
A Programming Library for the Construction of
3-D Widgets

by

Tony Tat Chung Lau

B.A.Sc., University of British Columbia, 1989

A Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in the Faculty of Graduate Studies

Department of Computer Science

We accept this thesis as conforming to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

April, 1994

c
 Tony T. Lau, 1994

In presenting this thesis in partial ful�lment of the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for refer-

ence and study. I further agree that permission for extensive copying of this thesis for scholarly

purposes may be granted by the head of my department or by his or her representatives. It

is understood that copying or publication of this thesis for �nancial gain shall not be allowed

without my written permission.

Department of Computer Science

The University of British Columbia

2366 Main Mall

Vancouver, B.C.

Canada V6T 1Z4

Date:

Abstract

3-D graphical user interfaces (3-D GUIs) may be bene�cial to application programs that

need to manipulate 3-D objects or multi-dimensional data. However, most existing 3-D graphics

programming systems do not provide primitives for building 3-D GUIs; instead, programmers

have to deal directly with input device events and 3-D graphics. Systems that do either are

research systems that are not available to application programmers or are di�cult to extend.

For these reasons, explorations in the use of 3-D GUIs have been di�cult.

An extensible and object-oriented 3-D Widget Programming Library is implemented. It is

an extension to Inventor (a widely available 3-D programming library) and lets programmers

contruct new widgets (3-D scene objects with interactive behaviors) using four types of high-

level components that are responsible for user interface, visual feedback, application interface

and general computation. A widget built with this library is able to control and display one

or more application states, interact with users in a click-drag-release fashion, and convey the

application states through the relative positions and orientations among the widget's parts.

A widget interfaces with an application program through either direct attachments to scene

objects or callback functions.

ii

Contents

Abstract : ii

Table of Contents : iii

List of Tables : vi

List of Figures : vii

Acknowledgement : viii

1 Introduction 1

1.1 Motivation : 1

1.2 Related Works : 2

1.2.1 The Forms Library : 3

1.2.2 Three-Dimensional Widgets : 4

1.2.3 Inventor : 6

1.3 Objectives : 8

1.4 Thesis Organization : 8

2 3-D Widget Programming Library | an Overview 9

2.1 What is a 3-D Widget? : 9

2.2 What is the Library? : 10

2.3 The Anatomy of a Widget : 11

2.3.1 Widget Components : 11

2.3.2 Creation of a New Widget Class : 17

2.4 How Does a Widget Work? : 18

iii

2.4.1 Using the Widget : 21

2.4.2 A Typical User Interaction : 22

3 Design and Implementation 24

3.1 General Design Issues for the 3-D Widget Programming Library : : : : : : : : 24

3.1.1 Inventor as the Basis : 24

3.1.2 Motion Hierarchy as the Means of Visual Feedback : : : : : : : : : : : : 24

3.1.3 High-Level Data-Flow Components as Building Blocks of Widgets : : : 25

3.1.4 Multiple Controls and Support of Five Data Types : : : : : : : : : : : : 26

3.2 Design of the Classes : 27

3.2.1 The Widget Base Class : 27

3.2.2 The Basic Widget Component Classes : : : : : : : : : : : : : : : : : : : 32

3.2.3 The Widget Slot Classes : 34

3.2.4 The Widget Part Classes : 38

3.2.5 The Widget Space Classes : 43

4 Discussion 47

4.1 Accomplishments : 47

4.2 Future Work : 48

Bibliography 50

A Using a Widget in an Application 52

A.1 Including a Widget and Registering a Callback : : : : : : : : : : : : : : : : : : 52

A.1.1 The Main Loop : 52

A.1.2 Creating the Scene Graph and Registering the Callback Function : : : : 53

A.1.3 The Callback Function : 54

A.2 Using Attachments : 54

A.2.1 Creating Attachments : 55

A.2.2 Creating a Custom Conversion Function : : : : : : : : : : : : : : : : : : 57

iv

A.3 Customizing a Widget : 58

B Implementing a Widget from Existing Parts 60

B.1 De�ning RackWidget : 60

B.2 Default Geometries : 62

B.3 Initializing the Widget : 63

B.4 Constructors and Destructors : 64

C Implementing a General Component 68

C.1 De�ning the Component : 68

C.2 Constructors and Destructors : 69

C.3 The Member Function invoke : 70

D Implementing a Part 71

D.1 De�ning the Part : 72

D.2 Default Geometries : 73

D.3 Constructors and Destructors : 74

D.4 The Member Function updateMatrixPort : 75

D.5 The Member Function invoke : 76

D.6 The Member Functions for Manipulations : 77

E Relevant Enhancements in the New Release of Inventor 81

E.1 Manipulators and Draggers : 81

E.2 Engines and Fields : 82

E.3 3-D Widgets and Inventor 2.0 : 82

v

List of Tables

4.1 Lines of code usage in the implementation of the Rack Widget : : : : : : : : : 48

vi

List of Figures

2.1 The structure of the Rack Widget : 12

2.2 A detailed view of the last �gure, showing internal structures of bendFeedback,

bendDial and bendValueSlot as well as port connections, attachments and call-

back functions : 13

2.3 The Rack Widget in its default state : 19

2.4 Manipulations of the taper and taper o�set sliders : : : : : : : : : : : : : : : : 19

2.5 The manipulation of the bend dial : 20

2.6 The manipulation of the twist dial : 20

3.1 The class hierarchy for the 3-D Widget Programming Library : : : : : : : : : : 28

3.2 The Inventor subgraph maintained by WPart : : : : : : : : : : : : : : : : : : : 39

3.3 The Inventor subgraph maintained by WCustomSpace : : : : : : : : : : : : : : 45

vii

Acknowledgements

There are many people without which this research would not have been accomplished. I

would like to thank:

� Dr. David Forsey of UBC (University of British Columbia), my supervisor, for suggesting

the thesis topic, sharing his insights, giving guidance and encouragement along the way,

and bearing with all the drafts he had to read;

� Dr. John Dill of SFU (Simon Fraser University), the second reader, for giving valuable

comments on the �nal draft of the thesis;

� Mr. Tien Truong, the student reader, for going through several drafts of the thesis and

giving valuable suggestions on both the content and the writing;

� Mr. Raza Khan and Mr. Chris Healey, for sharing their knowledge on formatting the

thesis;

� Mr. James Harrison, for asking di�cult questions during the design stage of the work;

� Mr. Paul Lalonde and Mr. Bob Lewis, for sharing their knowledge on data-
ow systems;

� Mr. Raza Khan (again) and Mr. Vishwa Ranjan, for being supportive and helpful friends;

� last but not least, my parents and sisters, for their encouragement and support.

This research was supported in part by post-graduate scholarships from NSERC (the Natural

Sciences and Engineering Research Council of Canada) and UBC.

viii

Chapter 1

Introduction

1.1 Motivation

Recently there has been a growing interest in three-dimensional graphical user interfaces (3-D

GUIs) that allow users to visualize and directly manipulate objects in a computer-generated

three-dimensional environment on a 2-D screen.

A number of applications | such as computer aided design, computer animation, scienti�c

data visualization and virtual reality | may bene�t from 3-D GUIs because these applications

deal with objects or data with three or more dimensions. There is also some investigation in

using 3-D GUIs for visualization and manipulation of data that is not inherently 3-D | such

as the use of a cone tree in [10] to represent the hierarchy of an organization | in the hope of

maximizing the utility of the �nite screen space and to shift some cognitive load to the human

perceptual system.

However, the creation of a 3-D GUI is a di�cult task. The following is some of the reasons:

� Unlike 2-D GUI designers who can base their designs on now-common metaphors such

as windows, menus, sliders, dials and buttons, 3-D GUI designers do not have a well-

established repertoire of interaction techniques to draw from.

1

Chapter 1. Introduction 2

� 3-D GUI designers have to worry about complications that do not exist in 2-D GUIs.

Examples are object occlusion and view projection.

� There is a mismatch between 3-D GUIs and common input devices such as the mouse.

A 3-D GUI has more degrees of freedom than these devices specify.

� There are a number of 2-DGUI programming libraries available; e.g. Garnet[8], InterViews[6]

and Forms[9]. However, only a few 3-D graphics programming libraries provide support

for 3-D GUIs; e.g. Inventor[15] and UGA[16]. Other 3-D graphics libraries such as GL[11]

and HOOPS[4] leave the task of providing 3-D user interaction up to the programmer.

This involves handling input device events and calculating the transformations that map

the events from the 2-D screen space to the 3-D space of the object being manipulated.

The 3-D Widget Programming Library developed in this work alleviates some of the above

di�culties. By encapsulating details of 3-D graphics and interaction techniques into high-

level components, the library simpli�es the creation of interactive 3-D scene objects called

widgets, the building blocks of 3-D GUIs. Programmers can then devote more time on the

design of the GUIs and on the exploration of alternatives through prototyping, rather than

on implementation details. The library is an extension to Inventor[15], a widely available 3-D

graphics programming library.

In the following sections, the merits and de�ciencies of some GUI programming systems

are studied. Then the goals for the 3-D Widget Programming Library are listed. Finally, an

overview of the thesis is given.

1.2 Related Works

It is helpful to study 2-D GUI programming libraries because they provide useful models for

building 3-D GUI programming libraries. The Forms Library[9] is chosen to illustrate the

structure and facilities of a typical 2-D GUI programming toolkit.

Chapter 1. Introduction 3

Apparently, there are only two 3-D graphics programming systems that support the creation

of high-level 3-D interaction objects: UGA[16] from the Brown University and Inventor[15]

from Silicon Graphics Inc. The facilities and de�ciencies, in terms of 3-D GUI support, of both

systems are discussed.

1.2.1 The Forms Library

The Forms library[9] is a programming library for the construction of 2D graphical user inter-

faces on Silicon Graphics workstations. A form (a visual panel for interaction) is composed of

high-level objects. There are several general types of prede�ned objects:

� Static objects are not interactive and are used for visual e�ects or presenting data. They

include boxes, text, bitmaps, clocks and charts.

� Buttons are pushed by the mouse. There are several types of buttons with di�erent

behaviors and appearances.

� Valuators let a user set a value between some �xed bounds by dragging the mouse.

Examples are sliders and dials.

� Input objects allow users to input text or numbers with the keyboard.

� Choice objects let a user choose from a set of possibilities. Examples are menus and

browsers.

There are functions for adding, deleting, hiding, showing, activating, deactivating, and

grouping1 objects in a form. There are similar functions for manipulating forms. Other func-

tions modify an object's attributes such as its color and its label.

An application program obtains information about the status of form objects by calling

appropriate functions that poll or wait for an object that changes its state. A more elegant

1Grouping lets an operation be applied to all objects within the group. It also makes certain interactive

behaviors, such as radio buttons for mutually exclusive choices, possible.

Chapter 1. Introduction 4

way2 is to register callback functions to individual objects. A callback function is called when

the object to which the function is registered changes state.

New interaction techniques are added to an application program in three ways: by im-

plementing a window that directly interacts with the user, by adding a free object to the

application, or by creating a new object in the Forms Library. A free object is di�erent from

other prede�ned objects in that the application handles the drawing and the interaction for

it. If the new interaction technique is speci�c to a particular application, then a free object

should be used. If the interaction technique is useful in many applications, then a new object

should be implemented. New objects are implemented by conventional programming in C. The

programmer needs to implement functions for drawing the objects and handling interaction.

The Forms Library comes with an interactive forms design tool. With this tool, a GUI

designer composes forms visually with prede�ned objects. Some operations for composition

include addition, deletion, sizing, positioning and grouping. Attributes of an object such as its

style, color, label and callback function are set by �lling the object's attribute form.

The user of the forms design tool tests the forms in a special mode in which the forms

behave as they would in an application program. The tool indicates the objects manipulated

and the callback functions called while the user is testing the form.

The tool creates description �les and C source �les when forms are saved. The C source �les

contain functions that build the forms as designed, and are subsequently incorporated into the

application program. Description �les can be reloaded into the forms design tool for editing.

1.2.2 Three-Dimensional Widgets

The Brown Graphics Group has published several papers on 3D widgets[2][14][17]. 3D wid-

gets and application programs are constructed with the Uni�ed Graphics Architecture (UGA)

system[16].

2As long as the application program is single-threaded.

Chapter 1. Introduction 5

UGA is an object-oriented system in which a new object is created via delegation (i.e. the

new object is a clone of an existing object and shares the attributes of the existing parent

object. However, the new object can override the attributes. Changes made to attributes

in the parent object are also made to the new object if those attributes are not overridden).

Objects in UGA may have geometric, algorithmic or interactive properties. UGA provides a

rich set of modeling primitives and operations. One-way constraints, called dependencies, allow

users to describe relationships between objects. Multi-way constraints and cyclical constraints

are made possible via controllers, whose purpose is to control other objects. Since 3D widgets

are �rst class objects in UGA, they take advantage of the modeling primitives and operations

in constructing their geometric components, and make use of dependencies and controllers for

describing their behaviors.

The 3D widget framework in [2] used controllers to construct relationships between ap-

plication objects and 3D widgets. A new dialog model, based on a modi�ed model of the

augmented transition network (ATN), was used for describing the state transitions in a user

interface caused by user interactions with 3D widgets. This ATN model allowed disconnected

components and more than one active state in a state graph. These properties facilitated the

separation of sub-parts in a user interface. [14] explored 3D widget design issues through the

task of deforming geometric objects. This paper showed how a rack widget displayed param-

eters of the deformation as well as allowed users to control those parameters intuitively via

direct manipulation of the widget.

A 3D widget construction toolkit was presented in [17]. The toolkit allowed interactive

construction of new 3D widgets from a set of primitives via the linking operation. The shape

of a primitive suggests its purpose, while its ports encapsulate constraint values and interactive

techniques. By linking the ports of a primitive to the ports of other primitives, constraints

among primitives are formed. The authors chose a \coordinate system" metaphor as the basis

for the primitives. The primitives cover the concepts of position, orientation, measure, and

2D and 3D Cartesian coordinate systems with the point, ray, length, angle, plane and space

primitives. Programmers extend the set of primitives by building black boxes. A black box may

Chapter 1. Introduction 6

have arbitrary behaviors and an arbitrary number of ports.

While the 3-D widget framework and the interactive widget construction toolkit are im-

pressive, there is one major problem: they are integral parts of UGA, a research development

environment. Therefore, programmers who want to develop 3D interactive applications for

other environments cannot take advantage of the framework nor the toolkit.

1.2.3 Inventor

IRIS Inventor[15][12][13] is an object-oriented programming library for 3-D graphics. It contains

a library of objects used for building 3-D scenes and user interfaces. Inventor objects may be

classi�ed into the following types:

� primitive scene nodes such as cameras, lights, shapes, properties and grouping nodes.

