
DEFORMABLE MODELS USING

DISPLACEMENT CONSTRAINTS

By

Larry Palazzi

B. Sc. (Computer Science) University of Windsor

B. Comm. University of Windsor

a thesis submitted in partial fulfillment of

the requirements for the degree of

Master of Science

in

the faculty of graduate studies

computer science

We accept this thesis as conforming

to the required standard

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

T H E   U N I V E R S I T Y   O F   B R I T I S H   C O L U M B I A

October 22, 1993

c
 Larry Palazzi, 1993



In presenting this thesis in partial ful�lment of the requirements for an advanced degree at the

University of British Columbia, I agree that the Library shall make it freely available for refer-

ence and study. I further agree that permission for extensive copying of this thesis for scholarly

purposes may be granted by the head of my department or by his or her representatives. It

is understood that copying or publication of this thesis for �nancial gain shall not be allowed

without my written permission.

Computer Science

The University of British Columbia

Department of Computer Science

2366 Main Mall

Vancouver, BC, Canada

V6T 1Z4

Date:



Abstract

This thesis explores a variation of a technique, called \displacement constraints" [19], used for

creating and animating deformable objects. It is a constraint-based technique that uncouples

the constraint forces from the external forces acting on an object, and solves a system of

geometric constraints at each timestep using an iterative technique. Displacement constraints

does not attempt to model real physics, but is a simple, e�cient technique that o�ers interactive

speeds for the modeling and animation of deformable objects.

The inability to respond globally to an external force is an inherent property of many

discrete/nodal formulations. A global response is sometimes only obtained through the prop-

agation of localized forces over multiple timesteps. Energy minimization techniques may also

achieve certain global e�ects, but at a higher computational cost. We introduce a multilevel

approach to force distribution to improve the global response of a deformable object. External

forces acting on an object are propagated through the di�erent levels of a hierarchical represen-

tation of the object. Animators can set the distribution of forces at each level, thus controlling

an object's local and global behaviour.

ii



Table of Contents

Abstract ii

Table of Contents iii

List of Figures v

Acknowledgements vii

1 Introduction 1

1.1 Historical Perspective : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Overview of Displacement Constraints : : : : : : : : : : : : : : : : : : : : : : : : 2

1.3 Thesis Layout : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2 Related Work 6

2.1 The Terzopoulos Regime : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2.2 Flexible Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

2.3 Articulated Figure Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

2.4 Other Deformable Models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

2.5 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

3 Displacement Constraints 15

3.1 The General Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

3.2 Point-to-Point Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.2.1 Computing the Translations : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.2.2 Computing the Rotations : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

3.3 Other Constraint Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

iii



3.4 Initial Con�guration Computation : : : : : : : : : : : : : : : : : : : : : : : : : : 22

3.5 Analysis of Displacement Constraints : : : : : : : : : : : : : : : : : : : : : : : : : 22

3.6 Limitations and Bene�ts : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

3.7 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 24

3.8 Local Nature of Displacement Constraints : : : : : : : : : : : : : : : : : : : : : : 29

4 Achieving Global Behaviour 32

4.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

4.2 Our Multilevel Solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

4.2.1 The Restriction Operator : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

4.2.2 The Prolongation Operator : : : : : : : : : : : : : : : : : : : : : : : : : : 40

4.3 Example Animations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

5 Conclusions 48

5.1 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

Appendices 50

A Numerical Integration of the Equations of Motion for Rigid Body Dynamics 50

B Quaternions 52

C Implementation Interface 54

Bibliography 62

iv



List of Figures

1.1 Connecting segments using point-to-point constraints : : : : : : : : : : : : : : : : 3

1.2 Multilevel representation of a chain object : : : : : : : : : : : : : : : : : : : : : : 4

3.1 Original Displacement Constraints Algorithm : : : : : : : : : : : : : : : : : : : : 16

3.2 Original Displacement Constraints Algorithm. : : : : : : : : : : : : : : : : : : : : 17

3.3 Solving the constraints iteratively : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.4 Using only translations can result in an overconstrained system : : : : : : : : : : 19

3.5 The torque produced by a force at a distance : : : : : : : : : : : : : : : : : : : : : 21

3.6 Varying the ratio between translation and rotation : : : : : : : : : : : : : : : : : 21

3.7 Linking lines segments to form a mesh surface. : : : : : : : : : : : : : : : : : : : 25

3.8 Displacement Constraints Solution Algorithm : : : : : : : : : : : : : : : : : : : : 26

3.9 User Interface Control Panels. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

3.10 One full cycle of Displacement Constraints, showing multiple iterations to satisfy

constraints. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

3.11 Applying an upward force to a corner of a mesh. : : : : : : : : : : : : : : : : : : 30

3.12 Applying an upward force to the center of a mesh. : : : : : : : : : : : : : : : : : 31

4.1 Multilevel breakdown of a 9�9 mesh : : : : : : : : : : : : : : : : : : : : : : : : : 33

4.2 DC Algorithm with Multilevel Solution : : : : : : : : : : : : : : : : : : : : : : : : 34

4.3 The C version of Displacement Constraints Algorithm with Multilevel Solution : 35

4.4 Adding two cross segments at coarsest level to enforce rigidity : : : : : : : : : : : 36

4.5 Restriction of a center mesh point. : : : : : : : : : : : : : : : : : : : : : : : : : : 37

4.6 Restriction Operator : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

4.7 Prolongation Operator using linear interpolation. : : : : : : : : : : : : : : : : : : 40

v



4.8 Prolongation Operator using o�set information. : : : : : : : : : : : : : : : : : : : 40

4.9 Local Behaviour - 100% of force acts upon the �nest level. : : : : : : : : : : : : : 43

4.10 Global Behaviour - 100% of force acts upon the coarsest level. : : : : : : : : : : : 43

4.11 Force distributed equally among levels. : : : : : : : : : : : : : : : : : : : : : : : : 43

4.12 Achieving global behaviour : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44

4.13 Flexible mesh bouncing o� 
oor. 100% of the force acts upon the �nest level. : : 46

4.14 Rigid mesh bouncing o� 
oor. 100% of the force acts upon the coarsest level. : : 46

4.15 An intermediate behaviour. The forces are distributed equally among levels. : : : 47

C.1 The Displacement Constraints Implementation Interface : : : : : : : : : : : : : : 54

C.2 Miscellaneous Viewing Controls : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55

C.3 The Main Panel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

C.4 Create Mesh Panel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

C.5 Various Picking and Selection Controls : : : : : : : : : : : : : : : : : : : : : : : : 58

C.6 The Show Information Panel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 58

C.7 The Play Panel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

C.8 Timestep, Error and Iteration Counters : : : : : : : : : : : : : : : : : : : : : : : 59

C.9 Rotation, Translation and Bounce Sliders : : : : : : : : : : : : : : : : : : : : : : 60

C.10 The Step Solve Panel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

C.11 The Edit Force Panel : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

vi



Acknowledgements

First and foremost, I am indebted to my supervisor, Dr. David Forsey, for the considerable

advice, guidance and support he has provided me throughout this entire thesis. I would like

to thank the second reader of this thesis, Dr. Uri Ascher, for his time and e�ort, and for his

insightful comments. I would like to thank Gene Lee for being the student reader of this thesis.

I would also like to thank Dr. Sebastian Reich for our many discussions on numerical analysis

and Dr. George Baciu for his comments on the displacement constraints paper.

I would like to thank my family and friends back in Ontario for their continued love and

encouragement, and for keeping in close touch during the past two years. I would also like

to thank all of the close friends I have made since my move to Vancouver, for their help and

support, and, of course, for all the good times.

Last but not least, I would like to thank my beautiful wife, Tammy, for her love, support

and understanding during our time apart and during the \crunch" times of completing this

thesis. Moving across the country, away from your family and friends to a new place where

you know almost no one, is a very di�cult experience, especially when your spouse is spending

most of his/her life at school! For these reasons, I dedicate this thesis to her.

vii



Chapter 1

Introduction

de-form

1: to spoil the form of

2a: to spoil the looks of: DISFIGURE <a face deformed by bitterness>

2b: to make hideous or monstrous

3: to alter the shape of by stress

- Webster

1.1 Historical Perspective

The quest for realism has been the major driving force in computer graphics research for many

years. The desire for realistic computer images and natural-looking computer animations has

stimulated great interest in computer graphics and has produced some very impressive results.

However, the real world is a complex beast; we often take for granted its intricacies. When one

considers the factors that are involved in even a simple action such as dropping a handkerchief,

one soon realizes that \there are more things in heaven and earth...than are dreamt of in our

philosophy."1. Needless to say, to simulate even a small subset of the real world on a computer

is an arduous task. There are signi�cantly many elements and parameters to consider when

formulating a physical simulation. The result is a complex mathematical system that must

be numerically integrated through time. Achieving real time interaction is di�cult, if not

impossible, with existing technologies. It is the speed of the system that is often crucial in the

development of an animation sequence.

Despite these facts, dynamic modeling has become a popular topic of research in computer

graphics. The main advantage of dynamic modeling is that animations can be created with

1Hamlet, Act I, Scene v

1



Chapter 1: Introduction 2

little or no user interaction. The animator sets up the initial con�guration of the system and the

dynamic equations govern the motions and behaviours of each object over time. The complex

behaviours created by these methods are very di�cult and time consuming to duplicate using

other methods such as script-based or key-frame animation.

However, dynamic modeling does not hold all the answers. In particular, due to the com-

plexity of the computation involved, implementations of such systems are very di�cult and time

consuming. Many methods are prone to numerical instability, making accurate solutions very

expensive to attain. As a result, interactive modeling and animation is not usually possible.

Although animations can be created with little or no user interaction, achieving a particular de-

sired behaviour (i.e. the inverse dynamics problem) can be very di�cult. De�ning the equations

and parameters to model a certain behaviour is nonintuitive and often unpredictable. These are

the main reasons why these techniques have not been used extensively in commercial animation

software. Animators want fast, easy to control methods for creating computer animations. If

this is the case, then we can simplify our model in order to avoid complex calculations and

provide more time e�cient algorithms.

We will explore displacement constraints, a technique that achieves \realistic" behaviours

without some of the overhead of complex dynamic systems. This technique, introduced by Gas-

cuel and Gascuel [19], is useful when some semblance of realism is desired, rather than accurate

physical behaviours. As an extension of their work, we will add the capability of controlling the

local/global behaviour of an object using a multilevel approach. Very few deformable models

support this feature. Usually, only a completely global behaviour or completely local behaviour

(with global behaviour achieved through the propagation of local interactions) is possible. We

will present a solution where local and global control are incorporated into a general uni�ed

model. The goal of our work is to develop a system that o�ers animators speed and control in

creating complex computer animations.

