. This is because the digital
audio data is converted to analog data at the time the compact disc is played. A compact
disc player will normally send the analog audio data through the same cable as a radio

receiver or record player.

Digital images are the most common form of digital multimedia data. Digitized images are
easily accessible from online services or can be purchased in bulk on CD-ROM or floppy
disk. These prepackaged collections of digitized images or other digital media are called
stock footage Another term for stock footagedBp art. Multimedia application

developers commonly need access to artwork for use in their titles. Stock footage is an

efficient way for them to gain access to a wide range of media at a low cost.

Other ways of acquiring digital image data are image capture, image scanning, and digital
photography. Image capture entails using an image capture or video capture card to
digitize an incoming analog video signal. This analog signal will often come from a video
camcorder or other video camera. The capture card will allow a user to digitize specific
frames from the video stream and save them to the user’s disk drive for later use in a
multimedia application. An image scanner can be used for digitizing static artwork or
photographs. The artwork is laid face-down on the glass surface of the scanner and,

utilizing a method similar to Xerox machines, the image is progressively digitized and
32

stored to the user’s disk drive. Digital photography removes a step from the image
scanning method of acquiring digital image data. In a single step, the digital camera can
photograph a scene and store the digital image data to a device in the camera itself. The

digitized images can later be copied to the user’s disk drive.

A recent technique of acquiring digital image data iskbdak PhotoCD With this

method, the user can take photographs with existing film-based cameras and send the film
to a PhotoCD film processing center. The PhotoCD center processes the film into the
desired print or slide format, and simultaneously digitizes the pictures into a proprietary
PhotoCD format. The digital PhotoCD images are stored onto a CD-ROM which is
returned to the user with the photographs. For a relatively low cost, a user can have high-
quality digital images generated without the expense of buying an image scanner or image

capture card.

Next to digital images, digital audio is the most common form of multimedia content.
Sound cards for computers that can record and playback digital audio are commonplace
and affordable. Most personal computers come with digital audio support standard.
Digital audio can be found in similar locations as digital images - online and in clip media
collections. Also, a computer’s sound card can digitize audio from various sources.
Common sources which can be connected by an analog audio cable are microphones,
radio receivers, and magnetic tape players. Another form of digital audio is MIDI. MIDI
audio consists of the actual musical note data as created by MIDI-capable musical

instruments such as synthesizers or digital guitars. This MIDI audio data can be stored in

33

digital form on a computer’s hard drive or can be input live as the MIDI-capable

instrument is played.

Compact discs store audio data in a digital format and typically they are played as analog
audio through audio speakers. It is possible to copy the data in native digital form from a
CD-Audio disc to a digital storage device, but this is not commonly done. However, this
technique can be useful for preserving the original audio quality when making a copy of
the audio data. Otherwise, the analog version of the played CD-Audio disc would have to

be re-digitized by a sound capture card.

The popularity of digital video is blossoming. As hardware development strives to keep
up with the technical requirements, it will probably get even more popular. Clip media
and stock footage collections are also good sources for digital video. The stock footage
houses that used to provide stock film footage are converting their collections into digital
formats. This is a great source of video for the multimedia application creator. An
application creator can also capture his own video using a video capture card. These
cards are similar to their audio-only counterparts in that they take an analog source and
digitize it for storage on a computer’s hard drive. The available video capture cards
affordable by the average consumer can only digitize partial TV-resolution (320x240) at
30 frames/sec, but high-end professional cards can digitize full TV-resolution (640x480)

video at 60 fields/sec.

Standard NTSC television signals arerlaced meaning that each vidémameis divided

into two separatéelds of alternating scanlines. The resulting fields are displayed

34

sequentially, such that what was originally a 30 frames/sec refresh becomes 60 fields/sec

at half the vertical pixel addressability [Scott96].

It must be noted that the capabilities of the application creator’s computer platform will
determine whether or not real-time capture of an analog video signal is possible. The
storage device must be able to handle the incoming data rate from the capture device. For
example, a captured video stream of 320x240 pixels at 24 bits/pixel and 30 frames/sec will
generate 6.9 Mbits/sec of data. The laE8IE (Enhanced Integrated Drive Electronics)
andSCSI(Small Computer System Interface) hard drives can write incoming data to disk

at this rate, but olddDE (Integrated Drive Electronics) hard drives can not.

2.2 Preparing Content

Once the application creator has selected a set of content for a multimedia application, he
will need to prepare it before use. Images can be cropped, scaled, filtered,
color-corrected, or even cut and pasted with other images to make new composite images.
Audio can be filtered to remove background noise, have effects added (reverb, echo, etc.),
and be cut and pasted with other audio segments to make new composite audio segments.
Video is essentially a sequence of images, so it follows that each frame of video can be
cropped, scaled, filtered, color corrected, or cut and pasted with other frames of video (or
other images). In addition to image-based operations, multiple-frame effects can be
applied to video. When image processing operations like sharpening or warping are

applied, the parameters of the effect can change with time.

35

Once the selected content has been prepared, it typically will be converted into a
compressed digital format for storage. The next section describes methods for digitizing
and compressing image, audio and video content and lists digital storage formats for each

content type.

2.3 Storing Content

Once the content for a multimedia application has been acquired and prepared, the
application creator must decide on the storage format which best fits the application.
Most content used by multimedia applications will be digital. Two common exceptions
are CD-Audio and live video, but otherwise all content will need to be stored in a digital
format. As was discussed in the beginning of this chapter, content can be acquired from
an analog or a digital source. Analog sources need to be digitized before they can be
stored in a digital format. As shown in Table 3, the space required for storing various
types of content in a digital format differs greatly. A common way to reduce the storage
space requirement is by compressing the raw digital data. The proper compression
technique to be used varies widely depending on the type of content. All storage space

requirements listed in Table 3 are for uncompressed data.

36

Content type Description Storage
space

Encoded text screen size: 768x512 pixels, 12 kB
character size: 8x8 pixels,
2 bytes/character

Vector graphics screen size: 768x512 pixels, 2.8 kB
1 byte/line
Bitmapped images| screen size: 768x512 pixels, 384 kB
character size: 8x8 pixels,
256 colors/pixel

Digitized speech sample rate: 8 kHz, 8 kB/sec
8 bits/sample

Digitized audio sample rate: 22 kHz, 88 kB/sed
16 bits/sample

Digitized video sample rate: 10 MHz, 30 MB/sec

frame rate: 25 frames/second
24 bits/sample

Table 3: Storage demands of uncompressed digital media types [Williams91]

2.3.1 Image

Images are two-dimensional digital representations of a three-dimensional world. The
images are broken up into discrete elements cailesds (picture elements). The image is

a two-dimensional matrix of pixels, where each pixel contains some quantity of color data.
This quantity of color data is called the& depth because it uses a fixed number of bits to
represent the color information at that picture location. The bit depth will not change over
the two-dimensional space of the picture. The dimensions of the matrix are called the
width andheightof the image [Foley90]. The color information in images normally fits

into theRGB (red-green-blue) color space, but images can also udéi@uminance-
chrominance) o€MYK (cyan-magenta-yellow-black) color spaces. Common bit depths
are 1 bit (bilevel), 8 bit (greyscale or palettized), and 24 bit (true color). One-bit images

represent two colors (normally black and white). Eight-bit images can represent 256

37

colors, where the 256 colors are shades of grey or indices into a color palette. By using a
color palette, images can store a reference to 24 bits of color information in only 8 bits of

data. Twenty-four-bit images can represent 16,777,216 colors.

Digital image content can be stored in numerous formats. Each format contains various
information about the image in addition to the image data itself. These formats are
standardized so that an image created by one application can be read and displayed by any
other application which supports the same format. Some of the most common formats are
GIF, TIFF (Tagged Image File Format), and JPEG. Each of these formats stores the
image data in a different way. Table 4 provides an overview of many of the common

image formats.

