Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

Are We All In the Same “Bloat”?

Joanna McGrenere
Department of Computer Science
University of Toronto
Toronto, ON Canada, M5S 3G4
joanna@dgp.utoronto.ca

Abstract

“Bloat”, a term that has existed in the technical
community for many years, has recently received
attention in the popular press. The term has a negative
connotation implying that human, or system
performance is diminished in some way when “bloat”
exists. Yet “bloat” is seldom clearly defined and is
often a catch-all phrase to suggest that software is filled
with unnecessary features. However, to date there are
no studies that explore how users actually experience
complex functionality-filled software applications and
most importantly, the extent to which they experience
them in similar/different ways. The significance of
understanding users’ experience is in the implications
this understanding has for design. Using both
guantitative and qualitative methods, we carried out a
study to gain a better understanding of the experiences
of 53 members of the general population who use a
popular word processor, Microsoft Word, Office 97. As
a result we are able to further specify the term “bloat”,
distinguishing an objective and subjective dimension. It
is the discovery of the subjective dimension that opens
the design space and raises new challenges for interface
designers. There is certainly more to “bloat” than meets
the eye.

Keywords: Complex software, bloat, creeping
featurism, user experience, office applications, human-
centred design, user study, evaluation, personalization.

1 Introduction

Over the past two decades desktop computing has
become an integral part of the experience of work
across economic sectors and occupations in the
advanced economies. The spreadsheet was the first
“Killer app” for personal computers, followed shortly by
the word processor, and the office suites of the late
1980s. These applications competed within their class
in the marketplace in terms of the number of functions
offered — a phenomenon that became known as the
Feature War. The assumption was that the greater the
number of features, the more useful, or at least the more
marketable the application. These applications became

Gale Moore
Knowledge Media Design Institute
University of Toronto
Toronto, ON Canada, M5S 279
gmoore@dgp.utoronto.ca

increasingly complex in a number of ways. Not only
were there more options available, but some of the
options offered were sophisticated and required a more
complete understanding of computers and traditional
printing and publishing practices. Furthermore, the
interface itself had become visually more complex, e.g.,
menus and submenus were growing longer.
Simultaneously, there was an explosion in the size and
diversity of the user population, many of whom were
unfamiliar with either computers or printing or both.
Technical developments such as the GUI, and attention
to usability have led to improvements over the years,
but the impact of this functionality explosion on the
actual experiences of those using the tools has received
little attention in the literature. However, we are
encouraged by the National Academy of Sciences
announcement that they are in the early stages of
developing an agenda on what they call the “every-
citizen” interface [9].

In the past few years, there has been considerable
interest in the popular press and the computer world in
what has been termed “bloat” or “bloatware” [7] and
“creeping featurism”[10]. “Bloat” is a term that has
been used in the technical community for some time.
Software “bloat” has been defined as “the result of
adding new features to a program or system to the point
where the benefit of the new features is outweighed by
the impact on the technical resources (e.g., RAM, disk
space or performance) and the complexity of use” [11].
Creeping featurism, on the other hand, is the tendency
to complicate a system by adding features in an ad-hoc,
non-systematic manner [11]. One implication is that a
bloated application is one in which there are a large
number of unused features. In the popular press, “bloat”
is often used as a catch-all phrase to suggest,
negatively, that an application is filled with unnecessary
features [1,3].

But, do users actually experience complex software
applications in this way? (We define complex software
as software with many features, most applications
packages today.) We initially assumed that the
“average” user must be struggling with applications
such as word processors and spreadsheets. But, is this

Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

the case? And if it is, is this primarily related to unused
functionality? Do people feel overwhelmed by the
number and variety of choices in the interface, and if
they do, how do they handle this? A goal of this paper
isto specify more closely how users actually experience
this complexity, and how they describe it. Our study of
53 Microsoft Word, Office 97 users from the general
population provided an opportunity to explore these
questions in detail.

First, we took a reatively straightforward
quantitative approach, counting functions and defining
software as “bloated” if a significant proportion of the
functions available were not used by the majority of
users. Second, we used qualitative methods to ground
these data by placing them in the context of the users’
narrative reports and questionnaire responses. Third, we
evaluated and extended a study based on work done by
Microsoft [7] which distinguished two profiles of users
according to their perception of “bloat”. We thus have
several distinct methodological approaches, each
offering a unique perspective on the problem. By
triangulation of methods we are able to more fully
understand the user’s experience of complex software
applications, and to gain insights that can be applied to
interface design.