1.2 Overview of Displacement Constraints

Displacement constraints is an approach that approximates the complex systems of equations

normally encountered when modeling deformable or articulated objects. Objects are de�ned by



Chapter 1: Introduction 3

linking together primitive objects (such as points and line segments) by a system of geometric

constraints (point-to-point, point-to-line, etc.). The constraint system is solved independently

from the dynamic system. The dynamic phase treats each primitive object as a separate rigid

body, thus simplifying the system of dynamic equations, while heuristics are used to determine

how constraints imposed on an object are satis�ed. It is a general algorithm that can be

easily applied to systems with no corresponding physical model such as inverse kinematics and

behavioral systems [19]. This method also provides an automatic mechanism for determining

the initial con�guration (initial solution of the constraints) of each object.

To create an object, primitive (rigid) objects are linked together using constraints. For

example, the two line segments, s1 and s2 in �gure 1.1(a), are joined together by a single point-

to-point constraint. Several point-to-point constraints are used to de�ne a chain-like object as

shown in �gure 1.1(b). Many such segments and constraints are combined to create complex

objects such as meshes or lattices of arbitrary topology.

(a) (b)

s2s1

Figure 1.1: Connecting segments using point-to-point constraints

The idea behind displacement constraints is to uncouple the free movement of an object

from the action of the constraints acting on an object's sub-components. Each sub-component

is treated as an independent rigid object during the dynamic step. The external forces acting on

each sub-component are calculated and the laws of motion are applied to each sub-component

giving them new positions and orientations. Then, the sub-components are linked back to-

gether by enforcing the constraints acting on the object. The constraints are satis�ed using

iterative adjustments to the positions and orientations of each sub-component. This represents

a simpli�ed dynamic model that avoids complex computations that arise in other techniques,



Chapter 1: Introduction 4

such as solving a global system of coupled di�erential equations as in [9]. By using this sim-

pli�ed model, some physical credibility is sacri�ced. However, Gascuel and Gascuel posit that

su�cient physical credibility is maintained when �rst order momenta is conserved2 [19].

One aspect of this technique, and of any physically accurate technique involving a discretized

model, is the reliance on the local calculation of forces. With such a representation, the e�ect

of an external force is local. Displacement constraints treats the sub-components of each object

independent of the object as a whole. A force a�ects an object locally at a sub-component. Any

overall global behaviour depends on the propagation of the local e�ect through its neighbours

to the boundary of the object. There is no notion of assigning an object a global attribute,

such as a particular angular velocity to make the object spin. This presents a problem if we

want to animate an object that displays a more global behaviour, such as a sti� piece of paper

falling to the ground, or being blown by the wind.

To solve this problem, we introduce a multilevel solution to the distribution of forces. Each

object is represented as a composition of several levels of complexity. For example, in �gure 1.2,

Level 2

Level 0

Level 1

 

 

Figure 1.2: Multilevel representation of a chain object

2Displacement constraints does not actually preserve �rst order linear momenta as will be noted in section 3.5



Chapter 1: Introduction 5

Level 0 shows a chain-like object de�ned by four point-to-point constraints on �ve line seg-

ments. Level 1 shows the next coarsest level, and Level 2 shows the coarsest level as a rigid

line segment. With such a representation of an object, the local and global behaviour of the

object can be controlled by the animator. This is the main point of this thesis. In brief, if global

behaviour is desired, then the force is applied at the coarsest grid (Level 2 in �gure 1.2). For

a more local behaviour, forces are applied at the �ner grids (Level 0 in �gure 1.2). By varying

the proportion of the force applied at each level of an object, the animator can tune the lo-

cal/global behaviour of that object. This gives animators greater control over the local/global

behaviour of an object.

1.3 Thesis Layout

Previous research on deformable and 
exible modeling will be presented in chapter 2. Dis-

placement constraints will be discussed in detail in chapter 3, along with the implementation

details and examples. The multilevel solution for local/global control will be presented in chap-

ter 4. The conclusions and future work will be presented in chapter 5. The laws of motion are

brie
y outlined in Appendix A. Quaternions are discussed in Appendix B. The interface of the

implementation is described in Appendix C.



Chapter 2

Related Work

As far as the laws of mathematics refer to reality, they are not certain, and as far

as they are certain, they do not refer to reality.

- Albert Einstein

Deformable modeling for animation is a relatively new area of research and very interesting

and promising results have already been achieved. This chapter serves to present a general

survey of this body of research. Much of this research involves physically-based techniques

which do not directly relate to the topic of this thesis. However, in the interest of completeness,

we wish to clarify the role that displacement constraints plays in the arena of deformable model

research.

Demetri Terzopoulos and his collaborators have published many results on this topic and

will, therefore, have an entire section devoted to their work. Other signi�cant results in this

area of research will also be presented. This will be followed by a �nal discussion.

2.1 The Terzopoulos Regime

In 1987, Demetri Terzopoulos et al. [45] introduced elastically deformable models to the com-

puter graphics community. They used simpli�ed elasticity theory to develop deformable models

of elastic curves, surfaces and solids. Physical properties, such as tension and rigidity, are in-

corporated into the model to accommodate static modeling of objects such as rubber, cloth,

paper and 
exible metals. Additional properties, such as mass and damping, allow for the

dynamic simulation of these models. To model elastic objects, they use potential energies of

deformation to de�ne the internal elastic forces of an object as a function of the distance from

the rest shape. When an object is at a rest position, its potential energy is zero. As the object

6



Chapter 2: Related Work 7

is deformed from its rest state (due to external forces), the potential energy grows larger. When

external forces no longer act on the object, the internal energy forces return the object to its

rest state. The dynamics of a deformable body are simulated by numerically integrating the

ordinary di�erential equations through time. This system of PDE's is converted to an algebraic

linear system by a numerical step-by-step procedure. These linear systems are solved using

direct methods (Choleski decomposition) or relaxation methods (Gauss-Seidel). The algorithm

handles collision detection by creating a �eld of potential energy around each object. Self-

intersection is also addressed by surrounding the surface of each object with a self-repulsive

collision force. The types of deformations possible with this model are mainly local in nature.

Some global e�ects result from the minimization of the deformable energies.

This technique is based on nonlinear elasticity. Although this is in principle the most ac-

curate way to characterize the behaviour of certain elastic phenomena, it poses some practical

problems. First, the discrete equations become increasingly ill-conditioned as an object is made

more rigid, or as the rest shape of an object is made more complex. Secondly, to integrate non-

linear, time-varying partial di�erential equations and to deal with the probable nonuniqueness

of their solutions requires relatively complex algorithms. Consequently, the computational cost

of this technique is very high.

To solve these problems, Terzopoulos and Witkin [47] develop a hybrid formulation for de-

formable models. They decompose an object into a reference component and a displacement

component. The reference component moves over time according to the laws of rigid body dy-

namics. Linear elasticity governs the behaviour of the displacement component (this obliterates

any pretense to physical validity). By treating rigid body dynamics explicitly in the reference

component, the resulting discrete equations remain well-conditioned as the model is made more

rigid. However, this model does not behave well for highly elastic models, such as stretchy

rubber sheets. This is due to the simple connection between the reference and displacement

components through linear elastic forces. This model supports both local and global behaviours.

The displacement component models local behaviour (deformations), while the reference com-

ponent models global behaviour. Although this technique requires less computational e�ort

than in [45], it is still computationally expensive and it is not interactive. Terzopoulos and



Chapter 2: Related Work 8

Fleischer [43] extend this work to model inelastic behaviour such as visco elasticity, plasticity

and fracture.

In 1989, Terzopoulos et al. [46] further extend their previous work to include the simulation

of thermal phenomena. The shape and dynamics of objects are not only governed by the

Lagrange equations of nonrigid motion, as in [45, 47], but also by the partial di�erential heat

equation. As in their previous work, objects behave elastically in their environment. But when

an object comes into contact with a \hot" object, it conducts heat into its interior. The objects

temperature rises and it becomes softer and more pliable. Eventually, when the temperature

exceeds the melting point, the object melts into a simple, molecular liquid. They use molecular

dynamics to model the liquid state. Fluid particles interact through long range attraction

forces and short range repulsion forces between pairs of particles according to potentials of

the Lennard-Jones type. They also incorporate friction into their model. This work could be

extended to model inelastic behaviour (thermoplasticity), gaseous phenomena and radiative

heat transfer.

In 1991, Terzopoulos and Metaxas [44] introduced deformable superquadrics as a tool for

transforming geometric primitives and deformations into dynamic models. This is a hybrid

model, combining parameterized superquadric ellipsoids (for global control) with free-form

membrane splines (for local control). The global deformational degrees of freedom of the param-

eterized component control the global behaviour and attributes of the object. Local behaviour

and surface detail are captured by the local deformation parameters of the underlying spline-

based model. It is a dynamic deformable model whose behaviour is governed by the laws of

rigid and nonrigid dynamics. Using simpli�ed equations of motion, they achieved interactive

rates on a graphics workstation. This model supports both local and global deformations. The

global deformations, however, are restricted to the six degrees of freedom of the superellipsoids.

Their main application of this technique is the approximation of surfaces from 2D image data

and 3D range data. The superellipsoids capture the global shape features in an image, and the

local spline-based model captures the local detail.

The work described thus far has concentrated on developing techniques for creating natural

\looking" computer animations:



Chapter 2: Related Work 9

We make no particular attempt to model speci�c materials accurately. Usually the
general behaviour of a material will defy accurate mathematical description...Our
goal is to develop physically-based models with associated procedures that can be
utilized to create realistic animations...Hence, deformable models are convenient for
computer graphics applications, where a keen concern with computational tractabil-
ity motivates mathematical abstraction and expediency. [42]

Physical equations and parameters were incorporated into the models to achieve a desired

level of realism. However, considerable simpli�cations of the dynamic equations were made to

improve e�ciency. Metaxas and Terzopoulos [34, 35] present an extension to [44], which they

claim is a more physically valid approach. They use Lagrangian mechanics, nonlinear Kalman

�ltering theory to derive di�erential equations of motion that govern the dynamics of the models

which are solved using the �nite element method. This model supports both local and global

deformations in a similar manner as in [44]. They extend this work to include parameterized

global deformations such as tapers and bends. They also provide a mechanism for connecting

rigid and/or nonrigid objects together via point-to-point constraints to create more complex

models. Constraint forces are integrated into the equations of motion as in [9], but they add

the capability of linking nonrigid parts. They also achieved interaction rates of several frames

per second (on a SGI 4D-35TG).

This concludes the extensive body of research on deformable models by Terzopoulos et al.

This work has been viewed as the \state-of-the-art" in computer graphics for physically-based

deformable modeling and animation. They achieved very remarkable results and they continue

to drive forward this area of research. Now we will present other results in the area of deformable

model research.

