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ABSTRACT 
In order to reach targets with one hand on common large 
mobile touch displays, users tilt and shift the device in their 
hand. In this work, we use this grip change as a continuous 
information stream for detecting where the user will touch 
while their finger is still en-route. We refer to this as in the 
air prediction. We show that grip change detected using 
standard mobile motion sensors produces similar in the air 
touch point predictions to techniques that use auxiliary 
sensor arrays, even in varying physical scenarios such as 
interacting in a moving vehicle. Finally, our model that 
combines grip change and the resulting touch point predicted 
where users intended to land, lowering error rates by 41%. 
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INTRODUCTION 
With the growing popularity of mobile devices, researchers 
have searched for ways of improving input accuracy on 
touch displays. Of note, researchers have identified a number 
of factors that affect touch patterns in systematic ways: hand 
posture used to touch a target (e.g., a one-handed posture that 
uses the dominant thumb rather than two thumbs to type) 
[1,4]; the location of the target on the screen [6]; physical 
activity, such as walking [3] versus sitting at a desk; and 
even whether or not users are interacting while carrying 
items in the other hand [8]. These are all significant factors 
that impact touch patterns and therefore touch accuracy on 
mobile devices. Adaptive systems take advantage of 
systematic patterns of user touch interaction under these 
conditions to adjust where the user touched to where they 
intended to land. For example, Yin et al. [10] and Goel et al. 
[4,5] showed improved touch accuracy using adaptive soft 
keyboards that take into consideration systematic offsets 
caused by hand posture and individual differences.  

The need for these adaptations has, if anything, increased 
with the variability of form factors spanning compact 3.5 
inch displays (e.g. Nokia M8) and phone/tablet hybrids with 
near-6 inch touchscreens (e.g. Samsung Galaxy Note 3). As 
mobile displays get larger, the ability to accurately target, 
especially with one hand, around the screen suffers. 
Bergstrom-Lehtovirta et al. adaptively modeled users’ reach 
to define a functional area describing the maximum reach of 
their current hand posture [2].  

When users need to reach targets on the edge and outside 
their functional area with one hand, they change their grip of 
the phone. As Figure 1 shows, users tend to shift the device 
in their hand, extending the thumb’s reach. As Noor et al. 
showed, this grip change can be used to predict the touch 
point [7], or rather a likely area around it (Figure 1b in 
green), while the finger is still en-route. We refer to this as in 
the air prediction. Beyond in the air prediction, grip change 
can also be an indicator of where the user intended to land at 
the moment they touchdown. We refer to this as on 
touchdown prediction. The target may be outside the user’s 
functional area even at maximum reach, so their touch point 
might miss a target but be close to one or more viable targets 
(Figure 1c). The grip change motion preceding the touch is 
indicative of intent to reach to further targets. In other words, 
a model that uses both the grip change and where the user 
touches down can better predict where the user intended to 
land than models that only consider one of these factors.  

Past work has detected physical grip and grip change over 
time through adding extra hardware – additional sensor 
arrays on the back or side of the device (e.g. [7,9]). Noor et 
al. used the grip change—as measured while the user reaches 
for the target—to predict the resulting touchdown point 
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Figure 1. Grip change as the user reaches for the target (blue
square): (a) device lays flat in palm, then (b) device is tilted
towards the thumb by the other fingers enabling in the air
prediction of an area (green circle) around a likely touch point
(green X), and finally (c) at thumb touchdown, prediction can
adjust actual input to intended target (red X). 
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while the finger is still en route (in the air) [7]. However, we 
wondered whether an auxiliary sensor array is critical to in 
the air prediction, or whether internal motion sensors (i.e. 
common accelerometers and gyroscopes) can achieve similar 
results. Given the potential predictive power of grip change 
on touch accuracy, it is additionally important to understand 
how detection of grip change is affected by common 
physical scenarios such as walking or interacting while in a 
moving vehicle. This is not addressed in the literature. 