2 Previouswork

To date, there has been no systematic study of how
users experience complex software. Some early work
has been done on logging the use of functions in UNIX
[5, 6, 13]. This was followed by Carroll and Carrithers’
now classic work on the “Training Wheels” interface
for an early word processor. In this work they found
that by blocking off all the functionality that was not
needed for simple tasks, novice users were able to
accomplish tasks both significantly faster and with
significantly fewer errors than novice users using the
full version [2]. Greenberg’s work on Workbench for
UNIX offered another solution. He labeled systems in
which users use only a small subset of the command
repertory as recurrent systems and created a reuse
facility; this is a front end that collects the user’s
commands and then makes them easily accessible for
reuse [5]. Linton’s [8] recent work on word processors
proposes a recommender system [12] that alerts users to
functionality currently being used by co-workers doing
similar tasks. All these researchers with the exception
of Carroll and Carrithers have used software logging to
capture their subjects’ use of commands in the context
of carrying out their everyday tasks. Results of these
studies consistently show that users of complex
software use very few of the commands available the
majority of the time; informally this is called the 80/20
rule.

3 Study Design

3.1 Software Application Studied
The choice of a specific implementation of a word
processor allowed us to control for one potential source
of variation. Microsoft Word, Office 97, running on the
PC was selected (MSWord). We used the number of
functions available in an application as our indicator of
complexity. Because our primary question had to do
with the users’ perception of complexity, it was not
sufficient to log the underlying commands invoked. We
wanted to account for visual complexity and therefore
defined a function as a graphical element on which the
user could act, rather than an underlying piece of code.
Functions are therefore action possibilities
(affordances) that are specified visually to the user.

The following heuristics were developed to count
the functions in the default MSWord interface:

 Each final menu item in the menus from the menu
toolbar counts as 1. A menu item is not considered
final if it results in a cascading menu.

 Each item on a toolbar counts as 1 (even if it provides
a drop down menu — e.g., borders, styles, and font
colour).

» Each button on a scrollbar counts as 1 except the
scroll widget (which is composed of scroll left/up and
scroll right/up buttons as well as the bar itself) which
counts as 1.

 The selectable items on the status bar each count as 1.

Using these heuristics we counted 265 functions in
the default MSWord interface. The second-level count
included all options available on the first-level dialog
boxes?~709 options available®. In this paper we report
only on the first-level functions (n= 265).

32 Sample

The sample consisted of 53 participants selected from
the general population. While this was not a simple
random sample (and therefore it is not appropriate to
use inferential statistics), participants were selected
with attention to achieving as representative a sample of

! There are clearly other factors contributing to the experience of
complexity, for example, the actual domain of the application can
be inherently complex (e.g., engineering design is the domain of
CAD software) or the structure of features within the interface can
play a role (e.g., progressive disclosure). In this paper we focus
specifically on the number of functions.

2 First-level dialog boxes are those that are accessible directly from a
menu item.

3 Space limitations do not permit us to list the detailed heuristics used
to count the dialog-box functions; these heurigtics are considerably
more complex than those of the main interface and are available
from the authors. By comparison Gibbs reported that there were a
total of 1033 functions in MSWord 97, but gave no source.
Therefore, we do not know the method used to count the functions
[4].

Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

the general adult population as possible. That is, we
paid particular attention to achieving representation in
terms of variables such as age, gender, education,
occupation and organizational status.

3.3 Instrumentsand Data collection

Functionality Interview

A researcher presented each participant with two series
of printed screen captures. The first set successively
revedled al the first-level functions on the default
interface. The second set was a simple random sample
of al the dialog box functions. For each function,
participants were asked:

(1) Do you know what the function does? And if so,
(2) Doyouuseit?

Responses to question one were scored on a two-
point scale: familiar and unfamiliar. Responses to
question two were scored on a three-point scale: used
regularly, used irregularly, and not used. Participants
were told that familiarity with a function indicated a
general knowledge of the function’s action but that
specific detailed knowledge was not required. A
regularly-used function was defined as one that was
used weekly or monthly and an irregularly-used
function was one that was used less frequently.

We were particularly concerned with ecological
validity, and the most valid way to assess the familiarity
and use of functions by our participants would have
been to have them use their own system while reporting
familiarity and usage. However, we were concerned
that if they had customized the interface in any way
there was the potential to introduce error in the
recording and make comparisons problematic. Our
approach was to use colored screen shots of an out-of-
the-box version of the word processor. We did,
however, take screen captures from our participants’
machines so that we could later assess the extent to
which they had customized their interface.

To discourage guessing and to provide a measure of
reliability, participants were told at the outset that they
would be asked periodically to describe the action of
any function with which they reported familiarity.
Unreliable participants could in this way be identified
and data discarded. Fortunately this did not turn out to
be an issue in this study.

In-depth Interview

An in-depth interview was conducted with each
participant to both ground and extend the quantitative
work. Here specific issues that had been raised in the
Functionality Interview were probed and participants
were encouraged to talk more generally about their

experiences with word processing in general, and
MSWord, in particular.