2.2 Flexible Models

In 1988, Platt and Barr [38] use mathematical constraint methods based on physical constraint

techniques and optimization theory to model and animate constrained 
exible solids. They use

reaction constraints to guide a 
exible solid along a path and to prevent 
exible solids from

penetrating other polygonal objects. A reaction constraint is a procedure that determines the

net external force acting at a point, and calculates the force required to satisfy a particular



Chapter 2: Related Work 10

constraint. This calculated reaction force cancels out any other forces that would otherwise

violate a constraint. They require no additional di�erential equations but they are limited

in scope. To handle complex, multiple constraints needed for 
exible models, they use aug-

mented Lagrangian constraints, a general technique for constrained optimization. They also

allow for the inclusion of physical properties of 
exible solids such as incompressibility (volume

preservation) and moldability. This technique shows impressive results but is computationally

expensive. As with most energy minimization methods, the model shows some global e�ects.

However, mainly local behaviours are modeled with this technique.

More recently, Bara� and Witkin[7] present a dynamic model for 
exible bodies where de-

formations take the form of global deformations of an object's rest shape. Objects are deformed

by parametric \space warps" to all the points on the object. This limits the scope of possible

deformations to the scope of the deformation function used. By restricting the possible defor-

mations to those de�ned by a global parametric deformation, the complexity of the simulation

is reduced. Also, because of the global nature of the shape parameters, the problems with sti�-

ness, which are common in nodal formulations, do not arise. Non-penetration constraints are

also incorporated into the model to accommodate collision detection/response and continuous

contact. These constraints are maintained by analytically calculated contact forces. Multiple

contact points are also supported. Using this technique, 
exible objects may only exhibit global

behaviours. Control of local behaviour is not addressed.

2.3 Articulated Figure Models

The following papers relate to articulated �gure modeling and animation. There has been much

research in this area [1, 2, 4, 5, 11, 12, 13, 14, 22, 23, 29, 30, 31, 36, 51, 52, 53, 54, 56, 57],

and also in the area of animation and control of robotic structures [15, 16, 17, 18, 27, 32].

We include the following papers in this section since they directly relate to the displacement

constraints technique, which was originally intended for articulated �gure animation. These

papers address similar problems, but present di�erent solutions.

In 1988, Barzel and Barr [9] present a modeling system for constraint-based dynamics.

Rigid primitive objects are linked together by various geometric constraint mechanisms such as



Chapter 2: Related Work 11

\point-to-point" and \point-to-nail" constraints. Using inverse dynamics, the constraint forces

necessary to maintain these constraints during an animation are calculated and incorporated

into the dynamic equations of motion. These coupled di�erential equations are numerically

integrated through time. This allows the animated object to \assemble itself" while moving.

Each rigid component follows the laws of rigid body dynamics and displays physically realistic

behaviour during an animation. This approach is similar to displacement constraints in that it

links together rigid primitive objects to form more complex objects that can then be animated

dynamically. However, here the constraint forces are explicitly calculated and accounted for in

the equations of motion. As with displacement constraints, forces act locally.

In 1990, van Overveld [49] presents a simple approach for 2D articulated �gure animation,

and later extends the model to 3D [50]. As with [9], and also with displacement constraints,

rigid objects are connected together by geometric constraints to form a more complex object.

This work di�ers from [9] in that it makes the assumption that the constraint forces and the

external forces may be uncoupled. Displacement constraints also makes this assumption, but

the manner in which the constraints are satis�ed is quite di�erent. With the method in [50],

the individual rigid objects are �rst animated while neglecting the constraint forces. This

eliminates the need for solving coupled systems of di�erential equations during the simulation.

Then the constraint forces are calculated and used to satisfy the constraints during an iterative

process. The purpose of this iterative process is to estimate the correction necessary to satisfy

the constraints based on the calculated constraint forces. This process provides fast and stable

convergence. It is not a physically correct model, but it provides an e�cient method for creating

complex animations. Also, behaviours modeled using this method are mainly local in nature.

2.4 Other Deformable Models

The following three papers present slightly di�erent approaches to deformable models. Using

particle systems and implicit surfaces, they develop unique methods that have produced very

interesting results. We include these works to complete our survey on deformable models.

In 1992, Szeliski and Tonnesen [41] present an oriented particle system for modeling elastic

surfaces. A surface is approximated by a set of particles, each of which is given a position as well



Chapter 2: Related Work 12

as an orientation. The inter-particle spacing is controlled by long range attraction forces and

short range repulsion forces. New interaction potentials are devised to control the inter-particle

orientation. The oriented particles tend to form locally planar or locally spherical arrangements.

One its main advantages is that the topology of the surface is dynamic. Surfaces can be split,

joined, or extended without the need for re-parameterization or manual intervention. The

model can also be used to automatically approximate a surface from sparse 3D datasets, even

when the topology of the surface is unknown. Both open and closed surfaces, either with or

without holes, can be reconstructed. However, the �tted surface tends to appear \blobby" even

if the original dataset possesses sharp features. The main drawback of this technique is the

lack of precise control over the analytic (mathematical) representation of the surface. Particle-

based surfaces also require more computation to simulate their dynamics than other parametric

formulations such as spline-based surfaces. Global response of a surface to an external force is

also not included in the model.

House et al. [28] also use particle systems to model 
exible materials. They demonstrate

their technique using a particle model of cloth. The constraints and interactions that occur

at the thread level, such as thread collision, thread stretching, thread bending and thread

trellising, are represented by energy functions. Their algorithm has three phases. First, the

dynamic phase determines the forces acting on each particle and moves the particles according

to the Newtonian equations of motion (for rigid bodies). Each particle is treated individually,

ignoring all interparticle forces. Interparticle collisions and collisions between particles and

other geometric models in the scene are accounted for during this phase. The second phase

enforces the interparticle constraints by moving the particle system into a local energy minimum

using a stochastic optimization technique called stochastic gradient descent. Collisions between

particles and geometric objects are accounted for in this phase as well using high energy penalties

when a particle penetrates an object. Finally, the velocities of each particle are adjusted to

account for their new positions. This algorithm is very similar to the general algorithm of

displacement constraints. The main di�erences are the geometric primitives used and the

constraint solving algorithm (phase 2). As with displacement constraints, global behaviour is

di�cult to achieve. This is also a very computation intensive technique. One example simulation



Chapter 2: Related Work 13

required three CPU-days on an IBM RS6000 class workstation. Even though their claim that

this is a \physically-based" model still remains to be shown, very convincing simulations of

cloth were produced. However, other less computationally expensive cloth models exist that

achieve even greater realism.

More recently, Gascuel [20] presents a model based on iso-surfaces of potential �elds. An

object is modeled as a skeleton (composed of rigid components that follow the laws of rigid

dynamics) covered by a deformable skin layer. The skin layer is an isopotential implicit surface

generated by the underlying skeleton. As the skeleton moves, the skin deforms with it. It is

a continuous surface model that accommodates geometric and physical descriptions of objects.

It also generates and maintains exact contact surfaces during collisions between 
exible solids.

This facilitates precise calculation of reaction forces. An object's deformation is determined

from the contact surface generated during a collision. Deformations on the contact surface are

used to compute the reaction forces. The model handles sudden collisions, lasting collisions and

equilibrium situations. It also provides an elegant solution to the multiple collision problem

that is independent of the order in which the collisions occur. Interactive modeling rates

are possible, using a polygonal model of the implicit surface, and realistic animations can

be created. However, this approach is not physically accurate, and it is restricted to locally

deformable behaviours only. Global behaviour is achieved only through the propagation of local

interactions.



Chapter 2: Related Work 14

2.5 Discussion

Many techniques for modeling deformable objects have been presented. Many use mathematical

models based on physics to achieve certain levels of realism. Others sacri�ce physical validity

in return for more e�cient algorithms. Displacement constraints belongs to the latter body

of research. It is very similar to the geometric formulation of Barzel and Barr [9] and to the

dynamic formulation of van Overveld [49, 50] and will be described in detail in the following

chapter. Few of the techniques presented provide a means for controlling the local and global

behaviour of a deformable body. Only one or the other is usually provided. The methods

in [34, 35, 44] facilitate both local and global control, but the global deformations are limited

by the parameters of the global formulation. We extend the displacement constraints technique

to accommodate a more general solution for local/global control. This will be presented in

chapter 4.



Chapter 3

Displacement Constraints

A thing may look specious in theory, and yet be ruinous in practice; a thing may

look evil in theory, and yet be in practice excellent.

- Edmund Burke

Displacement constraints is a technique introduced by Gascuel and Gascuel [19] for con-

structing and animating articulated �gures. According to the authors, it is a simpli�ed dynamic

modeling technique that takes physical parameters into account and preserves �rst order linear

momentum (this point will be discussed later in section 3.5). Constraint forces are not explic-

itly calculated, but are formulated as geometric constraints that are solved using an iterative

scheme. Avoiding the explicit calculation of constraint forces and solving for the constraints

separately is more e�cient than using coupled dynamic systems as in [9, 49, 50]. By coupling

the constraint forces with the external forces, dynamic computations based on the simulation

of Newtonian physics become both conceptually complex and computationally expensive.

Complex objects are de�ned by connecting primitive rigid objects together. Each primitive

object has its own mass and tensor of inertia. These primitive objects are linked together by

geometric constraints to form the main object. During the dynamic step of the animation, the

primitive objects are treated independently and react to external forces, achieving new positions

and orientations. Then, the constraints are enforced by adjusting the position and orientation

of each primitive object and iterating until the constraints are satis�ed.

Introduced originally for the modeling and animation of articulated �gures, we apply the

technique to the modeling of deformable surfaces as well. We also add control features, giving

animators greater control over the local/global behaviour of an object. This is presented in

chapter 4.

15



Chapter 3: Displacement Constraints 16

3.1 The General Algorithm

Given a set of objects, each of which is de�ned by several primitive objects, the new positions

and orientations of each object are computed using the algorithm in �gure 3.1. Step 1

For each time step:

1. Calculate all external forces.

2. Solve for the dynamics.

3. Solve the constraint system.

4. Update the linear and angular velocities.

Figure 3.1: Original Displacement Constraints Algorithm

determines all external forces (gravity, contact forces, user-applied forces, etc.) acting on each

primitive object. Step 2 involves integrating through time the equations of motion for each

primitive object (see Appendix A). Any external forces, other than constraint forces, are taken

into consideration here. Each primitive object, acting independently from the other objects,

reacts to these external forces to obtain a new position and orientation.

In step 3, the constraints are activated by iteratively displacing (rotating and translating)

each primitive object until the constraints are met (within a set threshold), or until the maxi-

mum number of iterations is reached. This solution technique is purely geometric, rather than

numerical and it is easy to implement and understand. Due to its geometric nature, it is also

easy to visualize and debug. The algorithm will be described in greater detail in the following

section.

Step 4 maintains the linear and angular velocities of each primitive object accounting for

their new positions and orientations obtained in the previous step. The original positions and

orientations prior to the dynamic step (step 2) are saved. After the constraints are solved, the

original and �nal positions/orientations are used to update the e�ective linear/angular velocities

achieved during the timestep.