� smart scene nodes capable of handling events. These include the selection node and

manipulators.

� components such as the color editor and the examiner viewer.

New objects are added to the library by subclassing existing object classes.

A 3-D scene is described by a scene graph, a directed acyclic graph of scene nodes. Various

actions, such as rendering, picking and searching, can be applied to scene graphs or individual

scene nodes.

3-D user interaction is provided through the selection mechanism, event handlers and ma-

nipulators. Manipulators are scene objects that are directly manipulated with the mouse. Each

manipulator consists of a 4x4 matrix called the delta matrix that represents the state of the

manipulator. Manipulations performed on a manipulator cause its delta matrix to be edited.

When a manipulator is attached to a scene node, usually a transformation node, modi�cations

made to the delta matrix trigger updates to the attached node. Manipulators for common 3-D

interaction techniques, such as the virtual trackball, are provided.

Chapter 1. Introduction 7

Not only can a manipulator a�ect the scene node it is attached to, an application program

can also register a callback function with the manipulator so that the application program is

noti�ed of changes made to the delta matrix of the manipulator.

The default appearance of a manipulator can be overridden during instantiation without

reprogramming. Some parts of the manipulator can be made invisible or non-functional in the

same way. A new manipulator class is created in two ways: by combining existing manipulator

classes if they support the interactive behaviors required by the new manipulator class, or by

subclassing the manipulator base class and programming in C++ if new behaviors are required.

However, the ability to create new powerful manipulators is restricted3 because:

� Each manipulator controls at most one scene node if no callback function is used. Fur-

thermore, the control of a manipulator over the attached node is hard-coded in Inventor

and cannot be altered by the programmer.

� A manipulator is restricted to represent its state with a single 4x4 matrix, the delta

matrix; therefore, a manipulator cannot manipulate or display several application data

items.

� There is no notion of motion hierarchy within a manipulator; i.e. there is no facility

in the manipulator base class that assists a programmer in building manipulators with

internal moving parts. This is true even when the manipulator is constructed from several

existing manipulators.

� Creating manipulators with new behaviors is di�cult because the programmer has to

implement member functions to interpret input device events and update the delta matrix.

The programmer may also need to update the geometry of the manipulator for visual

feedback. Moreover, the new behavior is not easily shared with other new manipulators

because there is no notion of reusable components in the manipulator base class.

3The recently released Inventor 2.0 alleviates some of these restrictions. Please refer to Appendix E for more

details.

Chapter 1. Introduction 8

1.3 Objectives

Due to the di�culties in the creation of 3-D GUIs, and the lack of powerful and available tools

for doing so, the goal of this research is to produce a programming library for the creation

of 3-D widgets, the building blocks of 3-D GUIs, for Inventor-based application programs. A

widget encapsulates geometries and behaviors for displaying and controlling application data.

This programming library is designed to meet the following goals:

� New widget types should be easy to implement. This research uses the approach of

building new widgets from a collection of reusable high-level components handling user

interaction, visual feedback, application interfacing and computation.

� The library of components should be extensible and object-oriented.

� Widgets produced should be compatible with a widely available 3-D graphics program-

ming library; as a result, this programming library is designed as an extension to the

Inventor programming library mentioned in Section 1.2.3.

� Widgets should have a standard interface to application objects. However, programmers

should be able to bypass the standard method when greater control over the usage of the

widget is required.

� A widget should be able to display and control one or more application states.

1.4 Thesis Organization

Chapter 2 gives an overview on the features of the programming library and the structure

of a widget. Then, the mechanics of a widget are explained. Chapter 3 concentrates on the

design and implementation issues brought forward by the overall goals of the system. Chapter

4 discusses the system in terms of its successes or failures in meeting the goals. It also looks

into possible future work.

Chapter 2

3-D Widget Programming Library

| an Overview

2.1 What is a 3-D Widget?

3-D widgets are special objects that share the scene with other 3-D objects in an application

program. They serve one or more of the following purposes:

� provide visual feedback on application program data.

� allow users to modify application program data through direct manipulation of the wid-

gets that represent those data items.

An example of a 3-D widget is the rack widget described in [14]. One version of it, implemented

with the 3-D Widget Programming Library, is shown in Figures 2.3 to 2.6. The orientations

of the twist dial and bend dial convey the amount of twist and bend applied to the object,

while the height of the taper slider and the position of the taper o�set slider show the amount

and the scope of the taper. The user modi�es the four parameters by clicking the appropriate

part of the widget with the mouse, dragging the part to the desired position, then releasing

the mouse button. During the manipulation, both the shape of the object and the shape of the

widget change interactively to re
ect the current state of the application program.

9

Chapter 2. 3-D Widget Programming Library | an Overview 10

2.2 What is the Library?

The 3-D Widget Programming Library is an object-oriented programming library for the cre-

ation of new 3-D widget classes. The programming library is an extension to IRIS Inventor, a

commercially available 3-D graphics programming library; therefore, 3-D widgets are compat-

ible with application programs developed with IRIS Inventor.

The library consists of the widget base class SoWidget and a collection of high-level com-

ponent classes from which new widget classes are constructed.

The widget base class SoWidget is derived from SoDragManip, the base class of all existing

Inventor manipulator classes. The SoWidget class allows a programmer to construct new widget

classes from high-level components.

The four types of high-level components, called parts, spaces, slots and general components,

are responsible for geometry and behavior, motion hierarchy, interface to application programs,

and general computation respectively. Components pass data from one to another via connec-

tions between their ports. Thus, the behavior of a widget is described by its components, the

connections among the components, and the motion hierarchy within the widget.

The object-oriented property of the library makes it easily extensible; new component

classes are added by subclassing appropriate base classes and programming in C++.

Each 3-D widget built with this library has the following properties:

� User interaction is through the mouse, in the click-drag-release fashion.

� Meta-keys (i.e. the SHIFT, CTRL and ALT keys) may be utilized to alter the response

to user manipulation.

� The geometries of widget parts, and the relative positions (or orientations) among them

in a motion hierarchy, form the visual feedback for a widget.

� A widget controls and displays one or more Inventor nodes/�elds independently through

Chapter 2. 3-D Widget Programming Library | an Overview 11

attachments. An attachment de�nes the relationship between a widget slot and an In-

ventor node/�eld. The relationship is modi�able by the application programmer.

� An application program enables reactions to changes in a widget by registering callback

functions with widget slots.

2.3 The Anatomy of a Widget

A widget is built from high-level components. This section �rst explains the functionality of

widget components, especially the specialized types including parts, spaces and slots. Then,

the structure of a widget is revealed through a typical creation process of a new widget class.

Figure 2.1 shows the overall structure of a widget (in this case the rack widget). Figure 2.2

gives a more detailed view of the relationships among widget components in the widget. These

�gures are discussed in detail in Section 2.4.

2.3.1 Widget Components

Widgets are made up of high-level components. There are four types of components:

� A part incorporates some geometry and zero or more interactive behaviors.

� A space represents a coordinate frame. Each space contains a 4x4 matrix describing the

transformation from this space to its parent. Spaces are mainly used for building the

motion hierarchy within a widget.

� A slot contains a piece of data that the widget displays or controls.

� General components, unlike the three types above, do not perform speci�c tasks in a

widget. General components are used for calculation, data type conversion, or the control

of other components. Appendix C describes how to implement a general component.

Chapter 2. 3-D Widget Programming Library | an Overview 12

bendOffset

bendFeedback

bendValueSlot

localSpace

bendDial

attached

nodes/fields

...

callback

functions

...

taperPositionSlot

taperOffsetOffsettaperFeedback

taperOffsetSlidertaperSlider

twistFeedback

twistOffset

twistValueSlot

twistDial

taperOffset

taperValueSlot

motion hierarchy

data flow

mainAxis

space

part

slot

Figure 2.1: The structure of the Rack Widget

Chapter 2. 3-D Widget Programming Library | an Overview 13

delMatrixIn absMatrixIO

bendFeedback
WPortedSpace Ports:

absScaleIn

absLowIn absFloatIO

absRangeIn delFloatOut

bendDial

absPickableIn absMatrixIO

absVisibleIn delMatrixOut

absActiveIn absPickedOut

WDialPart Ports:

WPart Ports:

Matrix (rotation) +

Reference to Space

node/fieldattributes

node/fieldattributes

reference to callback

reference to callback

References

to Callback

Functions

Attachments

Nodes/Fields
to Inventor

absFloatIO

List of Attachments:

bendValueSlot
WFloatSlot Ports:

...

List of Callback Functions:

...

Float (rotation)

Figure 2.2: A detailed view of the last �gure, showing internal structures of bendFeedback,

bendDial and bendValueSlot as well as port connections, attachments and callback functions

Chapter 2. 3-D Widget Programming Library | an Overview 14

A component communicates with other components via connections between their ports that

allow data to
ow into or out of components, or both. Data that
ows between components

is one of the following types: boolean, integer,
oat, 3-D
oat vector, or 4x4
oat matrix. A

port handles either absolute or delta (relative) data. Absolute data re
ects the true data value,

while delta data re
ects the change in the data value from the last update.

Two ports can be connected only if the followings are satis�ed: they are of the same data

type, they both handle absolute or delta data, and one port is input-capable while the other is

output-capable.

Each component class must implement a member function called invoke that is called when

one of the input data ports is modi�ed. The function invoke is responsible for updating the

state of the component and its output ports. Moreover, parts and slots update their states and

output ports upon recieving events such as user input and changes in Inventor nodes/�elds.

In the following sections, the three specialized types of components (i.e. parts, spaces and

slots) are described in more detail.

Parts

A part consists of a shape, or geometry, that should suggest its usage (e.g. the bend dial shown

in Figure 2.6). Most parts also encapsulate one or more interactive behaviors; i.e. when a

user clicks on a part in a widget and drags it, the part modi�es its own state and updates its

output ports based on the manipulation. Parts that do not have interactive behaviors are used

either for displaying application data or to give the widget the \right look" (e.g. the main axis

part shown in Figure 2.6). A typical widget includes one or more parts, arranged in a motion

hierarchy related by spaces (described in the following section). Parts and spaces are arranged

in a tree-like structure in which each part has a parent space.

A widget displays data through the relative positions and orientations of its parts' geome-

tries. Each part owns two ports that output an absolute transformation and a delta transfor-

Chapter 2. 3-D Widget Programming Library | an Overview 15

mation to re
ect its internal state. Usually, one of these ports is connected to a feedback space

that should be an ancestor of the part in the motion hierarchy. The transformation applied

to the feedback space induces movements of part geometries under the feedback space. This

serves as the visual feedback for the state of the part.

Individual part classes support di�erent sets of ports, depending on the designs of the part

classes. These ports usually allow other components to access the internal state of the part

through more useful parameters than the transformation matrix. For example, an instance of

the dial class WDialPart consists of a port with a
oat value that represents the the amount of

rotation. Some of these ports allow other components to modify the internal state of the part.

The invoke function of the part, when triggered by changes in the input ports of the part, is

responsible for updating the internal state of the part, the feedback transformation ports and

any other output ports it has.

Adding new part classes to the library generally involves subclassing the WPart base class,

designing the geometries, deciding on the types and number of ports, and implementing a few

essential member functions that determine its interactive behaviors and reaction to changes in

input ports.

Appendix D describes how to implement a new part.

Spaces

Spaces represent space transformations. There are two major categories of spaces: standard

spaces and custom spaces. Standard spaces include the world space, the local space and the

edit space; each widget has one of each of the above. The world space represents the global

space that is not transformed in any way. The local space is the coordinate frame in which

the widget operates; it is the root of the widget's motion hierarchy. The edit space represents

the delta matrix, the only externally accessible state of an Inventor manipulator, inherited

by the widget base class SoWidget from the manipulator base class SoDragManip. The delta

Chapter 2. 3-D Widget Programming Library | an Overview 16

matrix is typically attached to an Inventor node (typically a transformation node) so that the

manipulator can control the node through making changes to the delta matrix, and vice versa.

In a widget, the delta matrix is modi�ed through the delta input matrix port of the edit space.

Please refer to Chapter 13 of the \IRIS Inventor Programming Guide - Volume I" [12] for

information about the delta matrix.

Custom spaces are the building blocks of a widget's motion hierarchy. Each custom space

contains a transformation matrix that is modi�ed through either of the two matrix ports (a

delta input port and an absolute input/output port). To add a custom space to a widget, its

parent space, which is either an existing custom space or the local space of the widget, must

be speci�ed. A widget may have as many custom spaces as required. Figure 2.1 shows the

motion hierarchy of the rack widget, with the bendOffset space being the parent space of

bendFeedback space, for example.

Member functions are provided by all spaces for obtaining the matrices describing the

transformations between the spaces and the world space. These matrices are used internally by

widget components for performing conversions between spaces. A vector or matrix data item

(in a data port or slot) carries with it a reference to the space under which the data resides;

therefore, the recipient of the data item can perform a space transformation on the data if

necessary.

Slots

Slots are \terminals" through which a widget communicates with the application program.

Each slot contains a value that the widget controls or displays. Five slot classes support the

same data types as data ports of widget components. In fact, each slot of a particular data

type contains an absolute input/output port of the same data type.

A slot communicates internally with other components via its data port. The applica-

tion program accesses a slot either by creating attachments between the slot and Inventor

Chapter 2. 3-D Widget Programming Library | an Overview 17

nodes/�elds, or registering callback functions with the slot.

An attachment between a slot and an Inventor node/�eld is responsible for updating the

slot data or the node/�eld based on changes to the other side of the attachment. The data

ow can be one-way or both-ways. The update to either side of the attachment is performed

by the data conversion function registered with the attachment. The fact that the data con-

version function is NOT hard-coded to the attachment means an application program can use

customized conversion functions, instead of the default conversion functions (one for each data

type). Appendix A shows an example of a customized conversion function.

A callback function is used when the application object a�ected by the widget is not an

Inventor node/�eld, or the application program wants to access several slots at the same time.

A callback function is called when the data of the slot it is registered to changes.

Each slot supplies two member functions for accessing its data: getData and setData. For

vector and matrix slots, these two functions transmit space information as well as data. These

functions are mainly used in callback functions and data conversion functions.

2.3.2 Creation of a New Widget Class

The functionality of a widget is broken down into the following aspects:

� the interactive behavior that is de�ned by the interactive behaviors of the parts.

� the visual feedback that is determined by the geometries of the parts, the motion hierarchy

formed by the parts and the spaces, and the connections between the parts and their

feedback spaces.

� the behavior and interface to the application program that is de�ned by the slots and

the connections between widget components (i.e. slots, parts, spaces and general compo-

nents).

Chapter 2. 3-D Widget Programming Library | an Overview 18

The widget base class, SoWidget, provides member functions that allow a widget programmer

to:

� create a new space in a widget as the child of an existing space.