The Functionality Interview and the In-depth
Interview together required approximately one and a
half hours of each participant’s time.

Questionnaire

Prior to the interview each participant was given a poll-
type questionnaire. This took approximately 30 minutes
to complete. It included a series of questions on work
practices, experience with writing and publishing, the
use of computers generally, and the use of word
processors specifically. A number of questions were
designed to gather information for scale construction
for the evaluation of Microsoft’s profiling study. Basic
demographic information, such as age, gender,
education, and occupation was also requested.
Throughout the questionnaire open-ended responses
were encouraged and space provided.

34 How our work isdifferentiated from others
Our work can be differentiated from earlier research in
a number of ways. First, we use multiple methods and
the results show this provides us with a unique
perspective for thinking about complex software. The
different approaches do not provide conflicting
answers, but rather help to elaborate an extremely
complex question, each highlighting a specific
dimension of the problem. Quantitative methods offer a
detailed description of the feature space, questionnaire
responses helped identify patterns and summarise the
data, while the in-depth interviews allowed us to probe
these summary statements in order to understand the
users’ actual experience and how it varied. Second, our
data are self-reported—from questionnaires and in-
depth interviews—in contrast with logging which has
generally been the method of choice in computer
science. It is important to note that while logged data
report the functions actually used (at least as measured
in terms of keystrokes), this method cannot distinguish
between familiarity and use. Finally, while self-reported
data are subject to the participant’s ability to recall
information, information on a function that is used
irregularly could be missed if logging is not carried out
for an extensive period of time. Thus, by using a variety
of methods we compensate for the limitation of each
method used on its own.

The next three sections present our findings and
analysis.

4 Quantitative method: Software is “bloated”
when a significant proportion of the functions
available are not used by the majority of users

By this definition, MSWord is “bloated” indeed, as the

pie charts illustrate (Figure 1). Compare the number of

Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

Functions Used

Functions Used Regularly

Familiar Functions

% of users
oo

01-25
026 - 50
m51-75

MW 76 - 100

n = 265 functions

Figure 1: Number of functions that are ““used”, “used regularly”, and “familiar’ to our participants.

functions used by various percentages of the users and
the functions used regularly. Of the 265 first-level
functions, 15.8% (42) were not used at all and only
21.5% (57) were used by more than half of the
participants. There were only 3.3% (12) functions that
were used regularly by more than three quarters of the
participants.

By looking at the number of functions with which
users were familiar, however, we see that the
distribution is much more even and that users were
familiar with a great deal more than they actually used.
Note that this familiarity data could not have been
captured through logging. There was only one function
that none of the users could identify, namely, extend
selection (EXT) on the status bar. 28% (74) of the
functions were familiar to 13 or fewer participants (1-
25%), and 26% (69) of the functions were familiar to
40-53 (76-100%) of the participants. The high degree of
familiarity points to one way in which this narrow
definition of “bloat” may mask the actual experience of
the user. Familiarity may lead to a certain level of
comfort and so if users are familiar with functions, even
if they do not use them, they may be less likely to
perceive these unused functions as “bloat” rather than
as functionality they simply do not use.

We can also look at the relationship between

100
90
80
70
60
50
40
30
20
10

@ Familiar
m Use

% of Functions

S n O M N~ =S O O oM N o

Individual Participants

n=>53

Figure 2: Percentage of functions “familiar’” and “used” for

each participant sorted in descending order of familiarity.

familiarity and use from the perspective of the
individual user. Figure 2 shows a comparison for each
participant between the percentage of functions with
which they were familiar and the percentage actually
used. On average, the Usage to Familiarity Ratio was
57% (standard deviation = 0.148).

Table 1 shows that a relatively low percentage of
the functions were actually used. On average the
participants used 27% of the functions, and were
familiar with 51%”. There was greater variation in the
number of functions with which participants were
familiar (range from 9% to 92%) than the functions
actually used (range from 3% to 45%). Figure 2 shows
this graphically. However, this data cannot tell us
whether each user experienced the unused functionality
in the same way, or whether they experienced it as
“bloat”.

First-level

functions
Average # familiar to participants 135 (51%)
Average # used by participants 72 (27%)
Average # used regularly 40 (15%)
Average # used irregularly 32 (12%)
Maximum # familiar to any participant 245 (92%)
Minimum # familiar to any participant 24 (9%)
Maximum # used by any participant 119 (45%)
Minimum # used by any participant 8 (3%)

Table 1: Means and ranges of “familiar’” and “used”
functions (n=53).

