
View-dependent 3D Projection using Depth-Image-based Head Tracking

Jens Garstka
University of Hagen

Chair of Human-Computer-Interaction
Universitätsstr. 1, 58097 Hagen, Germany

jens.garstka@fernuni-hagen.de

Gabriele Peters
University of Hagen

Chair of Human-Computer-Interaction
Universitätsstr. 1, 58097 Hagen, Germany

gabriele.peters@fernuni-hagen.de

Abstract

The idea of augmenting our physical reality with virtual
entities in an unobtrusive, embedded way, i. e., without the
necessity of wearing hardware or using expensive display
devices is exciting. Due to the development of new inexpen-
sive depth camera systems an implementation of this idea
became affordable for everyone. This paper demonstrates
an approach to capture and track a head using a depth cam-
era. From its position in space we will calculate a view-
dependent 3D projection of a scene which can be projected
on walls, on tables, or on any other type of flat surface. Our
projector-camera system enables the viewer to explore the
projected scene while walking around.

1. Introduction
In this paper we discuss a projection method, which

enables a single person to view a projection of a three-
dimensional scene. For the remains of this paper we re-
gard the 3D rendering of the scene th be projected as given.
The projection will be modified according to the viewing
person’s head position toward the projection plane. The ap-
proach neither forces the user to wear any kind of hardware
like glasses or a head tracker nor needs expensive devices
for the rendering of the scene, such as holograms or head-
mounted displays.

Instead, we will use a low-cost depth camera to track the
viewing person’s head and create an adapted projection on
a computer display or a projector.

2. Related work
In 2004 Göktürk and Tomasi used a time-of-flight cam-

era to recognize and track a head with the generated depth-
image [2]. Their approach is based on a knowledge-based
clustering algorithm. They collect a training set of depth
images in a preliminary step. During this training a feature
vector is stored for each depth image. This feature vector

is also referred to as the signature. Subsequently for each
depth image a signature is created and compared against
the signatures in the database. For the most likely matches
a correlation metric is calculated between these and the im-
age to find the best match.

Late in 2006, Nintendo released a game console with a
new controller called the Wii Remote. This wireless con-
troller is used as a pointing device and detects movements
with its three axis accelerometers. Due to the low cost of
this controller and the possibility to be connected via Blue-
tooth, numerous alternative applications, such as those pro-
posed by Lee [4], Schlömer et al. [10], or Lin et al. [5]
came up. One of the applications described by Lee is a
view-dependent 3D projection using head tracking with in-
frared emitting diodes on glasses.

A more closely related approach to our paper is the
“Real-Time 3D Head Tracking Based on Time-of-Flight
Depth Sensor” by Ehsan Parvizi and Jonathan Wu [8]. The
paper describes a head detection algorithm based on contour
analysis on depth images. Like in the first mentioned paper
a 3D time-of-flight depth sensor is used. The segmentation
is done with a straightforward depth thresholding technique.

Approaches using a classical stereo matching on unstruc-
tured images are described in [7] and [9] and exhibit a
higher complexity.

3. Used device
Two of the papers mentioned in the previous section use

a 3D time-of-flight depth camera. Currently available time-
of-flight depth cameras are quite expensive and have some
disadvantages, including low resolution and sensitiveness to
ambient light.

Since Microsoft launched the game controller Kinect for
Xbox 360 in November 2010, a low cost alternative exist.
It was developed in cooperation with PrimeSense and has a
different concept than the Wii Remote: it creates a depth-
image. On this account we use the Microsoft Kinect as a
low cost depth camera solution. But any other depth capture
device can also be used.

52

3.1. The Microsoft Kinect

The Microsoft Kinect, formerly known by its code
name Project Natal, is a game controller for the Microsoft
Xbox 360. It is mainly composed of three elements: First
the illumination unit, which creates a projection of an in-
frared (IR) pattern with a known static and irregular dot dis-
tribution. Second the IR camera to capture the infrared pat-
tern and to calculate a 640 × 480 pixel depth-image. And
third the RGB camera with the same resolution [1].

Thus it is possible to use the Kinect as contact-free
motion-, movement-, and gesture-recognition device. Re-
cent research was made possible through the $3000-award
that Adafruit Industries in New York granted the first person
who was able to get RGB and distance values from the Mi-
crosoft Kinect.1 One week later, the first Open Kinect driver
was released.2 Since this date, many applications related to
the Microsoft Kinect have been devised.3

3.2. Depth calculation with the Microsoft Kinect

The basic principle of Kinect’s depth calculation is based
on stereo matching. Since classical stereo matching re-
quires well structured images, the Kinect creates its own
structure. Based on structured infrared light a static pseudo-
random pattern is projected on the environment.