We explore using solely the motion sensors internal to 
today’s devices to detect grip change and then use it to make 
in the air predictions of touch points. We verify prediction 
results in four different physical scenarios: interacting while 
sitting at a desk, standing without support, while walking, 
and while on a moving bus. As proof of concept, we use test 
our models using a single thumb posture. Our first study 
shows in the air prediction rates similar to Noor et al. A 
second study shows that a model that adjusts users’ touches 
using both grip change and their touchdown point lowers 
touch errors by 41% consistently throughout the four 
physical scenarios tested.  

In short, grip change can be used to continuously provide 
information about users’ intent, in the air and on touchdown, 
beyond where they actually touch. Predicting where the user 
will touch prior to touchdown allows for a potential virtual 
hover space for mobile devices, while touchdown models 
take into consideration user intent in lowering touch errors. 

STUDY 1 – IN THE AIR PREDICTION USING MOBILE 
MOTION SENSORS 
To verify that hand grip change can be reliably detected in 
the air using solely mobile motion sensors (i.e. accelerometer 
and gyroscope), we ran a study that largely replicates Noor et 
al.’s touch target prediction experiment [7]. Participants were 
asked to touch the single on-screen square target to complete 
a trial. The target size was chosen to be physically identical 
to Noor et al.’s setup on the mobile device (1cm2). The target 
was randomly placed on the surface of the display for each 
trial with a uniform distribution. As in Noor et al., once the 
user successfully clicked on the target, the next target was 
displayed after an enforced 500ms delay. 

Participants and Apparatus 
Eight participants (mean age 26.3, SD=3.6, 7 males), all 
right-handed, were asked to perform 1000 trials each (8000 
trials in all), using the phone in their right hand and 
interacting with the thumb (i.e. a one-handed posture). All 
participants were regular and frequent mobile phone users. 

Participants were presented with a custom application on a 
Nokia Lumia 920 with a 4.5” display at a 1280x720 
resolution. Of note is that this device is significantly larger 
than the one used in Noor et al. (a Nokia N9 with a 3.9” 
display), which makes a direct comparison of prediction 
accuracy non-trivial. The application recorded 2D touch 
points on the display, and 3-axis accelerometer and 
gyroscope readings at a sampling rate of 50Hz. 

Results 
To predict where participants touched based on hand grip 
change, we used the raw, time ordered accelerometer and 
gyroscope measures of the 500ms before touch as features. 
As with Noor et al. [7], we used Gaussian Process (GP) 
Regression to generate a nonlinear model that maps motion 
sensor values to 2D screen coordinates. Using Matlab’s gpml 
package, the models were built independently for each axis 
and were defined using a squared exponential covariance 
function for smoothness and a constant mean function (with 
a prior of 0). The hyperparameters for these functions were 
learned from the data. Due to individual differences in how 
users grip and move the phone in their hand, the model was 
created on a per-user basis. Participant data was split 
between training and test sets using 10-fold cross validation.  

As Figure 2 shows, the resulting models (in blue) provide a 
root mean square error (RMSE) smaller than a baseline 
model that simply picks the center of the available area for 
its prediction (in red). Predicting 0.1s before the touch 
provides a RMSE of 20.3mm, and 21.8mm at 0.2s. Though 
our much larger device makes comparison difficult, our grip 
change model provides similar results to Noor et al.’s 18mm 
(at 0.2s before touch) using only internal sensors. However, 
while motion sensor detected grip change can be satisfactory 
in some scenarios, more complex interactions (e.g. a virtual 
hover space) may require combining mobile sensors with 
high precision auxiliary sensor arrays such as Noor et al.’s. 

STUDY 2 – GRIP CHANGE ON THE MOVE 
The second study had two goals: (1) show how in the air 
prediction using motion sensor detected grip change 
performs in a more representative task and under various 
physical conditions (e.g. while walking); and (2) show how 
grip change can provide information on users’ intent.  