5 Qualitative Method: The Users’ Experience

Our quantitative analysis showed that there was a great
deal of unused functionality, but is this “bloat”, or more
neutrally, simply unused functionality? While our
quantitative analysis highlights many interesting

* We found that participants’ familiarity and usage at the dialog-box
level was roughly half of what it was with the first-level functions:
participants were familiar with on average 28% of the dialog box
functions and used 13%.

Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

aspects about the feature space, it cannot shed light on
this question. Yet, the answer to this question has
important implications for design. In this section we
first focus on data from the questionnaire to answer the
following questions:

1. To what extent did users report that they were
satisfied or dissatisfied with their word processor?

2. Was concern with unused functionality a major
source of dissatisfaction for users?

3. What other sources of dissatisfaction with their
word processor did users report, and how can these
be categorised?

4. Did users actually perceive that their word
processing software as “bloated” and did they use
this language?

5. What impact did unused functionality have on
usability?

After answering these questions we turn to report
what the users themselves said. We hear what frustrated
them, how they responded to new versions of MSWord,
and how in the final analysis they got their work done.
It is important to note the ways in which these two
methodologies complement each other, in particular
how in-depth interviewing is able to deepen our
understanding of users’ experience and suggest design
options that are masked by other methods.

51 Questionnaire

Participants were asked to rank on a Likert-type scale a
series of 29 statements about their perception of using
MSWord. Figure 3 shows the result for one of these
questions, and is representative of the findings for
statements on general satisfaction/dissatisfaction.
Namely, the majority of the users reported “no opinion”
to these statements and the rest of the users were almost
evenly divided between those who agreed and those
who disagreed. However, when participants were
asked in the interview to discuss these statements, they
were, in general, more satisfied than the questionnaire

revealed that the major source of dissatisfaction was not
about the large number of functions, or concern that the
extra functions were getting in the way. Rather concern
centered on factors such as poor implementation,
unpredictability, and inconsistency. Finally, with
respect to “bloat”, there was not a single person in our
study who used the term, either in written comments on
the questionnaire or in the interviews.

The responses to questions designed to assess the
impact of a large number of functions on usability did,
however, suggest that a problem exists. Examples of
these are in Table 2 below. Users were almost evenly
divided between those who agreed, disagreed or had no
opinion when asked if they were overwhelmed by the
number of interface elements. However, when asked
specifically about the impact of excess functionality on
their activities they were more clearly divided.

Agree | No Op. | Disagree

| am overwhelmed by how

0,
much stuff thereis. (n=51) 27.5%

39.2% | 33.3%

| have a hard time finding the
functions | need unless | use
them regularly. (n=53)

585% | 5.7% 35.8%

After using a new version for
a short time, the commands
and icons that | don’t use
don’t get in my way. (n=51)

51.0% | 17.6% 31.4%

Wading through unfamiliar
functions can often be
annoying/frustrating. (n=53)

62.3% | 17.0% 20.8%

Table 2: Responsesto statements about usability.

But how would users like to see excess functionality
handled? Again, our participants were divided, and
offered no easy solutions for designers (Table 3). Only
245% wanted to have unused functions removed
entirely but 45% preferred to have unused functions
tucked away. The fact that 51% wanted the ability to
discover new functions as they use the application
points to one underlying reason for users not wanting
unused functions removed.

responses indicated. Furthermore, the interviews
Agree | No Op. | Disagree
"Word gets better with each new version" | want_only the functions | 24.5% 9.4% 66.0%
use. (n=53)
%5 | prefer to have unused
£ 20] functions tucked away. | 45.3% | 15.1% | 39.6%
g — (n=53)
5 15 T
= It is important to me that |
g0 — continually discover new | 50.9% | 18.9% | 30.2%
S s functions. (n=53)
ol = ‘ ‘ [Table 3: Users’ preference for number of functions on
1 2 3 4 5 the interface.
1=Strongly Disagree, 5=Strongly Agree
But why are some users not bothered by excess

Figure 3: Participants satisfaction with MSWord.

functionality while others are? Thisis, in part, we argue
a reflection of the diversity among the users of word

Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

processors in the general population. Furthermore, the
power of today’s word processor is that it is not
necessary to be a technical expert to use it, however,
lack of computing expertise may limit a user’s ability to
critique it.

A fascinating finding was that a specific
occupational group, the secretaries and administrative
assistants, reported the greatest satisfaction with their
word processor. Initially we thought this might be
explained by the fact that they would have received
more training than members of other groups and were
the heaviest users, but the results of the questionnaire
did not support this. However, in the analysis of the
transcripts from the in-depth interviews we did notice a
pattern. When participants from this group were asked
to say more about what they specifically liked about
MSWord, or how it could be improved, they had
difficulty giving precise answers. A number said that
they simply accepted it as it was, or assumed that this
was “just the way word processors are”! So, while this
group included heavy users of word processors, they
appeared not to have sufficient computing experience to
think critically about this tool. When we looked at the
technical experts, we found that not only did they report
the greatest dissatisfaction, they were able to articulate
this in terms of specific problems and underlying
issues. The computer scientists, in particular, had a
good understanding of what is possible in a software
application and were less accepting of “bad” design or
what they saw as “sloppy implementation”.