The stereo matching requires two images: one image is
captured by the infrared camera, and the second image is the
projected hardwired pattern. Those images are not equiva-
lent, because there is some distance between projector and
camera. So the images correspond to different camera po-
sitions, and that allows us to use stereo triangulation to cal-
culate the depth.

As projector and camera are placed on a line with its
principal axes parallel and with the epipolar lines parallel to
the x-axis (the images are rectified), it is possible to use a
single line (even a sub-pattern contained in a line) to search
for matching points and to calculate the depth.

4. Head tracking method
In our algorithm only the depth-images are used. There

is no classical face recognition and head tracking based on
RGB data. We use the depth-image to find local minima
of distance and the surrounding gradients to identify a blob
with the size of a head. To measure and match the sizes in
the depth-image we need to transform the raw data of the
depth-image into a metric Euclidean Space.

4.1. Depth-image raw data

The raw data depth draw(u, v) of this image is 11 bit
(0-2047) per pixel. These discrete values do not have a lin-

1At http://www.adafruit.com/blog/ from 04.11.2010
2At http://www.adafruit.com/blog/ from 10.11.2010
3For an overview see http://www.adafruit.com/blog/

 0

 100

 200

 300

 400

 500

 384 448 512 576 640 704 768 832 896 960 1024

d
is

ta
n
c
e
 (

c
m

)

depth value

Kinect depth value fitting function

Distance values
Fit function

Figure 1. Fitting function between the raw data of the depth-image
and the measured distance in centimeters of an object from the
front edge of the IR camera.

ear distribution. To map them to the coordinate space of
a projection, a fitting function between those values and a
suitable linear space is necessary.

To approximate this fitting function we measured the real
world distances that belong to the Kinect depth values from
384 to 1024. This interval has been sampled in steps of 64,
as shown in Figure 1. We begin with an approximated fitting
function that has been proposed by Stephane Magnenat in a
Google Newsgroup4:

d′′(u, v) = 0.1236 ·tan(draw(u, v)/2842.5+1.1863) (1)

The conversion of the formula to centimeters and the ap-
proximation using a scaled Levenberg-Marquardt algorithm
[6] with our measured values result in the fitting function il-
lustrated in Figure 1:

d′(u, v) = 45.28 · tan(draw(u, v)/694.77) + 17.72 (2)

The values may vary slightly among different con-
trollers. However, their re-estimation will not be important
as long as the absolute distance values are not needed.

4.2. Depth-image preprocessing

As mentioned in section 3.2, it is mandatory for stereo
triangulation that projection and sensor do not have the
same optical axis. But this necessity leads to the unpleasant
side effect of “shadows” – regions without infrared patterns
– for which no depth data is available. In Figure 2 this effect
is depicted.

Due to the arrangement with the IR projector to the right
of the IR camera, the shadows in depth-images are always
on the left side of convex objects and on the inner right

4http://groups.google.com/group/openkinect/
browse_thread/thread/31351846fd33c78/
e98a94ac605b9f21

53

http://www.adafruit.com/blog/
http://www.adafruit.com/blog/
http://www.adafruit.com/blog/
http://www.adafruit.com/blog/
http://www.adafruit.com/blog/
http://www.adafruit.com/blog/
http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21
http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21
http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21
http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21
http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21
http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21

Figure 2. “Shadows” caused by the camera configuration. The red
polygon shows the region of the IR pattern projection and the blue
polygon shows the visible area from the point of view of the IR
camera. The yellow framed area is visible by the IR camera with
no projected pattern. In this area it is not possible to calculate
depth values. We call this area a shadow.

side of concave objects. Since we search for heads to track,
which are indeed concave, we can assume shadows on the
left side of potential heads. Thus we can fill those shadows
while processing the depth-image line-by-line from top to
bottom and from left to right by using the last known depth
value instead of the raw value 2047, which represents the
unknown depth.