Name Owner Bit depths Compression types
supported supported
BMP Microsoft Corporation 1,4, 8,24 none, RLE4, RLE8
GIF CompuServe Information | 1, 2,4, 8 LZW
Systems
JPEG | Joint Photographic Experts8, 24 none, JPEG
Group
PCX ZSoft Corporation 1,4,8, 24 RLE
TGA Truevision Corporation 8, 16, 24, 32 none, RLE
TIFF Aldus Corporation 1,4,8, 24 none, LZW, RLE,
Macintosh PackBits,
CCITT 1D,
CCITT group 3 and 4

Table 4: Compressed digital image storage formats [Media91] [Murray95]

Three of the most common compression techniqueRlaEg Run-Length Encoding),
LZW (Lempel-Ziv Welch), and JPEG. Run-length encoding takes advantage of
redundancy across scanlines of an image. Repeated pixels are replaced by a repeat count

and the repeated pixel value [Foley90]. RLE compression is most efficient on “artificial’
38

images, rather than “real-world” images. Real-world images exhibit more randomness and
a wider variation in pixel values. A frame of cartoon animation which uses solid colors is

most appropriate for RLE.

LZW uses an entropy reduction technique knowstasg encoding String encoding is a
process which assigns codes to groups of data items repeated in the data stream. LZW is
alosslessadaptive compression algorithm that works well with various types of images.

A lossless compression algorithm means that none of the original image data is lost in the
compression process. Palettized and bilevel images typically exhibit high compression
ratios (10:1), while true color and greyscale images generally get only minimal

compression (3:1) [Media91].

JPEG encoding is designed for compressing full-color or greyscale images of real-world
scenes. It works well for photographs, but does not work well for line drawings or

cartoons. It is éossyform of compression, which means that some of the original image

data is lost in the compression process. The degree of lossyness can be varied by adjusting
compression parameters. JPEG stores 24 bits per pixel of color information, but can
generally achieve a compression factor between 10:1 and 20:1 without a loss of visual
image quality. A compression factor between 30:1 and 50:1 is possible with small to

moderate quality loss [Lane95].

2.3.2 Audio

Digital audio data represents a time-sampled version of an analog audio waveform. The

analog waveform is sampled in order to produce a sequence of values which correspond

39

to the amplitude of the waveform at precise points in time. The stream of digitally
encoded amplitude data is generated bgraalog-to-digital(A/D) converter. Multiple
channels of audio waveforms can then be multiplexed into a single data stream. For
playback the stream of digitally encoded audio data is decoded to recover the amplitude
information at each sample point. An analog waveform is reconstructed from this

amplitude information by digital-to-analog(D/A) converter [Pohimann89].

There are many techniques available to encode analog audio signals digitally. They vary
widely in terms of required bandwidth, signal-to-noise ratio and accuracy. Techniques
exist such aPulse Amplitude ModulatioPAM), Pulse Position ModulatiogPPM), and
Pulse Width ModulatiofPWM). These techniques use variations in pulse amplitude,

time position and width, respectively, to represent the analog signal's sample value.
Another techniqueRulse Number ModulatioPNM), is similar toPulse Code
Modulation(PCM), but PNM generates a string of pulses where the pulse count
represents the amplitude, while PCM encodes the pulse chain in order to greatly reduce
the bandwidth required to store the data. PCM is a very common form of digital encoding

and is used in the CD-Audio standard format [Pohlmann89].

Adaptive Delta Pulse Code ModulatiphDPCM) builds on the strengths of PCM by

adding excellent data compression. ADPCM is a differential encoding system, which
means that only the differences between successive samples are stored. By encoding only
the differences between samples, a high level of data compression is achieved. In this
technique, a fast sampling rate is important so the differential encoding can closely track

the analog signal. Simple Delta Modulation techniques use a 1-bit correction code to
40

predict whether the signal will rise or fall at the next sample point. ADPCM expands on
this technique by using a 4-bit or 8-bit code to represent correction information. This
allows for 16 or 256 levels of correction information to be encoded. More control over
the correction information results in greater accuracy in encoding the analog waveform

[Pohlmann89].

Two audio encoding techniques that are commonly used for speech encogiricaare

and A-Law. In PCM encoding, the amplitude levels are quantized at uniform intervals.

But for some signals, such as speech, it is preferable to have quantization levels for high-
amplitude signals spaced far apart and low-amplitude signals spaced closer together.
u-Law and A-Law encoding systems both use a logarithmic encoding system to provide
these characteristics. Although very similar, these two encoding systems use different
logarithm-based equations for their encoding. As a benchmark, an 8-bit implementation of
u-Law encoding can achieve a small signal to noise (S/R) ratio and dynamic range

equivalent to that of a 12-bit PCM encoding system [Pohlmann89].

Table 5 shows the data rate for various encoding methods at different sample rates. The
data comes from th®ound Recordeapplication which ships with the Microsoft Windows

95 operating system.

Different computer platforms have different standards for storing digital audio data. On
the Microsoft Windows platform applications use the WAV format. On the Macintosh the

AIFF format is used, and on UNIX platforms the AU format is common. The WAV and

41

AIFF formats can store PCM, ADPCM;Law and A-Law encoded audio data, but the

AU format storegu-Law data only [van Rossum94].

Encoding method Bits per Sample rate Mono data Stereo data

sample rate rate

A-Law; p-Law 8 bits 8.000 kHZz 7 kb/sec 15 kb/spc
11.025 kHz 10 kb/set 21 kb/sgc
22.050 kHz 21 kb/sec 43 kb/sgc
44,100 kHz 43 kb/sef 86 kb/sgc
ADPCM 4 bits 8.000 kH2z 3 kb/sgc 7 kb/sec
11.025 kHz 5 kb/seg 10 kb/sg¢c

22.050 kHz 10 kb/set 21 kb/sgc

44,100 kHz 21 kb/sec 43 kb/sgc

PCM 8 bits 8.000 kHz 7 kb/sac 15 kb/qec
C

C

C

C

C

C

C

11.025 kHz 10 kb/se 21 kb/sgc
22.050 kHz 21 kb/se 43 kb/sgc
44,100 kHz 43 kb/se 86 kb/sgc
16 bits 8.000 kH2z 15 kb/se 31 kb/gec
11.025 kHz 21 kb/se 43 kb/sgc
22.050 kHz 43 kb/se 86 kb/sgc
44,100 kHz 86 kb/se 172 kb/skc

Table 5: Compressed digital audio storage requirements [Microsoft95]

A common storage medium for digital audio data is the compact disc. Compact discs
store a 16-bit stereo PCM signal which is sampled at 44.1 kHz. This format is commonly
calledCD-Audia An alternative form of compact discs is calldampact
Disc-Interactive(CD-I). This format can store audio and video information, as well as
computer data (text or binary). The audio data can be stored in one of five modes,
depending on the fidelity required and the storage space available [Pohlimann89] (see

Table 6).

42

Audio mode Encoding format

CD-Audio 16-bit PCM, 44.100 kHz, stereo

Hi-Fi (level A) 4 bit ADPCM, 44.100 kHz, stereo (LP quality)
Mid-Fi (level B) 4 bit ADPCM, 44.100 kHz, mono (FM quality)
Speech (level C) | 4 bit ADPCM, 22.050 kHz, mono (AM quality)
Text-to-speech phonetic coding (synthesized speech quality)

Table 6: CD-I audio modes [Pohimann89] [Luther89]

2.3.3 Video

Digital video is encoded in a similar manner to digital audio. An analog video waveform is
time-sampled to produce a digitally encoded representation of the original waveform.

Video waveforms may contain one or more signals, depending on the video format.

Broadcast video waveforms consist of two signals: luminance and chrominance.
Luminanceis the brightness of the signal, which represents a gradient from black to white.
Chrominancas the color part of the signal, which represents the hue and saturation. The
original black-and-white method of television broadcast transmitted the luminance signal
only. When color television was invented, the chrominance signal was piggybacked on

top of the luminance signal [Rubin91].

TheY/Cformat transmits the luminance and chrominance in two separate video signals.
TheRGBanalog format separately transmits the red, green, and blue components
[Luther89]. The RGB color information can be converted into other equivalent color

spaces, such adJVor YIQ, which are transmitted in three separate video signals.

The RGB, YUV, and YIQ formats are calledmponent video signatgecause they
transmit three separate video signals. The Y/C format is caliediuelo-component video

signal because two of the component signals (U and V) are combined into one signal (C).
43

Another video signal format is tle®mposite video signallin this format, all three
component video signals are mixed into one signal. This format is usedNim 8@ PAL,
andSECAMbroadcast video standards that are used throughout the world [Rubin91]

[Focal69].