Chapter 3: Displacement Constraints 17

(a) (b)

(d)(c)

Figure 3.2: Original Displacement Constraints Algorithm.

The algorithm is also illustrated in �gure 3.2. Figure 3.2(a) shows the initial con�guration

of a mesh created by linking line segments with point-to-point constraints. An upward force

(shown as vertical lines) is applied to a corner of the mesh in �gure 3.2(b). Notice that a portion

of the force is also applied to the center of the segments at that mesh point. This is to give

the segments linear acceleration, as well as angular acceleration. The percentage of the force

applied to the center of a segment is under the control of the animator. Figure 3.2(c) shows the

mesh after the dynamic step. Only the segments at that mesh point are a�ected. The e�ect of

the force during the dynamic step is exaggerated to demonstrate the algorithm. Figure 3.2(d)

shows the �nal mesh after the constraint solving step. These four �gures represent one complete

timestep of the animation.



Chapter 3: Displacement Constraints 18

3.2 Point-to-Point Constraints

A point-to-point constraint de�nes a geometric relationship between two solids, S1 and S2 with

centers of mass ~G1 and ~G2, respectively (see �gure 3.3(a)). It says that a particular point on

each object ( ~P1 on S1 and ~P2 on S2) must coincide at all times (here we assume all points are

de�ned as three dimensional vectors in global coordinates). When solving the constraints, if

a constraint is violated, we must compute a translation and rotation for each primitive object

that, when applied to each object, will satisfy the constraint. Small translations and rotations

(a)

(b)

(c)

G2G1

S1 S2
P1 P2

Figure 3.3: Solving the constraints iteratively

are applied to each primitive object iteratively until the constraints are met. As illustrated in

�gures 3.3(b) and 3.3(c), the objects (rigid line segments) are translated and rotated until the

constraint is met.

3.2.1 Computing the Translations

When solving the constraints, Gascuel and Gascuel attempt to conserve �rst order linear mo-

mentum by using the equation:

m1 ~v1 +m2 ~v2 = constant ;



Chapter 3: Displacement Constraints 19

where the mi's are the masses and the ~vi's are the velocities of the primitive objects being

constrained. Let
�!

�G1 and
�!

�G2 be the translation vectors we wish to solve for (the linear

displacement of center of mass). To conserve linear momentum we must have:

m1

�!

�G1 +m2

�!

�G2= 0 : (3:1)

The point-to-point constraint is de�ned as:

P1+
�!

�G1= P2+
�!

�G2 : (3:2)

Solving equations 3.1 and 3.2, we obtain:

�!

�G1 =
m2

m1 +m2

�!

P1P2 (3.3)

�!

�G2 =
m1

m1 +m2

�!

P2P1 : (3.4)

So, the vectors
�!

P1P2 and
�!

P2P1 represent the total distance between points P1 and P2.

The fractions, m2

m1+m2

, and m1

m1+m2

are the amount that each object must translate along these

distance vectors. The translations are being weighted by the masses of each primitive object.

Intuitively, this means that a heavier object will move less than a lighter object.

3.2.2 Computing the Rotations

Solving a constraint with translations alone will result in very unrealistic behaviours. For

a single constraint, a solution is always possible using only translations. However, for a more

s1

s3s2

d

Figure 3.4: Using only translations can result in an overconstrained system

complex constraint system, rotations must also be applied. For example, in �gure 3.4, segments

s1, s2 and s3 are all of equal length and are intended to form an equilateral triangle by three



Chapter 3: Displacement Constraints 20

point-to-point constraints. However, using translations only, all three constraints can never be

satis�ed. Meeting the constraint between segment s2 and s3 (bringing the distance d to zero)

will violate the other two constraints. Therefore, we must also use rotations.

Let
�!

�01 and
�!

�02 be the small rotation vectors used to adjust the orientations of the

primitive objects (segments s1 and s2 in �gure 3.3, for example). We determine the ratio

between rotation and translation by simulating the action of a piece of rubber of sti�ness k

pulling the two points together (points ~P1 and ~P2 in �gure 3.3). The forces acting on each point

would be:

~F1 = � ~F2 = k
�!

P1P2 :

The translations produced by these forces during time interval �t are:

�!

�G1 =
k�t2

2m1

�!

P1P2 (3.5)

�!

�G2 =
k�t2

2m2

�!

P2P1 : (3.6)

To obtain the same equations as in equation 3.3 and 3.4, we take:

k =
m1m2

m1 +m2

2

�t2
: (3:7)

The rotations we need are just those produced by the same forces, ~F1 and ~F2 during �t.

Applying a force, ~F to a point ~P on an object with center of mass ~G, produces the torque,

~� =
�!

GP � ~F :

The torque, � , is a rotation vector whose direction is the axis of rotation, and whose magnitude

is the angle of rotation which we measure in radians (see �gure 3.5).

So, the rotations are de�ned as:

�!

�01 = J�11

k�t2

2
(
�!

G1P1 �
�!

P1P2) =
m1m2

m1 +m2
J�11 (

�!

G1P1 �
�!

P1P2) (3.8)

�!

�02 = J�12

k�t2

2
(
�!

G2P2 �
�!

P2P1) =
m1m2

m1 +m2
J�12 (

�!

G2P2 �
�!

P2P1) (3.9)

where J is the Jacobian, or inertia tensor matrix that de�nes the spatial mass distribution of

the object.



Chapter 3: Displacement Constraints 21

P

F

G

τ

Figure 3.5: The torque produced by a force at a distance

To reduce complexity, and in so doing reduce physical accuracy even further, the values

m1m2

m1+m2

J�11 and m1m2

m1+m2

J�12 can be replaced by parameters set by the user. These parameters

control the amount of rotation applied to each primitive object during the constraint solving

iterations. Another parameter 
, 0 <= 
 <= 1, can be set to control the amount of translation.

The user can control these parameters to produce a di�erent behaviour. When 
 = 1 there is

no rotation, only translation. This will produce a more rigid behaviour (�gure 3.6(b)). When


 = 0 there is no translation, only rotation. This will produce a more 
exible behaviour

(�gure 3.6(c)). This is because a low translation factor forces the primitive object to translate

less during the iterations, giving it more time to rotate. However, in practice, 
 must be greater

than zero for the constraint solver to converge to a solution (i.e. in general, the constraints will

not be solved using only rotations). When the constraints cannot be satis�ed in the current

number of iterations, then the animator is 
agged.

(c) high rotation, low translation
 

 

(b) high translation, low rotation(a) after dynamic step

Figure 3.6: Varying the ratio between translation and rotation



Chapter 3: Displacement Constraints 22

3.3 Other Constraint Types

Gascuel and Gascuel [19] also describe how to incorporate other constraint types, such as

point-to-segment constraints, angular constraints and twist constraints. Additional constraint

types, such as point-to-curve, point-to-surface and point-in-sphere are other possible variations.

Length constraints, where the length of a segment lies in a certain range, may also be useful.

These constraints can be used to control the degrees of freedom at each link (or joint) in the

solid, giving the animator even greater control over the behaviour of each object.

3.4 Initial Configuration Computation

Computing the initial con�guration of a constrained system can be nontrivial. Fortunately,

displacement constraints provides an automatic method of calculating an initial con�guration

of the constrained objects: simply iterate through the usual constraint loop (step 3 in �gure 3.1)

until the constraints are satis�ed, except here we do not update the linear and angular velocities

of the objects (step 4 is not executed). This gives us the initial position and orientation of each

object in the system.

3.5 Analysis of Displacement Constraints

Gascuel and Gascuel [19] claim that displacement constraints possesses certain physical prop-

erties. Although they do not discuss the degree to which their technique models the real world,

we will analyze this claim from a \real physics" point of view.

Equation 3.1 is not a proper representation of the law of conservation of momentum because

the
�!

�Gi's are not velocities! They are translation vectors. This induces an early linearization

of the moment balance equations, which does not yield a correct formulation from a dynamics

perspective. Also, equations 3.3 and 3.4 enforce the idea that heavier objects move less than

lighter objects, which does not have any physical basis.

The idea that \the proportion between rotation and translation in the motion of a solid

must depend on the ratio between tensor of inertia and mass" is not correct. First, such a ratio

does not exist. The tensor of inertia is a spatial quantity measuring the distribution of mass in



Chapter 3: Displacement Constraints 23

a body, whereas the mass is a scalar quantity. Secondly, how this presumed ratio relates to the

proportion between translation and rotation velocities is very unclear [3].

Gascuel and Gascuel also state that the process of obtaining the corrections iteratively

is equivalent to adding constraint forces to meet the constraints. Their implied de�nition of

\equivalent" is unclear. There is no reason to assume that, given two articulated solids subjected

to external forces, these two approaches (uncoupled vs coupled) produce identical geometric

models (position and orientations of the solids) at the next time step. In any case, the two

approaches to solving the constraints are not equivalent. Discoupling the constraint forces from

the free motion of the objects loses considerable physical credibility. The constraint forces

are not explicitly calculated and are not incorporated into the dynamic equations. They are

approximated by iterative tunings in the displacements on the constrained objects. This does

not have any physical basis.

In short, this method is not physically valid from a physicist's or engineer's point of view and

the claim that this method preserves �rst order linear momentum is a false one. Some physical

parameters are taken into account, but the constraint equations derived do not accurately

re
ect a real dynamic process. This may seem like a harsh criticism, but it is not. We wish

to eliminate any ambiguity regarding the physical validity of this technique and emphasize

the point that even though this technique lacks physical accuracy, complex behaviours can be

modeled. Displacement constraints serves as a means to creating computer animations that are

visually comparable to more \physically-based" methods, but without all of the overhead.

3.6 Limitations and Benefits

An inherent limitation of displacement constraints is that objects only react locally. This stems

from the local e�ect of external forces and the local interactions of the constraints. Only

interactions between primitive objects are considered. A solid is not treated as a whole during

the constraint processing, nor during the dynamic phase. The only global behaviour attained

is due to the propagation of external forces throughout an object.

Another limitation is the lack of physical validity as mentioned in the previous section. This

restricts displacement constraints to applications where speed, rather than accurate physics, is



Chapter 3: Displacement Constraints 24

required (i.e. applications such as commercial or artistic animation). A general problem with

dynamic animation techniques is that animators have little or no control over the behaviour of

an object over time. Once the initial conditions are speci�ed, the behaviour of each object is

governed by the dynamic equations. This is also true for displacement constraints.

In addition, displacement constraints can become time ine�cient for more complex objects.

By complex, we mean an object that is composed of many primitive objects whose connectivity

is nontrivial. If many constraints are acting on a set of primitive objects, convergence to a

solution deteriorates during the iterative constraint solving phase. As we restrict the motion

of the primitive objects by adding more constraints to them, the solution space is reduced.

Finding a global solution that satis�es all constraints becomes a more di�cult task.