� add a new part to a widget as a child of an existing space and specify an existing space

as its feedback space.

� add a new slot to a widget.

� add a general component to a widget.

The data port base class, DFPort, provides a member function for making a connection between

two compatible ports.

Together, the above-mentioned member functions and the widget components fully specify

the functions of a new widget. Typically, the components are created, added to the widget, and

connected in the constructor of the new widget class. The widget keeps track of the components

added to it, and deletes them when the widget is destroyed.

2.4 How Does a Widget Work?

The internal mechanism of a widget is probably best illustrated with an example. A rack

widget class, as described in section 2.1, is created with existing components in the 3-D Widget

Programming Library. The overall structure of the widget is illustrated in Figure 2.1. In

Figure 2.2, the relationships among widget components in the widget is shown in more detail.

Figure 2.3 to Figure 2.6 show the rack widget in action.

Both twistDial and bendDial are instances of WDialPart. The feedback matrix of a dial

part is a rotation around the Z axis of the part's space. A dial part also has a port that inputs

and outputs a
oat value proportional to the amount of rotation. There are other input ports

for controlling the scaling factor and the range of the rotation, as shown in Figure 2.2.

Chapter 2. 3-D Widget Programming Library | an Overview 19

Figure 2.3: The Rack Widget in its default state

Figure 2.4: Manipulations of the taper and taper o�set sliders

Chapter 2. 3-D Widget Programming Library | an Overview 20

Figure 2.5: The manipulation of the bend dial

bendDial

object

taperOffsetSlider

taperSlider

twistDial
mainAxis

Figure 2.6: The manipulation of the twist dial

Chapter 2. 3-D Widget Programming Library | an Overview 21

Both taperSlider and taperOffsetSlider are instances of WSliderPart. The feedback

matrix of a slider part is a translation along the Y axis of the part's space. A slider communi-

cates the value of the slider through a
oat port. Like a dial part, a slider part also has input

ports for controlling the scaling factor and the range of translation.

mainAxis is an instance of the WGeomPart that has no interactive behavior. Here it provides

the geometry for the main axis of the widget.

The motion hierarchy of the rack widget, shown in Figure 2.1, is quite straight forward.

The twistOffset space and bendOffset space place twistDial and bendDial in the desired

positions and orientations. The parents of the two dials, twistFeedback and bendFeedback,

are also the feedback spaces for the two parts.

The set-up for taperSlider is slightly more complex. taperOffset, the feedback space for

the taperOffsetSlider, determines the position of taperSlider and taperOffsetSlider

on the main axis. taperOffsetOffset, the parent space of taperOffsetSlider, orients

taperOffsetSlider so that it slides on the Z axis in the widget's local space. taperFeedback,

the parent space and feedback space of taperSlider, determines the position of taperSlider

on taperOffsetSlider.

The data ports of the parts are connected bidirectionally to the ports of the appropriate

slots. Application programs thus have access and control of all four parameters of deformation.

The actual implementation of the rack widget is listed in Appendix B.

2.4.1 Using the Widget

To incorporate the rack widget into an application program, a programmer needs to include an

instance of the rack widget in the scene-graph for the program. The procedure is basically the

same as including an Inventor manipulator in the program, except that a widget also controls

and displays application states through its slots in addition to the delta matrix inherited from

the manipulator base class SoDragManip.

Chapter 2. 3-D Widget Programming Library | an Overview 22

Appendix A goes through an example of the addition of the widget to an application

program and the use of a callback function. It also describes how to use attachments and how

to customize widgets.

2.4.2 A Typical User Interaction

The rack widget illustrates what happens to a widget when it is manipulated. For example,

when a user wants to bend an object using the rack widget, he or she would click on the

bendDial, drag it to the desired orientation, then release the button.

When the user clicks on the bendDial:

� the widget determines which part is being picked (in this case it is the bendDial). Then

it calls the manipulateStart member function of the part.

� manipulateStart prepares for subsequent manipulation. Typically this involves deter-

mining the current view volume and projecting the mouse position to a coordinate in the

part space for later use. It also updates a boolean output port (as shown in Figure 2.2)

to indicate that this part is picked. For example, bendDail projects the mouse position

onto the plane that passes through the origin of its space and perpendicular to the Z axis

of the space.

When the user drags the mouse pointer:

� the widget calls the manipulate member function of the part.

� manipulate, like manipulateStart, determines the view volume and projects the mouse

position to a coordinate in the part space. In addition, it calculates the amount of

manipulation based on the di�erence between the new projection and the last projection.

The di�erence is used to update the internal state of the part, the part's ports, and

the feedback matrix ports. For example, bendDial calculates the angle sustained by the

Chapter 2. 3-D Widget Programming Library | an Overview 23

new projection and the previous projection and updates the internal value and the ports

accordingly.

� Whenever a port is updated, the input-capable ports connected to it are also updated.

Each input-capable port, once updated, immediately calls the invoke member function

of the component that owns it. Receiving ports that are output-capable will propagate

the change to input-capable ports connected to them.

� In the rack widget, the data port of the bendDial is connected to the bendValueSlot. A

slot's invoke typically updates the internal data of the slot, then updates all the Inventor

nodes/�elds attached to the slot through the data conversion functions registered in the

attachments. Then it calls all the callback functions registered to the slot.

� A space's invoke function performs a space conversion on the received matrix before

applying it to the space's internal transformation. It updates the absolute feedback

matrix port if it receives data from the delta feedback matrix port.

� Inventor automatically redraws the scene when it detects changes in the scene graph. For

example, a modi�cation of the transformation in the bendFeedback space will trigger a

redraw.

When the user releases the mouse button:

� the widget calls the manipulateFinish member function of the part.

� manipulateFinish typically updates the boolean output port (mentioned above) to in-

dicate that this part is not picked anymore.

Chapter 3

Design and Implementation

3.1 General Design Issues for the 3-D Widget Programming

Library

3.1.1 Inventor as the Basis

The IRIS Inventor was chosen as the basis for the 3-D Widget Programming Library for several

reasons. First, Inventor is a commercially available programming library; therefore, the library

can be utilized in programming projects using Inventor. Second, Inventor is an extensible

object-oriented library. Third, the manipulator base classes are a good basis for 3-D widgets

because they perform many book-keeping tasks and isolate mundane event handling details.

Last, Inventor has many useful basic classes that aid 3-D graphics programming. Some are

useful data structures such as vectors and matrices, while others simplify calculations such as

projecting a screen coordinate to the 3-D scene space.

3.1.2 Motion Hierarchy as the Means of Visual Feedback

This library supports the use of a motion hierarchy within a widget as the sole mechanism for

visual feedback (besides highlighting of parts). The rack widget in [14] shows that the relative

24

Chapter 3. Design and Implementation 25

positions and motions among widget parts provide good visual feedback for the values the

widget is controlling. The motion of parts during manipulation gives the user a sense of being

\in direct control" of the widget.

However, there are cases where the motion hierarchy is not adequate. For example, a motion

hierarchy within a widget is useless when the widget needs to track the coordinates of other

objects in the scene; e.g, a length widget whose two ends follow the centers of two moving

objects. In some cases, other means of visual feedback are more appropriate; e.g. color for a

color editor.

Nevertheless, motion hierarchies are reasonably useful for widgets that display or control

discrete pieces of data. One more advantage is that the support for motion hierarchy is relatively

straight-forward to design and implement. Other types of visual feedback are possible, but are

much harder to implement with this library.

3.1.3 High-Level Data-Flow Components as Building Blocks of Widgets

With the 3-DWidget Programming Library, widgets are built with high-level components. The

Forms Library[9] is a good example of a GUI programming library that simpli�es GUI pro-

gramming by providing high-level objects. High-level components allow a programmer to con-

centrate on the functionality of the widget rather than low-level details such as event handling

and rendering. Moreover, high-level components, though potentially di�cult to implement,

can be used in many widgets once they are added to the library.

The data-
ow programming model, in which a program is implemented by making connec-

tions between data ports of components, is adopted as the programming model for 3-D widgets.

This model allows each widget component to be self-contained, with a well-de�ned interface to

other components.

A widget performs the following tasks: interfaces with the application program, handles

user interaction, provides visual feedback, and performs general computation. The four classes

Chapter 3. Design and Implementation 26

of high-level components mentioned in Section 2.3.1 share the above tasks in the following way:

� Parts respond to user interaction and help to de�ne the shape of the widget.

� The motion hierarchy, built with spaces, provide visual feedback of the widget's states.

� Slots are the widget's interface to the application program.

� General components perform general computations for the widget.

This classi�cation is re
ected in the class hierarchy of the 3-DWidget Programming Library.

The class hierarchy, discussed in Section 3.2, allows the addition of new components to the

library by subclassing appropriate base classes.

3.1.4 Multiple Controls and Support of Five Data Types

In Inventor, a manipulator interfaces with the application program through its delta matrix.

There are two problems with this method: �rst, a manipulator controls or displays only one

piece of application data; second, the support of only one data type is restrictive.

In the 3-D Widget Programming Library, a widget displays and controls many data items

via the slots owned by the widget. A slot communicates internally with widget components

and externally with Inventor nodes/�elds and the application program. Slots support �ve data

types: boolean, integer,
oat, 3-D
oat vector and 4x4
oat matrix. Each vector or matrix

data item carries with it a reference to the space (or coordinate frame) under which the data

item resides. The support of these data types should be adequate for most applications. These

data types are supported for both internal communication among widget components, and

external communication with Inventor nodes/�elds and the application program. To keep the

programming library simple, more advanced data types, such as arbitrary data structures,

functions and pointers are currently not supported.

Chapter 3. Design and Implementation 27

3.2 Design of the Classes

The 3-D Widget Programming Library is structured as a C++ class hierarchy, as shown in

Figure 3.1, de�ning the base classes for widget classes (SoWidget) and component classes

(DFNode). Component classes are further specialized to part classes (WPart), space classes

(WSpace) and slot classes (WSlot).

Data ports for widget components are encapsulated in the DFPort class and its �ve de-

scendants. The attachments between widget slots and Inventor nodes/�elds are de�ned by the

WAttach class and its descendants.

DLList and Element provide double-linked list capabilities for the library. Lists are used,

for example, in SoWidget for keeping track of widget components owned by a widget.

The following sections describe the design of the above classes in detail.

3.2.1 The Widget Base Class

The base class for all 3-D widgets is SoWidget, a descendent class of the Inventor manipulator

base class SoDragManip from which it inherits many useful properties:

� As a descendent class of SoDragManip, it only needs to provide callback functions for the

three stages of interaction with the mouse, i.e. click, drag, and release.

� It has access to useful information such as the mouse position, the picked object, the

trigger event, and viewing parameters.

� SoDragmanip manages dictionaries of name/geometry pairs. This capability allows the

geometries of a 3-D widget to be altered without re-compilation.

The design of widget slots and the attach mechanism (discussed later) is also in
uenced by the

attach mechanism in SoDragManip.

Chapter 3. Design and Implementation 28

DFNode WPart WDialPart

WSliderPart

WGeomPart

WLengthPart

...

SoDragManip SoWidget RackWidget

OneLengthWidget

ThreeDialWidget

ESDialWidget

...

WSpace

WCustomSpace

WEditSpace

WRootedSpace

WPortedSpace

WLocalSpace

WWorldSpace

WSlot WBoolSlot

WIntSlot

WFloatSlot

WVec3fSlot

WMatrixSlot

DFBoolNode

DFFloatNode

DFFloatVec3fNode

...

DFPort DFBoolPort

DFIntPort

DFFLoatPort

DFVec3fPort

DFMatrixPort

DLList

Element

WAttach WBoolAttach

WIntAttach

WFloatAttach

WVec3fAttach

WMatrixAttach

Figure 3.1: The class hierarchy for the 3-D Widget Programming Library

Chapter 3. Design and Implementation 29

SoWidget provides further abstractions to simplify widget implementation. The di�erent

roles of SoWidget are discussed in the following sections.

The Keeper of Widget Components and Geometries

A programmer adds widget components to a widget by calling the appropriate member func-

tions listed below:

WPart *addPart(WPart *part, // part to be added.

const SbName &name, // name of part.

int style, // style of part.

WRootedSpace *parent, // parent space.

WPortedSpace *feedback, // feedback space.

SbBool isAbsolute, // absolute/delta feedback matrix.

SbDict *classDict);// dictionary for geometries.

WCustomSpace *createSpace(const SbName &name, // name of space.

WRootedSpace *parent, // parent space.

const SbMatrix &init);// initial matrix value.

WSlot *addSlot(WSlot *slot, // slot to be added.

const SbName &name);// name of slot.

DFNode *addDFNode(DFNode *node);// component to be added.

These functions initialize the widget components and incorporate them in the appropriate

lists kept by SoWidget. These lists allow SoWidget to delete all the widget components that

belong to a widget in its destructor 1. Except for space components, which can only be instances

of the class WCustomSpace, all components have to be created before being added to a widget.

Space components are added to the widget simply through the createSpace function listed

above.

Each derived class of SoWidget de�nes a static dictionary called classDictionary to main-

tain name/geometry pairs for the class, and each instance of the class maintains a local dictio-

nary called userDictionary, which is a member variable of SoWidget. A name/geometry pair

1The implication is that a widget component should only have one owner.

Chapter 3. Design and Implementation 30

contains an Inventor subgraph that is either a part geometry or the visual style of a part. An en-

try in userDictionary takes precedence over an entry of the same name in classDictionary.

Entries of the dictionaries for a widget are inherited from SoDragManip and SoWidget, and

additional entries can be added to widget classes and individual widget instances. Section A.3

in Appendix A shows how new entries are added to the dictionaries for various levels of wid-

get customization. Sections B.1 and B.4 in Appendix B show how classDictionary and

userDictionary are initialized for a widget.

Some arguments of addPart need explanation:

� style determines the \style", or visual property, of the part. The integer value style

is used to search in the widget dictionaries for the Inventor subgraphs, with names

\style<style>" and \style<style>Active", that will become the inactive and active styles

for the part.

� isAbsolute determines how the part a�ects the feedback space. More details are given

in Section 3.2.4.

� classDict should point to the classDictionary of the derived widget class. If addPart

�nds an entry in userDictionary or classDict with a name that matches the name

argument, it replaces the default geometry of the part with the geometry of the entry.

The classDict argument is needed because addPart is a member function of SoWidget;

addPart has no access to classDictionary of the derived widget class.

The Coordinator of Widget Parts

SoWidget registers with SoDragManip callback functions for the three phases of interaction.

These functions are called when SoDragManip detects a mouse click on the widget, a mouse

drag, or a mouse button release:

// Callbacks registered with SoDragManip using:

// addStartCallback(&SoWidget::startCB);

Chapter 3. Design and Implementation 31

// addMotionCallback(&SoWidget::motionCB);

// addFinishCallback(&SoWidget::finishCB);

//

static void startCB(void *, SoDragManip *); // mouse button click.

static void motionCB(void *, SoDragManip *); // drag.

static void finishCB(void *, SoDragManip *); // mouse button release.