As previously described for audio, video signals are also digitized using an A/D converter.
The output sample values from the digitizing process are converted into color values. At
each sample point, or pixel, the color value can be encoded using a varying number of bits
per pixel. This provides a method of varying the accuracy of the color reproduction of the
original analog video signal. In other words, more bits per pixel provide a more accurate

representation of the source video signal.

Digital and analog video signals are frequently stored on magnetic tape. Table 7 shows a
listing of common video signal formats with their corresponding storage formats. Each
storage format is listed with its commonly known product name and the type and width of

the tape used.

44

Video signal format Storage format

Component D1 (19mm digital)
BetaSP (1/2analog)
MIl (1/2" analog)
Betacam (1/2analog)
Pseudo-component| S-VHS (1/2 analog)
Hi-8 (8mm analog)
Composite D2 (19mm digital)
D3 (19mm digital)

1" type C (1 analog)
3/4" U-matic (3/4 analog)
3/4" SP (3/4 analog)
8mm (8mm analog)
VHS (1/2' analog)

Table 7: Video signal formats with corresponding storage formats [Rubin91]

In order for an application creator to use digital video, it must be stored in a form
appropriate to be displayed on the application’s computer platform. Most computer
platforms have their own standard format for digital video files. On the Microsoft
Windows platform, the standard is callkddio-Video Interleave@AVI), and on the
Macintosh platform, the standard is called QuickTime. Each of these standards can
contain various types of video data: different bit depths, resolutions, and compression
types. File format and compression type are not necessarily linked. There exists an
MPEG file format which only holds MPEG compressed data, but AVI and QuickTime

formats can also contain MPEG compressed data.

The storage requirements of digitized video are more rigorous than any other data types.
For example, the storage space required for digitized NTSC format video is 45 Mb/sec.
CCIR 601 format video requires 216 Mb/sec, CIF format requires 36 Mb/sec, and QCIF

format requires 9 Mb/sec. Standard NTSC format video uses a resolution of 525

45

horizontal lines and 360 pixels per line. CCIR 601 format uses 720 horizontal lines and
480 or 576 pixels per line (depending on NTSC or PAL format). Primattikedtfor
video telephony, the CIF and QCIF formats use resolutions of 360x288 and 180x144,

respectively [Fox89].

Because of the extreme storage requirements of uncompressed data, data compression is
used to reduce the data rates. The inherent redundancy present in video streams means
that two methods of compression can be usettaframe compressiooan be applied to
reduce the spatial redundancy within a single frame of videanearftame compression

can be applied to reduce the temporal redundancy between frames of video.

Intraframe compression encompasses the preprocessing steps of filtering the image data,
color space conversion (typically RGB to YUV), digitizing, and scaling. In addition,
transformations, quantization, and encoding are applied. Filtering the image data removes
high-frequency noise and averages the image pixels to achieve more spatial redundancy.
This step does not provide any direct compression but prepares the data for the later steps
in the compression process. The RGB to YUV color space conversion provides a 1.5:1
compression ratio. When the video is digitized, the U and V channels of the color
information are subsampled at a 2:1 ratio. After the video is digitized, it can be scaled to
the output resolution. For example, a 320x240 resolution output from a 640x480 video
stream provides a 4:1 compression ratio. The scaled and digitized video frames are
transformed into different spatial representations, depending on the compression algorithm
used. The transformed data is quantized such that the video data uses a smaller number of

bits per pixel of color information. This quantization can provide up to a 3:1 compression
46

ratio. The final step in intraframe compression is to compact the quantized video data by
using a encoding scheme such as RLE, Huffman coding (also called variable-length or
entropy coding), or arithmetic coding. This last coding step provides a 1.5:1 compression

ratio [Doyle91].

In typical video streams, the content of successive video frames does not change
considerably, and as a result interframe compression can supply a generous compression
ratio. Three types of interframe compression exist: predictive coding, motion estimation,
and picture interpolation. Interframe compression can provide a 5:1 compression ratio, in

addition to the more than 50:1 compression ratio delivered by intraframe compression.

Compressed video streams can be describedresant-rate encodeat variable-rate

encoded Constant-rate encoding schemes accept variable sized video frames but output
constant sized compressed frames, while maintaining constant perceptual picture quality.
Constant-rate encoding is typically used when the compressed stream is being output into
a fixed-rate communications channel. Variable-rate encoding schemes accept variable
sized video frames and output variable sized compressed frames, while maintaining

constant picture quality [Fogg96].

Some of the most common video data compression standards are MPEG, CCITT H.261,
and theDVI (Digital Video Interactive) technology with iBTV(Real-Time Video) and

PLV (Production Level Video) compression algorithms. The implementation of a
compression algorithm is termed@dec(compressor-decompressor). Currently, these

compression schemes are only feasible in real-time with hardware support. The compute-

47

intensive nature of these compression algorithms overwhelms most computer systems.

Only with custom hardware do these schemes become worthwhile.

The MPEG standard consists of three related standdfISG-Video MPEG-Audig and
MPEG-System MPEG-Video provides a standard for compression of digital video

signals with a resulting data rate of about 1.5 Mb/sec. MPEG-Audio provides a standard
for compression of digital audio signals at 64, 128, and 192 kb/sec per channel. MPEG-
System describes the synchronization and multiplexing of multiple compressed audio and
video bitstreams. Some of the features of the MPEG standard are random access to video
frames, fast-forward and reverse searches, reverse playback, audio/video synchronization,

and editability [LeGall91].

The MPEG-I standard specifies a 640x480 video resolution at 1.5 Mb/sec, while the more
recent MPEGI format specifies a 704x480 resolution at rates up to 10 Mb/sec. The
MPEG-II standard is aimed at interactive television, while MPEG-I is suited more for CD-
ROM distribution. Using MPEG-I, up to 72 minutes of VHS-quality (30 frames/sec,

640x480 resolution) video can be stored on a single CD-ROM.

The MPEG-Video compression algorithm uses block-based motion compensation for the
reduction of temporal redundancy. Predictive and interpolative coding methods are used,
followed byVariable-Length CodéVLC) compression. It also use®screte Cosine
Transformation(DCT) based compression technique for the reduction of spatial

redundancy [LeGall91].

48

Motion compensation uses prediction and bi-directional interpolation to provide
compression. Prediction exploits the temporal redundancy of video signals. This means
that each frame can be represented as some transformation of a previously encoded frame.
Bi-directional interpolation results in the reproduction of a full temporal resolution stream
from a partial temporal resolution stream (1/2 or 1/3 of frame rate). The motion is
represented by one or two motion vectors perl®pixel block (nacrobloch. Pixel

blocks are matched with blocks in previous and future pictures. If a closely matching

block is found, the motion of the macroblock is encoded inte#aon vector As used in

JPEG image compression, MPEG uses a DCT compression technique for the reduction of
spatial redundancy. The DCT is a fast algorithm and results in good visual quality while

providing the desired spatial compression [LeGall91].

MPEG-Video compression results in three types of encoded video frames: intrapictures
(I-frameg, predicted picturedPframe$, and bi-directionally predicted pictures

(B-frame$. I-frames provide reference points for random access, while only supplying
moderate compression. P-frames are coded with reference to past I-frames or P-frames,
and are used as reference frames for predicted pictures. B-frames provide the highest
amount of compression and require past and future reference frames for prediction. B-

frames are not used as reference frames for other predicted frames [LeGall91].

The Motion-JPEGNI-JPEQ format uses intraframe compression, in the form of JPEG
compression, for each frame in a video sequence. Every frame is a reference frame in this
format. Because of this, M-JPEG is commonly used in non-linear video editing since

every frame can be used as an starting or ending point for edits.
49

The H.261 video coding algorithm provides a compression solution at rate84f p

kb/sec (p =1, 2, ..., 30). These rates cover the ISDN channel capacity. This algorithm is
designed for video-phone and video-conferencing applications for which a real-time
algorithm with minimum delay is a requirement. For values of p = 1 or 2, this algorithm
can support desktop face-to-face visual communication (video-phone), and for values of p

> 6, true video-conferencing is possible [Liou91].

H.261 supports the CIF and QCIF video resolutions. At 15 frames/sec, the algorithm
provides a compressed data rate of 320 kb/sec for CIF resolution video, and 64 kb/sec for
QCIF resolution video. The compressed data rate of CIF resolution video at 30

frames/sec is 1.472 Mb/sec and at 10 frames/sec is 64 kb/sec [Liou91].

