
 Joanna McGrenere, 1998

Learning to Use Complex Computer Technology:
The Impor tance of User Interface Design

PhD Depth Paper

by

Joanna McGrenere
Depar tment of Computer Science

The University of Toronto

June 25th, 1998

Supervised by:

Professor Ronald M. Baecker
Depar tment of Computer Science

 University of Toronto

Professor Kellogg S. Booth
Depar tment of Computer Science
University of Br itish Columbia

 i

Abstract

Computer systems (and many other devices that contain embedded computers) are
becoming more and more complex as advances in technology permit substantially more
functionality to be provided to users. Often the vast number of options, and the sometimes
ad hoc manner in which these options are invoked, leads only to confusion on the part of
the user rather than satisfaction with the product. This can potentially inhibit the user’s
growth of expertise. A key factor in designing complex systems is the design of an
appropriate user interface that exposes functionality in a way that supports the needs of the
user as a learner and does not lead to confusion and frustration.

This paper is a literature review that covers two somewhat symmetric approaches to user
interface design. The first involves making design decisions based on an understanding of
how users learn new complex systems. The second involves having the system learn about
the user and then adjust itself or allow adjustments based on what it has learned. This paper
surveys previous and current work in both of these areas and draws conclusions about
appropriate areas for further research in user interface design techniques based on these two
approaches.

 ii

TABLE OF CONTENTS

1 INTRODUCTION..1

2 SETTING THE STAGE ..2

2.1 TERMINOLOGY ...2
2.2 HOW ARE USERS COPING?..3
2.3 WHY FEATURISM? WHY THE COMPLEXITY?...6
2.4 THE GOAL OF UNIVERSAL ACCESS...7
2.5 RESEARCH DIRECTION ...8

3 LEARNING TO USE COMPLEX SYSTEMS..8

3.1 WHAT IS LEARNING?..10
3.2 EXTERNAL FACTORS AFFECTING LEARNING ..11

3.2.1 Motivation..11
3.2.2 Individual Characteristics...11

3.3 HOW DOES ONE LEARN?...12
3.3.1 Exploratory Learning..12
3.3.2 Learning Through Transfer of Prior Knowledge...16
3.3.3 Formal Training..17
3.3.4 User Support - Online Help, Tutorials, Demonstrations and Animations, and Documentation18
3.3.5 Learning from Friends and Colleagues...21

3.4 MODELLING HOW USERS LEARN ...22
3.5 DESIGNING FOR LEARNABILITY ..23

3.5.1 Designing for Exploration...23
3.5.2 Designing for Error ...25
3.5.3 Learner-Centered Design..26
3.5.4 Questioning the All -in-One Model...28

4 INTELL IGENT USER INTERFACES..30

4.1 AGENTS..32
4.2 ADAPTIVE USER INTERFACES...35

4.2.1 Examples of Adaptive User Interfaces:..38
4.3 USER MODELLING..41

4.3.1 Examples of User Models: ...43
4.4 TASK MODELLING AND PLAN RECOGNITION ..43

4.4.1 Examples of Task Modelli ng and Plan Recognition:...44
4.5 MULTIMODAL COMMUNICATION/NATURAL-LANGUAGE DIALOG...45

4.5.1 Examples of Multimodal Communication/Natural-Language Dialog:......................................45
4.6 INTELLIGENT HELP...45

4.6.1 Examples of Intelli gent Help: ..45
4.7 INTELLIGENT TUTORING SYSTEMS...46
4.8 DYNAMIC PRESENTATION ..46

4.8.1 Examples of Dynamic Presentation:..47
4.9 SOFTWARE ARCHITECTURES..47
4.10 EVALUATION ...51

5 SUMM ARY AND DISCUSSION ...52

5.1 PUTTING IT ALL TOGETHER - TWO POSSIBLE SCENARIOS...57
5.1.1 Gradual tool selection and de-selection - toolbox/workbench metaphor57
5.1.2 Task driven tool selection - multiple workbench metaphor ...58

5.2 RESEARCH CONTRIBUTIONS...59

6 REFERENCES...61

 1

1 Introduction
End-user applications have changed dramatically since the introduction of the PC nearly
two decades ago. The sharp increase in raw compute power has translated into applications
with sophisticated graphical user interfaces and with considerably more functionality than
their predecessors1. Look, for example, at word processing. In the early 1980s a package
that included basic input, basic editing, basic page formatting, and the abilit y to save and
print was probably thought to be comprehensive. For a word processor to be competiti ve
today it must include some drawing and spreadsheet capabiliti es, the abilit y to import and
export just about any format, the abilit y to format the document in a multitude of ways, and
the list goes on. Despite significant efforts in the domain of Human Computer Interaction
to make the interface more intuitive, our interfaces are in no way optimal [Raskin, 1997]
and the functionality explosion has only furthered the complexity of software2.

What about the user? As we move towards universal access it is timely to ask such
questions as how users are currently managing complexity, whether complexity has become
a barrier to effective and eff icient use of human resources, and whether in fact the
complexity of today’s systems actually presupposes a sophisticated user? Have we perhaps
reached the edge of accommodation and further advance will require a paradigm shift?
Central to the issue of how users cope with complexity is how in fact users learn to use
complex systems. What learning strategies do users employ? Is there a way that systems
could be designed to better support the learning process? What can we learn from users’
learning in other domains?

This paper is a literature review that addresses these questions and other issues involved in
the learning of functionality-fill ed software that serves a diverse user population. In
particular it covers two quite symmetrical approaches to user interface design: learning how
users learn complex systems and designing accordingly, and having the system learn about
the user and adjusting accordingly. The first approach is rooted in fundamental practices of
the field of Human Computer Interaction. It involves achieving an understanding of how
users learn by studying the users themselves through a number of well established
techniques. Once the process of learning a complex system is better understood, then
designs that support learning can be implemented and tested. The second approach is rooted
more heavily in the field of Artificial Intelli gence. It involves the system creating and
maintaining a representation of the user’s knowledge, habits, and needs. In accordance with
this knowledge base, the system can perform some tasks (perhaps rudimentary or perhaps
time consuming) on behalf of the user and can be adjusted to better accommodate the
individual user. The goal with this approach is to place some of the burden of learning on
the system.

1 This trend of software expanding to take advantage of hardware capabiliti es is not unique to computing but
has appeared in the evolution of many appliances, including food processors, digital watches, and video tape
recorders [Card, 1989].
2 It is worth noting that this trend towards complexity is not limited to software. It is evident in hardware [e.g.,
Myer and Sutherland, 1968] and is likely a general trend outside the realm of computing. Once a system
becomes too complex and is no longer supportable, the general solution is to build specialized tools.