Methodology 
The experiment was designed to gather touch and motion 
data from participants in a common task from every-day 
device use: selecting a particular target from an array of 
homescreen icons. In contrast to the first study, the 
participant selected one target, highlighted red, out of the 
always-visible array of 5x4 targets that simulate a Google 

  

Figure 2. Root mean square error (and ± standard error in 
dashed lines) of touch point prediction before touch contact 
using mobile sensor detected hand grip change. 
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Android and Apple iOS homescreen. Each target was 99x99 
pixels, which corresponds to the Google Android 
recommended size for icons for the Lumia 920’s resolution 
and physical size. 

In order to see how well a grip change prediction model 
works under common motion scenarios, participants 
performed the study in four physical conditions: 

a) Sit: seated at a table, with their phone-handling (right) 
hand partially resting on the table for stability 

b) Stand: free standing without any stability support 

c) Walk: walking around a closed outdoors course at a 
constant, researcher defined comfortable walking speed  

d) Bus: seated on a moving bus 

Each trial highlighted one out of the 20 targets available at 
random with a uniform distribution. To simulate realistic, 
continuous interaction, the application moved to the next trial 
as soon as the participant touched the screen, without the 
enforced delay of the first study. The study was designed to 
be 1 hour in duration, which allowed 200 trials per condition. 
During the Bus scenario, data was only collected while the 
bus was moving – participants were asked to pause while the 
vehicle was stationary. 

Participants and Apparatus 
Twelve new participants (mean age 26.1, SD=2.2, 7 males), 
all right handed each completed 200 trials for each of the 
four conditions (9600 touch trials in all) using a one-handed 
posture. All participants were regular, frequent mobile users. 

The custom experiment application ran on the same Nokia 
Lumia 920 device as in the first study. The application 
collected 2D touch coordinates for each trial, and 3-axis 
accelerometer and gyroscope readings sampled at 50Hz. 

Results – In the Air Prediction on the Move  
To verify whether target prediction is possible in different 
physical conditions, we again trained user-specific GP 
regression models mapping mobile motion sensor sequences 
to touch coordinates. Figure 3 shows touch prediction results 
using 10-fold cross validation for each condition, with the 
baseline model – always guessing in the center of the 
application area – shown in red. Note that the baseline error 
is higher (29mm) than the first experiment due to the static 
set of available targets to select from. As in Study 1, the 
prediction models created in the stationary conditions (Sit 
and Stand) have a lower RMSE than the baseline model. At 
0.1s before touch, the GP regression model created in the Sit 
condition had a RMSE of 23.7mm (with Stand at 22.9mm), 
still lower than the baseline model (29.0mm).  

Specifically comparing the results between the two studies 
shows that Study 1’s result was better; it produced an RMSE 
of 20.3mm at 0.1s before touch, whereas in Study 2 for Sit it 
was 23.7mm. This can be explained by our more 
conservative approach in Study 2. We used a more realistic 
task and did not enforce a delay between trials. At times, 

more than one target was clicked within the 500ms prior to 
touchdown, which resulted in a lack of clear segmentation 
between touches. We also had a more limited data set (200 
trials per user, per condition). Altogether, prediction RMSE 
in the Sit condition is thus higher than the first study. This 
more realistic scenario shows how in the air prediction using 
grip change degrades in a freeform homescreen task. 

Lastly, unpredictable motion such as interacting in a bus, 
leads to higher prediction RMSE (24.4mm at 0.1s before 
touch) than sitting at a table (23.7mm at 0.1s), though 
critically, still lower than baseline models (29.0mm). This 
shows that, even with a relatively small amount of prior data, 
touch prediction using hand grip change is viable in high 
motion, unpredictable physical conditions.  

Results – On Touchdown Prediction of Touch Intent 
The secondary goal of the study was to verify whether grip 
change can improve touch performance by providing insight 
into targeting intent at the point of touchdown. 