Both interframe and intraframe encoding are used by the H.261 algorithm. It uses a
hybrid of DCT andDPCM (Delta Pulse Code Modulation) coding schemes with motion
estimation. Each frame is split into a luminance channel and two chrominance channels
and each of these channels is split into 8x8 pixel macroblocks. The motion estimation is
done by comparing every luminance macroblock in the current picture with the nearest
luminance macroblocks in the previous picture. If the difference between any
macroblocks in the current and previous picture is greater than a predefined threshold, the

difference is processed and stored with the calculated motion vector information [Liou91].

Intel's DVI technology supports bodymmetricandasymmetriccompression schemes.
In a symmetric compression scheme, the time to compress and decompress a video

segment are similar. While with an asymmetric compression scheme, the time to compress

50

a video segment is considerably greater than the time to decompress the video segment.
Asymmetric compression schemes typically do not support real-time compression. The

compression will take pte off-line after the video stream has been digitized.

PLV is an asymmetric compression scheme which requires the analog source video to be
sent to a central digitizing and compression facility which uses parallel supercomputers for
compressing the video. The resulting video can be played back in real-time on any DVI-
capable computer system. PLV supplies a much higher video quality than its similar,
although symmetric, compression scheme, RTV. RTV can play back and compress video

in real-time with hardware support [Luther89].

With PLV compression, the analog source video is played at a full frame rate to minimize
frame storage requirements and possible quality loss. The video is digitized, fittered and
color sampled before being stored digitally. This preprocessed video requires about 2
Mbytes/sec of storage space. In non-real time, the preprocessed data is compressed
frame-by-frame on a parallel processing transputer-based computer. In 1989, compression
took about 3 seconds per frame, or 90 minutes of compression time for one second of
digitized video. The PLV compressed video uses a picture interpolation method where

the difference between successive frandedt@ frameyis compressed relative to

reference framef._uther89].

RTV compression provides a method by which an application developer can compress his
own source video in real-time without the delay or expense of PLV compression. RTV

can compress video frames to the same size as PLV compression, but sacrifices picture

51

quality for speed. RTV compression is done with a lower resolution and frame rate, and
with a simplified video compression algorithm. This compression scheme does allow the

user to adjust the balance between picture quality and compression ratio [Luther89].

There are also many software-only video codecs available. These compress video data
after it has been digitized by a video capture device. Some can process the incoming
video data in real-time and others require the data to be pre-stored in a raw digital format
on the user’'s computer. Some of these compression schemes can also make use of

available compression hardware to provide better results. Table 8 describes a selection of

the available software-only video codecs.

Developer Type Platform Maximum
frame rate

Captain Crunch MediaVision Wavelef PC 320x240 @ 30[fps
Cinepak SuperMac VQ Mac, PC 320x240 @ 15 [ps
DVI-RTV Intel VQ PC 245x240 @ 15 fps
DVI-PLV Intel VQ PC 640x480 @ 30 fps
Indeo Intel VQ Mac, PC 320x240 @ 15 fgs
Motion-JPEG N/A DCT Mac, PC 640x480 @ 60 fps
MotiVE MediaVision VQ PC 160x120 @ 12 fpp
MPEG-1 N/A DCT PC 320x240 @ 15 fpk
MPEG-2 N/A DCT PC 704x480 @ 60 fpl
H.261 (p<64) N/A DCT Mac, PC 352x288 @ 15 fpp
Pro-Frac TMM Fractal PC (DOS) 320x240 @ 30 fps
SoftVideo TMM RLE PC 640x480 @ 15 fpp
Ultimotion IBM N/A PC (0S/2) 320x240 @ 30 fpp
Video Apple VQ Mac 160x120 @ 15 fpp
VideoCube ImMIX/Aware Wavelet | Proprietary 640x480 @ 60 fps

Table 8: Software-only video compression algorithms [Doyle93]

Two of the most often used software-only codecs are Intel Indeo and SuperMac Cinepak.

The Indeo compression scheme uses color subsampling, pixel differencing, vector

52

guantization, and run-length encoding. The codec is scaleable by providing higher frame
rates, but uses a fixed video resolution (160x120 or 320x240). Indeo is supported by
Apple QuickTime and Microsoft Video for Windows, and it provides a data rate between
90 and 300 kB/sec. It can also use the Intel i750 processor for hardware-assisted
decompression when the Intel/IBM ActionMedia Il board is employed. With the
ActionMedia Il board or the Intel Smart Video Recorder, this codec can be used to

capture and compress in real-time [Perey94].

SuperMac’s Cinepak codec usegeator quantizatiofVQ)-based algorithm to provide

data rates similar to that of the Indeo codec.uppsrts video resolutions of 160x120 or
320x240 at 24 bits/pixel, while delivering a data rate between 90 and 300 kB/sec. When
used with Creative Labs Video Spigot board, video can be captured and compressed in
real-time. This is a highly asymmetric algorithm. In other words, if this algorithm is
executed without hardware support, the compression titingreatly exceed the
decompression and playback time. As with Indeo, Cinepak is found in Apple QuickTime

and Microsoft Video for Windows [Perey94].

Two other interesting software-only codecs are Iterated Systems/TMM Softvideo and
MediaVision Captain Crunch. Softvideo is a fractal-based compression scheme which
provides a scaleable window size (from 320x200 to 800x600) at data rates ranging from
30 to 120 kB/sec. The asymmetric nature of Softvideo exceeds all other codecs, requiring

15 hours of compression time for every 1 minute of source video.

53

Captain Crunch provides high-quality compressed video at low data rates by using a
combination oDWT (Discrete Wavelet Transformation), tree-based encoder, vector
guantization, and a Huffman encoder. It is a nearly symmetrical compression scheme that

supports scaleable frame rate, window size and bit depth.

Various hardware exists for assisting video compression. The individual steps of the
compression algorithms, such as motion estimation, quantizing, and DCT calculation, have
silicon-based equivalents. The SGS-Thomsor8320 is a motion estimation processor,

and the IMS A121 is an 8x8 pixel block DCT processor [Kim91]. For JPEG image
compression, C-Cube Microsystems has the CL550 and CL560 chips available. The
CL550 contains a DCT/Inverse-DCT processor, quantizer, and VLC encoder. It supports
JPEG images at a 640x240 resolution, and interpolates vertically to provide a 640x480
resolution. The CL560 chip provides Motion-JPEG video compression at a 640x480
resolution. For MPEG compression, C-Cube has the CL450 which supports MPEG-I

standard video compression [Brown93].

The Intel/IBM ActionMedia Il board and the Intel Smart Video Recorder both use the
Intel i750 chip set for video compression and playback. The i750 chip set contains a pixel
processor and separate display processor. The 82750PB pixel processor supports
compression, decompression and VLC decoding, while the 82750DB display processor is
responsible for timing signals adJV to RGB conversion. The chips work in an 8 bit

YUV color space where the chrominance is subsampled at 1/2 or 1/4 the luminance

resolution in both the U and V directions. The i750 chip set is programmable and can be

54

programmed to decode JPEG images and compressed motion video. JPEG images at a

640x480 resolution can be decoded in less than one second [Harney91].

55

3. CONTENT DELIVERY

When a multimedia application requests the playback of video or audio data, the request is
satisfied by the application’s host computer platform. The operating system of the
computer manages the transfer of data from the source to the display destination. The
source of the data can be on the local machine or on a remote machine connected by a
network. The destination of the data is generally the video display and/or the audio
playback device on the local machine. The action of transferring the data involves the
CPU of the destination machine, the storage device (i.e. magnetic disk or CD-ROM) at

the data source, and possibly the network interconnection devices at both the source and

destination.

The media that is delivered from the source machine to the destination machine can be
either static or dynamic. Static media, such as text or images, have no time element, while
dynamic media, such as audio or video, do possess a time element. Normally static media
is delivered in one contiguous chunk, but it is also possible to progressively render static
media. Progressive rendering of images means that over time the image is displayed in
several “progressions.” The image is stored as multiple resolutions of increasing quality.
These resolutions are incremental such that the later resolutions build on the earlier
resolutions to produce an image of increasing quality as with interlaced GIF and

progressive JPEG images.

The individual chunks of dynamic media data are not normally rendered progressively.

The granularity of video playback is typically limited to the video frame. Some video

56

decompression schemes use a sub-frame granularity where pixel blocks of the frame are

decompressed independently and composited into the video frame.