These observations raise two points. First, designers
should not automatically assume that users can answer
their questions accurately (even if the questions are well
designed). Second, there is a limitation to survey
methodology if the goal is to understand user
experience. We now turn to the users’ own accounts
given in the in-depth interviews. These more nuanced
accounts of user experience suggest some new design
ideas.

52 In-Depth Interview

Sour ce of Dissatisfaction: Excess Functionality
In this section the users’ speak. It is important to
understand that the analysis that runs through this
section comes out of a detailed reading and
summarising of the transcripts from the in-depth
interviews. The individual quotations have been
selected both because they are representative of the
analytical point we are making and for the way in
which they give life to the issue.

A number of participants stated explicitly that their
needs could be met by a “simpler” system. A senior
technical expert commented:

“l want something much simpler... 1’d like to be able to
customize it to the point that | can eliminate a significant
number of things. And I find that very difficult to do. Like
I’d like to throw away the 99% of the things | don’t use
that appear in these toolbars. And | find that you just
can’t, there’s a minimum set of toolbars that you’re just
stuck with. And I think that’s a bad thing, | really believe
that you can’t simplify Word enough to do it.”

By way of contrast, a junior technica expert
suggested that he did not want a ssimpler system, but
that he was concerned with the amount of screen real
estate that these functions took up:

“I don’t think they should be eliminated. It’s always good
to have them, but they shouldn’t be given the same
prominence or real estate on the screen as the other
options.”

An older office administrator who had once studied
mathematics suggested that there was a need for a
“light” version of the software not because of limited
screen real estate but to prevent confusion:

““I think maybe what they could do is have different levels
so you would not be bogged down with so many features,
and if you don’t need them all, they are just really in the
way and they get cumbersome. They get into something
you don’t really want. So if they had something like Basic
Microsoft Word, ... that would be useful ... for people
who just do letters or something like that. | think that
there is, in a way, too much there and that for a user like
me it is, in fact, a disadvantage -- you get lost in it and
when you need something very quickly, which is usual,
whether one is typing a letter or a document, you don’t
have oodles of time to go exploring for three days. And
then it takes you half an hour to do the thing... My
background was mathematics, where you learn basic stuff
and [then] you learn more difficult stuff and you build it.
It goes very logically, whereas here you are just thrown in
the middle of it and you flounder.”

Several participants specifically said that they
wanted all the functions present even if they did not use
them because they might want them some day. This
points to an underlying apprehension that functions that
are not visible might get “lost” if they were tucked
away. A young female lawyer who relies heavily on her
secretary said:

“No, I think I prefer to have it there just in case there’s an
occasion when I’'m here, she’s [her secretary] not here
and | want to do something. Then I’ll just go in and do it.
Like, an example would be, page numbering or making a
list or using the automatic numbering or putting bullets in
or some sort of formatting thing that 1 want to do if she
hasn’t done it and we’ve got to get the document out. So,
no, | think it’s fine how it is, and in fact, | sort of like to
have the option. | wouldn’t like to be treated like | only
can work at a certain level. | prefer to have the option to
work at a higher level if | choose to.”

Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

Others wanted all the features present specifically
because they saw it as a sign of being up-to-date. A
young female consultant said:

“And | always want the latest version whether | [laughs]
you know, really use all the new stuff... | want it, whether
I know what to do with it or not. [laughs] | understand
why some people would only want to use what they have,
‘cause that’s what they’re familiar with, but now you just
can’t be like that anymore.”

And others pointed out that reducing the functions
would impede their ability to learn through exploration.
A graduate student in the humanities said:

“Yes, it would probably be useful ... hmmm, | have two
answers to that ... To some degree it would be useful to
have a reduced set, but | like sometimes just playing
around and discovering a function. So if you only have a
reduced set then you don’t have much chance to
accidentally find a function and say “ah, this is what this
does” but the results [of the functionality interview] show
that | haven’t been experimenting that much!”

Not al the participants were concerned about the
large number of functions. In fact, severa were
adamant that they liked to have them adl. An
entrepreneur and owner of a small successful IT
company put it this way:

“And | know that in some software packages they try to
create simple menus to allow you to decide what you want
to see. | always default to the full set and the reason is
that | feel comfortable with technology and I’d rather see
the full extent of what’s available, not just the sliver that
is usable by me. | don’t want to see a sliver or portion of
it that has been determined statistically to be more useful
for most users and think that I’m missing out on some
features.”