However, as mentioned earlier, displacement constraints has several bene�ts. It is a tech-

nique for solving geometrically constrained systems that is easy to understand and implement.

Most importantly, especially for animators, interactive rates for modeling and animation are

possible. Our purpose of using it here is to show how an algorithm with no explicit control

over global deformation, can be augmented to provide such control with little change to the

underlying formulation.

3.7 Implementation

Displacement constraints was originally designed for modeling and animating articulated �g-

ures. Using rigid line segments as our modeling primitive, we apply the method to the modeling

of surfaces (2D meshes in 3D space). This is a natural extension in that it emphasizes the gen-

erality of displacement constraints as a technique for solving geometric constraints. Figure 3.7

shows a mesh created by linking together rigid line segments with point-to-point constraints.

Each line segment is of equal length and the error is set to 0.4% of the length of a line segment.

The error represents the maximum distance between any two constrained endpoints.

The algorithm outlined in �gure 3.1 is used to animate the mesh through time. Each grid

point of the mesh maintains a list of the segments and endpoints connected at that grid point.

As each grid point is processed during the constraint solving phase, these segment/endpoint

lists are traversed, processing each constraint sequentially. Figure 3.8 outlines the solution



Chapter 3: Displacement Constraints 25

(a) (b)

Figure 3.7: Linking lines segments to form a mesh surface.

algorithm (step 3 in �gure 3.1) for a mesh object1. First, the initial error is calculated. The

error returned from find error(k) is the maximum distance between any two constrained

endpoints. This is calculated initially to determine whether the constraint iterations need to be

executed. The while loop represents one iteration of the constraint solving phase. The global

parameters, MIN ERROR and MAX ITERATIONS are controlled by the animator (see �gure 3.9(a)).

At each iteration, the entire system of constraints is processed. For each constraint, a rota-

tion and translation is applied to each constrained segment. The amount of the rotation and

translation is also controlled by the animator (see �gure 3.9(b)). The resulting error is then

calculated. If the error is less than the minimum error (MIN ERROR), or if the maximum number

of iterations (MAX ITERATIONS) is exceeded, then the iteration process halts and the resulting

mesh is returned. To help suppress any artifacts that may be caused by the order in which the

constraints are processed, a red/black ordering could be used when traversing the constraints.

With such as ordering, every other mesh point is processed during one pass over the mesh,

then the remaining mesh points are processed during the second pass. This still has an implied

ordering, but it lessens the dependency imposed by the sequential ordering.

Figure 3.10 demonstrates the iterative solution using the mesh in �gure 3.2. The original

mesh is shown in �gure 3.10(a) (corresponds to �gure 3.2(b)). A force (shown as lines) is applied

1Here, k=0 since we are not using the multilevel algorithm.



Chapter 3: Displacement Constraints 26

void solve_constraints(int k) {

/*k is the level number*/

int num_itns ; /*to count the number of iterations*/

double error ; /*the error in level k*/

num_itns = 0 ; /*initialize iteration counter*/

error = find_error(k) ; /*find initial error in level k*/

while ((error > MIN_ERROR) && (num_itns <= MAX_ITERATIONS))

{ num_itns++ ; /*increment iteration counter*/

For each grid point in level k do

{Process each pt-to-pt constraint at the current grid point.}

error = find_error(k) ; /*find the error in level k */

}

}

Figure 3.8: Displacement Constraints Solution Algorithm

to a corner of the mesh. Figure 3.10(b) shows the mesh after the dynamic step (corresponds

to �gure 3.2(c)). Figures 3.10(c) to 3.10(f) show the iterative solutions of the mesh. The �nal

mesh in �gure 3.10(f) corresponds to �gure 3.2(d).

Figure 3.9 shows some of the various control panels available to the animator. In �g-

ure 3.9(a), the timestep (in seconds), the maximum number of iterations for the solution al-

gorithm, and the minimum error are manipulated by the animator. The rotation factor in

�gure 3.9(b) represents the amount of rotation (in radians) applied to a segment during one

constraint solving iteration. The translation factor is used to determine the amount of trans-

lation applied to each segment in a point-to-point constraint. It represents the percentage of

the distance between two constrained points. Each constrained endpoint is translated by this

amount during one constraint solving iteration.



Chapter 3: Displacement Constraints 27

(a)

(b)

Figure 3.9: User Interface Control Panels.



Chapter 3: Displacement Constraints 28

(c)

(f)

(b)

(e)

(a)

(d)

Figure 3.10: One full cycle of Displacement Constraints, showing multiple iterations to satisfy

constraints.



Chapter 3: Displacement Constraints 29

3.8 Local Nature of Displacement Constraints

One important characteristic of displacement constraints is the locality of the e�ect of an

external force. This is demonstrated in �gures 3.11 and 3.12. An upward force is applied to a

corner of the mesh in �gure 3.11, and to the center of the mesh in �gure 3.12. In both cases,

the global e�ect of the forces is minimal. Only local responses are observed. Global responses

are limited to those attained by the propagation of local interactions. The dynamics and

constraints act on the sub-components of each primitive object, not on the object as a whole.

Consequently, an object is restricted to local responses to external forces. Using displacement

constraints alone, we cannot assign an object global properties. This does not pose a problem

if the animator requires an object to exhibit only local deformations. However, if more global

behaviours are desired, then simple positional constraints are not su�cient. As an alternative

to an explicit global solution, we introduce a multilevel solution for global behaviour in the

following chapter. An alternate solution would be to add more constraints to the objects.

However, this would result in very a \sti�" numerical system that may become numerically

unstable, without reducing the size of the timestep considerably.



Chapter 3: Displacement Constraints 30

Figure 3.11: Applying an upward force to a corner of a mesh.



Chapter 3: Displacement Constraints 31

Figure 3.12: Applying an upward force to the center of a mesh.



Chapter 4

Achieving Global Behaviour

Physical concepts are free creations of the human mind, and are not, however it may

seem, uniquely determined by the external world.

- Albert Einstein

4.1 Overview

For an object to respond globally to a single external force, there must exist some mechanism

that allows an object composed of many elements to be treated as a whole, rather than a

discretized collection of sub-parts. Otherwise, global behaviour will depend upon how the

localized force is propagated to the surrounding regions. To solve this problem we present

a solution for global behaviour that is inspired by the numerical multigrid method. For an

introduction to multigrid methods see [10] and [33]. We will then demonstrate our application

of this technique to our solution for global behaviour with several examples. To distinguish our

solution from the multigrid method, we will refer to our solution as a multilevel solution.

4.2 Our Multilevel Solution

We adapt the multigrid concepts to formulate a solution for global behaviour. Previous tech-

niques achieve global behaviour by using global deformation functions [7, 8, 37, 55]. These

methods show realistic results for global responses, but local responses are not usually in-

cluded. We use the geometric properties of multigrid to create a multilevel solution for force

distribution. An object is decomposed into levels of decreasing resolution, until the coarsest

(rigid) level is reached. External forces acting on the object are distributed to the di�erent

levels by the restriction operator. The nature and amount of force distributed at each level can

32



Chapter 4: Achieving Global Behaviour 33

be set by the animator to control the local/global behaviour of an object. Figure 4.1 shows a

9�9 mesh (level 0 at lower left) and its decomposition into coarser levels.

Figure 4.1: Multilevel breakdown of a 9�9 mesh

The general multilevel solution algorithm is shown in �gure 4.2. Passing information from

a �ner grid to a coarser grid is called restriction. Passing information from a coarser grid

to a �ner grid is called prolongation. We assume that the spacing between mesh points in a

particular level is half the spacing between mesh points in the next coarser level. In other

words, we will be working with (square) meshes of size 2n+1 where n >= 0. First, we calculate

the external forces acting on each line segment in the original mesh. We de�ne a restriction

operator that passes positions, orientations, masses and forces from the �nest level to all coarser

levels. Then, starting from the coarsest mesh, the forces are applied to the segments in that

mesh (dynamic phase), the constraints are solved (using the original displacement constraints

method from �gure 3.1) and the new positions and orientations are passed to the next �ner

level (prolongation). This process is repeated until the �nest level is reached. The C version of



Chapter 4: Achieving Global Behaviour 34

For each time step:

1. Determine forces acting on original mesh.

2. Restriction Phase - For all levels starting at �nest:

(a) Apply the restriction operator to transfer positions, orientations, masses and forces
through to next coarsest level.

3. For all levels starting at coarsest:

(a) Apply forces and solve using rigid body dynamics.

(b) Satisfy the constraints using Gascuel's method to determine �nal position, orienta-
tion and linear and angular velocity at this level.

(c) Prolongation Phase: use the prolongation operator to pass the solutions (positions
and orientations) to the next �ner level.

Figure 4.2: DC Algorithm with Multilevel Solution

this algorithm is provided in �gure 4.3.

This algorithm is similar to the basic numerical multigrid scheme. The main di�erences

are that we are using the displacement constraints iteration method to solve the constraints

at each level, and the restriction/prolongation operators are passing geometric information

between the levels, rather than numerical information (residuals and error approximations).

Another important observation is that, unlike multigrid methods where the main goal is to

accelerate convergence of the iterative solution method, here the multilevel approach serves to

guide the solution to that intended by the animator (i.e. local/global). The actual convergence

of the displacement constraints iterations at each level may or may not be a�ected by using the

initial guess passed down from a coarser level.

4.2.1 The Restriction Operator

The restriction operator passes the positions, orientations, masses and forces from the �nest

level to the coarser levels, level by level. The linear and angular velocities are not passed

between the levels. Instead, the segments in each level maintain their own velocities from

the previous timestep. This method was shown to be more e�ective at maintaining accurate



Chapter 4: Achieving Global Behaviour 35

void solve() {

register int i ;

/*LEVEL_NUM = number of levels*/

/*level 0 = finest level, level LEVEL_NUM-1 = coarsest level*/

forces(0) ; /*collect all forces acting on segments at finest level*/

if (MULTI_LEVEL) /*if using the multilevel method*/

{

restriction() ; /*pass positions/forces to all coarser levels*/

for (i=LEVEL_NUM-1; i>0; i--) /*for each level (coarser to finer)*/

{

save_old_positions(i) ; /*for adjusting the velocities later*/

dynamics(i) ; /*apply forces to each object*/

solve_constraints(i) ; /*solve constraints at level i*/

adjust_velocities(i) ; /*update new velocities at level i*/

prolongation(i) ; /*pass solutions from level i to i-1*/

}

}

/*for finest level*/

save_old_positions(0) ;

dynamics(0) ;

solve_constraints(0) ;

adjust_velocities(0) ;

}

Figure 4.3: The C version of Displacement Constraints Algorithm with Multilevel Solution

velocity information at each level. For each level, the initial positions/orientations before the

dynamic phase, and the �nal positions after the constraint solving phase, are used to update

each segment's linear/angular velocities. Here, we assume that, in the initial con�guration of

the mesh, all linear velocities and angular velocities are zero.