 2

The purpose of this review is to identify research directions and future contributions in the
area of learning complex computer systems. The bodies of literature reviewed include
human-computer interaction, learning, intelli gent and adaptive user interfaces, and even
some trade literature.

The paper is divided into four main sections. The first section, Setting the Stage, highlights
the literature in which functionality is addressed and explains some of the factors that have
motivated the functionality explosion. The second section, Learning to Use Complex
Systems, covers the first approach to user interface design by looking broadly at how people
acquire skill i n the context of computing environments. The third section, Intelli gent User
Interfaces, covers the second approach and describes the contribution of the Artificial
Intelli gence community towards reducing complexity in the interface and improving user
performance. The final section provides a brief summary, discussion, and some possible
future research directions. As an alternative path through the document, the reader may
wish to skip directly to the final section after reading Setting the Stage in order to get an
overview of the literature surveyed. With this alternative, the details in the third and fourth
section can then be used for reference purposes.

2 Setting the Stage

2.1 Terminology
There is not yet a widely accepted terminology for the functionality explosion but it
appears in the literature under the terms featurism [Constantine, 1995] and under the
umbrella of the term bloat3 [Kaufman and Weed, 1998; Munk, 1996; Kesterton, 1998].
According to a workshop at CHI 98 entitled “ Identifying Interface Bloat,” bloat describes
the perception of some users of a heavily-featured system. For some users, having a
heavily-featured system is not problematic, in fact it is desirable. For other users, such a
system evokes a negative response. These users find a system to be bloated when it is not
obvious how to accomplish tasks, when there is more in the interface than the user wants to
use, and simply when there is a lot to look at in the interface and these interface objects
seem crowded and cluttered.

The term functionality is generally well understood and perhaps that is why authors neglect
to define it precisely. Even in Goodwin’s [1987] article on functionality and usabilit y, the
definition of functionality was assumed but not made explicit. For the purposes of this
review functionality will be defined as: operations that modify a work object4, operations
that present a different view of the work object, operations that change the state of the

3 Based on a conversation with Leah Kaufman, “bloat” originally appeared in the literature in reference to the
impact on performance that resulted from adding new features, e.g., a bloated system was one that took too
long to load or that required too much disk space.
4 Work object is used to denote the artifact that the user is manipulating, e.g., a document, a presentation, a
spreadsheet, an animation, an image, etc.

 3

interface, operations that change settings in the interface. Although most functionality is
accessible through interface objects5 it is the operation itself that is considered to be the
function. For example, the common operation to cut during editing is the removal of a
selection from the work object and its placement on the system clipboard. Generally this
operation is accessible through a button on an application’s toolbar, through a menu item,
and as well through the standard hotkey Ctrl-X. Despite the fact that there are multiple ways
to access this operation, it only represents a single function. This latter example ill ustrates
that as functionality is added, interface objects that access the functionality must also be
added and this is not necessarily one-to-one because many functions have multiple
accessors.

The term feature is more general than function. It tends to refer to both the accessors of a
function and the function itself. The perception of bloat can refer to both of these.

Throughout this review the adjective complex is used to describe technology. This term is
relative and subject to interpretation. However, for the purposes of this paper, it can be
taken to describe technology that has suff iciently many features that a person would not
simply be able to walk up to and make substantial use of without investing significant
learning time. A standard word processor provides one example of a complex system.

The classification of users into novice and expert categories is common in discussions
about software skill . Unfortunately, the use of the term novice is not consistent in the
literature. Novice is sometimes used to refer to someone relatively inexperienced with
computers in general. It is also used to refer to someone who is new to a particular
application [e.g., Nilsen et al., 1993]. Often it is not clear [e.g., van Oostendorp and
Walbeehm, 1995] how novice is being used. A more defining terminology is needed
because someone who is new to an application but who is a very experienced user is very
different than a generally inexperienced user. Greenberg and Witten [1985] introduced the
term foreign users for people who have no prior experience of a given system but are
familiar with computers in general. This term has not been adopted by other researchers.

2.2 How are users coping?
Most computer users are constantly being faced with more on their desktop. It has been
estimated that an off ice worker who relies primarily on three basic applications such as a
word processor, a spreadsheet, and a graphics package, as well as an operating system, will
be required to learn a software upgrade on the average of every six months [Franzke and
Rieman, 1993]. With every upgrade, inevitably comes new functionality.

There has been minimal research to date that addresses how users are managing in the face
of all this functionality. It doesn’ t appear as though anyone has taken on this issue directly.
There are some accounts that are informal and qualitative in nature while others are more

5 Interface object refers to a visible object that can be manipulated by the user. In GUI development toolkits
these objects are called widgets and include: menus, toolbars, buttons, etc.

 4

formal and include some quantitative measure. Here is an example of an informal account
that likens featurism to a disease:

“Word processors, and a growing legion of our most important software tools, have
become victims of creeping featurism, a serious malady of user interfaces that
strikes software in its prime and can, if left unchecked, cripple the user. Untreated,
creeping featurism can leave users with an agoraphobic response to large, open
dialogue boxes, or even with a lingering fear of unknown menus.” [p. 162,
Constantine, 1995]

Others have alluded to these complex systems as being “nightmarish” for the user:

“Our present systems have come to be as large, complex, and nightmarish as the
mainframes they first displaced (mainframes have become larger still; but most
computer users don’ t have to deal directly with them on a daily basis).” [p. 99,
Raskin, 1997]

Some survey research by Munk [1996] has suggested that having powerful PCs fill ed with
heavily featured software can reduce users’ productivity: “Too much horsepower on the
desktop can have the perverse effect of cutting productivity.” For example, she reported that
in a survey of six thousand workers conducted by SBT Accounting Systems in San Rafael,
Cali fornia, it was found that users spent five hours a week ‘f utzing’ with their PCs. It is not
entirely clear what constitutes futzing, but she includes the following as big time wasters:
waiting for programs to run, reports to print, repair men to show up, technical support folks
to pick up the telephone, and organizing and clearing out cluttered disk storage.