// Functions that work for the static callback functions above.

void manipulateStart(); // mouse button click.

void manipulate(); // drag.

void manipulateFinish(); // mouse butoon release.

These functions do not handle the interaction themselves, but instead determine which

widget part is picked, then call the appropriate member functions of the part to handle each

phase of the interaction. Section 3.2.4 discusses those member functions in more detail.

The Provider of Information

Descendants of SoDragManip, such as SoWidget, have access to useful information about inter-

actions. However, a widget does not handle the interaction itself; it asks the picked widget part

to handle the interaction. Due to this arrangement, the base class of all parts, WPart, is made

a friend2 of SoWidget, and includes the member functions for accessing useful information for

handling interactions. Section 3.2.4 describes those functions in more detail.

The Root of the Motion Hierarchy

SoWidget is derived from SoSeparator (a group node that is allowed to have child nodes),

which allows a widget to be the root of an Inventor subgraph. In fact, this property lets a

motion hierarchy be built inside3 a widget by inserting transformation nodes and separator

2In C++, a friend of a class, be it a function or another class, has full access to all members variables

and functions of the class, including members that are private (only accessible by the class) or protected (only

accessible by descendants of the class).

3\Under" may be more appropriate if we view the widget as the root of a graph.

Chapter 3. Design and Implementation 32

nodes at the right places within the widget's subgraph. The addition of space components to

a widget does exactly that. Section 3.2.5 looks into space components.

3.2.2 The Basic Widget Component Classes

As mentioned in Section 3.1.3, the programming model for 3-D widgets is the data-
ow model;

i.e. the behaviors of a widget is determined by its components and the connections among

them4. Each component is a data-
ow node with one or more data ports that de�ne the

component's interface to other components. When any input port of a component is updated,

the component has to update its internal state and its output ports.

The Widget Component Base Class

In the 3-D Widget Programming Library, DFNode is the base class for all widget component

classes, including the three specialized base classes: WSlot, WPart and WSpace. To be useful, a

widget component class should de�ne one or more pointers to data ports in its class de�nition.

Typically, the data ports of a component are created in the constructor of the component. The

component class should also de�ne the invoke function, whose duty is to respond to updates

in input data ports. invoke is declared in DFNode as follows:

virtual void invoke(void *userData, // auxiliary data.

DFPort *byPort); // the updated input port.

The Data Port Classes

DFPort and its �ve descendants | DFBoolPort, DFIntPort, DFFloatPort, DFVec3fPort, and

DFMatrixPort | de�ne the data ports. Two attributes control the behavior of a data port.

The �rst attribute is the direction of data
ow. To a component, a data port is either an input

port, an output port, or both. The second attribute is the nature of the data. The data that

4Plus the motion hierarchy formed by parts and spaces, strictly speaking.

Chapter 3. Design and Implementation 33

a port carries can be absolute or delta (relative)5. These attributes are speci�ed in the second

argument to the constructor as a bit mask, using the de�nitions in DFPortType:

enum DFPortType {

ABS_PORT = 1, DEL_PORT = 2,

INP_PORT = 4, OUT_PORT = 8

};

DF<dataType>Port(DFNode *own, // component owning the port.

int port_type);// port attributes bitmask.

// e.g. ABS_PORT | INP_PORT | OUT_PORT

A data port communicates with other components by making connections with their ports.

Member functions connect and disconnect of DFPort manage connections. They are de�ned

below:

SbBool connect(DFPort *port); // connect to port.

void disconnect(DFPort *port); // disconnect from port.

connect makes sure the two ports are compatible (i.e. one is input-capable and the other

output-capable, are of the same data type, and both handle absolute or delta values), then

updates the connection lists of both ports. Finally it updates the data in the input port with

the data in the output port. If both ports are capable of input AND output, then the port

whose connect is called is updated by the port speci�ed in the argument.

Port classes provide the following functions for accessing their data:

void setData(<dataType> d);// set data (used by the port's owner).

void setData(DFPort *p); // set data (used by connected ports).

<dataType> getData(); // return data (used by the port's owner).

setData(<dataType> d) is called by the owner of the port. It is responsible for updating

the port and all the input ports connected to the port by calling setData(DFPort *p) of

the input ports. It DOES NOT call the invoke function of the port's owner.

5The data represents the true value or an increment of the value from the last update, respectively.

Chapter 3. Design and Implementation 34

setData(DFPort *p) of a receiving port is called by the sending port p to update the

receiving port with the data in p. The function calls invoke of the receiving port's owner. If

the receiving port is output-capable, then it also updates the input-capable ports (except p)

connected to the port.

getData is used by the port's owner to obtain the data stored in the port. If the data is

a delta value, then getData resets the data to the identity value so that subsequent calls to

getData will return the identity value. The identity values are set by the member function

setIden (except for boolean ports, which have no identity values):

void setIden(<dataType> d);// set the identity value.

Since DFVec3fPort and DFMatrixPort carry information about space, their setData and

getData are slightly di�erent:

void setData(<dataType> d,

WSpace *s); // space from which data comes from.

void setData(DFPort *p); // same as other ports.

<dataType> getData(WSpace *&s); // space from which data comes from.

3.2.3 The Widget Slot Classes

The relationship between slots and widgets is similar to that between ports and components;

the slots of a widget de�ne its interface to the application program. Slots are specialized widget

components that communicate data to and from the application program for the widget.

The application program interacts with a slot either by registering a callback function with

the slot or by attaching Inventor nodes/�elds to the slot. The slot also interacts with widget

components through an absolute bidirectional data port of the same data type as the slot itself.

Both callback functions and attachments access the data in a slot with the following slot

member functions:

void setData(<dataType> dat, // data.

Chapter 3. Design and Implementation 35

void *src); // source of data. e.g. Inventor node/field.

<dataType> getData(); // return the data.

setData updates the slot's data and the data port, then processes all attachments and

callback functions (except the source of data, if speci�ed). getData simply returns the data

stored in the slot. For WVec3fSlot and WMatrixSlot, the functions have one more argument

for space information. In addition, the programmer must specify the space under which the

slot should store the data:

W<dataType>Slot(WSpace *spa);// constructor that sets the space.

void setSpace(WSpace *spa); // set the space for the slot.

// NULL means data is used as is with

// no conversion.

void setData(<dataType> dat, // data.

WSpace *spa, // space from which data comes from.

void *src); // source of data.

void setData(<dataType> dat,

SoPath *pat, // path which defines a space transformation.

void *src);

<dataType> getData(WSpace *&spa);

<dataType> getData(SoPath *pat);

Here, getData returns the data transformed to the space speci�ed in the argument. If the

argument is (WSpace *) NULL, getData returns the data and the space as stored in the slot.

If the argument is (SoPath *) NULL, getData returns only the data stored in the slot.

There are slot classes supporting �ve data types: WBoolSlot, WIntSlot, WFloatSlot,

WVec3fSlot, and WMatrixSlot.

Callback functions

Callback functions must be in the form:

typedef void WSlotCB(void *data, // auxiliary data.

WSlot *slot); // the slot triggering the callback.

Chapter 3. Design and Implementation 36

Callback functions are registered with or removed from a slot with the slot member func-

tions:

void addCallback (WSlotCB *f, // the callback function.

void *data); // auxiliary data.

void removeCallback(WSlotCB *f, // the callback function.

void *data); // auxiliary data (for identification).

The application program can register more than one callback functions with each slot.

Callback functions are called when the slot data is updated with setData, as described before.

Attachments

The attachment of Inventor nodes/�elds to a slot is modeled after the attach member func-

tion of the manipulator classes for coupling an Inventor node with the delta matrix of the

manipulator.

Four attributes control the behavior of an attachment: the direction of data
ow (input,

output, or both), space conversion between the space of the slot data and the space of the

attached node/�eld (on or o�), the data conversion function (described below), and an index

for a node/�eld with many elements. A programmer creates or removes an attachment with

the slot member functions:

enum WAttachMode {

INPUT, OUTPUT, BOTH

};

typedef void WAttachConvertFn(WAttach *att, // the attachment.

WAttachMode i_o);// direction of data flow.

// Attachment functions for nodes.

SbBool createAttach(SoPath *wh, // path to attached node.

WAttachMode i_o, // input, output, or both?

WAttachMode ini, // direction of data initialization.

SbBool tra, // space transform performed?

WAttachConvertFn *fun, // data conversion function.

int ind); // index into multi-element node.

Chapter 3. Design and Implementation 37

SbBool removeAttach(SoPath *wh, // path to attached node.

int ind); // index into multi-element node.

// Attachment functions for fields.

SbBool createAttach(SoPath *wh,

<fieldType> *fie,// attached field.

WAttachMode i_o,

WAttachMode ini,

SbBool tra,

WAttachConvertFn *fun,

int ind); // index into multi-element field.

SbBool removeAttach(SoField *fie, // attached field

int ind); // index into multi-element field.

More than one node/�eld can be attached to a slot. createAttach creates an attachment

and inserts it in the attachment list of the slot. Five classes of attachments | WBoolAttach,

WIntAttach, WFloatAttach, WVec3fAttach, and WMatrixAttach | correspond to the slot

classes of the same data types. The attachment keeps track of the slot and the node/�eld that

it attaches as well as its own attributes. If the attachment is capable of receiving data for the

slot (i.e. the data
ow direction is input or both), the attachment also creates an Inventor data

sensor to monitor changes in the attached node/�eld.

The purpose of the data conversion function is to obtain data from either the slot or the

node/�eld, perform some calculations, then update the other end of the attachment with the

result. Typically, a data conversion function is written for a speci�c slot data type, and handles

data conversions between the slot and several node/�eld classes.

If the attachment is capable of output, the data conversion function is invoked when the

slot's setData is called. If the attachment is capable of input, then sensorCB, a member

function of the attachment that is registered with the data sensor, invokes the data conversion

function when the node/�eld is updated.

A default data conversion function called defaultConvertFn is provided with each attach-

ment class for registering with attachments of that class. However, a programmer can register

a customized conversion function with each attachment.

Chapter 3. Design and Implementation 38

Connections to Widget Components

A slot is a widget component with a single data port that both inputs and outputs absolute

data. The port is updated by setData, as described in Section 3.2.2. When the port is modi�ed

by output ports connected to it, the slot's invoke function calls the slot's setData function,

which invokes the callback functions and updates the attached nodes/�elds.

3.2.4 The Widget Part Classes

Parts, together with the motion hierarchy formed with spaces, de�ne a widget's interactive

behaviors and visual feedback. Each part incorporates the geometry that should ideally suggest

its usage, and possibly one or more interactive behaviors.

All part classes are descendants of the base class WPart. WPart provides several services to

its descendants, as discussed in the following sections.

Maintaining Geometry

The constructor of WPart builds an Inventor subgraph as shown in Figure 3.2. The pick node

determines whether the part can be picked. The appSwitch node allows switching among the

three possible children for the part's appearance: invisible, inactive, or active. The leaves of

the subgraph are the actual active and inactive styles and geometries of the part. The pick

node and the appSwitch node are controlled externally via input ports (discussed later). The

constructor of WPart is de�ned as:

WPart(const char *fileName, // file to obtain geometry from.

const char *defaultBuffer[], // buffer to obtain geometry from.

int numFunc); // number of behaviors.

The constructor reads both the bu�er and the �le (both provided by the constructor of the

derived class) to look for Inventor subgraphs labeled as \inactiveGeom" and \activeGeom".

Chapter 3. Design and Implementation 39

an SoSeparator node

D

P

an Inventor subgraph

S

an SoDrawStyle node

an SoPickStyle node

an SoSwitch node

parent to child

child to child

Key to Diagram:

inactive
style

active
style

D

P

app[1]app[0] app[2]

inactive
geometry

active
geometry

invisible

pick

root

appSwitch
S

Figure 3.2: The Inventor subgraph maintained by WPart

The subgraphs become the inactive and active geometries of the part respectively. Note that

the geometries in the �le override those in the bu�er, so that a user can easily change the

appearance of the part by providing a �le with the right name. numFunc de�nes the number of

di�erent interactive behaviors the part has.

The functions setGeom and setStyle are used by a widget to modify the geometries and

to set the visual styles of the part. A visual style is an Inventor subgraph that describes the

visual property of the part. The functions are de�ned as follows:

void setGeom (SoNode *inactive, // inactive geometry.

SoNode *active) // active geometry.

void setStyle(SoNode *inactive, // inactive style.

SoNode *active) // active style.

Building the Motion Hierarchy and Providing Feedback

The motion hierarchy of a widget is built with spaces and parts. setParent sets the parent

space of the part by adding the Inventor subgraph of the part as a child to the root node of

Chapter 3. Design and Implementation 40

the space:

void setParent(WRootedSpace *par); // parent space.

Spaces will be discussed in detail in Section 3.2.5.

A part provides visual feedback by altering the matrix of its feedback space , which should be

an ancestor of the part in the motion hierarchy. WPart de�nes two standard ports for exporting

(or sometimes importing) the feedback matrix:

DFMatrixPort *absMatrixIO; // input/output port for absolute feedback.

DFMatrixPort *delMatrixOut; // output port for delta feedback.

The function setFeedback is responsible for making a connection between the absolute or

delta ports on the part and the feedback space:

void setFeedback(WPortedSpace *fee, // feedback space.

SbBool isAbsolute); // absolute versus delta data.

The reason for having the delta matrix output in addition to the absolute output is two-fold:

�rst, a delta matrix is required for updating the edit space; second, the delta output allows

parts to accumulate their visual feedbacks in a single feedback space.

WPart declares a member function called updateMatrixPorts, to be de�ned in the derived

part class, for updating the feedback matrix ports based on the current state of the part:

void updateMatrixPorts(); // update the feedback matrix ports.

The function is used by some WPart member functions that a�ect either the motion hi-

erarchy or the feedback space, such as setParent and setFeedback, to make sure the visual

feedback remain consistent with the application's states after structural changes are made

within the widget. The function is needed because WPart has no access to its descendants'

internal states.

Chapter 3. Design and Implementation 41

Providing Information about Interaction

WPart declares three member functions that the widget who owns the part calls. These functions

must be provided by the derived part class:

void manipulateStart(); // prepare for subsequent manipulation.

void manipulate(); // handle manipulation.

void manipulateFinish();// cleanup after manipulation.

Typically, manipulateStart obtains information about the mouse location and meta-keys,

then sets the initial state of the part. It also sets the part's standard output port absPickedOut

to indicate that the part is picked for manipulation:

DFBoolPort *absPickedOut; // the part is picked.

manipulate obtains the same information as manipulateStart, computes the new state

of the part based on the current input and the previous state, then updates the state, the

feedback matrix ports, and other output data ports supported by the part.

manipulateFinish is for cleaning up after a manipulation. It is responsible for resetting

absPickedOut.