Another factor in delivering media is the delivery mode: real-time or non-real-time. The
real-time delivery of a video segment means that the user begins watching the video as
soon as it is sent from the source. Audio can be played back in a similar manner.
Examples of real-time delivery are video conferencing (CU-SeeMe) [Cogger94], or
networked audio playback (RealAudio Player) [Progressive95]. In non-real-time delivery
mode, however, the media is fully delivered to the destination before it is played back. An
example of this is an audio file embedded in an e-mail message. The e-mail message must
be fully delivered before the audio file can be separated from the original message and

played back.

The delivery of media is an asynchronous exchange of data between the source and
destination machines. There are normally two parallel flows of information involved in
media delivery: the data flow and the control flow. The data flow is a single duplex
channel over which the media data travels, while the control flow is a full-duplex
communication channel over which the source and destination sites negotiate the
characteristics of the transmission of the data. In real-time delivery mode, such as with
multimedia conferencing, there are real-time constraints which the data flow must meet. If
a video frame can not arrive at the specified time, the constraints will not be met and some
delivery parameters must be adjusted. Possible parameters for adjustment are the frame
rate of the video stream, the visual quality of the video stream, and the buffering ability of

the source and destination sites [Ahuja92] [Uppaluru92].
57

3.1 Using Multimedia Data Delivery in Applications

Different applications use different methods of data delivery. For example, multimedia
authoring applications and video-conferencing applications use multimedia data in

distinctly different ways. A multimedia authoring application will play back audio and

video data from a storage device to the video display and audio playback devices. A
video-conferencing application generates compressed video data at the source and
transfers the data over a network to the destination site. At the destination site, the
compressed data is immediately decompressed and played back, or it can be archived to a
local storage device. The decompression is normally done by custom hardware but new
algorithms and faster computer processors allow it to be done in software. Most audio
playback devices have decompression hardware, and video decompression hardware is

becoming a common feature on video display devices.

A multimedia application must make several design choices: whether to have single or
multiple data delivery channels, delivery over a network or direct from disk, data used in a
design or runtime mode, and data delivered in a continuous mode or as individual chunks.
Whether to synchronize between various media data elements is another choice which

must be made.

A single application can open multiple concurrent data channels, for example audio data
streaming from a CD-Audio device, video data streaming from a magnetic storage device,
and textual data streaming off the Internet. A typical multimedia application will use

multiple concurrent data channels to assemble the multimedia presentation.

58

Multimedia authoring and presentation applications commonly have a design mode and a
runtime mode. The data access methods between these two modes can differ greatly. At
design-time, data is normally accessed in a random-access method while the application
developer searches for the proper segment of multimedia data. He may choose to edit or
pre-process the data at this time. At run-time, the same selection of multimedia data

would normally be accessed in a sequential manner and be played back from start to finish.

The chunks of information accessed by an application can be tpresahtation objects

or P-objects These P-objects can be classified according to their size, media composition,
and links to other P-objects. For optimal networked data delivery, the application must
provide the network with information that indicates the P-object’s current bandwidth

allocation demands and its dependence on time [Loeb92].

P-objects can be thought of as the individual media elements of the multimedia documents
which multimedia applications create, edit, and display. Each P-object has its own unique
display characteristics (size, bandwidth demands, etc.) and the multimedia application

must take these characteristics into consideration for the optimal display of the P-object.

Similarly, by using a technique callegplication-level framingan application can specify

its own transmission units (i.e. packet size) which can be teapmtation data uniter

ADUs In networked data delivery simulations, it has been shown that a significant source
of delays is a fixed packet size, which is not optimal for the various data types within an

application [Loeb92].

59

The amount of text to be delivered may vary with the size of the video display device. In
addition, the packet size of a video stream will be determined by the size of a compressed

video frame, and bitmapped images may be delivered a scanline at a time.

For interactive multimedia applications, the non-sequential access of media data defeats
typical caching and pre-fetching mechanisms. One solution is to have the application

dictate the data delivery demands in accordance with the data access method.

A multimedia application can specify that a selection of media data will be used only once
or that it will be used repeatedly to provide hints todéehing mechanism. It can also
specify that the data will be used either sequentially or randomly in order to provide a hint

to the pre-fetching mechanism (see Table 9).

Normal unknown page access order,
caches needed pages upon access

Random pages are likely to be accessed in random order,
caches minimum amount of pages

Sequential pages are likely to be accessed once and in qrder,

caches maximum amount of pages
Pre-fetching
Normal read pages on demand
Will need read pages in immediately
Do not need | free pages immediately

Table 9: Types of application data delivery advisement [Loeb92]

It is preferable to pre-fetch data when the data delivery channel is lightly loaded.
Basically, this is an example of overlapping the data delivery with any application-level
delays. The time during which an application is loading can be used for pre-fetching data
that is expected to be used. For an authored title which uses linear navigation, data for

60

subsequent sections of the title can be pre-fetched because it is likely thdl deta w

needed at a later time.

Other heuristics can also be applied to optimize the pre-fetching operation. At design-
time, the user will most likely be cycling through variousces of media data trying to

find the appropriate one, editing and pre-processing the data, and linking it into a
multimedia document. The data access methbbdkely be random, therefore no pre-
fetching should be used and only the minimal set of accessed data should be cached as
there will be a limited locality of reference. The data also macbessed in both read

and write modes while editing.

At run-time, the multimedia document is already linked to the data and can be pre-fetched
if desired. In most cases, the data will be read sequentially and shaaldheel as such.
Depending on the type of navigation available, other linked media data may be pre-fetched
to optimize the latency for starting playback. Also, the data will most likedcbessed in

read mode only, since no run-time editing will occur.

3.2 Platform Issues

Many multimedia applications are designed to deliver multimedia data, but not every
application needs to access the low-level delivery mechanisms directly. For this reason,
system-level support for multimedia data delivery is found in many operating systems or in

multimedia extensions placed on top of operating systems.

61

3.2.1 Apple QuickTime

The Apple Macintosh operating system uQesckTimemultimedia extensions for

multimedia support. QuickTime manages the delivery of various classes of multimedia
data: digital audio and video, MIDI audio, or SMPTE timecodes. The basic data object in
QuickTime is the “movie” and it consists of one or more “tracks.” Each track contains

references to chunks of raw data, called “media” [Hoffert92].

QuickTime consists of thelovie Managerthelmage Compression ManagdCM), and

the Component ManagerThe Movie Manager is responsible for the synchronization of

the media data and delivery of the data from the storage device. The ICM manages the
various compression algorithms and is used to compress and decompress media data. The
Component Manager provides a hardware abstraction layer to determine hardware
resource availability. QuickTime is not tied to any specific hardware devices and is
extensible as new hardware and new compression algorithms become available

[Wayner91].

3.2.2 Intel Audio Video Kernel

Intel's Audio-Video Kerne(AVK) provides multimedia services to IBM OS/2 and
Microsoft Windows operating systems [Donovan91l]. It is tied closely to the Intel/IBM
ActionMedia Il video capture and display device, and uses a real-time kernel to manage
the multimedia data delivery. The AVK uses a production studio model with separate
managers for analog device control, visual display, digital audio and video playback, and
digital effects and mixing. The image data flow pipeline, for example, loads compressed

data input from a storage device into a compressed data buffer, decompresses the data

62

into a separate decompressed data buffer, and renders the decompressed data to the

screen. Each step in the pipeline is managed by a separate real-time task [Donovan91].

3.2.3 UC Berkeley Comet

Comet from the University of California at Berkeley, is a multi-user multimedia toolkit

which provides an abstraction to hardware and network resources, and provides an
architecture to connect media data sources to sinks in a dataflow-style graph
[Anderson91b]. Comet is an object-oriented toolkit which abstracts devices, storage
devices, mixers, and the network interconnections. The Comet objects support a protocol
by which data types and resources are negotiated before connection. Comet runs on
UNIX workstations with X-Windows and a connection to an ACME continuous media
server (see [Anderson91]). Multiple processes are used to manage the delivery of media
data from source to sink and to filter the data during transmission (i.e. audio and video

mixing) [Anderson91b].

3.3 Synchronization Issues

Synchronization has been defined as the “ordering of processes and their coordinated
access to shared resources.” Each process can manage an individual data stream or a set
of data streams. It is possible to define a global synchronization system which imposes
synchronization on multiple data streams across multiple processes. This synchronization
system can exist in the local or distributed environment, i.e. it can manage media on one

computer or media distributed across many interconnected computers [Steinmetz90].