Clearly there are conflicting views. The challenge to
designers is to accommodate the diversity of user
needs. In these quotations we begin to see what
motivates users and how some of these motivations tie
into underlying values, e.g., speed of accomplishing
tasks, and the need to be seen as up-to-date. We also
see how exploratory learning is one consequence of
keeping all the functions at hand.

Additional Sources of Dissatisfaction

A source of dissatisfaction for some users was their
perception that the multiple ways of executing an
operation were confusing. In some cases this was
because these variations did not produce the same result
(e.g., print menu versus print icon) and users’ perceived
this as a sign of inconsistency. Others perceived the
fact that variations produced the same result (save menu
versus save icon) as a sign of unnecessary redundancy.
A government policy analyst noted:

“It seems very redundant to have that many different
ways of doing something, and it makes training very
confusing when you’re just starting up with the software.”

As we have noted there are several sources of
dissatisfaction for users, and that excess functionality is
seen as problematic by some. While different users
“liked” or “hated” different features, there was almost
universal distain for automatic features. For a variety of
reasons, participants from across the occupational
categories complained about these. As one technical
expert exclaimed: “Don’t go there!” or a librarian,
commenting on AutoCorrect® put it this way:

“What | type is what | want, so | don’t want the machine
second guessing me.”

For others the problem was compounded because
they did not know how to turn these automatic features
off. A female consultant complained:

“With each new version there’s a tendency for it to try
and predict what you will do next. Drives me nuts! It’s an
advance that is totally annoying.”

But, even here there were a few who perceived that
the automatic features that they used worked well and
they considered them timesavers.

53 Summary

The analysis of the questionnaire data, informed by the
in-depth interviews allowed us to further specify
“bloat” by identifying an objective and a subjective
dimension. There is a small subset of features that are
not used or wanted by any user which we designate as
“objective bloat”. The remaining features are divided
into two sets which vary from user to user and are thus
subjectively defined. One set includes those features
that are not used and not wanted by an individual user -
this is “subjective bloat” for that user. The second set
includes those features that are wanted by that
individual user, whether or not they are actually used.
To refer to the unused functions in the second set as
“bloat” is misleading as the user’s experience of this
unused functionality is not negative. In fact, users’
responses both to the presence of unused functionality,
and how they would like it handled varies widely. This
discovery of set of unused features, both wanted and
unwanted, that is subjectively defined by each user,
opens the design space and raises new challenges for
interface designers. There is certainly more to “bloat”
than meets the eye. Some implications for design are
discussed in Section 7 of this paper.

5 This function corrects aword automatically while it is being typed.

Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

6 Evaluating and Extending Microsoft’s Study
on User Profiling

The third method we used was user profiling which,
like our second method, is qualitative in nature. In a
workshop [5] Microsoft reported an unpublished study
in which 12 members of a focus group were asked to
define “bloat”. Group members were asked to complete
the statement ““My software feels bloated when...”” The
sample is small and we have been unable to find
information on how the group was chosen, but the
results are intriguing. The Microsoft study reported that
users can be categorized into one of two Profiles, A or
B, depending on their perception of software as
“bloated” or not. Profile A users prefer software that is
complete, they will stay up-to-date with upgrades, they
assume that all interface elements have some value, and
they blame themselves when something goes wrong or
when they can’t figure out how to perform a specific
task. Alternately, Profile B users prefer to pay for and
use only what they need, they are suspicious of
upgrades, they want only the interface elements that are
used, and they blame the software and help system
when they can’t do a task. A user’s profile was
independent of expertise as it is traditionally defined in
the HCI literature, a uni-dimensional construct which
includes categories such as novice/beginner,
intermediate, and expert. Microsoft’s focus group
included only intermediate and expert users.

The Microsoft profiling approach, although
unpublished, represented a reasonable first attempt at
understanding the perceptual component of “bloat”.
Our goal was to attempt to reproduce these findings in a
more systematic study with a sample of users from the
general population.

Our results showed partial support for the existence
of the A and B profiles. We had to discard the questions
on blame as few in our sample were willing to blame
either the software or the company when they had
problems, and even fewer were willing to blame
themselves (3.8%)! On all the questions relating to

blame we had a high reporting of “no opinion”, and at
least two participants said that “blame” was very strong
language and that they felt discomfort with the term.
We have no explanation for why this was not a problem
in the Microsoft group, other than a possible cultural
one.

After removing blame we had three scales to
construct. They are summarized in Table 4 along with
the Cronbach’s alpha (a), a reliability measure.

“The number of functions in the in
interface does not make it difficult for me
to find the function | am looking for.”

(# Variables = 3, a = .83)

Functions

Up-to-dateness | “I want my MS Word software to be up to
date — | want the latest version.”