WPart de�nes member functions for obtaining information about the manipulation:

SbVec2s getLocaterPosition(); // mouse location in pixel,

// relative to view port.

SbVec2s getLocaterStartPosition(); // mouse location at the

// beginning of manipulation.

SbVec2f getNormalizedLocaterPosition(); // mouse location normalized to

// between 0 and 1.

SbVec2f getNormalizedLocaterStartPosition();// normalized mouse location

// at the start of manipulation.

void setStartLocaterPosition(SbVec2s p); // set the starting location.

SbVec3f getLocalDetailPoint(); // the hit point in the part's space.

const SoDetail *getDetail(); // details about the hit point.

const SoPath *getPickPath(); // the path leading to the picked node.

const SoEvent *getEvent(); // the event triggering the manipulation.

Chapter 3. Design and Implementation 42

Every function above has a direct correspondence in the de�nition of SoDragManip. Because

WPart is a friend of SoWidget, the above functions simply call their corresponding functions in

the widget that owns the part to obtain the information.

Providing Controls to the Part

WPart de�nes three standard input ports to allow external control of some of its functions:

DFBoolPort *absPickableIn; // can the part be picked?

DFBoolPort *absVisibleIn; // is the part visible?

DFBoolPort *absActiveIn; // should the active style be used?

Input ports are handled by the invoke function, just like other widget components. invoke

must be provided by the part class to handle the above input ports plus other input ports the

part class de�nes. WPart provides member functions to simplify the handling of the standard

input ports:

void updateAppearance(); // set the appSwitch node (the switching node

// controlling the appearance of the part),

// based on absVisibleIn and absActiveIn.

void updatePickability();// set the pick node based on absPickableIn.

Maintaining MetaKey-to-Behavior Mapping

Part classes may support several interactive behaviors. WPart provides functions for map-

ping meta-key combinations (of shift, alt, and ctrl keys) to integers that represent individual

behaviors. These functions simplify the implementation of multi-behavior parts:

enum WMetaKey {

NO_KEY = 0, ANY_KEY = 1, SHIFT_KEY = 2, CTRL_KEY = 4,

ALT_KEY = 8, ALL_KEY = 15

};

// map a function number with a key combination.

void setFunc(int func, // the function number. Must be smaller than

Chapter 3. Design and Implementation 43

// the numFunc argument given in the constructor.

int keys); // the key combination bit-mask.

// e.g. SHIFT_KEY | CTRL_KEY mean both

// shift and ctrl keys are required.

// get the function number given a key combination.

int getFunc(int keys);

3.2.5 The Widget Space Classes

Space components serve two purposes: they simplify space transformation calculations, and

form the skeleton of the motion hierarchy for a widget. There are four space component

classes: WWorldSpace, WEditSpace, WLocalSpace, and WCustomSpace.

All space components are capable of returning the transformation matrices that transform

from the spaces they represent to the world space and vice versa. These functions are de�ned

as:

SbMatrix getConversionToWorld();

SbMatrix getConversionFromWorld();

A rooted space can be a part of a widget's motion hierarchy. Each has a root node that

makes it capable of becoming a parent of other spaces and widget parts. The root node of such

a space is obtained by calling:

SoSeparator *getRoot(); // returns the root for the space.

A ported space contains a modi�able transformation matrix. Each has two matrix data

ports to allow other components to access the matrix:

DFMatrixPort *absMatrixIO; // absolute matrix input/output port.

DFMatrixPort *delMatrixIn; // delta matrix input port.

Two functions related to spaces are provided. transformMatrix transforms a matrix in

a source space to an equivalent matrix that has the same e�ect (as observed from the world)

Chapter 3. Design and Implementation 44

in the target space. getConversionMatrix returns the matrix that converts the source space

to the target space. They are both overloaded to accept both WSpace * and SoPath * as

arguments:

void transformMatrix(const SbMatrix &fromMatrix, SbMatrix &toMatrix,

WSpace *fromSpace, WSpace *toSpace);

void transformMatrix(const SbMatrix &fromMatrix, SbMatrix &toMatrix,

SoPath *fromPath, WSpace *toSpace);

void transformMatrix(const SbMatrix &fromMatrix, SbMatrix &toMatrix,

WSpace *fromSpace, SoPath *toPath);

void transformMatrix(const SbMatrix &fromMatrix, SbMatrix &toMatrix,

SoPath *fromPath, SoPath *toPath);

SbMatrix getConversionMatrix (WSpace *fromSpace, WSpace *toSpace);

SbMatrix getConversionMatrix (SoPath *fromPath, WSpace *toSpace);

SbMatrix getConversionMatrix (WSpace *fromSpace, SoPath *toPath);

SbMatrix getConversionMatrix (SoPath *fromPath, SoPath *toPath);

WWorldSpace, WEditSpace and WLocalSpace

These are the standard space classes, as opposed to the custom space class, because every widget

has a worldSpace, an editSpace, and a localSpace, which are instances of WWorldSpace,

WEditSpace and WLocalSpace respectively.

worldSpace represents the space with no transformation. localSpace represents the space

under which the widget operates; it is the root of the widget's motion hierarchy, the root node

being a child SoSeparator node of the widget that owns it.

editSpace represents the delta matrix inherited from the manipulator base class; the delta

matrix of the widget is modi�ed via the delMatrixIn port of editSpace. The invoke function

of editSpace transforms the incoming matrix to the equivalent matrix in the edit space before

concatenating it to the delta matrix.

Chapter 3. Design and Implementation 45

an SoSeparator node

transform
T ...

child part
or

child space

root
parent to child

child to child

Key to Diagram:

an Inventor subgraph

T an SoMatrixTransform
node

Figure 3.3: The Inventor subgraph maintained by WCustomSpace

WCustomSpace

Instances of WCustomSpace in a widget form the motion hierarchy of the widget. A custom

space is both a rooted space and a ported space. During instantiation, a custom space acquires

its name, its parent space, and the initial value of its matrix:

WCustomSpace(const SbName &nam, // name of the space.

WRootedSpace *par, // parent space.

const SbMatrix &init); // initial value.

The constructor �rst creates an Inventor subgraph, consisting of an SoSeparator as the

root node and an SoMatrixTransform as the �rst child of the root node. Then the constructor

makes the root node of this space a child of par's root node by calling setParent:

void setParent(WRootedSpace *par); // become a child of parent.

Figure 3.3 shows the Inventor subgraph created by WCustomSpace and how children are

added to the space.

A custom space responds to updates from both delMatrixIn and absMatrixIO. When

delMatrixIn is updated, invoke transforms the incoming matrix to the equivalent matrix in

Chapter 3. Design and Implementation 46

this custom space before concatenating it to the matrix of the transformation node. When

absMatrixIO is updated, invoke transforms the incoming matrix to the equivalent matrix in

the parent space of this space (rather than this space, because the new transformation is to

REPLACE the existing transformation of the space. The e�ect of the existing transformation

should be ignored), then replaces the matrix of the transformation node with it.

Chapter 4

Discussion

4.1 Accomplishments

The goals listed in Section 1.3 | i.e. ease of widget creation, extensibility of component library,

compatibility with an available 3-D graphics library1,
exible interface between widgets and

application programs, and ability for widgets to control and display multiple application data

items | are met through the object-oriented 3-D Widget Programming Library based on

Inventor, a widely available 3-D graphics library. This library supports the creation of new 3-D

widgets from high-level components. Moreover, the library can be extended by adding new,

user-de�ned components.

A widget built with this library controls one or more states of the application program, and

displays the states via relative positions and orientations among geometric parts in a motion

hierarchy. A widget interfaces with the application program through callback functions or

con�gurable attachments with Inventor nodes/�elds.

A number of widget components are implemented: slots of di�erent data types, standard

and custom spaces, several general components such as data converters or data providers, and

several parts including a dial, a slider, and a length measure. Using these components, the

1More precisely, this library is an extension of the 3-D graphics library, Inventor.

47

Chapter 4. Discussion 48

Widget Class De�nition 25

Geometry De�nition 1

Component Inclusions 5 Parts 10

7 Spaces 7

4 Slots 8

Port Connections 8

Initialization spaces 6

ports 37

Others 21

TOTAL 123

Table 4.1: Lines of code usage in the implementation of the Rack Widget

implementation of the rack widget (discussed in Section 2.4 and listed in Appendix B) needs

fewer than 130 lines of C++ code2. The breakdown is shown in Table 4.1. The abstractions

provided by the components, which are stand-alone objects with well-de�ned interfaces with

other components, simplify the design of widgets.

4.2 Future Work

The 3-DWidget Programming Library provides the groundwork for building a library of general

components and parts. The next step is to determine what constitutes a comprehensive and

useful set of functions and interactive behaviors that satis�es most users of 3-D GUIs, and thus

minimizes the programming e�orts of widget designers.

Using this library, a new widget class is created through conventional programming in C++,

with most of the code dedicated to creating widget components and connecting them. A widget

and component description language would make widget creation more straight-forward and

2By counting semi-colons.

Chapter 4. Discussion 49

error-free. An even better tool would be a visual 3-D widget designer similar to the form

design tool for the Forms Library described in Section 1.2.1. Another possibility would be to

construct and modify widgets dynamically at run-time, similar to the 3D widget construction

toolkit described in [17], either by the user or by changes in the structure of application data.

Currently, a programmer cannot encapsulate a useful widget into a part to be incorporated

into a more complex widget. The ability to build super-parts | ported mini-widgets built

from primative components and/or other super-parts | would allow complex and often-used

constructs to be added to the library and shared among widgets.

The programming library limits visual feedback to relative positions and orientations of

parts plus highlighting; for other types of visual feedback, such as color and text, the program-

mer has to implement them. More investigation is needed in determining other useful visual

feedback mechanisms to be incorporated.

A general constraint system for describing relations internally among widget components

and externally among widgets and application objects, as opposed to the data
ow and data

coupling model used in this programming library, should be explored because it would allow

more general components to be built. For example, with the virtual trackball part, the dial part

is not necessary because the virtual trackball can be constrained to rotate around a choosen

axis. The constraint system would also help programmers create application programs that

require relations among numerous objects be maintained and controlled. For example, a CAD

system that allows the designer to specify spatial relationships among objects would need the

constraint system to maintain the relationships after objects are manipulated.

Bibliography

[1] Alan H. Barr, \Global and Local Deformations of Solid Primitives", Computer Graphics

(SIGGRAPH '84 Proceedings), 18(3):21-30, July 1984.

[2] D. Brookshire Conner, Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins, Robert

C. Zeleznik, and Andries van Dam, \Three-Dimensional Widgets", Computer Graphics

(1992 Symposium on Interactive 3D Graphics), 25(2):183-188, March 1992.

[3] James D. Foley, Andries van Dam, Steven Feiner, and John F. Hughes, Computer Graphics:

Principles and Practice, Addison-Wesley, 2nd edition, 1990.

[4] Ithaca Software, HOOPS Graphics System Reference Manual, version 3.2, 1991.

[5] Michael Kass, \CONDOR: Constraint-Based Data
ow", Computer Graphics (SIGGRAPH

'92 Proceedings), 26(2):321-330, July 1992.

[6] Mark A. Linton, John M. Vlissides, and Paul R. Calder, \Composing User Interfaces with

InterViews", IEEE Computer, 22(2):8-22, February 1989.

[7] Aaron Marcus and Andries van Dam, \User-Interface Developments for the Nineties",

IEEE Computer, 24(9):49-57, September 1991.

[8] Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg, Brad Vander Zanden, David S.

Kosbie, Edward Pervin, Andrew Mickish, and Philippe Marchal, \Garnet: Comprehensive

Support for Graphical, Highly Interactive User Interfaces", IEEE Computer, 23(11):71-85,

November 1990.

[9] Mark H. Overmars, Forms Library - A Graphical User Interface Toolkit for Silicon Graph-

ics Workstations, version 2.1, November, 1992.

[10] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card, \Cone Trees: Animated 3D

Visualizations of Hierarchical Information", SIGCHI '91 Proceedings, pp. 189-194, 1991.

[11] Silicon Graphics Inc., Graphics Library Programming Guide, 1991.

[12] Silicon Graphics Inc., IRIS Inventor Programming Guide - Volume I: Using the Toolkit,

June 1992.

50

[13] Silicon Graphics Inc., IRIS Inventor Programming Guide - Volume II: Extending the

Toolkit, June 1992.

[14] Scott S. Snibbe, Kenneth P. Herndon, Daniel C. Robbins, D. Brookshire Conner, and An-

dries van Dam, \Using Deformations to Explore 3D Widget Design", Computer Graphics

(SIGGRAPH '92 Proceedings), 26(2):351-352, July 1992.

[15] Paul S. Strauss and Rikk Carey, \An Object-Oriented 3D Graphics Toolkit", Computer

Graphics (SIGGRAPH '92 Proceedings), 26(2):341-349, July 1992.

[16] Robert C. Zeleznik, D. Brookshire Conner, Matthias M. Wloka, Daniel G. Aliaga, Nathan

T. Huang, Philip M. Hubbard, Brian Knep, Henry Kaufman, John F. Hughes, and Andries

van Dam, \An Object-Oriented Framework for the Integration of Interactive Animation

Techniques", Computer Graphics (SIGGRAPH '91 Proceedings), 25(4):105-112, July 1991.

[17] Robert C. Zeleznik, Kenneth P. Herndon, Daniel C. Robbins, Nate Huang, Tom Meyer,

Noah Parker, and John F. Hughes, \An Interactive 3D Toolkit for Constucting 3D Wid-

gets", Computer Graphics (SIGGRAPH '93 Proceedings), pp. 81-84, August 1993.

51

Appendix A

Using a Widget in an Application

The following sections go through a number of examples of using widgets. The �rst section

shows an application program that communicates with a rack widget through a callback func-

tion. The second section focuses on the use of attachments and data conversion functions. The

third section dicusses the procedure for customizing widgets.

A.1 Including a Widget and Registering a Callback

The following example shows how a programmer includes a rack widget (as described in Sec-

tion 2.4) in an application for deforming an object.

A.1.1 The Main Loop

main is responsible for creating the display and initializing the widget classes. It calls another

function to create the scene graph. The function main follows:

///

main()

///

{

// create an X window.

Widget appWindow = SoXt::init("Deform");

if (appWindow == NULL) exit(1);

// initalize the widget classes. These must be called before

// widgets are created.

SoWidget::initClass();

RackWidget::initClass();

52

Using a Widget in an Application 53

// create the scene graph for the application.

scene = create_scene();

// create an Inventor viewer for viewing the scene.

viewer = new SoXtExaminerViewer;

viewer->setSceneGraph(scene);

(void) viewer->build(appWindow);

viewer->show();

SoXt::show(appWindow);

// start the interaction loop.