The positions and orientations for the segments in a level, k, are obtained directly from the

next �ner level, k � 1. The endpoints of a segment in level k are assigned the values of the

corresponding mesh points of level k�1. These two endpoints de�ne the segment's orientation.

This is illustrated in �gure 4.6. The mesh points, q1 and q2, are used to de�ne the position and

orientation of the line segment connecting mesh points q10 and q20 at the next coarser level. If



Chapter 4: Achieving Global Behaviour 36

rk�1 and ck�1 are the coordinates (row and column) of a mesh point in level k� 1 (�ner), then

the corresponding coordinates, rk and ck, in level k (coarser) are de�ned by:

rk = b
rk�1

2
c (4:1)

ck = b
ck�1

2
c (4:2)

The coarsest level of the mesh can be made more rigid by the addition of two cross segments, s1

and s2, as shown in �gure 4.4. This ensures that during the constraint processing, no bending

of this level will occur.

s1

s2

Figure 4.4: Adding two cross segments at coarsest level to enforce rigidity

The masses are distributed to each segment based on a weighted average scheme. This

distribution maintains the total mass at each level (i.e. each level has equal total mass). It is

assumed that each individual segment has an even mass distribution (the inertia tensor matrix

for each line segment is the identity matrix). If all segments in the original mesh are of equal

mass, then the total mass is evenly distributed to each segment in each coarser level.

A force is distributed to the coarser levels by assigning a portion of that force to the

corresponding mesh points of the coarser levels. As mentioned previously, the amount of the

force at each level is controlled by the animator. If the corresponding point of the �ner mesh

lies between two mesh points in the coarser mesh, then the force is evenly distributed among

the neighbouring mesh points of the coarser level. In �gure 4.5(a), a force is applied to a middle

mesh point. Remember, from the previous chapter, that a portion of this force is also applied



Chapter 4: Achieving Global Behaviour 37

to the center of the four line segments connected at that point (the forces are shown as straight

lines). This mesh point does not have a corresponding point in the coarser level. Figure 4.5(b)

shows the restriction to the next coarser level. The original force is evenly distributed to the

segments connected to the four neighbouring mesh points, p1, p2, p3 and p4. A portion of these

forces is also applied to the center of each segments. Figure 4.5(c) shows the state of the coarser

(a) (b)

p1

p2

p3

p4

(d)(c)

Figure 4.5: Restriction of a center mesh point.

level after the dynamic phase. Notice that the forces on the four segments connecting the mesh

points p1, p2, p3 and p4, are only acting on the center of gravity of each segment. This is

because equal forces are applied at both endpoints of each segments. The �nal con�guration of

the mesh after solving the constraints is shown in �gure 4.5(d). In this example, the original

force is divided equally between the three levels.



Chapter 4: Achieving Global Behaviour 38

The animator also has the option of �ltering the forces at each level in order to control the

response of the mesh to an external force. This means that a portion of a force at a mesh point

can be distributed to the neighbouring mesh points. For example, the force at mesh point p1 in

�gure 4.6(a), is restricted to p10 in the next coarser level in �gure 4.6(b). A portion of the force

at the point , p10, is then distributed to the neighbouring mesh points, p2 and p3. The same

is done for the force at mesh point p100 at the next coarser level in �gure 4.6(c). To achieve

di�erent behaviours, the forces may be distributed to a wider portion of each level.



Chapter 4: Achieving Global Behaviour 39

(a)

p1

q1

q2

(b)
q1’

q2’
p2

p3
p1’

(c)

p5
p1’’

p4

Figure 4.6: Restriction Operator



Chapter 4: Achieving Global Behaviour 40

4.2.2 The Prolongation Operator

The prolongation operator passes the solutions (positions and orientations) from the level just

solved to the next �ner level. These solutions are used to obtain the initial con�guration

at the �ner level. The segments at this level are positioned and oriented according to the

solutions passed down from the coarser level. The mesh at this level is then solved, the new

positions/orientations are passed to the next �ner level, and so on.

 

p1’

p3p2
p3’

level k

level k+1 level k+1

level k

RESTRICTION PROLONGATION

DYNAMICS

p2’

INITIAL STATE
p1

Figure 4.7: Prolongation Operator using linear interpolation.

 

p1

p3p2
p3’

p1’

level k

level k+1 level k+1

level k

DYNAMICS

PROLONGATIONRESTRICTION
p2’

INITIAL STATE

h
h’

Figure 4.8: Prolongation Operator using o�set information.

The prolongation operator used here is intended to be the exact adjoint of the restriction

operator (i.e. if there are no changes in the coarser mesh, then the original �ner mesh is



Chapter 4: Achieving Global Behaviour 41

restored). However, di�culty arises when a mesh point in the �ner mesh lies between two mesh

points in the coarser mesh. Figure 4.7 illustrates this problem. Point p1 in level k lies between

points p2 and p3 in level k + 1. After the dynamic phase, the prolongation operator must

determine the position for point p10. Here, linear interpolation is used. The new point, p10, is

simply the midpoint between mesh points p20 and p30. The point p10 is then used to determine

the positions and orientations of the segments connected to p10.

Simply using interpolation will eliminate the detailed features of the original mesh, as shown

in �gure 4.7. This will tend to smooth out the behaviour of the mesh, thus completely inhibiting

local behaviour. The original position, p1, with respect to the mesh points, p2 and p3 should be

used to determine the position of point p10. Linear interpolation loses this o�set information.

Also, the interpolated segment, p2p3, has a shorter length than the sum of the two original

segments connected at p1. Since the lengths of the segments are �xed, the original lengths

must be enforced when determining the new segments at the �ner level (i.e. the two segments

connected to p10).

Figure 4.8 shows a di�erent solution to these problems. The original o�set vector, h, from

the point p1 to its corresponding midpoint in level k + 1 (between p2 and p3) is calculated.

This vector is used by the prolongation operator to calculate the position for the new mesh

point, p10. The o�set vector, h, is a local vector with respect to the line segment p2p3. In our

implementation, we use quaternions to update the orientation of the o�set vectors during the

prolongation phase. For example, the rotation between segments p2p3 and p20p30 is converted

to a quaternion and applied to h to get h
0

. The cross product of the two line segments de�nes

the axis of rotation, r, and the magnitude of r is set to the angle between the two segments.

This solution retains the local details that exist in the �ner mesh.



Chapter 4: Achieving Global Behaviour 42

4.3 Example Animations

Figures 4.9, 4.10 and 4.11 contain frames taken from four separate animations. The error

tolerance used when solving the constraints is set to 0.4% of the length of the smallest line

segment; gravity is turned o� and the animation is initiated by applying an upward impulse

force (for one timestep) to one corner of the mesh. The initial surfaces are identical in terms of

their physical properties, but the distribution of the forces between levels is di�erent in each.

Figure 4.9 shows the behaviour of the surface when 100% of the force is applied to the

�nest mesh and 0% to all other levels. This behaviour is equivalent to the that calculated using

Gascuel's original displacement constraints technique.

Figure 4.10 shows the behaviour of the surface when 100% of the force is applied to the

coarsest level and 0% to all other levels. The surface acts as a sti� sheet and after the �rst time

step has constant linear and angular velocity. No local response is observed.

In �gure 4.11, the forces are distributed equally between all levels in the multilevel represen-

tation. The behaviour of the surface is intermediate between that of �gure 4.9 and �gure 4.10.

The next example in �gure 4.12 also demonstrates achieving global behaviour using this

multilevel approach. These are 9 frames taken from a 90 frame animation with a timestep size

of 0.2 seconds per frame. The error is set to 0.4% of the length of a line segment. An upward

impulse force is applied to a corner of the mesh in �gure 4.12(a). This force is only in e�ect for

one timestep. Figures 4.12(b) through (i) show the mesh reacting to that force, maintaining a

global angular velocity. As before, no local response is observed.



Chapter 4: Achieving Global Behaviour 43

(a) (b) (c) (d)

Figure 4.9: Local Behaviour - 100% of force acts upon the �nest level.

(a) (b) (c) (d)

Figure 4.10: Global Behaviour - 100% of force acts upon the coarsest level.

(a) (b) (c) (d)

Figure 4.11: Force distributed equally among levels.



Chapter 4: Achieving Global Behaviour 44

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

t=0.0s t=2.0s t=4.0s

t=6.0s t=8.0s t=10.0s

t=12.0s t=14.0s t=16.0s

Figure 4.12: Achieving global behaviour



Chapter 4: Achieving Global Behaviour 45

The �nal three examples (�gures 4.13, 4.14 and 4.15) show a mesh bouncing o� the 
oor

using di�erent force distributions. The error is set to 0.4% of the length of a line segment

and the only external forces acting on the mesh are gravity and contact forces from the 
oor.

Simulated shadows are included for clarity and are shown in white on the surface of the 
oor.

In �gure 4.13, 100% of the forces are applied to the �nest level and 0% to all others. This

mesh is very 
exible and its behaviour is equivalent to that modeled by the original displacement

constraints algorithm.

In �gure 4.14, 100% of the forces are distributed to the coarsest level to produce behaviour

characteristic of a rigid surface. Figure 4.14(b) shows the mesh colliding with the 
oor and

�gures 4.14(c) through (f) show the new angular velocity (counter clockwise) resulting from the

collision. In �gure 4.14(f), another corner of the mesh collides with the 
oor and counteracts

the angular velocity.

In the �nal example, the forces are distributed equally to all the levels of the mesh producing

a behaviour that is intermediate between that of �gure 4.13 and �gure 4.14, with both local

and global characteristics.



Chapter 4: Achieving Global Behaviour 46

(a) (b) (c) (d)

t=1.0s t=2.0s t=3.0s t=4.0s

t=5.0s t=6.0s t=7.0s t=8.0s

(g) (h)(f)(e)

Figure 4.13: Flexible mesh bouncing o� 
oor. 100% of the force acts upon the �nest level.

(a) (b) (c) (d)

t=1.0s t=2.0s t=3.0s t=4.0s

t=5.0s t=6.0s t=7.0s t=8.0s

(g) (h)(f)(e)

Figure 4.14: Rigid mesh bouncing o� 
oor. 100% of the force acts upon the coarsest level.



Chapter 4: Achieving Global Behaviour 47

(a) (b) (c) (d)

t=1.0s t=2.0s t=3.0s t=4.0s

t=5.0s t=6.0s t=7.0s t=8.0s

(g) (h)(f)(e)

Figure 4.15: An intermediate behaviour. The forces are distributed equally among levels.



Chapter 5

Conclusions

Thank you on behalf of the group and I hope we pass the audition.

- The Beatles

We have implemented and analyzed the displacement constraints method for modeling and

animating objects de�ned using geometric constraints. We have compared this method with

other methods in our literature review. We have shown that displacement constraints is a

technique that it easy to understand and implement, and it is useful for de�ning and animating

deformable objects.