In addition to the shadows, the depth-images contain
noise. The reason for that is the limited resolution of the
IR camera. A single infrared point of the captured pattern
may not be assigned to a single pixel. Therefore the position
must be interpolated by the portion of luminosity of the two
adjacent pixel. That means, in turn, that the calculation is
sensitive to external infrared radiation, e. g., direct sun light.
With increasing distance from the Kinect, the differences in
centimeters between two possible depth values increase as
well.

For example: the depth value 1010 corresponds to a dis-
tance of ≈ 402 cm, while the next value 1011 corresponds
to a distance of ≈ 407 cm (see Figure 1).

As already mentioned, we will use local minima in a
depth-image and surrounding gradients to identify a head.
To enhance their stability, we need to reduce this noise. The
used algorithm should be fast enough to smooth the depth-
image in real time (30 frames per second with a resolution
of 640 × 480). For this reason we use a straight forward
averaging filter utilizing the integral image filter from Vi-
ola and Jones [11]. The integral image provides the sum
i(u, v) of the pixel values above and to the left of the cur-
rent depth value d′(u, v), inclusive. It can be computed in
linear time with a dynamic programming approach. After-

Figure 3. Top view of a human head facing right with the inner
(green) and outer (red) bound for length and width.

wards we can calculate the sum of any rectangular area with
the width 2w+1 and the height 2h+1, and at the same time
the arithmetic average of this rectangular in constant time,
resulting in the smoothed depth image d:

A = i(u− w, v − h)
B = i(u+ w, v − h)
C = i(u− w, v + h)

D = i(u+ w, v + h)

d(u, v) =
A−B − C +D

(2w + 1)(2h+ 1)

(3)

4.3. Head tracking

To decide if a blob found in the depth-image might
be a head, we must define inner and outer bounds for its
length, width and height. The head of an adult is approx
20 cm× 15 cm× 25 cm (length×width×height). While we
can assume the head in an upright position, the orientation
is unclear. This is the reason why an inner bound should be
< 15 cm and an outer bound should be > 20 cm for length
and width, respectively. An inner bound of 10 cm and an
outer bound of 25 cm turns out to be suitable (see Figure 3).

To calculate the size in pixel of these inner and outer
bounds, we need to determine the camera’s field of view.
At a distance of 100 cm between the camera and a plane or-
thogonally to the viewing direction, we measured a visible
width of 102.5 cm.

p :=
640 px · w
1.025 · d

(4)

describes how many pixel pmatch the width w in a distance
d. This results in the lower and the higher bounds

bl(d) =
640 px · 10 cm

1.025 · d
≈ 6250 cm

d
px (5)

and
bh(d) =

640 px · 25 cm
1.025 · d

≈ 15600 cm

d
px. (6)

To find a possible head-position, the depth-image is pro-
cessed line by line. For each line v′ find a u′ where d(u′, v′)

54

is a local minimum and where

∀f ∈
(
1, . . . ,

bl(d(u
′, v′))

2

)
:

d(u′ + f, v′)− dmin(u
′, v′) < 10 cm

d(u′ − f, v′)− dmin(u
′, v′) < 10 cm

(7)

and

d(u′ +
bh(d(u

′, v′))

2
, v′)− dmin(u

′, v′) > 20 cm

d(u′ − bh(d(u
′, v′))

2
, v′)− dmin(u

′, v′) > 20 cm

(8)

In other words: the minimum depth value and the preceding
and following depth values within the inner bounds must
have a smaller difference than 10 cm, and the minimum
depth value and the depth values at the outer bounds must
have a larger difference than 20 cm.

We do not use the u′-value as horizontal center of the
head. Instead we calculate the positions u1 and u2 of the
lateral gradients, where the threshold difference of 20 cm to
the minimum distance d(u′, v′) is exceeded

d(u1, v
′)− d(u′, v′) ≤ 20 cm

d(u1 − 1, v′)− d(u′, v′) > 20 cm

d(u2, v
′)− d(u′, v′) ≤ 20 cm

d(u2 + 1, v′)− d(u′, v′) > 20 cm

(9)

and keep the arithmetic mean u(v′) = u1+u2

2 as an element
of a possible vertical head axis.