(# Variables = 3, a =.77)

Completeness “l want a complete version of MS Word
even if | don’t use all the functions.”

(# Variables s = 6, a = .76)

Table 4; Summary statement for three scale variables
(n= 50).

These three scales were then aggregated to comprise
the final A/B Profile Scale (Cronbach’s a of 0.81).

The distribution of the cases across the A/B Profile
Scale revealed that while there were concentrations at
both ends of the scale there was a substantial group near
the center. We therefore divided the subjects into three
groups, which we distinguished as Profile A, Neutral,
and Profile B.

We found support for Microsoft’s finding that the
perception of “bloat” is independent of expertise
(Figure 4). In addition, we found that it is independent
both in terms of the number of functions used and in
terms of the number of functions with which the user
was familiar.

While there is some support for the A/B profiling,
that is, the perception of “bloat” varied between groups
of users, we wondered what else this profile might be
capturing. First, we thought it might distinguish early
from late adopters and that gender might play a role in

10

9
" 8
c 7
S 61— mA
g 5 0 Neutral
S 44 mB
S 31—
* o2

1 |

0

basic moderate extensive
computer expertise n=>50

Figure 4: Distribution of computer expertise
over the A/B Profile Scale.

16

14 +—

12 ——
2 —
& 10
Q.
S 8 mfemale
g mmale
w 61—
o
=, |

2 | S

0

A Neutral B n=50

Figure5: Distribution of gender on A/B Profile Scale.

Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

8

7
[%]
% 6
2 5 oA
£ 4 O Neutral
©
o 34 mB
© 2
#*

l,

o LW T IE

v @ S PN N SO
& L &’ LLE S QS
‘\Q'O\;\ Q,é C:b' (\o(\é\e & bQ? ('Q\(\ N \‘\0
{bé N 9 @ ?}\@ ,oé
W
>
&
Q\O n=50

Figure 6: Distribution of occupation on A/B
Profile Scale.

explaining the outcome. Figure 5 shows that there is
indeed a difference based on gender, but contrary to our
expectations it was the females who fell into Profile A,
i.e.,, those wanting the most up-to-date, and complete
version of the software. However, if we look at the
distribution of the occupation of our participants
(Figure 6), an alternate explanation is suggested. The
gender difference also reflects differences in terms of
their position in the division of labor.

The females cluster in administrative assistant and
secretarial occupations, those for whom word
processing may be the base of their craft knowledge
and a source of status. Profile B includes the technical
experts and one of the two academics, both groups who
are less likely to have support staff and for whom word
processing is yet another task. Also included in Profile
B are the journalists and lawyers, al of whom have
staff to format and/or edit their work. As they
themselves are not responsible for the look and feel of
the final product, they may not feel a need to upgrade.
The academics and technical experts are most
overburdened, responsible for both the creation and
production of documents. Not surprisingly, perhaps
they are the least interested in new versions of the
software.

7 Bringingit All Together: Directionsfor Design

We had become concerned that the recent use of the
term “bloat” in the popular press and more importantly
in the technical community could suggest that widely
used general applications, such as word processors, are
filled with unnecessary features. We were especially
concerned that the potential for these reports of user
dissatisfaction could lead to the conclusion that users
would be better served by simple or light versions of
these applications. What was missing were the research
studies that tested and evaluated these assumptions. It

was a goal of our study to begin to fill this gap, and to
be able to understand more fully how users actually
experience a complex application such as a word
processor.

Our first objective was to see if the labeling of this
complex software as “bloated” had any validity. If
unused functionality is the metric, MSWord is clearly
“bloated”—a little over 50% of the functionality with
which users are familiar is actually used. And, while
users are dissatisfied with a number of aspects of
MSWord, not all this dissatisfaction centers on excess
functionality.

“Bloat” can be further specified and defined in
terms of objective and subjective “bloat”. In terms of
“objective bloat”—functions used by few users—we
have the following design recommendations:

e Eliminate unused functions.

* Relocate functions used by few from high-level
visibility in the interface. The determination of the
exact “cut-off point” is likely application-specific.

e Prevent objective bloat. This requires a shift in
design practice from programmer/marketing-
centric to human-centered design. There is a need
to recognize that there is a cost to the user of
unused features. Each function should be evaluated
carefully before it is added to the interface.

This leaves a subjectively defined group of unused
functions. But this subset cannot de facto be defined
negatively — this is not what all users told us.
Subjective “bloat” is thus defined as the particular
subset of functions that are not used and not wanted by
an individual user. The fact that not all of an individual
user’s subset of unused functionality can be labeled as
“bloat” was an unexpected finding of our study.
Subjective “bloat” varies from user to user, so creating a
simple or basic version by eliminating functions will
inconvenience most users, albeit in different ways. To
put it another way, my favourite function, may be your
“bloat” and vice versa. We hope that this redefinition
will encourage a more nuanced understanding of the
richness of heavily-featured software applications and
that a catch-all phrase such as “bloat” which distorts
users’ experiences, will no longer be used.