SoXt::mainLoop();

}

A.1.2 Creating the Scene Graph and Registering the Callback Function

The function create_scene creates the scene graph and sets up the communication between

the rack widget and the rest of the application program:

///

static SoNode *create_scene(void)

///

{

// build the scene graph with a light, a camera,

// an object to be deformed, and a rack widget.

// Both the shape and the widget is located at the

// origin of the world space. The scene is built

// with Inventor nodes.

SoSeparator *root = new SoSeparator;

root->ref();

SoPerspectiveCamera *camera = new SoPerspectiveCamera;

root->addChild(camera);

root->addChild(new SoDirectionalLight);

// create the shape for the object.

SoNode *shape = create_shape();

root->addChild(shape);

RackWidget *widget = new RackWidget;

root->addChild(widget);

camera->viewAll(root);

Using a Widget in an Application 54

// register callback functions to all the slots of the widget.

widget->twistValueSlot->addCallback(deformCB, 0);

widget->taperValueSlot->addCallback(deformCB, 0);

widget->taperPositionSlot->addCallback(deformCB, 0);

widget->bendValueSlot->addCallback(deformCB, 0);

return root;

}

A.1.3 The Callback Function

The callback function deformCB obtains all the deformation values, then modi�es the shape of

the object accordingly:

///

static void deformCB(void *data, WSlot *slot)

///

{

// determine the widget.

RackWidget *widget = 0;

if (slot)

widget = (RackWidget *)slot->getOwner();

if (!widget)

return;

// obtain deformation values.

float twist = widget->twistValueSlot->getData();

float taper = widget->taperValueSlot->getData();

float taperPos = widget->taperPositionSlot->getData();

float bend = widget->bendValueSlot->getData();

// deform the shape accordingly.

...

}

A.2 Using Attachments

Two aspects of attachment usage, creation of attachments and custom data conversion func-

tions, are covered in the following two sections.

Using a Widget in an Application 55

A.2.1 Creating Attachments

In the following example, a dial widget controls the rotations of a cube and a cone. The cube

rotates around its own z axis, whereas the cone rotates around the z axis of the widget. The

length widget displays a rod connecting the centers of the cube and the cone as well as the

distance between them.

The following code segment shows the construction of the scene graph, the creation of

attachments, and the placement of the widget:

SoSeparator *root = new SoSeparator; // the root.

SoPerspectiveCamera *camera = new SoPerspectiveCamera; // the camera.

SoSeparator *coneSpace = new SoSeparator; // cone subgraph.

SoTransform *coneOffset= new SoTransform(); // cone offset.

coneOffset->translation.setValue(3.0, 0.0, 0.0); // 3 to the right.

SoMatrixTransform *coneXform = new SoMatrixTransform;// transform.

SoMaterial *coneMat = new SoMaterial; // cone material.

coneMat->diffuseColor.setValue(.8, 0, 0); // red.

coneMat->transparency.setValue(.2); // transparent.

SoSeparator *cubeSpace = new SoSeparator; // cube subgraph.

SoTransform *cubeOffset= new SoTransform(); // cube offset

cubeOffset->translation.setValue(-3.0, 0.0, 0.0); // 3 to the left.

SoMatrixTransform *cubeXform = new SoMatrixTransform;// transform.

SoMaterial *cubeMat = new SoMaterial; // cube material.

cubeMat->diffuseColor.setValue(0 , 0.8, 0); // green.

cubeMat->transparency.setValue(.2); // transparent.

SoTransform *widgetOffset= new SoTransform(); // widget offset.

widgetOffset->rotation.setValue(// 45 deg.

SbVec3f(0.0, 1.0, 0.0),-3.141592654/4.0);

DialWidget *dialWidget = new DialWidget; // dial widget.

LengthWidget *lengthWidget = new LengthWidget; // length widget.

// build the scene graph with a camera, a light, a cone on the right,

// a cube on the left, a dial widget in the centre, and a length

// widget connecting the centers of the cone and the cube.

root->ref();

root->addChild(camera);

root->addChild(new SoDirectionalLight);

root->addChild(coneSpace);

coneSpace->addChild(coneOffset);

coneSpace->addChild(coneXform);

coneSpace->addChild(coneMat);

Using a Widget in an Application 56

coneSpace->addChild(new SoCone);

root->addChild(cubeSpace);

cubeSpace->addChild(cubeOffset);

cubeSpace->addChild(cubeXform);

cubeSpace->addChild(cubeMat);

cubeSpace->addChild(new SoCube);

root->addChild(widgetOffset);

root->addChild(dialWidget); // NOTE: still under world space!!

root->addChild(lengthWidget);

camera->viewAll(root);

// rotate the dial widget by 45 degrees by setting

// the work space of the widget.

SoPath *workPath = new SoPath(root);

workPath->append(widgetOffset);

workPath->ref();

dialWidget->setWorkSpacePath(workPath);

workPath->unref();

// attach the cube's transform to dialWidget's rotationSlot.

SoPath *cubePath = new SoPath(root);

cubePath->ref();

cubePath->append(cubeSpace);

cubePath->append(cubeXform);

testWidget->rotationSlot->createAttach(

cubePath,

OUTPUT, // slot outputs to transform.

OUTPUT, // initialize transform with slot.

FALSE, // no space transformation.

&WMatrixAttach::defaultConvertFn,// use default conversion function.

0);

// attach the cone's transform to dialWidget's rotationSlot.

// Same as the above except space transformation is active; i.e. the

// cone rotates around the widget's Z axis.

SoPath *conePath = new SoPath(root);

conePath->ref();

conePath->append(coneSpace);

conePath->append(coneXform);

testWidget->getSlot("rotationSlot")->createAttach(conePath,

OUTPUT, OUTPUT, TRUE, &WMatrixAttach::defaultConvertFn, 0);

// attach the cone's and cube's transforms to the two slots of the

// length widget.

Using a Widget in an Application 57

lengthWidget->point1Slot->createAttach(

conePath,

INPUT, // slot reads transform.

INPUT, // transforms initialize slot.

TRUE, // space transformation performed.

&WVec3fAttach::defaultConvertFn,// use default conversion function.

0);

conePath->unref();

lengthWidget->point2Slot->createAttach(cubePath,

INPUT, INPUT, TRUE, &WVec3fAttach::defaultConvertFn, 0);

cubePath->unref();

A.2.2 Creating a Custom Conversion Function

Suppose the default conversion function for vector slots does not support conversion to and

from SoSFColor �elds, and the programmer would like to use a vector slot to control the color

of an object. The following conversion function will perform the task:

///

void newVec3fConvertFn(WAttach *att, WAttachMode i_o)

//

// - need to include "WFieldType.h" for definitions of field types such as

// SFColor below.

///

{

WVec3fAttach *a = (WVec3fAttach *) att; // the attachment.

WVec3fSlot *o = (WVec3fSlot *) a->owner; // owner of the attachment.

SoNode *n = a->who->getTail(); // the attached node.

switch (i_o)

{

case INPUT:

if (a->field && a->fieldType == SFColor)

{

SbColor c(((SoSFColor *) a->field)->getValue());

o->setData(c, (SoPath *)NULL, a);

return;

}

break

case OUTPUT:

if (a->field && a->fieldType == SFColor)

{

SbVec3f vS = o->getData((SoPath *)NULL);

((SoSFColor *) a->field)->setValue(vS);

return;

}

Using a Widget in an Application 58

break;

default:

// do nothing.

}

// let the default conversion function handle the rest.

WVec3fAttach::defaultConvertFn(att, i_o);

}

The following call to createAttach attaches the vec3fSlot of a widget to the diffuseColor

�eld of the materialNode.

widget->vec3fSlot->createAttach(

materialNodePath, // path to material node.

&(materialNode->diffuseColor), // field to be attached.

BOTH, // slot both displays and controls.

INPUT, // field initializes slot.

FALSE, // no space transformation.

newVec3fConvertFn, // use customized conversion function.

0);

A.3 Customizing a Widget

A programmer may not be satis�ed with the default appearance of a widget. For example, a

programmer wants to modify a rack widget so that the dial handles are longer than the default

length of 1. There are three ways to accomplish the task; the three methods di�er mainly in

the scopes of modi�cation.

The �rst method rede�nes the geometries of WDialPart; it a�ects all instances of the part

class. The programmer creates a �le WDialPart.iv that describes the active and/or inactive

geometries of instances of WDialPart. The subgraphs of the active and inactive geometry should

be labeled activeGeom and inactiveGeom. The �le should be located in the current directory

or the directory indicated by the SO_MANIP_DIR environment variable. The �le content is as

follows:

#Inventor V1.0 ascii

Separator {

Label { label "activeGeom" }

Label { label "inactiveGeom" }

Translation { translation 0 1.0 0 }

Cylinder { parts SIDES height 2.0 radius 0.1 }

Translation { translation 0 0.5 0 }

Sphere { radius 0.15 }

Using a Widget in an Application 59

Translation { translation 0 -1.0 0 }

RotationXYZ { axis X angle 1.5707963 }

Cylinder { height 0.15 radius 0.15 }

}

The second method de�nes the geometries of RackWidget; it a�ects all instances of the

widget class. The programmer creates a �le RackWidget.iv that modi�es the active and/or

inactive part geometries for the widget class. Modi�cations made with this method overrides

those made with the �rst method. The following example modi�es geometries of the bendDial

part of the rack widget:

#Inventor V1.0 ascii

Separator {

Label { label "bendDialActive" }

Label { label "bendDial" }

the geometry as listed in the previous example.

...

}

The third method modi�es an instance of RackWidget. This is useful when the programmer

wants to use several rack widgets in an application program but wants them to look di�erently.

The programmer instantiates a widget using one of the special constructors that asks for

either a geometry �le, a scene graph, or a dictionary that contains name/geometry pairs.

The constructors for the rack widget are:

RackWidget(const char *userGeomFile);

RackWidget(SoGroup *userGeom);

RackWidget(SbDict *userDict);

The geometry �le, scene graph, or dictionary should contain subgraphs with labels cor-

responding to the names of parts in the widget, just like the RackWidget.iv example above.

Modi�cations made with this method overrides those made with the two previous methods.

For more information, please read Chapter 7 of the \IRIS Inventor Programming Guide -

Volume II" for a detailed discussion.

Appendix B

Implementing a Widget from

Existing Parts

The implementation of the rack widget in Section 2.4 will be described. It consists of four

interactive parts | two dial parts and two slider parts | that provide controls for the four

parameters. A dial part provides rotation feedback on its z axis. A slider part provides

translation feedback along its y axis. Both parts output
oat values that represent the amount

of rotation or translation. A non-interactive part is included to provide the geometry for the

widget's main axis.

The rack widget needs four
oat slots so that the application program can access the four

deformation parameters and act on changes caused by manipulations of the widget.

The procedure for creating a new widget class is very similar to creating a new manipulator.

You may want to refer to Chapter 8 of the \IRIS Inventor Programming Guide - Volume II"

for more information.

B.1 De�ning RackWidget

The widget class RackWidget is de�ned in the header �le RackWidget.h. In general, a de�nition

of a widget class should do the following:

� invoke the SO_SUBNODE_ID_HEADER macro.

� declare the member function initClass. It is required for all Inventor node classes.

� declare four constructors: one with no argument, and the other three with one argu-

ment which is either a name of a geometry �le, a pointer to an Inventor group node,

60

Implementing a Widget from Existing Parts 61

or a pointer to a dictionary. The latter three constructors allow an instance of the wid-

get class to obtain its geometries from sources other than its default geometry bu�er

(RackWidget::rackWidgetGeomBuffer[]) and default geometry �le (RackWidget.iv).

� de�ne pointers to all the parts and slots for the widget class.

� de�ne a pointer to classDictionary. It stores named Inventor nodes or subgraphs to

be included in the widget.

� de�ne a pointer to the geometry bu�er. It holds a description of the default geometries

of widget parts.

� declare the destructor.

� declare or de�ne other class-speci�c members.

This is the listing of RackWidget.h:

#ifndef RACKWIDGET_H

#define RACKWIDGET_H

#include "SoWidget.h"

class WDialPart;

class WSliderPart;

class WGeomPart;

class WFloatSlot;

///

class RackWidget : public SoWidget

///

{

SO_SUBNODE_ID_HEADER(RackWidget); // Define required typeId and name stuff.

public:

static void initClass(); // initializes the class. To be called

// after SoInteraction::init().

// constructors.

RackWidget();

RackWidget(const char *userGeomFile);

RackWidget(SoGroup *userGeom);

RackWidget(SbDict *userDict);

// parts.

WDialPart *bendDial; // controls the bend.

WDialPart *twistDial; // controls the twist.

WSliderPart *taperSlider; // controls the taper.

WSliderPart *taperOffsetSlider; // controls where the taper ends.

WGeomPart *mainAxis; // geometry for the main axis.

// slots.

Implementing a Widget from Existing Parts 62

WFloatSlot *bendValueSlot; // amount of bend from the bend handle.

WFloatSlot *twistValueSlot; // amount of twist from the twist handle.

WFloatSlot *taperValueSlot; // amount of taper from the taper handle.

WFloatSlot *taperPositionSlot; // where the taper ends.

protected:

static SbDict *classDictionary; // dictionary for this class.

void constructorSub(); // common constructor code.

private:

static char *rackWidgetGeomBuffer[]; // geometry buffer.

~RackWidget(); // destructor.

static const double pi; // the value pi.

};

#endif

B.2 Default Geometries

The �le RackWidgetGeom.h de�nes the geometry bu�er RackWidget::rackWidgetGeomBuffer,

the default geometries of parts in the widget. The bu�er content is in the Inventor �le format.

Many part classes provide default geometries for their instances; therefore a widget pro-

grammer needs not design geometry for a part unless he or she wants to override the default

geometry of the part. Some part classes | e.g. SoGeomPart | do not provide default geome-

tries and therefore their instances are invisible by default.

For the rack widget, the part mainAxis needs a geometry that represents the main axis of

the widget, and the default geometry for taperPositionSlider has to be modi�ed because it

would be obscured by the object to be deformed otherwise; therefore, new geometries for these

two parts have to be speci�ed. The default geometries are used for other parts.