Further we assume, that we need a number of subsequent
lines where we can find those points. Therefore we have to
count the number n of subsequent lines. If we are able to
calculate u for the current line v′, we increase n = n + 1.
Otherwise we set n = 0

To calculate the required number of subsequent lines in
which those u need to be found, we assumed a head height
of at least 25 cm. Further we need a distance to measure the
corresponding number of lines. The average distance of the
points found in the last n subsequent lines is

d =
1

n

n−1∑
i=0

d(u(v′ − i), v′). (10)

Thus the number of lines for this average distance is

nmax =
640 px · 25 cm

1.025 · d
≈ 15600 cm

d
px. (11)

If n ≥ nmax we have the position (ũ, ṽ) of the center of a
head:

ũ =
1

n

n−1∑
i=0

u(v′ − i)

ṽ = v′ − n/2

(12)

Figure 4. A colored depth-image. Near elements are red, far el-
ements are blue. The vertical green and red lines show the inner
and outer boundaries of 10 cm and 25 cm with reference to the de-
tected minimum. The white line shows the calculated u. Finally
the cross marks the calculated head position (ũ, ṽ).

Figure 4 shows a colored depth-image with drawn in
bounds and the final head position.

4.4. Transformation into Cartesian coordinate sys-
tem

Once we have the head position, we can transform
the planar coordinates ũ and ṽ into Cartesian coordinates,
where the z-axis is along the viewing direction of the in-
frared camera. From section 4.3 we can derive the three
Euclidean coordinates

x = (ũ− 320) · 1.025 · d
640

,

y = (ṽ − 240) · 1.025 · d
640

, and

z = d.

(13)

So the head position in Cartesian camera coordinates is

h :=

 x
y
z

 . (14)

The scaling depends on the scaling of d. By using the dis-
tance equation (2) from section 4.1, the values x, y and z
have a metric scale.

4.5. Postprocessing of the head position

Although the values of the depth-image are smoothed,
the gradients used in equation (9) have bumpy outlines and
may not be stable from one frame to another. To compen-
sate this, we use two filters:

1. Three separate median filters on the x-, y- and z-values
of h over the five latest values to eliminate outliers or
single frames where we were not able to find a head
position.

55

z
x

y h

a
b

c

Figure 5. System configuration with camera, projector, projection
surface and viewing person. The head position in camera coordi-
nates is h. The depicted yellow points a, b and c are used in a
precedent calibration step. The projection is rendered through a
viewing frustum volume that is asymmetrically skewed (green).

2. An infinite impulse response filter to attenuate small
movements.

h = (1− α)h+ αh, with α =
1

4
(15)

The initial value of h is the first head position found.

With both filters enabled, the detected position is suffi-
ciently stable.

5. Projection of the 3D scene
The projection of the 3D scene can be used on any sur-

face, from a simple computer display up to a projection on
a table.

5.1. Calibration

To transform the head position h from the camera coor-
dinate space to the systems world coordinate space, a cal-
ibration is required. Therefore three spheres with known
world coordinates will be displayed (a, b and c in Figure
5). We define az = bz = cz = 0 for the centers of those
spheres. Since there is no need for the 3D scene to be dis-
played in a realistic scaling, it is sufficient for the x- and
y-values of those sphere midpoints to be elements of the
same Euclidean space. If proper scaling is required, the dis-
tance or the coordinates of the projected spheres must be
measured in a metric scale.

Now, within a merged view of the colored depth-image
and the RGB image (see Figure 6), the user can click on
the spheres. With the u and v coordinates from the relative
mouse position and the depth value d(u, v) from the depth-
image, the coordinates of these spheres in camera space can

Figure 6. Merged view of colored depth-image and RGB image
while selecting the second calibration sphere (green). The in-
tended projection surface in this example is the computer display.

z

xy h′

ox1 x2

n

f

x′1 x′2

Figure 7. The skewed viewing frustum

be calculated (see 4.4). With those coordinate pairs from
the three spheres we calculate the transformation matrix T
using the solution of Horn [3].

5.2. Transformations

There are two different transforms needed: (1) the head
position has to be transformed from the Kinect’s camera co-
ordinate space into world space coordinates and (2) the 3D
scene has to be projected onto the 2D projection space.

(1) To transform the head position from the Kinect’s cam-
era coordinate space into world space coordinates the
only thing to do is to multiply our head position with
the previously calculated transform: h′ = T · h.

(2) To calculate the perspective projection matrix for the
2D projection we regard h′ as camera with the viewing
direction to

o =

 h′x
h′y
0

 (16)

which is depicted in Figure 7. We skew and scale the
viewing frustum (the red dashed line), in such a way
that the lateral surfaces of the frustum intersect with the

56

projection plane (gray) at the outer edges of the favored
visible region (dark green line). This region must cor-
respond to the visible region during calibration.