63

When a multimedia application begins to use multiple streams of media data, the problem
of synchronization arises. There are several solutions to this problem which have been
implemented, but the solutions are usually application-specific. Synchronization can be

handled in the operating system or in an application-specific manner.

When developing a multimedia document, the multimedia objects must be assembled both
in space and in time. This can be termpdtial compositiomndtemporal compositian
Temporal composition can lsentinuousor synthetic With continuous synchronization,
absolute synchronization exists only at the beginning and end of data stream playback.

The source and destination of a data stream will differ in synchronization during playback.

Synthetic synchronization employs a coarse synchronization technique with object-level
granularity. Data streams can be started or ended based on user interaction, application
execution or termination, or pre-defined relationships. Objects can have sequential or
parallel time relationships. When these multimedia objects are presented, the synthetic
relationship, minimum and maximum delay, and the desired performance constraints can

be taken into consideration for optimal playback performance [Little90].

A coarse-grain synchronization technique would define the interconnection of objects in a
multimedia document, while a fine-grain technique would illustrate the binding of objects

to a reference timeline for playback timing [Little90a].

Complex temporal relationships can be created between multimedia objects. Some

examples of object relationships can be seen in Table 10.

64

Relationship Description

Pa before Pb [Pa]<delay>[Pb|]
Pa meets Pb [Pa][Pb]
Pa overlaps Pb [Pa]

<delay>[Pb]
Pa during Pb <delay>[Pa]

[Pb]
Pa starts Pb [Pa]

[Pb]
Pa finishes Pb <delay> [Pa]

[Pb]
Pa equals Pb [Pa]

[Pb]

Table 10: Examples of temporal object relationships [Little90a]

3.3.1 Continuous Synchronization

The ACME (Abstractions for Continuous Media) server provides network-transparent
access to hardware devices, manages multiple concurrent data streams, and allows clients
to specify synchronization requirements while providing mechanisms to enforce them.

Each client application can request multiple data stresopsg which consist of

individual per-device streamstfandg. These strands are multiplexed into ropes and are
transmitted over the client-server network connection. The ACME system loggsah

time systengLTS) for synchronization support. An LTS can have a variable unit of time

and can be either device driven or connection driven [Anderson93].

The system can use a skip-pause LTS, which skips or pauses the transmission depending
on transmission latency. Another alternative is the low-delay LTS, which acts to minimize
the transmission delay on its streams. A multimedia document browser would use a skip-
pause LTS to manage the synchronization of multiple data streams [Anderson91]. The
LTS would be driven from a single device, normally the audio playback device, so that all

65

data streams (such as video and text captioning) would be synchronized to the audio
stream. An audio conferencing system would use a low-delay LTS to support low end-to-

end delay between clients. The LTS would be driven by the network connection.

An LTS has three modes of operation - startup, normal, and starvation/overrun. During
the startup period, the LTS waits for the device and connection buffers to fill up before
proceeding. In normal operation, the LTS handles rate mismatches and manages the
intrastream synchronization. When buffer starvation or overrun occurs, the LTS may

temporarily stop to let the device or connection catch up [Anderson91].

When the LTS must wait for a device or connection to catch up, a data stream may stop
playback. Normally when this happens no media data is shown or heard since playback
has ceased. A technique caltedtricted blockingcan be used to provide some continuity
when playback is delayed. For example, video streams can leave the last frame visible

during delays in playback rather than showing no video signal at all [Steinmetz90].

3.3.2 Synthetic Synchronization

Explicit synchronization control can be applied by the use of scripts. Scripts can be

created to define the set of data streams, the sequence of data units (samples, frames, etc.)
that will be played, and the time at which the streams will begin and end. In this case, the
script playback engine itself would use an LTS for synchronization which will be driven by

the master data stream, as specified in the script [Rowe92].

Script-based synchronization is specified by the application developer and defines the
relationship between the media data in the application. For multimedia presentations, the

66

presentation timing is dependent on the availability of required media data, latency of
playback, and the playback algorithm. A scheduling policy may also be put in place to
describe which playback deadlines to meet and which playback tasks to defer or drop

[Staehli93].

In addition to script-based synchronization, an application can support event-based
synchronization. An example of this is the display of subtitles triggered by video playback

events (i.e. playback of a specific frame) [Blair91].

Synchronization protocols can be used to manage the synchronized data delivery of
multimedia objects with inter-object relationships. agplication synchronization

protocol (ASP) ornetwork synchronization protocNSP) may be utilized. An NSP
allows the playback of complex multimedia presentations from distributed sources to a

single site, while an ASP manages the playback to and from a single site [Little91].

An example of a synchronization protocol consists of these steps. First, the temporal
relationships between objects in the presentation are retrieved. Next, the relationships are
evaluated and a playback schedule which incorporates the differing playback requirements
of the objects is created. Then, the overall playback schedule is determined in
coordination with an NSP. Finally, the synchronous data transfer of the presentation

occurs [Little91].

3.4 Networking Issues
A common concern of multimedia developers involves delivering media data over a
network. Networked video may be used in businesses for user training and support, sales

67

videos, or employee information. Advertising agencies frequently use archives of
television commercials [Tobagi92]. The storage resource and delivery mechanism of
video data is termed thedeo server Through the use of a video server, numerous

streams of video data can be served concurrently with random accesktyapab

Video servers must maintain a continuous high data rate with real-time processing
requirements. One type of video server may useEsaion manageo service multiple

clients. Eaclsessiorcan be described by two concurrent client/server streams, or
channelscommand and data. The command channel is used for a bi-directional protocol
for managing the data transfer rate. The server monitors the client’s buffering ability and
can adjust its data transfer rate accordingly by notifications sent on the command channel

[Uppaluru92].

The command channel can be implemented by a reliable stream-based protocol (e.g.
TCP/IP). The data channel can be implemented by a stream-based protocol or a packet-
based protocol (e.g. UDP/IP). Reliable stream-based protocols will retry lost packets
during data transmission. The latency for packet retransmission is not acceptable for
continuous media data transfer. As a result, specialized packet-based protocols have been
invented. In these protocols, no acknowledgment or retransmission techniques are

employed. Data packet loss is acceptable and must be dealt with by the application.

Both static and dynamic media types can be delivered over a network. The network may
be a Local-Area Network or a Wide-Area Network, such as the Internet. The mode of

delivery may be real-time, where the user watches the data stream as it is delivered, or

68

non-real-time, where the data stream is archived at the user’s site and watched later
[Blackketter92]. Real-time delivery over WANSs is where most synchronization problems

occur because of the inherent delays in data transmission.

Network types vary widely in delivery bit-rates (see Table 11), but delays in network

routing as a result of network load can diminish the data rates drastically.

Interface Type Bit-rate

POTS 0.3 - 56 kb/sec
DS-0O (used by telephone companies) 56 kb/sec

ISDN 64 - 144 kb/sec
LocalTalk 230 kb/sec

T-1 1.5 Mb/sec
Ethernet 10 Mb/sec

T-3 45 Mb/sec

Fast Ethernet 100 Mb/sec

FDDI (Fiber Distributed Data Interface) 100 - 200 Mb/sqc
SONET (Synchronous Optical NetworkN x 51.84 Mb/sec

Table 11: Network interface types and corresponding bit-rates [Liebhold91]

Clients can use the video data in applications, but may need custom networking protocols
for streaming data delivery [Tobagi92]. These protocols can provide a scaleable data
transfer rate by responding to the network load and application requirements. The data
streams may be scaled temporally or spatially to maintain acceptable rates. Temporal
scaleability dynamically varies the frame rate of the video stream, while spatial scaleability

provides the ability to reconstruct a frame from partial information [Upp@Rijc

A data stream is transmitted from a source to a destination site and will contain a sequence
of media objects - video, audio, and so on. The current logical time of the source or
destination of the data stream is termedpifesentation timéLittle90]. The presentation

69

time may be described in various units of time (samples, frames, etc.). For example, the
source of the data stream may have transmitted frame 105, but the destination has only
received frame 101. A loss of synchronization means that the presentation times at the

source and destination of the data stream are different.