Carroll and colleagues [Carroll and Carrithers, 1984a, 1984b; Carroll and Mack, 1984;
Mack, Lewis, and Carroll , 1983] created what they called a Training Wheels Interface for a
commercial word processor. This interface essentially blocked some functionality and error
states, such that when users tried to select a blocked function, a message was displayed that
indicated that the function was unavailable in the Training Wheels Interface. Two studies
were conducted each with twelve novice users that compared the training wheels system
(TW) to the complete system (CS). In the first study it was found that the TW users could
complete a simple word processing task 21% faster and spent significantly less time
(p<0.05) recovering from errors when using the altered system compared to the CS novices.
Error is defined here as a departure from the create and print action path and recovery is
defined as a subsequent return to that path. In a post-session comprehension test of word
processor basics the TW group performed significantly better than the CS group (p<0.05),
and in a questionnaire designed to reveal attitude toward work, the TW group scored
significantly higher than the CS group (p<0.05). The authors conjecture that because the
TW users were more successful, they may have felt better about themselves and about work
in general. The second study was almost identical to the first and most of the mean
differences in this study closely tracked those of the first study. Two differences in the
second study were that the TW group committed significantly less errors (p<0.005) but
there were no significant differences in the posttests on comprehension and work attitude.

 5

Franzke and Rieman [1993] conducted a study with twelve users who had an average of
two years experience with Macintosh computers. The study compared how long it would
take users to learn how to create a default graph in two different versions of a graphing
package. They found that it was significantly faster (p<0.05) using the earlier version of the
package than the later version. The graphing task specifically required the navigation and
completion of a particular dialog box that roughly tripled in features between the two
versions tested. Clearly, if the experimental task had required the use of the features
available only through the newer version’s dialog box, then it would probably have been the
case that using the newer version would be faster. (There would, of course, be no
comparison at all i f it was infeasible to accomplish the task in the earlier version.) This
raises the question of how much of the functionality made available is actually used.

Franzke [1995] investigated the impact of the number of interface objects on a user’s abilit y
to find the appropriate object. She conducted an experiment with seventy-six reasonably
experienced users (average of just under three years of Mac experience and average
familiarity with three Mac applications) that included two trials. It was found that as more
objects were displayed at a given time, it took significantly longer for the users to locate the
object needed. But this main effect interacted with trial. Thus the action times during the
first trial (the exploration trial) were more affected than those during the second trial.
During the second trial, the number of objects did not matter as much. There was a three-
way interaction between the number of objects, the quality of an object’s label, and the trial
such that the search time for poorly-labeled objects was significantly worse when there
were many objects to search in early trials. If the label quali ty was good there was no effect
of the number of objects on display. There was another triple interaction observed between
the type of interaction, the number of objects on display, and the trial. If there were many
objects to search, action times during trial one were inflated especially for interactions that
were diff icult to discover. Such interactions refer to, for example, clicking on a dialog-box
button, editing text, using a radio button, single clicking on a graph object, etc. In particular,
the types of interactions that fall under the category of direct manipulation required more
time.

In terms of total functionality usage, Nilsen et al. [1993] conducted a longitudinal study of
people using a commercial spreadsheet package. In general, their research found that people
only use a subset of an application’s functionality and they don’ t often master even this
subset, let alone learn and master all the functionality. Kesterton [1998] reports that on
average people use only about 13 percent of the computer features and programs that they
own. The Nilsen et al. study lasted 16 months and included twenty-six subjects who were
followed during their learning of Lotus 1-2-3. The subjects were all new MBA students
who were expected to use Lotus 1-2-3 for school related work. Each subject was “ tested”
(in a laboratory setting) at the outset and then was subsequently given an almost identical
test at each of three equally spaced intervals, so there were four testing sessions. The tests
consisted of tasks that required knowledge of basic Lotus 1-2-3 functionality. The results
showed that fourteen of the twenty-six subjects were able to complete all the tasks in the

 6

test, seven were able to complete most tasks but made some errors, and the remaining five
subjects committed multiple errors which displayed a basic lack of knowledge about Lotus
1-2-3.

Nilsen et al. [1993] reviewed the HCI literature and found that studies of the growth of
software skill show “ that people attempt to fully master the current task-related skill before
moving on to more complex, advanced skill or those relevant to other tasks.” This suggests
that users prefer to feel li ke an expert in a functionality subset rather than a novice in the
total functionality. When applications do give users the choice to operate at different
expertise levels within a complex system, Shneiderman [1997b] claims that users are
content remaining experts at level 1, rather than dealing with the uncertainties of higher
levels. The only systems he cites as giving this choice are computer/video games and
HyperCard. (Although most systems permit tailoring, he is specifically referring to systems
that allow the user to set a level and the subsequent availabilit y of functionality is strictly
based on the level.)

2.3 Why featurism? Why the complexity?
The documented accounts and studies found in the literature suggest that a lot of
functionality is unused and that unneeded functionality is distracting to users. This may
indicate that a return to simpler systems would be beneficial. If we assume that the average
user would make better use of less-featured software, then why has most software become
more-featured? The literature suggests a number of reasons, namely, that features are
needed in order to market the product successfully, that it is the programmers themselves
(i.e., the technically-literate) who are deciding which functionality to include and are
designing how the functionality is included, that the evolutionary process of software
development does not easily accommodate global redesign, that additional features are
needed in order for an application to integrate with other applications, and that usabilit y
guidelines favour giving users multiple ways to perform the same action. Each of these is
discussed briefly below.

Marketing is driving featurism because features sell [Constantine, 1995]. It is somewhat a
dichotomy; despite the fact that most buyers will never use many of the options, it is a
comfort for these same buyers to know that the options are there just in case they may be
needed someday. This can also be viewed as consumerism, i.e., that users want more for
their money regardless of whether or not it will be used [Kaufman and Weed, 1998]. In the
trade press, software reviewers clearly focus on features by using tidy comparison tables
that are packed full of different markers (checks, dashes, circles with various fill) which
denote the extent to which a package has a certain capabilit y. Vendors attempt to have the
most checks (or fill ed circles) on the function list and consumers learn to discriminate
between full -featured applications and those with less features.

The request for new features comes primarily from experienced users and these features are
supplemented, designed and implemented by programmers who are also experienced users

 7

[Computer Science and Telecommunications Board, 1997]. It is sometimes the case that
programmers want to add easily coded features with littl e concern for the extent to which
the features will actually be used. The mentality is that if it is easy to code, then the cost is
low and so even if it only benefits a few, it is worth it. In addition, programmers are
creative people and may want to add a new feature because it is innovative or challenging to
code [Kaufman and Weed, 1998].