We introduced a multilevel approach for incorporating global behaviour into the generic

displacement constraints model. With such a mechanism, an animator is able to control the

local/global behaviour of an object. This feature is not present in most previous techniques.

Using multilevel techniques for the distribution of forces on an object has shown to be very

e�ective in controlling the local/global attributes of an inherently local deformable model. The

entire animation system is easy to use, easy to understand and it o�ers tools that help animators

model complex objects and behaviours with little e�ort.

5.1 Future Work

Our implementation currently supports only point-to-point constraints. The addition of vari-

ous other constraint types, such as angular constraints, point-to-line constraints or length con-

straints, would enable us to model more complex objects and behaviours. Collision detection

with other geometric models, and also self-intersection detection, could also be incorporated

into the model.

We would like to extend the displacement constraints model to include the modeling of

48



Chapter 5: Conclusions 49

elastic objects. Similar to [47], a reference shape that behaves as a rigid body could be de�ned

for each object. This would represent the object's rest shape. As the object moves and deforms

through time, forces are applied to each mesh point to restore the rest shape. These forces would

be scaled by the distance from a mesh point to it's corresponding position in the reference shape.

The greater the distance, the greater the force.

One important characteristic of the displacement constraints model is the independence of

the primitive objects. The only connection between primitive objects is through the geometric

constraints. This would facilitate the modeling of objects that can split apart, tear, or break

into pieces.



Appendix A

Numerical Integration of the Equations of

Motion for Rigid Body Dynamics

Each primitive object contains the following basic information:

� m - mass

� x - position vector

� v - linear velocity vector

� f - force accumulator vector

� q - orientation vector expressed as a quaternion

� ! - angular velocity vector

� I - tensor of inertia matrix

� t - torque accumulator vector

� clr - colour (rgb vector)

The equations of motion for rigid body dynamics [24] result in a second order system of

di�erential equations. Euler's method is easy to implement and understand [39]. Instead of

using the Euler method directly, we use the Euler-Cromer method [25]. This method takes the

average of the old and new velocities computed by the Euler step. The resulting equations of

motion are shown below [6, 48].

a(t) = f(t)=m (A.1)

v(t+�t) = v(t) + (�t)a(t) (A.2)

50



Appendix A: Numerical Integration of the Equations of Motion for Rigid Body Dynamics 51

x(t+�t) = x(t) + (�t)
v(t+�t) + v(t)

2 (A.3)

�(t) = I�1�(t) (A.4)

!(t+�t) = !(t) + (�t)�(t) (A.5)

r = (�t)
!(t) + !(t+�t)

2 (A.6)

qr ( r (A.7)

q(t+�t) = q(t)qr (A.8)

where f is the external force, a is the linear acceleration, � is the angular acceleration, � is the

torque and q is the orientation vector, r, expressed as a quaternion [40] (see also Appendix B).

We calculate the linear acceleration of an object, in equation A.1, given a force, f, acting

on the center of mass of the object. Equation A.2 determines the new linear velocity, v, and

equation A.3 determines the new position, x.

We calculate the angular acceleration of an object, in equation A.4, given a torque, � ,

acting at a certain distance from the center of mass of the object. Equation A.5 determines

the new angular velocity, !, and equation A.6 determines the new orientation vector, r. This

orientation vector, r, is converted to a quaternion representation, qr, in equation A.7. We

update the objects orientation, q, represented as a quaternion, in equation A.8.



Appendix B

Quaternions

We use quaternions [40] to represent rotations. The matrix representation for rotations could

be used instead, but using quaternions has several bene�ts. Quaternions require less memory

and less computation due to their more compact notation. Quaternions are also less subject

to roundo� error (numerical drifting) caused by successive rotations. This is because unit

quaternions are closed under addition and multiplication.

Here we brie
y describe the quaternion representation [48]. Given the unit vector, a, rep-

resenting the axis of rotation, and the angle of rotation, �, the unit quaternion which de�nes

this rotation is

q = [s;w] (B:1)

where s is the scalar,

s = cos(�=2) (B:2)

and w is the vector,

w = asin(�=2): (B:3)

Successive rotations are easily represented using quaternion multiplication. If q1 and q2

represent quaternion rotations, then the product q2q1 represents the composite rotation of q1

followed by q2. Multiplication between two quaternions, q2 and q1, is given by the following

equation,

q2q1 = [s2;w2][s1;w1] = [(s1s2 �w1 �w2); (s1w2 + s2w1 +w2 �w1)]: (B:4)

52



Appendix B: Quaternions 53

To rotate a vector, v = (x; y; z), using quaternions, we �rst cast v as a quaternion, p =

[0; (x; y; z)], where s = 0 is the scalar and w = (x; y; z) is the vector. To rotate p by a

quaternion, q, we multiply p on the left by q, and on the right by the inverse q�1,

p
0 = qpq

�1: (B:5)

The rotated vector, (x0; y0; z0), is contained in the vector, p0 = [0; (x0; y0; z0)]: The inverse of

a quaternion is given by,

q
�1 =

1

(s2 +w �w)
[s;�w]: (B:6)

From these de�nitions, it is a simple matter to convert from a quaternion to a rotation

vector, and from a rotation vector to a quaternion.



Appendix C

Implementation Interface

The following interface was implemented in C using GL and the FORMS library (written by

Mark Overmars) on SGI and IBM RS6000 computer graphics workstations. Figure C.1 shows

the entire system. The main viewing window is displaying (in perspective) a 9 � 9 mesh, the

Figure C.1: The Displacement Constraints Implementation Interface


oor and the X; Y and Z axes. While the mouse tracker is in this window, the animator may

adjust the view by zooming in or out (middle mouse button) or panning left and right or up

54



Appendix C: Implementation Interface 55

and down (left mouse button). The responsiveness of the changing view (pan and zoom) to the

mouse tracker can be controlled by the sliders shown in �gure C.2(a). The current settings of

these sliders can be recorded by clicking on the \save" button. The right mouse button can be

used to apply a force (whose direction is de�ned by the change in position of the mouse) to the

mesh. For visual clarity, the length of the displayed force vectors can be scaled by the slider

shown in �gure C.2(c). When in \pick" mode (set by the button shown in �gure C.2(b)), the

right mouse may also used to pick a point on the mesh.

(a)

(b) (c)

Figure C.2: Miscellaneous Viewing Controls

The panel shown in �gure C.3 is used to read/save objects from/to a �le, create a new objects

(this pops up the panel shown in �gure C.4), or clear the current objects. The \Sti� Fix" button

adds two cross segments to the coarsest level of a mesh object. The \Zero Velocities" button

initializes to zero the linear and angular velocities of all line segments in all levels of a mesh.

The \Quit" button is specially designed to be self explanatory!



Appendix C: Implementation Interface 56

Figure C.3: The Main Panel

New mesh objects can be created using the input panel in �gure C.4. The size of the (square)

mesh is set by the \Mesh Size" counter. The length and mass of each line segment in the mesh

are set by the respective counters. Each line segment can also be assigned an initial linear and

angular velocity using their respective input �elds.

The panel shown in �gure C.5 is used to perform several tasks. The \Select Level" counter is

used to select a certain level of the current mesh to be displayed. The \Solve Algorithm" menu

can be used to select either the multilevel algorithm or the original displacement constraints

algorithm. The \Step Solve" button activates the panel shown in �gure C.10 which allows the

animator to directly control each step of the solution algorithm. The \Center Force" slider sets

the portion of a torque acting on a segment that is applied to the center of the segment to give

it linear velocity. The \row" and \column" counter can be used to select a particular mesh

point. The \Pick" button activates the picking functions. The \Apply Force" button activates

the force on the selected mesh point for the next timestep. The \Edit Force" button activates

the panel shown in �gure C.11, which is used to edit the various force parameters.

The panel shown in �gure C.6 provides various information display utilities. The \EYE"

box shown on the left is used to \save" the current eye position, reset the eye to the previously

saved position and reset the eye to its original position. The \Show Force Vectors", \Show



Appendix C: Implementation Interface 57

Figure C.4: Create Mesh Panel

Ang. Vel.'s" and \Show O�sets" buttons display/turn o� the force vectors, angular velocity

vectors and o�set vectors, respectively, for each line segment displayed. When the \Show

Constraints" button is activated, the screen is updated after each iteration of the constraint

processing algorithm (rather than just once per timestep). The \Display XYZ Axes" button

displays/turns o� the coordinate axes. Gravity can be turned on or o� using the \GRAVITY

On/O�" button. When the \Print Debug Data" button is activated the error and number of

iterations after each timestep are displayed.

Figure C.7 show the play panel. The play button (top row, middle button) initiates the

animation. The pause button (top row, right button) and stop button (bottom row, right



Appendix C: Implementation Interface 58

Figure C.5: Various Picking and Selection Controls

Figure C.6: The Show Information Panel

button) perform the obvious tasks. The restart button (bottom row, left button) restarts the

animation from the initial position of the objects. The reverse button (top row, left button)

causes the animation to run in reverse. The animation can be advanced frame by frame by

activating both the play and pause buttons and clicking on the play button. Each click on the

play button will advance the animation by one timestep.

The counters shown in �gure C.8 were described in chapter 3. Figure C.9 show the rotation

factor, translation factor and bounce sliders. The function of the rotation factor and translation

factor sliders were described in chapter 3. The bounce slider scales the force applied to a segment



Appendix C: Implementation Interface 59

Figure C.7: The Play Panel

Figure C.8: Timestep, Error and Iteration Counters

when it hits the 
oor.

The panel shown in �gure C.10 is used to execute each frame of the animation step by step.

With such a utility, the animator can visualize the operations that are taking place during

each step of the multilevel solution algorithm. The counter on the left is used to select a

particular level of the mesh. The \Forces" button calculates all external forces that are acting

on the mesh. The \Restriction" button restricts to the next coarser level, and displays the

next coarser level. The \Dynamics" button executes the dynamics phase for one timestep. The

\Solve Constraints" button initiates the original displacement constraints algorithm to solve

the constraints at the current level. The \Pass Solutions" button performs the prolongation

operation from the current level to the next �ner level, and displays the next �ner level.

The edit force panel shown in �gure C.11 is used to set the various force parameters. The

\Force Values" input �elds de�ne the orientation of the force vector. The magnitude of the

force is set by the \Force Magnitude" input �eld. The \Save Force" button writes the current

force values to a �le. The \Reset Force" sets the force to the previously saved force values. The

\Filter Fraction" input �eld sets the percentage of a force that is �ltered to the neighbouring



Appendix C: Implementation Interface 60

Figure C.9: Rotation, Translation and Bounce Sliders

mesh points. The percentage of the original force that is distributed at each level can be set by

editing the respective level input �elds. The sum of these �elds is shown in the \SUM" box.