The instantaneous difference of presentation times is tgitteed The average delay

over the duration of the data stream playback is tesked The set of performance
parameters for data stream playback - including skew and jitter - can be tpratfieéy of
service(QoS). Object presentation can be constrained by the QoS specification, which
could affect the playback data rates, buffering parameters, and network transmission

policy [Little90].

Data with a real-time delivery requirement that is transmitted in a single direction can
incur large end-to-end delays from data delivery to arrival. However, the arrival times of
data packets and jitter need to be constrained. Bi-directional real-time data delivery
requires constraints both on jitter and total round-trip delay. As a solution, ATM
networks control delay and jitter by using fixed-size data packets. This minimizes buffer

sizes, and eases routing delays during data transmission [Hopper90].

3.4.1 Continuous Media Player

The Continuous Media PlaygiCMPlayer) from UC Berkeley supports a continuous
media support library and portable user interface. CMPlayer takes as input a script
describing a series of audio or video streams, and the start and end frame of each stream.

Each script has a logical time system (LTS) for driving synchronization [Rowe92].

70

CMPlayer is composed of one or more CMSources and a CMServer. Each CMSource
resides on a video file server and sends continuous media data in packets over a UDP
network connection. The CMServer is an event-driven process which manages a time-
ordered playback queue for synchronizing the playback of audio and video packets. It
receives packets from CMSources, assembles the CM data from the packets, and queues
the data for playback. Control information is sent between the CMSource and the
CMServer over a TCP network connection. CMServer requests retransmissions if a

packet is lost, and deals with out-of-order data [Rowe92] [Rowe94a].

The CMSource sends data to the CMServer at the appropriate time, and the data is
marked with a valid time interval for display. But both the CMSource and CMServer can
skip or drop frames to maintain synchronization with the LTS. A timer event notifies the
CMSource to send a frame. It then decides which frame to send and calculates the start
and end times for display. If the CMServer decides a frame can be decoded and displayed
before its logical time, the frame is put on a queue of display requests. If not, the

CMServer drops the frame [Rowe94a].

The CM network protocol uses an adaptive feedback algorithm to match packet flow to
available resources. CMServer uses a penalty method to maintain a constant playback
rate. Frames that are queued but not played, multiple missed frames, and frames lost in
the network increase the penalty. This penalty is sent to the CMSource which is
transmitting the stream. Every 300 msec, the playback frame rate is calculated based on

the current frame rate, the penalty, and the frame rate constraints on the stream [Rowe92].

71

3.4.2 Rate-based Flow Control Protocol

Researchers at Lancaster University (UK) have proposed a system which uses a relaxed
rate-based flow control protocol. This protocol does not support retransmissions when
transferring real-time data. The system is composed of two source processes - writer and
send - and two destination processes - receive and reader. The writer process gathers
media samples into the required buffer size, also calledutst size When the buffers

have been filled, the send process fragments the buffer into network packets and adds the
appropriate packet headers. Upon packet receipt at the destination, the receive process
strips the header information and fills data buffers. The reader process passes the filled

buffers to the media playback engine [Shepherd91].

As the first step in the flow-control protocol, the source and destination must agree on the
burst size. Next, they must agree on a suitalntet intervalwhich allows the receiver to
consume and process a negotiated full burst in that interval. When a burst is consumed
and processed by the destination, it informs the source of its current buffering capabilities.
The source uses this information to decide whether to send the next burst or block at the
next burst interval. By increasing or decreasing the burst size, this protocol allows delay
jitter to be smoothed out. Synchronization is therefore provided at the buffer level not the

packet level [Shepherd91].

3.4.3 Multimedia Virtual Circuit

An alternative delivery mechanism developed at Boston University ialtenedia
Virtual Circuit (MVC). An MVC contains multiple channels of synchronized media which

are multiplexed onto a singlertual circuit (VC) with variable bandwidth. Packet order

72

is guaranteed by the VC, and there is no connection overhead once the VC is established.
The client application requests the number of channels and the QoS per channel, but
channels can be added to the MVC during transmission. An MVC only supplies point-to-

point connections [Little90].

3.4.4 Continuous Media Transport Service and Protocol

In order to provide better service for continuous media applications, researchers at UC
Berkeley have developed tR®ntinuous Media Transport Servil@MTS) and

Continuous Media Transport ProtocCMTP). CMTS is designed primarily for CM

clients, but can coexist with message-oriented clients. It provides a better traffic model
for characterizing CM traffic and for specifying performance requirements. CMTS defines
an abstraction of logical streams, provides CM-specific error handling, and eliminates the

need for the client’s acknowledgment of each data transmission [Wolfinger91].

CMTP is responsible for unidirectional communication between CMTS processes at the
sender and receiver. Real-time applications cannot wait for retransmissions of data and
will handle lost packets, but in cases of serious error, the connection can be torn down and

reestablished with a new stream [Wolfinger91].

The conversation between sender and receiver consists of a sequence of logical streams
with intervals of silence between the streams. The sending client must notify its CMTS at
the beginning and end of each logical stream. The sending client and its CMTS share a
circular buffer. The sending client must place all outgoing packets in the shared buffer

before the end of the transmission period. This buffer may be prefilled by the client by a

73

predetermined number of bytes (caltack. The traffic and performance parameters of
the stream can be redefined at the start of each logical stream, but only a decrease in data

rate is allowed [Wolfinger91].

The CMTS at the sender and receiver coordinate to transfer all buffered data packets for
each transmission period. The receiving CMTS must inform its client of the beginning of
a new logical stream. The receiving client and its CMTS also share a circular buffer.
Similar to the sending process, tlee@iving CMTS must place incoming packets into the
shared buffer before the beginning of the playback period in which they will be needed.
The receiving client is responsible for removing these packets from the shared buffer
before the end of that period, but can fall behind by the slack number of bytes. The
receiving buffers are relatively large to smooth out the fluctuations in the arrival of data

packets caused by delay jitter [Wolfinger91].

3.4.5 AudioFile

Digital Equipment Corporation has developgaadioFile a network-transparent system

for distributed audio applications. AudioFile allows multiple simultaneous clients,

supports a variety of audio hardware, supports multiple audio data types and sample rates,
and permits transparent access through the network. It can be used for applications such
as audio recording and playback, answering machines, voice mail, telephone control, and

speech synthesis and recognition [Levergood93].

AudioFile operates on blocks of audio data rather than streams. It does not provide a

complete synchronization protocol, but does supply low-léwag information.

74

AudioFile clients manage end-to-end delay and multiple synchronization clocks. The
AudioFile server consists okvice independent audi®lA), device dependent audio

(DDA), and operating system components. The DIA component uses a control loop
which waits for client connections and open devices. Client requests are processed by a
dispatcher. The DDA component manages the play and record buffers for each device
while audio device I/O is performed by reading and writing shared memory buffers

[Levergood93].

The AudioFile protocol is modeled after the X-Windows protocol and uses a transport
protocol which is reliable and does not reorder or duplicate data. The reliable protocol
(TCP) was found to be sufficient as the delay caused by the retransmission of lost packets
was small compared to the buffering. Teleconferencing applications over intercontinental
TCP links suffered poor performance, and the researchers decided TCP was the wrong
protocol for low-delay applications which need guarantees on bandwidth and latency and

can accept lost packets [Levergood93].

3.4.6 Etherphone

The Etherphonanultimedia conferencing system was developed by researchers at Xerox
PARC. ThePhoenixsubsystem manages audio conferencing and supports multiple
simultaneous conversations in various configurations: one-to-many, many-to-one, and
many-to-many. Also, Phoenix supports best-effort conferencing, in which the

conversation participants use a media format supported by every participant [Vin91].

75

Phoenix uses a multicast packet protocol for audio transmission. The audio transmission
protocol exhibits a small end-to-end delay (< 50 ms). Data transmission alternates “talk
spurts,” or segments of continuous speech, with silence. Each audio packet consists of up
to 160u-Law encoded bytes, which is equivalent to 20 ms of audio at 8000 bytes/sec. At
most, 50 packets/sec are transmitted per conference participant. An energy value is
computed for each packet. If this value is below a predetermined energy threshold, the
packet is considered silent and is not transmitted. To smooth the transition from speech to
silence and from silence to speech, low volume packets are transmitted at the end of the
preceding talk spurt and at the start of the following talk spurt [Vin91]. For this to be
possible, the audio transmission must buffer enough data to be able to calculate the silent
portions of the stream. Otherwise, the silent packets at the transition points could not be

replaced with low volume packets since they would already have been sent.