Note that both the active and inactive geometries should be speci�ed for a part. The two

geometries can be the same, as shown in RackWidgetGeom.h:

#ifndef RACKWIDGETGEOM_H

#define RACKWIDGETGEOM_H

char *RackWidget::rackWidgetGeomBuffer[] =

{

"#Inventor V1.0 ascii\n\

Separator {\n\

Label { label \"mainAxis\" }\n\

Label { label \"mainAxisActive\" }\n\

RotationXYZ { axis X angle 1.5707963 }\n\

Cylinder { height 2.0 radius 0.10 }\n\

}\n",

Implementing a Widget from Existing Parts 63

"Separator {\n\

Label { label \"taperOffsetSlider\" }\n\

Label { label \"taperOffsetSliderActive\" }\n\

RotationXYZ { axis X angle -1.5707963 }\n\

Translation { translation 0 0.5 0 }\n\

Cylinder { height 1.0 radius 0.075 }\n\

}\n",

"\0"

};

#endif

B.3 Initializing the Widget

The �rst section of RackWidget.c++ invokes the macros needed by all Inventor node classes,

and de�nes the static member variables in the class. The member function initClass is also

implemented:

#include <iostream.h>

#include <Inventor/SoDB.h>

#include "DFBoolNode.h"

#include "DFFloatNode.h"

#include "WDialPart.h"

#include "WSliderPart.h"

#include "WGeomPart.h"

#include "WFloatSlot.h"

#include "WSpace.h"

#include "RackWidget.h"

#include "RackWidgetGeom.h"

// Initialize static dictionary that contains the geometry

// and style resources for this class.

SbDict *RackWidget::classDictionary = 0;

// Macro which defines required variables for subclasses of SoNode.

SO_SUBNODE_ID_VARS(RackWidget);

// Macro which defines required methods for subclasses of SoNode.

SO_SUBNODE_ID_METHODS(RackWidget);

// Constant needed in calculation

const double RackWidget::pi = 3.141592654;

///

void RackWidget::initClass()

Implementing a Widget from Existing Parts 64

///

{

SO_SUBNODE_INIT_ID(

RackWidget, // an example instance

"RackWidget", // class name

SoWidget); // parent class

}

B.4 Constructors and Destructors

The four constructors of RackWidget di�er only in the way they construct SoWidget; therefore,

they all call a common function constructorSub that does the real work for the widget class.

Here are the four constructors:

// No arguments.

RackWidget::RackWidget() : SoWidget()

{ constructorSub(); }

// Take a file name.

RackWidget::RackWidget(const char *userGeomFile) : SoWidget(userGeomFile)

{ constructorSub(); }

// Take a scene graph.

RackWidget::RackWidget(SoGroup *userGeom) : SoWidget(userGeom)

{ constructorSub(); }

// Take a dictionary.

RackWidget::RackWidget(SbDict *userDict) : SoWidget(userDict)

{ constructorSub(); }

The SoWidget constructor used determines the extra source of part geometries for a widget

instance besides the geometries common to all instances.

constructorSub is responsible for the following:

� setting up the class dictionary.

� creating the spaces, slots, parts, and general components, and adding them to the widget.

� connecting ports of components to generate the desired behavior and initializing ports

that should remain constant.

///

void RackWidget::constructorSub()

Implementing a Widget from Existing Parts 65

///

{

SO_SUBNODE_BEGIN_PROTOTYPE(RackWidget);

// Read the default geometry for this widget. This will

// only happen once.

classDictionary = createDictionary(

"RackWidget.iv", // default geom file

rackWidgetGeomBuffer, // compiled-in defaults

SoWidget::classDictionary); // parent dictionary

SO_SUBNODE_END_PROTOTYPE();

// This will be the dictionary for use by all instances of this class.

setClassDictionary(classDictionary);

// Create the spaces.

SbMatrix matrix, matrix2;

matrix.setTranslate(SbVec3f(0.0,0.0,-1.0));

WCustomSpace *twistOffset = createSpace("twistOffset", localSpace, matrix);

matrix = SbMatrix::identity();

WCustomSpace *taperOffset = createSpace("taperOffset", localSpace, matrix);

matrix.setTranslate(SbVec3f(0.0,0.0,1.0));

matrix2.setRotate(SbRotation(SbVec3f(1.0,0.0,0.0), pi/2.0));

matrix.multLeft(matrix2);

matrix2.setRotate(SbRotation(SbVec3f(0.0,1.0,0.0), -pi/2.0));

matrix.multLeft(matrix2);

WCustomSpace *bendOffset = createSpace("bendOffset", localSpace, matrix);

matrix.setRotate(SbRotation(SbVec3f(1.0,0.0,0.0), pi/2.0));

WCustomSpace *taperOffsetOffset = createSpace("taperOffsetOffset",

taperOffset,matrix);

matrix = SbMatrix::identity();

WCustomSpace *twistFeedback = createSpace("twistFeedback",twistOffset,matrix);

WCustomSpace *taperFeedback = createSpace("taperFeedback",taperOffset,matrix);

WCustomSpace *bendFeedback = createSpace("bendFeedback", bendOffset, matrix);

// Create the slots.

twistValueSlot = new WFloatSlot();

addSlot(twistValueSlot, "twistValueSlot");

taperValueSlot = new WFloatSlot();

addSlot(taperValueSlot, "taperValueSlot");

taperPositionSlot = new WFloatSlot();

addSlot(taperPositionSlot, "taperPositionSlot");

bendValueSlot = new WFloatSlot();

addSlot(bendValueSlot, "bendValueSlot");

// Create the parts.

Implementing a Widget from Existing Parts 66

WDialPart *twistDial = new WDialPart();

addPart(twistDial,"twistDial",1,twistFeedback,twistFeedback,TRUE,

classDictionary);

WSliderPart *taperSlider = new WSliderPart();

addPart(taperSlider,"taperSlider",1,taperFeedback,taperFeedback,TRUE,

classDictionary);

WSliderPart *taperOffsetSlider = new WSliderPart();

addPart(taperOffsetSlider,"taperOffsetSlider",1,taperOffsetOffset,

taperOffset,TRUE,classDictionary);

WDialPart *bendDial = new WDialPart();

addPart(bendDial,"bendDial",1,bendFeedback,bendFeedback,TRUE,

classDictionary);

WGeomPart *mainAxis = new WGeomPart();

addPart(mainAxis,"mainAxis",1,localSpace,NULL,TRUE,classDictionary);

// create temporary general components

// for persistent general components, addNode should be called.

DFBoolNode *boolNode = new DFBoolNode(TRUE);

DFFloatNode *floatNode = new DFFloatNode(0.0);

// initialize ports using "setData(WPort *port)"

// and make connections with "connect(WPort *port)".

//

// NOTE: "setData(<dataType> data)" is not used here because

// it is intended to be used by the owner of the port and

// thus does not update the internal state of the port owner.

//

twistDial->absLowIn->setData(floatNode->absFloatIO);

twistDial->absRangeIn->setData(floatNode->absFloatIO);

twistDial->absFloatIO->setData(floatNode->absFloatIO);

floatNode->setData(2*pi);

twistDial->absScaleIn->setData(floatNode->absFloatIO);

twistDial->absPickableIn->setData(boolNode->absBoolIO);

twistDial->absVisibleIn->setData(boolNode->absBoolIO);

twistDial->absActiveIn->connect(twistDial->absPickedOut);

//

twistValueSlot->absFloatIO->connect(twistDial->absFloatIO);

floatNode->setData(0.0);

taperSlider->absLowIn->setData(floatNode->absFloatIO);

floatNode->setData(1.0);

taperSlider->absRangeIn->setData(floatNode->absFloatIO);

taperSlider->absScaleIn->setData(floatNode->absFloatIO);

taperSlider->absFloatIO->setData(floatNode->absFloatIO);

taperSlider->absPickableIn->setData(boolNode->absBoolIO);

taperSlider->absVisibleIn->setData(boolNode->absBoolIO);

//

taperSlider->absActiveIn->connect(taperSlider->absPickedOut);

Implementing a Widget from Existing Parts 67

taperValueSlot->absFloatIO->connect(taperSlider->absFloatIO);

floatNode->setData(-1.0);

taperOffsetSlider->absLowIn->setData(floatNode->absFloatIO);

floatNode->setData(2.0);

taperOffsetSlider->absRangeIn->setData(floatNode->absFloatIO);

floatNode->setData(1.0);

taperOffsetSlider->absScaleIn->setData(floatNode->absFloatIO);

floatNode->setData(0.0);

taperOffsetSlider->absFloatIO->setData(floatNode->absFloatIO);

taperOffsetSlider->absPickableIn->setData(boolNode->absBoolIO);

taperOffsetSlider->absVisibleIn->setData(boolNode->absBoolIO);

//

taperOffsetSlider->absActiveIn->connect(taperOffsetSlider->absPickedOut);

taperPositionSlot->absFloatIO->connect(taperOffsetSlider->absFloatIO);

floatNode->setData(-pi);

bendDial->absLowIn->setData(floatNode->absFloatIO);

floatNode->setData(2*pi);

bendDial->absRangeIn->setData(floatNode->absFloatIO);

bendDial->absScaleIn->setData(floatNode->absFloatIO);

floatNode->setData(0.0);

bendDial->absFloatIO->setData(floatNode->absFloatIO);

bendDial->absPickableIn->setData(boolNode->absBoolIO);

bendDial->absVisibleIn->setData(boolNode->absBoolIO);

//

bendDial->absActiveIn->connect(bendDial->absPickedOut);

bendValueSlot->absFloatIO->connect(bendDial->absFloatIO);

mainAxis->absVisibleIn->setData(boolNode->absBoolIO);

boolNode->setData(FALSE);

mainAxis->absPickableIn->setData(boolNode->absBoolIO);

delete boolNode;

delete floatNode;

}

The destructor should release any resources the widget has acquired. However, the destruc-

tor of SoWidget already handles all the spaces, parts, slots and general components added to

the widget. Therefore, we only need a very simple destructor:

///

RackWidget::~RackWidget()

///

{

}

Appendix C

Implementing a General

Component

The only requirement for a new general component class is that it is derived from the base

class DFNode, the ancestor of all widget components. For a general component to be useful,

it should contain at least one port capable of output so as to a�ect other components. Every

derived class of DFNode must implement the invoke member function.

We shall create a new general component class DFFloatVec3fNode that converts between

three
oat values and a 3-D vector both ways.

C.1 De�ning the Component

DFFloatVec3fNode.h de�nes the class. The class de�nition should do the following:

� declare a constructor and a destructor.

� declare the invoke function.

� de�ne the pointers to all the ports for the component.

The header �le is listed below:

#ifndef DFFLOATVEC3FNODE_H

#define DFFLOATVEC3FNODE_H

#include "DFNode.h"

#include "DFPort.h"

///

68

Implementing a General Component 69

class DFFloatVec3fNode : public DFNode

///

{

public:

// constructor and destructor.

DFFloatVec3fNode();

~DFFloatVec3fNode();

// data flow invoke.

void invoke(void *, DFPort *port);

// ports.

DFFloatPort *absXIO; // X component of vector.

DFFloatPort *absYIO; // Y component of vector.

DFFloatPort *absZIO; // Z component of vector.

DFVec3fPort *absVec3fIO;// vector.

};

#endif

The names of the ports re
ect the facts that they all hold absolute values (as opposed to

delta values) and they are all capable of both input and output.

C.2 Constructors and Destructors

The constructor is responsible for creating the ports and the destructor should delete them.

The �rst section of DFFloatVec3fNode.c++ follows:

#include "DFFloatVec3fNode.h"

///

DFFloatVec3fNode::DFFloatVec3fNode()

///

{

absVec3fIO = new DFVec3fPort(this, ABS_PORT | INP_PORT| OUT_PORT);

absXIO = new DFFloatPort(this, ABS_PORT | INP_PORT| OUT_PORT);

absYIO = new DFFloatPort(this, ABS_PORT | INP_PORT| OUT_PORT);

absZIO = new DFFloatPort(this, ABS_PORT | INP_PORT| OUT_PORT);

absVec3fIO->setData(SbVec3f(0.0, 0.0, 0.0), NULL);

absXIO->setData(0.0);

absYIO->setData(0.0);

absZIO->setData(0.0);

}

///

DFFloatVec3fNode::~DFFloatVec3fNode()

///

{

delete absVec3fIO;

Implementing a General Component 70

delete absXIO;

delete absYIO;

delete absZIO;

}

C.3 The Member Function invoke

The invoke member function is called when the data in one of the input ports is changed.

It �nds out which port is modi�ed, then modi�es the component's internal state and output

ports:

///

void DFFloatVec3fNode::invoke(void *, DFPort *port)

///

{

WSpace *s;

SbVec3f vec = absVec3fIO->getData(s);

if ((void *) port == absVec3fIO)

{

// check if the data actually changes.

// If not, do not "setData" in order to cut

// unnecessary data flow.

if (vec[0] != absXIO->getData())

absXIO->setData(vec[0]);

if (vec[1] != absYIO->getData())

absYIO->setData(vec[1]);

if (vec[2] != absZIO->getData())

absZIO->setData(vec[2]);

}

else if ((void *) port == absXIO && vec[0] != absXIO->getData())

absVec3fIO->setData(SbVec3f(absXIO->getData(), vec[1], vec[2]), s);

else if ((void *) port == absYIO && vec[1] != absYIO->getData())

absVec3fIO->setData(SbVec3f(vec[0], absYIO->getData(), vec[2]), s);

else if ((void *) port == absZIO && vec[2] != absZIO->getData())

absVec3fIO->setData(SbVec3f(vec[0], vec[1], absZIO->getData()), s);

}

Appendix D

Implementing a Part

Each new part class must implement the following methods:

� manipulateStart prepares the part for manipulation.

� manipulate updates the internal state of the part and the output ports based on the

manipulation.

� manipulateFinish �nishes the manipulation.

� invoke is called when one of the input ports is modi�ed. It then updates the part's

internal state and output ports accordingly.

� updateMatrixPorts updates delMatrixOut and absMatrixIO based on the part's current

state.

The example part is WDialPart. This part shows a handle that can be grabbed and rotated

around the z axis in the part's local space. It has the following ports:

� absFloatIO and delFloatOut output the internal state absValue and the change in the

state respectively. absValue is the amount of rotation scaled by the value obtained from

absScaleIn (see below). absFloatIO is also an input port that can alter absValue.

� absLowIn sets the lower limit for absValue.

� absRangeIn sets the range of absValue, starting from the lower limit. A value of 0 means

that the range is in�nite.

� absScaleIn sets the scaling factor for absValue. absValue is equal to the amount of

rotation (number of turns) times the scaling factor.

71

Implementing a Part 72

D.1 De�ning the Part

WDialPart.h de�nes the class. The class de�nition:

� declares a constructor and a destructor.

� declares the required member functions.

� de�nes the pointers to all the ports for this part.

� declares the geometry bu�er.

� de�nes a plane projector that is used for calculating the amount of rotation caused by

the manipulation.

� de�nes member variables which store the part's internal state.

The header �le is listed below:

#ifndef WDIALPART_H

#define WDIALPART_H

#include "Inventor/projectors/SbPlaneProjector.h"

#include "DFPort.h"

#include "WPart.h"

///

class WDialPart : public WPart

///

{

public:

WDialPart(); // constructor.