Let x1 and x2 be the outer x-values and y1 and y2 be
the outer y-values of this visible region. As previously
defined the projection plane is at z = 0, initially.

To be able to view the projection from a flat angle where
h′z ≈ 1 we set the near clipping plane n = h′z + 1 near
to the head position. The far clipping plane f has some
larger value. So we can derive the x- and y-values for
the near clipping plane from the visible region of the far
clipping plane:

x′1 = (x1 − h′x)/n

x′2 = (x2 − h′x)/n

y′1 = (y1 − h′y)/n

y′2 = (y2 − h′y)/n

(17)

Resulting from the positioning of the near clipping
plane as just described the distance dn between the near
clipping plane and the camera is dn = 1. The dis-
tance between the far clipping plane and the camera is
df = f − h′z .

Now we can define the projection matrix for the projec-
tion of the 3D scene as follows:

P =


2dn

x′
2−x′

1
0

x′
2+x′

1

x′
2−x′

1
0

0 2dn

y′
1−y′

2

y′
1+y′

2

y′
1−y′

2
0

0 0 − df+dn

df−dn
− 2dfdn

df−dn

0 0 −1 0

 (18)

5.3. Realization with OpenGL

The matrix in equation (18) is equivalent to the projec-
tion matrix used by the OPENGL function glFrustum.
We use OPENGL in our implementation to display a 3D
scene.

OPENGL is a state machine. When a state value is set,
it remains set until some other function changes it. One
of this states is the projection matrix. It is applied to any
geometry drawn. When we calculate the head position in
world coordinates and the six values x′1, x′2, y′1, y′2, dn and
df from above, we can use

gluLookAt(h.x,h.y,h.z,h.x,h.y,0,0,1,0);
glFrustum(x1,x2,y1,y2,dn,df);

to set the state of the OPENGL projection matrix. With the
first three parameters of gluLookAt we set the position of
the head h′. With the second three parameters we set the
point o to look at. The third three parameters describe the
direction of the y-axis as ’up’. Finally glFrustum cre-
ates the matrix of equation (18) and multiplies the current
projection matrix state with it.

Figure 8. Resulting impressions of the projection for different
viewpoints of the viewing person. The images are taken with a
digital photo camera placed directly in front of the persons eyes.
Left: the top view of the teapot in the box with two of the virtual
light sources visible. Right: the cut-off of the teapot viewed from
a low viewpoint.

5.4. Box-Layout

In Figure 7 a rendered 3D scene (here: only one object) is
shown below the projection plane. Furthermore it is placed
in a box (the blue lines). There are two reasons for this:

1. When a 3D scene would be projected directly on the
projection plane it would be truncated on top, when
the viewer takes a low viewpoint, resulting in an unre-
alistic impression. When the scene is displayed in our
box-layout it will never be truncated on top. Rather,
when the scene is viewed from a low viewpoint with
respect to the projection plane, the scene will be cut
off on the lower side, as one would expect.

2. The illumination of a given 3D scene rarely matches
the natural illumination of the room in which the pro-
jection takes place. By placing stylized light sources
into the box, the viewers’ perception is influenced re-
sulting in a more realistic impression.

Both effects are illustrated in Figure 8. Although the bene-
fits of the box-layout have been illustrated here by means of
a horizontal projection plane on a table, teh same principles
hold true for any orientation of a projection plane such as a
vertical wall.

6. Results
In Figure 8 and Figure 9 a few pictures of our testing

scenes are shown. They were taken while moving around
a table which was used as a projection plane for the pro-
jector installed on the ceiling. While Figure 8 shows the
OPENGL teapot, Figure 9 shows a more complex, textured
mesh of a little Sokrates statue. These pictures can not re-
flect the effect seriously in any way. So we decided to take
a short movie walking around this table, which is able to
illustrate the resulting effect more compelling. This video
can be found here:
http://www.mci.fernuni-hagen.de/

conferences/procams2011/kinevision.mp4

57

http://www.mci.fernuni-hagen.de/conferences/procams2011/kinevision.mp4
http://www.mci.fernuni-hagen.de/conferences/procams2011/kinevision.mp4
http://www.mci.fernuni-hagen.de/conferences/procams2011/kinevision.mp4
http://www.mci.fernuni-hagen.de/conferences/procams2011/kinevision.mp4

Figure 9. Four views of a different, more complex object.