It has been suggested that it is not the addition of features that has caused the complexity
but rather the manner in which they have been added. The process of software engineering
is evolutionary and rather than maintaining a clear and consistent global design through
versions of an application, it is more often the case that the software turns into a patchwork
of parts and pieces and consequently usabilit y suffers greatly:

“Creeping featurism results from the slow accretion of capabiliti es and is reflected
in a bumpy and irregular user interface marred by idiosyncrasies and special
functions that seem to grow like warts or carbuncles in the oddest places.” [p. 163,
Constantine, 1995]

Additional features appear in software products for compatibilit y or integration purposes.
This is exempli fied in product suites such as Microsoft Off ice, in which the user is given
the abilit y to load a file from one Off ice product into another [Kaufman and Weed, 1998].

Lastly, new features may appear for what is considered to be a usabilit y reason. It is
sometimes thought that if users are given multiple ways to do the same thing, that the
usabilit y of the system is enhanced [Kaufman and Weed, 1998].

To summarize, the functionality explosion that has taken place is largely attributable to
marketing forces, and the resulting features are primarily targeted at and designed for the
sophisticated user. Those users who are average or not even average use a minimal amount
of the total functionality and preliminary research suggests that these users cope better with
simpler versions of software. This conclusion does not bode well for the goal of universal
access.

2.4 The Goal of Universal Access
Both in Canada and in the United States the goal to provide universal access to computing
technology has been set. Industry Canada is targeting to make Canada the most connected
country in the world by the year 2000. The Schoolnet program is just one example of this
initiative. Through this program all 16,500 schools and 3,400 public libraries across Canada
will acquire Internet connections by the end of 1998 [Manley, 1998]. The United States
shares Canada’s goal of becoming a connected country but recognizes that connections
alone will not guarantee access to all . The U.S. National Academy of Sciences has accepted
the challenge of making the Nation’s Information Infrastructure (NII) accessible and usable
by all . In a workshop held to address this challenge, the attendees decided that the interfaces

 8

to the computing and communications systems that dominate the NII should be referred to
as every-citizen interfaces. This term reflects the project’s mission to examine the necessary
requirements for every citizen to be able to use the resources available through the NII. The
attendees recognized that even citizens without disabiliti es can struggle with information
technology:

“ ...even though the usabilit y of systems has improved substantially over many years,
current interfaces still exclude many people from effective NII access. Most obvious
are individuals with physical and other disabiliti es, but as articles in even the
national and business press attest, people without such distinguishing
characteristics, even expert users of NII systems, experience diff iculties that
constrain or even preclude their full use of NII resources.” [p.1, Computer Science
and Telecommunications Board, 1997].

The following are characteristics that were determined to be desirable for effective every-
citizen interfaces: easy to understand, easy to learn, error tolerant, flexible and adaptable,
appropriate and effective for the task, powerful and eff icient, inexpensive, portable,
compatible, intelli gent, supportive of social and group interactions, trustworthy (secure,
private, safe, and reliable), information centered, and pleasant to use.

2.5 Research Direction
The apparent frustration by at least some of the non-expert users with complex software
suggests that the interface needs to be reconceptualized to meet the needs of all users,
regardless of skill l evel. It seems intuitive that an interface offering the user only the
functionality pertinent to his/her skill s and needs would be easier to use than one that
offered functionality beyond his/her comprehension [Cote-Muñoz, 1993]. Imagine a system
that knows the user’s skill , needs and current task, and then presents exactly the appropriate
functionality. When these skill s, needs, and task change, the interface would adapt easily
and present the functionality required to match these changes. Clearly the system just
described is unachievable. It would require the system to accurately predict all changes in
both user skill and needs. Just because the ideal is not achievable, however, does not mean
that we must stay with the current paradigm.

3 Learning to Use Complex Systems
In order to understand how featurism impacts the learner it is necessary to first step back
and ask how, in general, people learn to use a complex system. It is instructive to first
identify why learning is necessary at all .

Bösser [1987] situates the role of learning complex systems as shown in Figure 1 which has
been adapted from Baecker and Buxton [1987]. The prescriptive model of the system
represents the set of skill s that are required for a user to successfully use a system fully. The

 9

descriptive model of the user represents the set of skill s that a user has when first
encountering the system. It is most often the case that the descriptive model is a proper
subset of the prescriptive model and is thus shown as such in the figure. The goal is for the
prescriptive model to equal the descriptive model. To achieve this goal, the gap between the
required and actual skill s (i.e., the set difference) needs to be bridged. The bridging can
occur through better design which reduces the required skill or by learning of skill s on the
part of the user. Thus, Bösser notes that good design and learning are compensatory.
Weaknesses of the system can be overcome by learning, and effective design reduces the
burden on the user’s cognitive system.

Figure 1: learning and design can be used to bridge the gap between the descriptive model of the user and
the prescriptive model of the system [Baecker and Buxton, 1987] .

There are potentially two things to be learned by the user: the task and the interface. Bösser
[1987] refers to these as the task and tool knowledge that need to be acquired. Baecker and
Buxton [1987] distinguish these as the functional and operational problems to be solved.
Operational problems have to do with the means of performing work whereas functional
problems have to do with the content of that work. They note that one objective of user
interface design is to minimize the need for operational problem solving because all of the
cognitive resources consumed at this level are being diverted from completing the task that
was the reason the computer was adopted in the first place.

The learning being addressed in this review is primarily that of learning the interface, or in
the terminology above, how users overcome the operational problems. Although users may
not have perfect task domain knowledge before using an application that supports a domain,
it must be assumed that users must have some understanding of the task to be able to use
the tool. For example, if someone doesn’ t know what the alphabet is and doesn’ t
understand words or paragraphs, then regardless of how well a word processor is designed,
it is unlikely that the user will be able to learn how to use it (for its intended purpose
anyway). The question of how to design a system to support the learning of task knowledge
is an interesting one and is the primary focus of researchers investigating Learner-Centered
Design which is described in Section 3.5.3.

learning design

prescriptive
model of system

descriptive
model of user

 10

3.1 What is learning?
Bösser [1987] notes in his literature review “Learning in Man-Computer Interaction” that in
his experience finding a general definition for learning wasn’ t possible. In some schools of
empirical psychology, learning has been associated with behaviourism and a representative
definition would be: “ learning is a change in behaviour occurring as a result of experience.”
This definition stresses observable variables and is therefore only meaningful when the
procedures for experimentally manipulating ‘experience’ and for observing the behaviours
that change as a consequence of these manipulations are defined.