In order to separate user intent from their inherent touch 
patterns, we first built a baseline regression model mapping 
the 2D touch coordinates to the center of the highlighted 
target (referred to as the XY Model). We use the center of the 
highlighted target as an approximation of where the user 
intended to touch. This model takes into consideration 
individual touch behavior but uses no other information other 
than touchdown to infer user intent.  

Next, we built a GP regression model that uses where the 
user touched, and the grip change as measured by the motion 
sensor readings of the 500ms prior to touchdown (XY+Grip 
Model). Again, the model attempts to map these features to 
the center of the highlighted target. We test the two models 
against the raw touch points (Raw). The models’ goal is to 
improve on Raw accuracy by inferring where the user 
intended to touch rather than where they actually touched. To 
build and test the models, we use 10-fold cross validation. 

An analysis of variance with Model (XY, XY+Grip, Raw) 
and Physical Condition (Sit, Stand, Walk, and Bus) as 
within-subject factors found a significant main effect of 
Model on touch accuracy (F2,22 = 25.162, p < 0.001). 
Bonferroni correction showed significant differences 
between all pairs of Models. As Figure 4 shows, participants 
had a Raw accuracy of 83% over all physical conditions. The 

 

Figure 3. Root mean square error for the predicted touch points 
in Study 2’s four different physical conditions. 
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XY Model which took into consideration user-specific touch 
behaviour improved accuracy to 88%. Our XY+Grip Model 
further boosted accuracy to 93% consistently over all 
physical conditions—a 41% reduction in error rates over the 
XY Model alone. 

CONCLUSIONS AND FUTURE WORK 
In contrast to more static models that take into consideration 
individual touch behaviour (e.g. hand posture), we consider 
grip change as a continuous information stream, useful at 
multiple points in the interaction sequence. Prior to 
touchdown, grip change detected using standard mobile 
motion sensors can help estimate a touchdown point, useful 
for a virtual hover space and providing interactive support 
(e.g. continuous feedback of a user’s touchdown point). On 
touchdown, grip change that preceded a touch point can be a 
useful predictor of where users intended to land, rather than 
where they touched. Although performance degrades in high 
motion scenarios, our results show that grip change can 
make reasonable touch predictions and reliably improves 
touch accuracy, reducing error rates by 41%.  

Our study trained a model to infer intent by having full 
knowledge of the intended target. A question remains of how 
well such models can be trained and perform during 
everyday use where the intended target may not be known; 
some touches will hit an actual target, but one that was not 
intended. While our second study did not filter out any 
movement+touch sequence, more work is needed to verify 
the impact of such accidental touches in real world use cases. 
Additionally, our models only considered movement data 
that ends with a touch. More work is needed to filter out false 
positive movements and to design interactions that will fail 
gracefully (i.e., never permanently modify the interface state 
based on an expected touchdown). 

Furthermore, our models were evaluated offline, and it 
remains to be seen how users adapt their touches when 
encountering a system that is itself adapting based on 
inferred intent (i.e., online). Continuous visual feedback of 
the model’s predicted touch point may be critical to help 
users correct their targeting motion. 

Finally, grip change was detected through data gathered on a 
relatively large smartphone and with a single thumb hand 
posture. While the current trend is one of increasing display 
sizes, more work is needed to verify how grip change varies 
for different phone-to-hand ratios, and whether smaller 

devices and other common hand postures have detectable 
and useful grip variations  Past work on automatically 
detected hand posture using internal sensors (e.g. [4,5]) may 
be critical pre-processing for adaptive grip change models. 

In conclusion, our studies show that grip change is a 
promising information side channel that is detectable with 
internal motion sensors, even when there is movement due to 
physical activity. Models using mobile sensor-detected grip 
change make useful in the air predictions and may 
complement techniques that use auxiliary sensor arrays to 
create more complex interactions. Additionally, the grip 
change measured right before touchdown provides insight 
into where the user intended to land.  Leveraging this 
information significantly improves touch accuracy beyond 
models that adjust based solely on the touchdown point. 
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Figure 4. Touch accuracy comparing the three models per 
physical condition; Overall aggregates across all the data. 
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