What is exciting is how this understanding opens
the design space, challenging designers to
accommodate both functionality that is used and
functionality that is unused but nonetheless still wanted.
The ultimate goal might be for each user to have an
interface that includes functionality suited to his/her
needs and desires, yet does not limit access to
additional functionality. Although this goal is not likely
achievable in its purest form, some progress can still be
made.

Accepted for publication in The Proceedings of Graphics Interface 2000, Montreal, May 2000.

Interface design has begun to acknowledge that
“one-size-fits-all” interfaces may not in fact fit all.
Facilities for customization and tailoring are included in
most complex software applications, however the high
overhead required to customize renders them neither
effective nor adequate. We argue that the philosophy of
design needs to move away from *“enabling the
customization of a one-size-fits-all interface” to
supporting the creation of a personalizable interface.
The personalization solution needs to be lightweight
and low in overhead for the user, yet not limit or restrict
their activities. We suggest that multiple interfaces may
be one way to accommodate both the complexity of
user experience and their potentially changing needs.
Individual interfaces within this set would be designed
to mask complexity and ideally to support learning. We
recognize that continual access to the underlying
formatted document or text needs to be preserved.

We are starting with a two-interface model for users
who want a reduced function set. This group includes
beginners as well as those users who regularly use only
a few features, for example, the lawyers in our study. A
simple toggle that enables the user to switch between
the default interface and a reduced interface — for
example the top 10% of functions used by all users — is
the first approach. This gives a user access to a less
complex interface while at the same time permitting the
user to move readily to the more complex default
version, if for example, a less frequently-used feature is
required. As well, features can be added into the user’s
personal interface as desired. In this way the
complexity is masked without limiting the user’s access
to the full system.

Simultaneously we are investigating an alternative
approach—the creation of a set of interfaces. We are
exploring a number of different bases for
personalization to define these sets, e.g., psychological
stereotypes, social roles, activities, and digital personae.
Essentially we are arguing that not only has the time for
“one-size-fits-all” interface design passed, but that
“one-size-fits-one”, or an interface for every user, even
if possible, could also be limiting. It is only with a set
of interfaces that we can begin to support the
complexity and diversity of users’ experience. The
challenge is an exciting one as applications such as the
word processor are used by millions and therefore the
potential impact of design changes is enormous.

8 Acknowledgements

We would like to thank CITO: Communication and
Information Technology Ontario and IBM Centre for
Advanced Studies who are supporting the Learning
Complex Software Project of which this study is a part.

We also thank Kellogg Booth and Ronald Baecker for
commenting on earlier drafts of this paper.

References

[1] The bloatware debate (1998). Computer World, August
10, 1998.

[2] Carall, J., and Carrithers, C. (1984). Blocking learner
error states in a training-wheels system. Human Factors,
26(4), 377-389.

[3] Do computers have to be hard to use? Complex, volatile,
frustrating; There must be a simpler way (1998). New
York Times, May 28, 1998.

[4] Gibbs, W. (1997). Taking computers to task. Scientific
American, July 1997, 82-89.

[5] Greenberg, S. (1993). The Computer User as Toolsmith:
The Use, Reuse, and Organization of Computer-based
Tools. New York: Cambridge University Press.

[6] Hanson, SJ., Kraut, RE., and Farber, JM (1984).
Interface design and multivariate analysis of UNIX
command use. ACM Transactions on Office Information
Systems, 2(1), 42-57.

[7] Kaufman, L. and Weed, B. (1998). User interfaces for
computers — Too much of a good thing? Identifying and
resolving bloat in the user interface. Conference
Summary, CHI 98, Workshop #10, 207-208.

[8] Linton, F., Joy, D. and Schaefer, P. (1999). Building user
and expert models by long term observation of
application usage. User Modeling: Proceedings of the
Seventh International Conference. New York: Springer,
129-138.

[9] More than Screen Deep: Toward Every-Citizen
Interfaces to the Nation’s Information Infrastructure.
(1997). Washington, DC, National Academy Press.

[10] Norman, Don. (1998). The Invisible Computer.
Cambridge, MA: MIT Press, 80.
[11] Online Computing Dictionary

http://www.instantweb.com/

[12] Resnick, P. and Varian, H.R. (1997). Recommender
systems, Communications of the ACM, 40(3), 56-58.

[13] Whiteside, J. et a. (1982). How do people really use text
editors? Proceedings of the Conference on Office
Automation Systems, New York: ACM, 29-40.

10