3.4.7 X-MOVIE

Researchers at the University of Mannheim have produced a system for transmitting and
displaying digital movies called-MOVIE X-MOVIE consists of the Movie Server, the
Movie Client, and the X-Client. The Movie Server maintains a directory of movies
available for playback. Also, it accepts playback requests from, and delivers the movie
over the network to, the Movie Client using an application-level protocol nkloe
Transmission ProtocdMTP). The Movie Client extends the standard X-Windows
System X-Server to provide digital movie playback. Similarly, the X-Client extends the

standard X-Client to provide this same functionality [Lamparter91].

76

The Movie Server provides services to the Movie Client such as Play, Stop, Step
Forward/Step Backward, Show Pictumeand Slower/Faster. When using the MTP
protocol, all data packets from the Movie Client to the Movie Server and all control
packets from the Movie Server to the Movie Client are acknowledged. All movie data
packets sent from the Movie Server to the Movie Client are unacknowledged in order to
provide a continuous data flow. When run over TCP/IP, the data rate from Movie Server
to Movie Client was found to be about 150 kb/sec, but when run over UDP/IP, the data
rate jumped to approximately 2 Mb/sec with 10% packet loss. TCP was found to be a
poor transport protocol for real-time data because of the flow control and packet

retransmission protocol mechanisms [Lamparter91].

77

4. CASE STUDY

The thesis project that was undertaken illustrated an example of networked playback of
video and audio streams in a client/server environment. The software application that was
developed can act as both client and server. The application can serve multiple concurrent
video and audio streams, and also can render multiple incoming video and audio streams.
The server plays the audio and video streams off a local storage device such as a hard
drive or CD-ROM. It accesses pre-compressed video and audio files and transmits each
individual video frame (or buffers of audio samples) over the network. The compressed
video data is decompressed on the client and rendered to the local display device. The
compressed audio data is sent to the audio device (e.g. sound card) where it is

decompressed and played.

A LTS-based synchronization engine was used in conjunction with an adaptive rate
control algorithm.Real-Time Protoco{RTP) was used to provide real-timeality of
service(QoS) information to the media server. The application can support the
synchronization of multiple independent data streams. The adaptive rate control algorithm
uses the QoS information which is sent from the client back to the server in order to
optimize the synchronization of the data streams. The server data rate is altered

dynamically to provide the highest data rate without sacrificing packet loss.

The goals of the project were to provide synchronized video playback over a network
while leveraging existing technology in order to support extéihgitportability, and

interoperability. The application was therefore designed to take advantage of increasing

78

network bandwidth, advances in data compression, as well as advanced operating system

support.

Other possible uses for the application are in a multimedia document browser, such as for
the World Wide Web, or in a multimedia conferencing application. The server part of the
application could be used in conjunction with a Web server to provide for streaming
continuous media over the Internet. Alternately, the application could be enhanced to

support live audio and/or video capture in order to support live multimedia conferencing.

4.1 Related Works

The LTS-based synchronization engine was derived from the ACME server developed at
the University of California at Berkeley [Anderson91] [Anderson93]. The adaptive rate
control algorithm was based on the penalty method used in CMPlayer [Rowe92], while
the RTP protocol implementation was derived from the Xerox PARC Netvideo

application [Frederick93].

These software applications developed as a result of research projects at other universities
were used as the groundwork for this project, and the choice was made to start this
research project from where the other projects left off. This allowed the code that was

written for this application to be unique and limited dlogplication of preexisting code.

4.2 Design Rationale

As stated above, a primary goal of the project was to leverage existing technology in order
to support extensility, portability, and interoperability. Extensibility was provided by
allowing the application to work with a variety of software codecs. Depending on the

79

bandwidth available to the client-server network link, a different codec may be used to

optimize the quality of the compressed audio and video.

Under Microsoft Windows, the operating system support for video playback and capture

is known as/ideo For WindowgVFW). VFW abstracts the specifics of the video
compression and decompression algorithms which are used. To play back a frame of
compressed video, the frame is handed to the VFW subsystem along with a bitmap header
data structure which describes the video frame dimensions, bit depth, and compression
algorithm. By using the compression algorithm item from the bitmap header, VFW
dynamically loads the code necessary to decompress the video frame. The decompressor
is called to decompress the video frame, after which the decompressed frame is rendered

to the display device.

One limitation of using VFW is that the standard codecs (e.g. Intel Indeo, Radius
Cinepak) only support the compression and decompression of full video frames, not sub-
frames as in some video conferencing applications (e.g. CU-SeeMe). The CU-SeeMe
compression algorithm encodes sub-frames along with their (X, y) position within the full
frame. This allows each full video frame to be built up from many sub-frames and
minimizes the effect of a lost network packet (which would contain a sub-frame rather

than a full frame).

If the video compression algorithm selected uses interframe compression, and a reference
frame of the video stream is dropped during its network transmission, the rendering of the

video stream can contain undesirable visual results. The intermediate frames of the video

80

segment will not have a reference frame to use for decompression. To get around this
problem, the video stream should be compressed without interframe compression when

transmitting the stream over a network (when using a non-guaranteed network protocol).

The operating system support for audio playback and capture is providedwinthawvs
Multimediasubsystem (WinMM). Similarly to video decompression, buffers of audio data
are handed to the audio device along with an audio header data structure. The header
contains the audio compression algorithm, the sample rate, and the number of channels
(e.g. mono or stereo) in the audio buffers. This application uses a fixed frame rate of 15

fps so that the each audio buffer contains 67 msec worth of audio data.

To provide portability, many standaagplication programming interfacd&PIs) were

used in the development of this software application. System-level APIs for the user
interface MFC: Microsoft Foundation Classes), multithreadibgiri32, multimedia

services (VFW and WinMM), and network connection8r(Sock:Windows Sockets
Services) were provided by the operating system. By writing to these abstract APIs, the
application can run on any hardware platform where these APIs are supported. Both the
Windows 95 and Windows NT operating systems support the Win32 system APIs. Third
parties have developed Win32 emulation libraries on various Unix implementations. In
addition, applications written using MFC for their user interface support can simply be
recompiled to work under the Macintosh operating system. Microsoft also provides a
Win32 software layer for the Apple Macintosh which allows a subset of the Win32 APIs

to exist on Macintosh computers.

81

Most of the related applications (including ACME and Netvideo) were run on the Unix
platform. By writing to the high-level Win32 API, this software application is less
dependent on the underlying hardware and, therefore, can transparently make use of
advances in audio and video codecs, multiprocessor support, and new display devices.
Using the Win32 APIs and MFC for development greatly decreased the implementation

time and made the application more extensible and portable.

The networking protocol selected for this project was RTP. It is a non-guaranteed
protocol which has support for the real-time transmittal of data. The RTP headers contain
timestamp information which allows the receiver of the data to kmowediately whether

a packet has been lost (or, at least, received out of orfd@iJP(Real-time Control

Protocol) is used for media source management. This protocol is used to signal the
beginning and ending of data streams and to send QoS information back to the sender of

the data.

As was seen in many other networked video playback systems, a non-guaranteed protocol
will exhibit much higher data throughput than a guaranteed protocol (such as TCP). The
X-MOVIE system found TCP to be a poor transport protocol for real-time data because

of the flow control and packet retransmission protocol mechanisms. Also, the non-
guaranteed protocol showed more than a factor of ten improvement in data throughput
[Lamparter91]. A non-guaranteed protocol will be susceptible toeadile packet loss
(upwards of 10%) during data transmission and the receiver of the data must be able to

handle the data loss without difficulty.

82

The ACME server used TCP for data transmission and RPC for control information.
Because of the documented inadequacies of TCP as a continuous media transport
protocol, in this project these protocols were replaced with RTP for data transmission and
RTCP for control information. Also, since RTP is an open protocol standard, the Win32
client application can interoperate with any other network server that adheres to the RTP
protocol. The only limitation is that the client must be able to decompress and render the
encoded data transmitted by the server. The RTP protocol header includes a tag for the
format of the data stream which is being transmitted. If the client can not understand the

data format being sent to it, it will ignore the connection with the server.

In this project, an adaptive rate control algorithm was used on the server side to alter the
transmitted data rate. This algorithm used the QoS information sent from the client back
to the server to adjust the rate at which