Bösser [1987] notes that from a cognitive point of view, this type of definition is too
simplistic and that there are cognitive processes for which experimental procedures cannot
be defined. He cites the following non-operational definitions which he suggests are almost
meaningless for empirical psychology:

• “Learning is making useful changes to the mind” [Minsky, 1985 cited in Bösser, 1987]
• “Learning is constructing or modifying representations of what is being experienced”

[Michalski, 1986 cited in Bösser, 1987]

Current cognitive theory emphasizes three interrelated aspects of learning [Resnick, 1990].
1. Learning is a process of knowledge construction, not of knowledge recording or

absorption.
2. Learning is knowledge-dependent; people use current knowledge to construct new

knowledge.
3. Learning is highly tuned to the situation in which it takes place.

Learning has also been described as the acquisition of knowledge where knowledge can be
both factual knowledge as well as procedural knowledge. Skill i s procedural knowledge that
has been optimized for execution speed and accuracy through practice. Unskill ed behaviour
is problem solving [Card, Moran, and Newell , 1983 in Baecker and Buxton, 1987] which
requires the user’s attention and uses a relatively large number of resources [Baecker and
Buxton, 1987]. These definitions of skill ed and unskill ed behaviour are consistent with
cognitive psychology where skill acquisition is defined as the process of compili ng and
proceduralizing individual steps. Baecker and Buxton have likened this to a cognitive
subroutine.

With respect to learning a system, we encounter in the trade literature, in some of the HCI
literature, and certainly in the popular press the common buzzwords “ease of use” and
“user-friendly.” When a system provides ease of use or a system is user-friendly it implies
that a system is easy to learn but these are all i n fact vague concepts [Baecker and Buxton,
1987; Bösser, 1987]. Baecker and Buxton suggest that a clearer formulation of the goal that
is intended by these terms is the goal of accelerating the process whereby novices begin to
perform like experts. (See Section 2.1 for discussion on user categorization.) Nilsen et al.
[1993] observe that the HCI literature adopts skill acquisition as representative of learning
and that the psychological lit erature focuses on the improvement in performance, where
performance refers to the speed and accuracy at which tasks are completed.

 11

3.2 External Factors Affecting Learning
People do not simply respond as automatons to given stimuli . People are different and the
contexts within which people learn to use computers and computer applications are
different.

3.2.1 Motivation
Bösser [1987] notes that motivation plays a significant role in learning. Humans execute
actions based on multiple goals and constraints, some of which may be conflicting. He says
that the goal of user behaviour is to maximize a multi -dimensional utilit y criterion, that it is
important to consider the relative utilit y associated with the reachable goal conditions, and
that motivation guides behaviour and therefore also guides learning based on practice (i.e.,
determines which skill s will develop). Motivational factors associated with human-
computer interaction are largely determined by the task and are specific to the user’s current
context. Time management is considered to be the most important factor. The loss of
current work time is associated with high negative utilit y. Other li kely factors include: error
avoidance, improvement of performance or quality of product, building confidence in tool
usage, improvement of quali fication, and reduction of stress by automation of skill . In his
review, Bösser urges Human Factors practitioners to identify the dimensions of utilit y and
the constraints which are of relevance for the user in specific work situations. From this we
can conclude that enumerating the motivational factors and quantifying them is an on-going
area of research.

3.2.2 Individual Characteristics
Unlike motivation, which often varies not only between users but also within users
depending on the task and other constraints, characteristics such as cognitive abilit y and
cognitive style are inherently individual characteristics. Olfman [1987, in Davis and
Bostrom, 1992] reviewed the role of individual characteristics and their impact on users
learning new software. He found that cognitive abilit y (memory abilit y, reading/semantics
abilit y, and visual abilit y), cognitive style (analytic/heuristic, learning style, and preferred
learning mode), computer experience (with specific software applications), and a number of
other traits (e.g., age, grade point average, mathematics abilit y) did impact learning.

Davis and Bostrom [1992] conducted a study that compared the impact of two learner
characteristics, individual learning mode and visual abilit y, on the abilit y to learn both a
direct manipulation system and a command-line system. Their hypotheses regarding the
impact of being an abstract versus a concrete learner were not supported by the study. With
respect to visual abilit y, however, the hypothesis that high visual users would perform
better overall than low visual users was supported. High visual users also tended to perceive
the systems under study as easier to use than did the low visual users. One must be cautious
not to over generalize the results of a study such as this. The phenomena under study here

 12

are reasonably complex and thus multiple studies using different methodological
approaches are likely required to gain an understanding of their true impact [see McGrath,
1994]

3.3 How does one learn?
Learning has been identified as a means of matching the user’s skill s to the skill s required
by the interface. The literature documents a number of different approaches to learning a
complex system which include exploratory learning, learning through transfer of prior
knowledge, formal training, learning through user support provided with a system
(documentation, online help, tutorials, animations, and demonstrations), and learning
through assistance from colleagues and friends. Exploratory learning, as will be discussed
below, is the most common approach to skill advancement and so although each of these
methods is covered in this review, exploratory learning is given the greatest coverage.

Discussions about Computer Aided Instruction and Intelli gent Tutoring Systems have not
been included. The purpose of these systems is to help the user learn, however, they are
generally geared towards facilit ating task learning (functional learning) and not learning the
interface (operational learning).

3.3.1 Exploratory Learning
Learning by doing [Carroll and Mack, 1984], learning by trial and error, learning in
context [Rieman, 1996], and active learning [Kerr and Payne, 1994] can all have slightly
different meanings than exploratory learning, however, they generally all represent the same
phenomenon which is acquiring knowledge by navigating through a system, trying different
actions, and assessing the results of those actions. There is no general principle of how
exploratory learning works and most of the literature on exploratory learning is domain-
specific (conversation with Dan Keating, chair of Human Development and Applied
Psychology at Ontario Institute for Studies in Education). Thus the literature documented
here is specific to learning to use technology.

The evidence regarding the eff iciency of exploratory learning as a means to acquire
knowledge is conflicting [Carroll and Mack, 1984]. Bösser [1987] compares learning by
doing to formal training and notes that although the latter may take more time, it results in
more productive work afterwards. Kamouri et al. [1986, cited in Trudel and Payne, 1995]
conducted a study that compared exploration-based and instruction-based techniques
(practice-oriented, tutorial examples in a manual) for learning a computer-simulated device.
Two days after training, subjects who had learned by exploring were more successful at
transferring procedures to a novel, analogous device. The explanation given for this result
by the authors was that exploration encouraged the development of abstract representations
and analogical reasoning while the more passive learning that resulted from following
textual instructions did not.

 13

There is reasonable evidence in the literature that exploratory learning is used more often
than any other method [Howes and Payne, 1990; Rieman, 1996; Carroll and Mack, 1984].