Figure C.10: The Step Solve Panel



Appendix C: Implementation Interface 61

Figure C.11: The Edit Force Panel



Bibliography

[1] Armstrong, W., Green, M., and Lake, R. Near-Real-Time Control of Human Figure
Models. IEEE Computer Graphics and Applications, pp. 52{61, June 1987.

[2] Armstrong, W. and Green, M. The Dynamics of Articulated Rigid Bodies for Pur-
poses of Animation. The Visual Computer, pp. 231{240, 1985.

[3] Baciu, G. Personal Communication. Department of Systems Design, University of Wa-
terloo, February, 1993.

[4] Badler, N. I., Barsky, B. A., and Zeltzer, D. Making the Move: Mechanics,

Control, and Animation of Articulated bodies. Morgan Kaufmann Publishers, Inc., San
Mateo, California, 1991.

[5] Badler, N. I., Manoochehri, K. H., and Walters, G. Articulated Figure Positioning
by Multiple Constraints. IEEE Computer Graphics and Applications, pp. 28{38, June
1987.

[6] Baraff, D. Rigid Body Simulation. In SIGGRAPH '92, Course 23 notes: An Introduc-

tion to Physically Based Modeling, pp. H1 { H30, Chicago, Illinois, July 1992.

[7] Baraff, D. and Witkin, A. Dynamic Simulation of Non-penetrating Flexible Bodies.
Computer Graphics (SIGGRAPH '92 Proceedings), 26(2), pp. 303{308, July 1992.

[8] Barr, A. H. Global and Local Deformations of Solid Primitives. Computer Graphics

(SIGGRAPH '84 Proceedings), 18(3), pp. 21{30, July 1984.

[9] Barzel, R. and Barr, A. H. A Modeling System Based On Dynamic Constraints.
Computer Graphics (SIGGRAPH '88 Proceedings), 22(4), pp. 179{188, August 1988.

[10] Briggs, W. L. A Multigrid Tutorial. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1987.

[11] Bruderlin, A. and Calvert, T. W. Goal-Directed, Dynamic Animation of Human
Walking. Computer Graphics (SIGGRAPH '89 Proceedings), 23(3), pp. 233{242, July
1989.

[12] Bruderlin, A. and Calvert, T. Interactive animation of personalized human locomo-
tion. In Graphics Interface '93, pp. 17{23, May 1993.

[13] Cachola, D. G. and Schrack, G. F. Modeling and Animating Three-Dimensional
Articulated Figures. In Graphics Interface '86, pp. 152{157, Vancouver, B.C., May 1986.

62



Bibliography 63

[14] Calvert, T. and Chapman, J. Aspects of the Kinematic Simulation of Human Move-
ment. IEEE Computer Graphics and Applications, pp. 41{50, November 1982.

[15] Chang, P. H. A Closed-Form Solution for Inverse Kinematics of Robot Manipulators with
Redundancy. IEEE Journal of Robotics and Automation, RA-3(5), pp. 393{403, October
1987.

[16] ElMaraghy, H. A. Kinematic and Geometric Modeling and Animation of Robots. In
Graphics Interface '86, pp. 15{19, Vancouver, B.C., May 1986.

[17] Featherstone, R. The Calculation of Robot Using Articulated-Body Inertias. Interna-
tional Journal of Robotics Research, 2(1), pp. 13{30, 1983.

[18] Forrest-Barlach, M. and Babcock, S. M. Inverse Dynamics Position Control of a
Compliant Manipulator. IEEE Journal of Robotics and Automation, RA-3(1), pp. 75{83,
February 1987.

[19] Gascuel, J.-D. and Gascuel, M.-P. Displacement Constraints: A New Method for
Interactive Dynamic Animation of Articulated Bodies. In EUROGRAPHICS '92 Proceed-

ings, 1992.

[20] Gascuel, M.-P. An Implicit Formulation for Precise Contact Modeling between Flexible
Solids. In Proceedings of SIGGRAPH 93, Annual Conference Series, 1993, pp. 313{320,
August 1993.

[21] Gascuel, M., Verroust, A., and Puech, C. A Modeling System for Complex De-
formable Bodies Suited to Animation and Collision Processing. Journal of Visualization

and Computer Animation, 2(3), August 1991.

[22] Girard, M. Interactive Design of 3D Computer-Animated Legged Animal Motion. IEEE
Computer Graphics and Applications, pp. 39{51, June 1987.

[23] Girard, M. and Maciejewski, A. Computational Modeling for the Computer Ani-
mation of Legged Figures. Computer Graphics (SIGGRAPH '85 Proceedings), 19(3), pp.
263{270, July 1985.

[24] Goldstein, H. Classical Mechanics. Addison-Wesley, Reading, MA, second edition, 1983.

[25] Gould, H. and Tobochnik, J. An Introduction to Computer Simulation Techniques.
Addison-Wesley, Reading, MA, 1988.

[26] Hendrix, Jimi, Modeling Simultaneous Actions and Continuous Processes. Arti�cial

Intelligence, 4, pp. 145{180, 1973.

[27] Hoffmann, C. M. and Hopcroft, J. E. Simulation of Physical Systems fromGeometric
Models. IEEE Journal of Robotics and Automation, RA-3(3), pp. 194{206, June 1987.

[28] House, D. H., Breen, D. E., and Getto, P. H. On the Dynamic Simulation of
Physically-Based Particle-System Models. In EUROGRAPHICS '92 Proceedings, 1992.



Bibliography 64

[29] Isaacs, P. and Cohen, M. Controlling Dynamic Simulation with Kinematic Constraints,
Behaviour Functions and Inverse Dynamics. Computer Graphics (SIGGRAPH '87 Pro-

ceedings), 21(4), pp. 215{224, July 1987.

[30] Isaacs, P. and Cohen, M. Mixed Method for Complex Kinematic Constraints in Dy-
namic Figure Animation. The Visual Computer, 2(4), pp. 296{305, December 1988.

[31] Korein, J. U. and Badler, N. I. Techniques for Generating the Goal-Directed Motion of
Articulated Structures. IEEE Computer Graphics and Applications, pp. 71{81, November
1982.

[32] Lathrop, R. Constrained (closed-loop) Robot Simulation by Local Constraint Propaga-
tion. In IEEE International Conference on Robotics and Automation, pp. 689{694, San
Francisco, 1986.

[33] McCormick, S. F. Multilevel Adaptive Methods for Partial Di�erential Equations. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, 1989.

[34] Metaxas, D. and Terzopoulos, D. Dynamic Deformation of Solid Primitives with
Constraints. Computer Graphics (SIGGRAPH '92 Proceedings), 26(2), pp. 309{312, July
1992.

[35] Metaxas, D. and Terzopoulos, D. Shape and Nonrigid Motion Estimation through
Physics-Based Synthesis. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 15(6), pp. 580{591, June 1993.

[36] O'Rourke, J. and Badler, N. I. Model-Based Image Analysis of Human Motion Using
Constraint Propagation. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, PAMI-2(6), pp. 522{535, November 1980.

[37] Pentland, A. and Williams, J. Good Vibrations: Modal Dynamics for Graphics and
Animation. Computer Graphics (SIGGRAPH '89 Proceedings), 23(3), pp. 215{222, July
1989.

[38] Platt, J. C. and Barr, A. H. Constraint Methods for Flexible Models. Computer

Graphics (SIGGRAPH '88 Proceedings), 22(4), pp. 279{288, August 1988.

[39] Press, W., Flannery, B., Teukolsky, S., and Vetterling, W. Numerical Recipes

in C: The Art of Scienti�c Computing. Cambridge University Press, Cambridge, England,
1988.

[40] Shoemake, K. Animating Rotation With Quaternion Curves. Computer Graphics (SIG-
GRAPH '85 Proceedings), 19(3), pp. 245{254, July 1985.

[41] Szeliski, R. and Tonnesen, D. Surface Modeling with Oriented Particle Systems.
Computer Graphics (SIGGRAPH '92 Proceedings), 26(2), pp. 185{194, July 1992.

[42] Terzopoulos, D. and Fleischer, K. Deformable Models. The Visual Computer, 4,
pp. 306{331, December 1988.



Bibliography 65

[43] Terzopoulos, D. and Fleischer, K. Modeling Inelastic Deformation: Viscoelasticity,
Plasticity, Fracture. Computer Graphics (SIGGRAPH '88 Proceedings), 22(4), pp. 269{
278, August 1988.

[44] Terzopoulos, D. and Metaxas, D. Dynamic 3D Models with Local and Global Defor-
mations: Deformable Superquadrics. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 13(7), pp. 703{714, July 1991.

[45] Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. Elastically Deformable
Models. Computer Graphics (SIGGRAPH '87 Proceedings), 21(4), pp. 205{214, July 1987.

[46] Terzopoulos, D., Platt, J., and Fleischer, K. Heating and Melting Deformable
Models (from Goop to Glop). In Graphics Interface '89, pp. 219{226, June 1989.

[47] Terzopoulos, D. and Witkin, A. Physically-Based Models With Rigid And De-
formable Components. In Graphics Interface '88, pp. 146{154, June 1988.

[48] Tonnesen, D. Spatially Coupled Particle Systems. In SIGGRAPH '92, Course 16 notes:

Particle System Modeling, Animation, and Physically Based Techniques, pp. 4{2 { 4{21,
Chicago, Illinois, July 1992.

[49] van Overveld, C. A Technique for Motion Speci�cation in Computer Animation. The
Visual Computer, 6, pp. 106{116, 1990.

[50] van Overveld, C. An Iterative Approach to Dynamic Simulation of 3-D Rigid-Body
Motions for Real-Time Interactive Computer Animation. The Visual Computer, 7, pp.
29{38, 1991.

[51] Wilhelms, J. Virya - A Motion Control Editor for Kinematic and Dynamic Animation.
In Graphics Interface '86, pp. 141{146, Vancouver, B.C., May 1986.

[52] Wilhelms, J. Toward Automatic Motion Control. IEEE Computer Graphics and Appli-

cations, pp. 11{22, April 1987.

[53] Wilhelms, J. Using Dynamic Analysis for Realistic Animation of Articulated Bodies.
IEEE Computer Graphics and Applications, pp. 12{27, June 1987.

[54] Wilhems, J. and Barsky, B. Using Dynamic Analysis to Animate Articulated Bodies
as Humans and Robots. In Graphics Interface '85, pp. 97{104, Montreal, Quebec, May
1985.

[55] Witkin, A. and Welch, W. Fast Animation and Control of Nonrigid Structures. Com-
puter Graphics (SIGGRAPH '90 Proceedings), 24(4), pp. 243{252, August 1990.

[56] Zeltzer, D. Motor Control Techniques for Figure Animation. IEEE Computer Graphics

and Applications, pp. 53{59, November 1982.

[57] Zeltzer, D. Towards an Integrated View of 3-D Computer Animation. The Visual

Computer, pp. 249{259, 1985.