Of course, any precomputed 3D scene can be projected
in the same way.

7. Discussion
We introduced a novel approach for head tracking using

depth-images. This enables us to detect the head orienta-
tion in space relative to the depth camera in real time. This
is achieved by utilizing the recently introduced hardware
Microsoft Kinect.

With the head orientation in space we compute a view-
dependent 3D projection, which provides the viewing per-
son with a realistic impression of the projected scene inde-
pendently of his or her position in relation to the projection
plane. The realism of the illusion is improved further by
embedding the 3D scene in a virtual illuminated box.

7.1. Limitations

Our approach implies, that only one viewer is located in
the view area of the Kinect.

Problems also exist with reflecting surfaces and solar ra-
diation in the room where the projection takes place, be-
cause the Microsoft Kinect is unable to detect the IR pat-
tern on bright and glossy surfaces. So the best results are
achieved in a dimmed room.

A side effect of the use of the median filter and the infi-
nite impulse response filter described in section 4.5 is, that
fast movements of the observer will result in delays of the
adaption of the projection to the new position of the ob-
server. Although the delays are very small, they are per-
ceived by the human brain and disturb the illusion.

7.2. Future Work

There are many applications for the proposed projection
system. A conference table with a separate projection for
each participant would be one conceivable scenario. This

could be done by extending the head tracking system to
multiple heads.

In addition, the illusion of the projection could be en-
hanced generating stereoscopic images in combination with
shutter glasses. This makes the approach applicable to
CAVE-like projector-based installations for low budgets.

References
[1] B. Freedman, A. Shpunt, M. Machline, and Y. Arieli.

Depth mapping using projected patterns. U.S. Patent
#2010/0118123 A1 issued May 13, 2010, filed 2008. 53

[2] S. B. Göktürk and C. Tomasi. 3d head tracking based on
recognition and interpolation using a time-of-flight depth
sensor. In Proceedings of the 2004 IEEE computer soci-
ety conference on Computer vision and pattern recognition,
CVPR’04, pages 211–217, Washington, DC, USA, 2004.
IEEE Computer Society. 52

[3] B. K. P. Horn. Closed-form solution of absolute orienta-
tion using unit quaternions. Journal of the Optical Society
of America A, 4(4):629–642, 1987. 56

[4] J. C. Lee. Hacking the nintendo wii remote. IEEE Pervasive
Computing, 7:39–45, July 2008. 52

[5] J. Lin, H. Nishino, T. Kagawa, and K. Utsumiya. Free hand
interface for controlling applications based on wii remote ir
sensor. In Proceedings of the 9th ACM SIGGRAPH Con-
ference on Virtual-Reality Continuum and its Applications in
Industry, VRCAI ’10, pages 139–142, New York, NY, USA,
2010. ACM. 52

[6] J. Moré. The levenberg-marquardt algorithm: Imple-
mentation and theory. In G. Watson, editor, Numeri-
cal Analysis, volume 630 of Lecture Notes in Mathemat-
ics, pages 105–116. Springer Berlin / Heidelberg, 1978.
10.1007/BFb0067700. 53

[7] R. Newman, Y. Matsumoto, S. Rougeaux, and A. Zelinsky.
Real-time stereo tracking for head pose and gaze estimation.
In Proceedings of the Fourth IEEE International Conference
on Automatic Face and Gesture Recognition 2000, FG ’00,
pages 122–, Washington, DC, USA, 2000. IEEE Computer
Society. 52

[8] E. Parvizi and Q. M. J. Wu. Real-time 3d head tracking
based on time-of-flight depth sensor. In Proceedings of the
19th IEEE International Conference on Tools with Artificial
Intelligence - Volume 01, ICTAI ’07, pages 517–521, Wash-
ington, DC, USA, 2007. IEEE Computer Society. 52

[9] D. B. Russakoff and M. Herman. Head tracking using stereo.
Mach. Vision Appl., 13:164–173, July 2002. 52

[10] T. Schlömer, B. Poppinga, N. Henze, and S. Boll. Gesture
recognition with a wii controller. In Proceedings of the 2nd
international conference on Tangible and embedded inter-
action, TEI ’08, pages 11–14, New York, NY, USA, 2008.
ACM. 52

[11] P. Viola and M. J. Jones. Robust real-time face detection. Int.
J. Comput. Vision, 57:137–154, May 2004. 54

58