Howes and Payne [1990] note that exploratory learning is an everyday reality - learners
spend a lot of time exploring, whether out of choice or out of necessity. They cite the
following reasons: no documentation is available, it is too much trouble to read
documentation even if it is available, there is an urgent need to accomplish particular
practical tasks, and exploration is fun.

Rieman [1996] conducted a field study to address the question: Within the work and
computing environments currently available, when and how do users learn to use the
software they need for their daily tasks? He found that users predominantly use exploratory
learning and they do so in the context of real tasks. Users are very concerned about
accomplishing the tasks required for their job and thus prefer a just-in-time, task-driven
approach to learning. Rieman uses a broad definition of exploratory learning: learning
“ through trial and error, through interaction with other users, through occasional reference
to manuals if they are available.” It is not surprising that his definition is less constrained
than most definitions because it is derived from a field study and not a controlled
experiment. Others have used narrower definitions. For example, van Oostendorp and
Walbeehm [1995] define exploratory learning to be “a special case of problem-solving that
consists of a search process in a basic problem space, while the learner has no, or almost no,
specific domain knowledge.”

Even though exploration is often used for learning an interface, research shows that when it
is used in its most basic form it doesn’ t result in effective learning. Trudel and Payne
[1995] found that unfettered exploratory learning is rather unreflective and unsystematic.
They suggest that if users are left to explore in an unrestricted fashion, they do not behave
adaptively, i.e., they interact too much, and think too littl e. Further, they suggest that this
maladaptive behaviour is actually encouraged by the interactivity of modern computer-
based devices, i.e., by the ease of making actions and by the rapid visual feedback that is
derived6. Payne and Howes [1992] identify three exploration traps:

• Learners may achieve the desired effects but forget the sequence of actions taken to

accomplish the success.
• Learners may remember a sequence of actions but it may be a suboptimal method.
• Learners may inappropriately characterize their accomplishments, or inappropriately

parse device transformations which makes generalization to different situations
problematic.

Trudel and Payne [1995] demonstrate that increasing the cost of interaction at the interface
can improve performance and learning. They argue that when goal management and

6 This high “ interactivity/poor learning” versus “reflection driven interaction/better learning” can be seen as a
form of speed/accuracy tradeoff . If the objective of a task is speed, then accuracy is generally sacrificed. On
the other hand, if the objective is accuracy, then speed is sacrificed. This type of tradeoff is hardly limited to
interacting with computers.

 14

reflection are included with exploratory learning, more is learned. They conducted an
experiment with subjects learning to use a computer-simulated digital watch in which
reflection was influenced by the imposition of a keystroke limit (i.e., a limit on the amount
of physical interaction with the device) and goal management was influenced both by
providing subjects with li sts of goals and by limiti ng subjects to explore one part of the
device at a time. They found that imposing a keystroke limit did lead to improved
exploratory learning: despite exploring the device for less time, the subjects who had
limited keystrokes demonstrated both superior declarative and procedural knowledge. One
interpretation of this result is that by limiti ng the keystrokes, each interaction with the
device is a scarce and valuable resource which encourages subjects to pay more attention to,
and think harder about the results of the interaction. A similar result was found when
subjects were forced to explore one mode of the digital watch at a time. The goal li st
manipulation also improved exploration but to a lesser degree than the other two
manipulations. This result seems to suggest that goal-oriented exploration, while important,
is not as significant a determinant for effective learning as are reflection on interaction and
constraining the exploration space.

Trudel and Payne [1995] note that their findings pose a dilemma for the designers of
interactive systems because one of the main appeals of such systems is their explorabilit y.
They suggest that user interfaces could be augmented with special “exploration faciliti es”
which compromise some of the usabilit y of standard operation or add information to the
system display so as to enhance exploratory learning. They note that the training wheels
interface is one example of this.

Research conducted by Svendsen [1991] suggests that another way to force reflection is to
make the interface more diff icult to use. When he compared users doing the same task with
a direct-manipulation interface to users using a command interface he found that those who
used the command interface demonstrated superior problem solving abilit y. He concluded
that systems that are considered to be user-friendly can in some cases reduce the users’
problem-solving abilit y. Despite this, the users in his study showed a clear preference for
using the direct manipulation interface. This dichotomy poses a challenge for designing for
learnabilit y.

Payne and Howes [1992] developed the task-action trace to support informed reflection
during exploratory learning. It is supposed to rescue the user from the ‘how did I do that?’
trap. Through dialog monitoring the task-action trace provides: a dynamic trace of the
user’s actions; a parallel trace of the tasks the user accomplishes with a display of the
mapping from actions onto tasks; and a filter of the user’s actions for any particular task,
displaying only the necessary subset. These traces are maintained in a window separate
from the application window. Payne and Howes ran an informal study of the task-action
trace which suggested that some users find the trace suff iciently helpful to interact with it
repeatedly during the first four hours of learning. They also found that presenting learners
with an additional “ thing” to learn can be problematic. Pilot subjects complained that being
presented with special instructions for the trace alongside the main learning task was

 15

overwhelming. It was concluded that learning support tools should not burden their users
with new learning demands, or they will very likely not be utili zed.

The research by John Carroll and colleagues in the 1980s [Carroll and Carrithers, 1984a,
1984b; Carroll and Mack, 1984] on the Training Wheels interface took a different approach
to that of the task-action trace. Rather than adding supporting information to guide
exploration, the Training Wheels interface blocked off error states and functionality in a
word processor that was not needed for the simple task of typing, saving, and printing a
document. With this blocking, novice users were able to accomplish the task significantly
faster and spent significantly less time recovering from errors than did novice users who
used the full version of the word processor. Carroll and Carritthers [1984b] identify three
main aspects of the design of the Training Wheels system: it limits the punishment
associated with making errors in learning; the user errors elicit feedback that can help
learners discriminate learning targets from errors; and it limit s and focuses the potential
space of user options in the learning situation. The first two aspects given, designing for
error and providing feedback, are now considered integral to good design.

Franzke and Rieman [1993] investigated whether earlier versions of a software package
would provide a “natural training wheels environment” for later, more complex upgrades.
The experiments conducted confirmed this hypothesis for the software tested. It was found
that subjects actually spent less total time performing the same task twice, once in the
earlier version of a graphing package and then again in a later version of the same package,
than other subjects who performed the task only once in the later version with no
preparation. Franzke and Rieman note that these results suggest that earlier versions of
software could be useful for training, either in a formal training program or as production
software for novice users. The success of either approach would be highly dependent on
both the users' tasks and the differences between versions of the software.