~WDialPart();// destructor.

void updateMatrixPorts(); // update matrix ports based on internal states.

void manipulateStart(); // prepare for manipulation.

void manipulate(); // update ports and internal states.

void manipulateFinish(); // finish.

void invoke(void *data, DFPort *port);

DFFloatPort *absFloatIO; // I/O port for value.

DFFloatPort *delFloatOut;// output port for change in value.

DFFloatPort *absLowIn; // lower limit for value.

DFFloatPort *absRangeIn; // range of value.

DFFloatPort *absScaleIn; // value of one revolution.

private:

Implementing a Part 73

void setData(double value, void *source = NULL); // used by other

// member functions.

static char *wDialPartGeomBuffer[];// the default geometry.

double absValue; // the current state of the dial.

double absLow, // the lower limit.

absRange, // the range.

absScale; // the scale (value per revolution).

static const double pi;

SbPlaneProjector planeProjector;// the projector used.

SbVec3f prevProj; // previous projection into 3D space.

SbVec3f axisOfRotation;// axis of rotation in the feedback space.

};

#endif

D.2 Default Geometries

The �le WDialPartGeom.h initializes the geometry bu�er WDialPart::wDialPartGeomBuffer

that describes the default geometries of the part. The description is written in the Inventor

�le format.

The geometry of this part represents a handle. Both the active and inactive geometries

(labeled as activeGeom and inactiveGeom) must be provided for a part. The two geometries

can be the same, as shown in this example:

#ifndef WDIALPARTGEOM_H

#define WDIALPARTGEOM_H

char *WDialPart::wDialPartGeomBuffer[] =

{

"#Inventor V1.0 ascii\n\

Separator {\n\

Label { label \"activeGeom\" }\n\

Label { label \"inactiveGeom\" }\n\

Translation { translation 0 0.5 0 }\n\

Cylinder { parts SIDES height 1.0 radius 0.1 }\n\

Translation { translation 0 0.5 0 }\n\

Sphere { radius 0.15 }\n\

Translation { translation 0 -1.0 0 }\n\

RotationXYZ { axis X angle 1.5707963 }\n\

Cylinder { height 0.15 radius 0.15 }\n\

}\n",

"\0"

};

#endif

Implementing a Part 74

D.3 Constructors and Destructors

The constructor needs to create a plane projector and initialize WPart. It is also responsible

for initializing the internal state and creating the required ports.

The destructor deallocates all the ports and resources allocated for the part.

#include <iostream.h>

#include "SoWidget.h"

#include "WSpace.h"

#include "WDialPart.h"

#include "WDialPartGeom.h"

const double WDialPart::pi = 3.141592654;

///

WDialPart::WDialPart()

///

: planeProjector(SbPlane(SbVec3f(0.0, 0.0, 1.0), 0)),

WPart("WDialPart.iv", wDialPartGeomBuffer)

{

absFloatIO = new DFFloatPort(this, ABS_PORT | INP_PORT | OUT_PORT);

delFloatOut= new DFFloatPort(this, DEL_PORT | OUT_PORT);

absLowIn = new DFFloatPort(this, ABS_PORT | INP_PORT);

absRangeIn = new DFFloatPort(this, ABS_PORT | INP_PORT);

absScaleIn = new DFFloatPort(this, ABS_PORT | INP_PORT);

absValue = 0;

absFloatIO->setData(absValue);

delFloatOut->setData(0.0);

absLow = 0;

absLowIn->setData(absLow);

absRange = 0; // 0 = no limit

absRangeIn->setData(absRange);

absScale = 2*pi;

absScaleIn->setData(absScale);

absMatrixIO->setData(SbMatrix::identity(), NULL);

delMatrixOut->setData(SbMatrix::identity(), NULL);

}

///

WDialPart::~WDialPart()

///

{

delete delFloatOut;

delete absFloatIO;

delete absLowIn;

Implementing a Part 75

delete absRangeIn;

delete absScaleIn;

}

D.4 The Member Function updateMatrixPort

updateMatrixPort is required by WPart for setting the two matrix ports delMatrixOut and

absMatrixIO based on the current internal state of the part. In this example, the function sets

delMatrixOut to the identity matrix because this function does not change the state of the

part. absMatrixOut is set to a matrix that represents a rotation proportional to absValue,

the state of the part representing the amount of rotation.

///

void WDialPart::updateMatrixPorts()

///

{

// convert the z-axis in part space to the feedback space.

if (parent && feedback)

getConversionMatrix(parent, feedback).multVecMatrix(

SbVec3f(0.0, 0.0, 1.0), axisOfRotation);

else

axisOfRotation = SbVec3f(0.0, 1.0, 0.0);

SbMatrix matrix;

SbRotation rotation;

// delMatrixOut is set to the identity matrix since there is

// no change in the internal state "absValue".

matrix = SbMatrix::identity();

if (feedback)

delMatrixOut->setData(matrix, feedback);

else

delMatrixOut->setData(matrix, NULL);

// calculate the rotation in the feedback space.

float absAngle = absValue*(2*pi)/absScale;

rotation.setValue(axisOfRotation, absAngle);

matrix.setRotate(rotation);

// The new matrix is intended for the parent of the feedback space.

if (feedback)

absMatrixIO->setData(matrix, feedback->getParent());

else

absMatrixIO->setData(matrix, NULL);

}

Implementing a Part 76

D.5 The Member Function invoke

invoke responds to the input ports in the following ways:

� absFloatIn triggers updates to the member variable absValue and output ports.

� absMatrixIn is ignored.

� absLowIn, absRangeIn and absScaleIn trigger updates to the member variables absLow

or absRange or absScale and output ports.

� absVisibleIn and absActiveIn cause WPart::updateAppearance to be called.

� absPickableIn causes WPart::updatePickability to be called.

///

void WDialPart::invoke(void *data, DFPort *port)

///

{

if (parent && feedback)

getConversionMatrix(parent, feedback).multVecMatrix(

SbVec3f(0.0, 0.0, 1.0), axisOfRotation);

else

axisOfRotation = SbVec3f(0.0, 1.0, 0.0);

if (port == (DFPort *) absFloatIO)

{

// set the internal state of the part with absFloatIO's data.

// Also indicate the absFloatIO is the source of data in the

// second parameter.

setData(absFloatIO->getData(), absFloatIO);

}

else if (port == (DFPort *) absMatrixIO)

{

// This part ignores input from this port.

}

else if (port == (DFPort *) absLowIn)

{

absLow = absLowIn->getData();

setData(absValue);

}

else if (port == (DFPort *) absRangeIn)

{

absRange = absRangeIn->getData();

if (absRange < 0)

{

absLow = absLow + absRange;

Implementing a Part 77

absRange = - absRange;

}

setData(absValue);

}

else if (port == (DFPort *) absScaleIn)

{

if (absScaleIn->getData() == 0.0)

{

cerr << "WDialPart::invoke() - absScaleIn cannot be zero, defaults to one"

<< endl;

absScale = 1.0;

absScaleIn->setData(absScale);

}

else

absScale = absScaleIn->getData();

setData(absValue);

}

else if (port == (DFPort *) absVisibleIn ||

port == (DFPort *) absActiveIn)

updateAppearance();

else if (port == (DFPort *) &absPickableIn)

updatePickability();

}

D.6 The Member Functions for Manipulations

manipulateStart prepares the dial part for subsequent manipulations. It:

� sets up the plane projector.

� records the initial point of projection.

� determines the axis of rotation in the feedback space.

� sets the data in the absPickedOut port to indicate that the part is picked.

///

void WDialPart::manipulateStart()

///

{

planeProjector.setViewVolume (getViewVolume());

planeProjector.setWorkingSpace(parent->getConversionToWorld());

prevProj = planeProjector.project(getNormalizedLocaterPosition());

Implementing a Part 78

// obtain the rotation axis in the feedback space.

if (feedback)

getConversionMatrix(parent, feedback).multVecMatrix(

SbVec3f(0.0, 0.0, 1.0), axisOfRotation);

else

axisOfRotation = SbVec3f(0.0, 1.0, 0.0);

absPickedOut->setData(TRUE);

}

manipulate determines the amount of rotation, and calculates the new absValue based on

the rotation, the lower limit, the range, and the scaling factor. It then updates absValue and

the output ports.

///

void WDialPart::manipulate()

///

{

// just in case the view changed ...

planeProjector.setViewVolume(getViewVolume());

// find the delta angle.

SbVec3f currProj = planeProjector.project(getNormalizedLocaterPosition());

SbRotation rotation(prevProj, currProj);

SbVec3f axis;

float delAngle;

rotation.getValue(axis, delAngle);

delAngle = (axis[2] > 0) ? delAngle : -delAngle;

float delValue = delAngle*absScale/(2*pi);

setData(absValue + delValue);

// the working space may have changed due to the changes above.

planeProjector.setWorkingSpace(parent->getConversionToWorld());

prevProj = planeProjector.project(getNormalizedLocaterPosition());

}

manipulateFinish sets the port absPickedOut to indicate that this part is no longer picked.

///

void WDialPart::manipulateFinish()

///

Implementing a Part 79

{

absPickedOut->setData(FALSE);

}

setData updates the member variable absValue and the output ports delFloatOut, absFloatIO,

delMatrixOut and absMatrixIO. setData avoids excessive data
ow by not setting the port

that causes setData to be called. setData is a convenience member function called only by

manipulate and invoke; therefore, it is made a private member function.

///

void WDialPart::setData(float value, void *source)

///

{

// check for overflow.

float tmpValue = value;

if (absRange != 0)

if (value < absLow)

tmpValue = absLow;

else if (value > absLow + absRange)

tmpValue = absLow + absRange;

if (tmpValue == absValue) // no change.

return;

float delValue = tmpValue - absValue;

absValue = tmpValue;

// update the FloatOuts.

delFloatOut->setData(delValue);

if (source != absFloatIO || absValue != absFloatIO->getData())

absFloatIO->setData(absValue);

// update the MatrixOuts.

SbMatrix matrix;

SbRotation rotation;

// set delMatrixOut.

float delAngle = delValue*(2*pi)/absScale;

rotation.setValue(axisOfRotation, delAngle);

matrix.setRotate(rotation);

if (feedback)

delMatrixOut->setData(matrix, feedback);

else

delMatrixOut->setData(matrix, NULL);

// set absMatrixIO. Ignore the possibility that it may be a source

Implementing a Part 80

// because we are not responding to this port in invoke().

float absAngle = absValue*(2*pi)/absScale;

rotation.setValue(axisOfRotation, absAngle);

matrix.setRotate(rotation);

if (feedback)

absMatrixIO->setData(matrix, feedback->getParent());

else

absMatrixIO->setData(matrix, NULL);

}

Appendix E

Relevant Enhancements in the New

Release of Inventor

Inventor 2.0 has recently been released. The following sections brie
y describe the new and

enhanced features in the new version that are relevant to the 3-DWidget Programming Library.

The information is obtained from the book \the Inventor Mentor" by Josie Wernecke, published

by the Addison-Wesley Publishing Company.

The last section relates this new release to the 3-D Widget Programming Library.

E.1 Manipulators and Draggers

Inventor 2.0 introduces a new class of interactive nodes called draggers, and enhances the

manipulators.

Draggers, like the old manipulators in Inventor 1.x, support the click-drag-release interactive

style. New features that draggers support, but not available in old manipulators, are:

� Each dragger contains �elds that allow other nodes and the application program to access

its data (more on �elds later). This is easier to use than the delta matrices provided by

old manipulators.

� A dragger provides its own visual feedback (e.g. motion) during manipulation. An old

manipulator has to rely on its edit path (set by the attach mechanism or explicitly by a

member function) for visual feedback.

� Draggers can be combined to form compound draggers. Since each dragger manages its

own motion, a motion hierarchy can be formed in a compound dragger. The combination

81

Relevant Enhancements in the New Release of Inventor 82

of old manipulators into compound manipulators is much more restricted, as described

in Section 1.2.3.

� The working space of a dragger is determined by its position in the scene graph. For

an old manipulator, the working space has to be speci�ed (unless the world space, the

default, is desired) either through the attach mechanism or explicitly through a member

function.

The main di�erence between the new manipulators (in Inventor 2.0) and the old manip-

ulators (in Inventor 1.x) is that new manipulators replace the nodes they a�ect rather than

attach to them. For example, the new trackball manipulator is a transformation node that can

be rotated interactively and the new spotlight manipulator is a spotlight node whose position,

direction and spread can be manipulated interactively. The interactivity of a manipulator is

provided by a dragger | the �elds of the dragger are used to edit the �elds of the manipulator.

Each manipulator supplies member functions for replacing a node in a scene graph with the

manipulator and vice versa.

E.2 Engines and Fields

Inventor 2.0 introduces a new class of light-weight nodes called engines. Engines are mainly

used for animation and constraining one part of a scene in relation to other parts of the same

scene. An engine obtains input data from its �elds (if any), performs its function, and outputs

through its engine outputs (�elds capable of output only).

Fields are enhanced in version 2.0 to allow connections from other �elds (using the member

function connectFrom). A connection allows a �eld to be updated by another �eld it connects

from. The connection mechanism allows cycles and multiple outputs from a single �eld, but

not multiple inputs to a �eld. Connections are capable of converting between data types

automatically and they can be deactivated without being broken.

E.3 3-D Widgets and Inventor 2.0

The following list compares the 3-D Widget Programming Library and the above-mentioned

features in Inventor 2.0:

� The slot/attachment mechanism of widgets and the port/connection mechanism of widget

components in the 3-DWidget Programming Library are very similar to the �eld/connection

mechanism in Inventor 2.0. The �eld/connection mechanism in Inventor 2.0 is more gen-

eral (it works on all �elds in all nodes) and more consistent (there is no distinction between

connections and attachments as in the 3-D Widget Programming Library).

Relevant Enhancements in the New Release of Inventor 83

� General components of widgets are similar to Inventor engines, except that engines con-

nect to scene nodes while general components only connect to other components within

a widget.

� Both allow a motion hierarchy to be built within a widget or dragger. However, since

the 3-D Widget Programming Library decouples the coordinate frames (spaces) and the

interactive components (parts), visual feedbacks of several parts can be combined into

a single feedback space. Another advantage of the 3-D Widget Programming Library is

that it provides functions for transforming between coordinate frames; it is not clear how

Inventor 2.0 provide this capability.

Other comparisons, such as the ease of building new draggers (widgets) from existing drag-

gers (components) and the ease of building new draggers (parts) with new behaviors, cannot

be made until the book \The Inventor Toolmaker", also from Addison-Wesley, is available.

Due to the changes made to the manipulator classes, the 3-D Widget Programming Library

is not compatible with Inventor 2.0.