Franzke [1995] conducted a study to determine how explorabilit y is impacted by certain
interface conditions. In particular, she looked at whether the abilit y to discover the
appropriate interface object is dependent on the number of distracting interface objects, on
the type of interaction required, and on the goodness of a label. For reasonably experienced
users it was found that the more objects that were displayed at any given time, the longer
the action times to access the correct object. A similar finding was the case for the quality
of the label. This finding, however, interacted with the trial, which means that in subsequent
uses of the system, the impact of the number of objects and the label quality was lessened.
It was also found that if there were many objects to search, action times during the first trial
were inflated, especially for interactions that were diff icult to discover, such as direct
manipulation interactions.

To summarize, research shows that learning through exploration is the preferred method
although it may not necessarily be the most eff icient or effective method of learning how to
use a system. It is precisely the interactivity of applications that encourages exploratory
learning, but it is also the interactivity that allows for unproductive exploration and thus
poor learning. Exploratory learning can be enhanced when the learner is forced to reflect on

 16

his/her interactions and when the exploration space is constrained. Reflection can be forced
by limiti ng the amount of interaction the user can have with a system or by making the
interaction more costly.

3.3.2 Learning Through Transfer of Pr ior Knowledge
Learning through transfer of prior knowledge has been called learning by knowing and
metaphor [Carroll and Mack, 1984]. It is also sometimes referred to as transfer of learning,
which Bösser [1987] defines as “ the saving in learning a second task caused by the previous
learning of a similar task.”

The following questions arise: Where is knowledge acquired? Once acquired, will
knowledge always be available? For the purposes of human-computer interaction Bösser
[1987] distinguishes task and tool knowledge, either of which may be general or specific.
Task refers to domain knowledge and tool refers to knowledge about the system or device.
(Tool knowledge was earlier referred to as interface knowledge and operational knowledge
in the first part of Section 3 in this document.) Bösser defines sources of knowledge and the
length of time that knowledge is maintained as given in Tables 1 and 2, which are adapted
from his book.

 Knowledge of Task Knowledge of Tool

General formal education education and training

Specific vocational training tool-specific training, practice

Table 1: Sources from which knowledge is obtained [Bösser, 1987] .

 Knowledge of Task Knowledge of Tool

General the rest of your li fe decades or more

Specific decades or more months to decades

Table 2: Duration that knowledge is maintained [Bösser, 1987] .

The type of knowledge that is most relevant to HCI is tool-specific knowledge, which as
shown in Table 2 can potentially be very short lived. This type of knowledge must be
acquired with each new tool even if there is transfer of task knowledge and general tool
knowledge. Bösser [1987] notes that general and specific knowledge from other domains
may be prerequisites for acquiring tool-specific knowledge and, in particular, extensive
knowledge of the task domain in which the tool is used is often a precondition. As
explained at the beginning of Section 3, the need for domain knowledge can be seen even
by looking at basic word processing. If a user doesn’ t understand the alphabet let alone the

 17

meaning of a word, a sentence, or a paragraph, it is highly unlikely that the design of the
word processor is going to impact that user’s abilit y to create a document.

Carroll and Mack [1984] acknowledge that prior knowledge can be problematic. They
studied how users learned to use a word processor and how the typewriter metaphor was
prevalent. They note that diff iculty arose when the metaphor did not fully hold. For
example, a number of confusions using the word processor were experienced when the
learners used the backspace key which not only moved the cursor back one space but also
erased the character and, similarly, using the spacebar with the cursor positioned over text
not only moved the cursor forward but also introduced a blank space and shifted the text
following the cursor by the width of the blank space.

It is natural for learners to rely on their prior knowledge. In fact, it is probably very diff icult
for learners to ignore what they know. And so it seems obvious that designers should design
systems to account for users’ prior knowledge. The diff iculty with this design solution is
that new technologies will necessarily be constrained by old technologies [Carroll and
Mack, 1984]. Some key questions for future research might be: To what extent can we
constrain new technologies by old ones? Is there an eff icient method for making users
aware of instances where the metaphor doesn’ t hold?

Broad questions regarding knowledge transfer and the domain of computer usage include:
What kind of general education and training are necessary, desirable or optimal preparation
for using computers? How does the knowledge acquired when working with one computer
system transfer to working with a different system?

3.3.3 Formal Training
Formal training refers to learning through educational courses conducted by an instructor.

There are obvious advantages of formal training: students’ misconceptions can be detected
by the instructor, instructors can reveal functionality that students may not have found on
their own, and eff icient methods for accomplishing tasks can be made evident. The premise
is that this training will result in better long term performance than other less structured
methods of learning.

One disadvantage of formal training is that the content of a course is not often tailored to
the learner’s specific needs. The extensive principles that are covered in courses can be
unnecessary for most users who execute only limited tasks. Another disadvantage is that
users forget knowledge acquired during training when they have no opportunity to
immediately apply it in their real work domain [Bösser, 1987].

Although the literature suggests measures to estimate the cost of training (fees for training
course, cost of personnel during training, loss of work time during training, etc.), it doesn’ t
suggest accurate measures for estimating the benefits of training [Bösser, 1987]. Figure 2
provides a visual representation for some aspects of the cost of training.

 18

Figure 2: The cost of learning to use a device is the sum of performance lost for training and reduced
performance during practice. Not only time lost, but also reduced quality of output may have to be considered

as a cost factor [Bösser, 1987] .

3.3.4 User Suppor t - Online Help, Tutor ials, Demonstrations and
Animations, and Documentation

Providing both procedural and factual information through additional learning materials is
one way to transfer tool and perhaps task knowledge to the user. For the purposes of this
review, learning materials are categorized into online help, documentation and tutorials.
This is not a perfect categorization and there is some overlap. Documentation refers to
manuals and other printed materials. Online help generally contains similar content to
documentation but may be structured differently and provides different affordances. Online
tutorials and demonstrations are in some sense a subset of online help but refer to
interactive or multimedia materials.

One problem common to supporting material, whether it be online or printed, is what is
sometimes referred to as the “language problem.” This problem occurs when the language
used to describe concepts/functionality in supporting material does not match the language
users use to describe the same concepts/functionality. This makes it very diff icult for users
to seek help on how to do something. The problem stems largely from the fact that it has
traditionally been expert users who have been responsible for writing the documentation.
Expert users have developed a rich vocabulary in the process of gaining expertise and they
either forget that novice users will not have this same vocabulary or they are unable to
anticipate the vocabulary that novice users might use and, therefore, simply use the
vocabulary with which they are familiar. Borenstein [1985] found that the quality of help
texts is more important than the mechanisms by which the texts are accessed and concluded
that resources should be concentrated on technical writing rather than elaborate help
mechanisms.

3.3.4.1 Online Help
Standard online help generally provides the same information that printed documentation
contains. Examples are utiliti es such as the command-oriented man on UNIX and the

Performance Asymptote

Performance
(Workcycles per
Time)

Practice Initial
Training

Cost of Learning
- Training and Practice -

in terms of time lost

 19

hypertext-style help in PC and Macintosh systems. The most common form of online help
is a li st of article titles and an index of terms that lead to the articles [Shneiderman, 1997a].

Rieman’s field study [1996] of 14 interactive computer users, who represented a wide range
of computer skill and job duties, found that in general online help was inferior to manuals.
He notes that this was a paradoxical result given that users’ learning activities are task-
oriented and time-constrained. Online help is the only learning aid that has some access to
the user’s current context and is the most readily available, especially in site-licensed
environments and for laptop users. He suggests the following explanations for this paradox:
the help window obscures the task window which inhibits users from using trial and error at
the same time as online help; and the users’ time constraint discourages use of reading and
navigating online material, which is perceived to be slower than printed documents because
of the reduced readabilit y of online text [Gould et al., 1987, in Rieman, 1996].

Sellen and Nicol [1990] identify the problem that online help is often diff icult to use, not
that helpful, and often leaves users feeling ineffective and frustrated. In their user study at
Apple Computer, Inc., they found that there are five different types of questions for which
users seek help:

1. Goal Or iented: What kinds of things can I do with this program?
2. Descriptive: What is this? What does this do?
3. Procedural: How do I do this?
4. Interpretive: Why did that happen? What does this mean?
5. Navigational: Where am I?

Baecker and Small [1990 in Baecker, Small , and Mander, 1991] modified and extended
these question types to the following:

1. Identification: What is this?
2. Transition: Where have I come from and gone to?
3. Orientation: Where am I?
4. Choice: What can I do now?
5. Demonstration: What can I do with this?
6. Explanation: How do I do this?
7. Feedback: What is happening?
8. History: What have I done?
9. Interpretation: Why did that happen?
10.Guidance: What should I do now?

Sellen and Nicol [1990], from their user study, developed the following five principles for
the design of online help:
1. Online help should never be a substitute for good interface design.
2. Help should be context-sensitive; it should not take the user away from the task at hand.
3. Help systems should assist users in framing their questions and provide different help for

different questions.

 20

4. Help systems should be dynamic and responsive.
5. User shouldn’ t need help to get help.

Baecker, Grudin, Buxton, and Greenberg [1995] provide an optimistic view. They suggest
that many of the early studies on online help which found it to be ineffective were based on
old interfaces and screen technologies. They suggest that online help has traditionally
received few resources but that at least some vendors are starting to pay serious attention to
training, documentation, and online help.

There are intelli gent help systems which attempt to tailor the help provided to the user’s
current context and skill l evel and in some cases provide natural language queries. More
detail about this is provided in Section 4.

3.3.4.2 Tutorials, Demonstrations and Animations
Demonstrations and animations typically present essential system concepts and are thereby
an effective way of introducing novice users to the system. Tutorial exercises guide the user
through system concepts, giving the user an opportunity to try out the concepts.

Baecker, Small , and Mander [1991] investigated animated icons as a means of addressing
the problem that users are often unsure of what an icon represents. The results from their
user study showed that there was a significant benefit from the animations. Animations that
were kept simple both visually and conceptually helped users clarify the purpose and the
functionality of the icons.

Payne, Chesworth, and Hill [1992] investigated the instructional potential of what they
termed a pure version of animated demonstrations. These versions had no commentary or
supporting documentation for the animation. Such animation is analogous to what is seen in
video games when a game is not in use. Their study found that a 2.5 minute animation,
silent video of the MacDraw screen in use resulted in an almost 50% reduction in task
completion time. The animation was shown to the users prior to their use of MacDraw.

Kerr and Payne [1994] compared the instructional eff icacy of using animated
demonstrations in both active and passive learning environments to teach basic spreadsheet
skill s. Active learning is characterized by problem-solving behaviour whereas passive
learning is characterized by following a prescribed script which is common in commercial
tutorials. The latter has been labeled a scenario machine [Carroll and Kay, 1988 cited in
Kerr and Payne, 1994]. Results indicate a clear learning advantage of problem-solving, over
prompted interaction (the scenario machine). It was found that animations played two key
roles. The first is that simply watching animations provides a useful introduction into
complex interfaces. The second is that animations can be effective as an example following
resource for active problem-solving.

 21

3.3.4.3 Documentation
Carroll [1990] recommends minimalist training materials because they support exploration.
He found, for example, that short incomplete manuals can be more effective than the full
“systems-style” versions of manuals.

Wright [1983] performed a review of documentation design. She found that common
activities which all readers undertake are searching for information relevant to their present
needs, understanding the information found, and applying the understanding gained. Wright
described the functions that documentation needs to serve as ranging from tutorials to quick
references to detailed explanations [1988, cited in Rieman, 1996]. In general, she advocates
a “user-oriented” approach to the creation of documentation [Baecker and Buxton, 1987].

In Rieman’s [1996] field study about how users learned, it was found that for task-oriented
problem solving, the informants would typically use the documentation in addition to trying
things on the system. He notes that this is an approach consistent with Carroll ’s minimal
manuals. A somewhat unexpected finding in Rieman’s study was that some of the
informants relied on third-party manuals. (An example of such manuals is the series “X for
Dummies” where X is anything from computer applications to golfing.) He notes that this is
perhaps because of the limited number of “off icial” manuals that are available in a site-
licensed situation. But he also suggests that this may be a means of overcoming the
language problem. The hypothesis is that the informants may have tried trial and error and
given up with the off icial manuals and online help and are using the third-party manuals
because of the alternative language used and views given. The order in which the material is
presented in alternative manuals may also be better matched to users’ tasks.

Bösser [1987] reviewed the literature on documentation and found it to be inconclusive but
did provide the following recommendations:
• Advance organizers are helpful for chapters and sections. An advance organizer refers to

the presentation of instructional material such that a rough overview is presented first
and is then fill ed in by the material presented later.

• Graphic display of the structure of menu hierarchies and command language grammar is
helpful.

• The provision of both task and tool-oriented indices is needed.

3.3.5 Learning from Fr iends and Colleagues
A common way of furthering knowledge is to ask a friend or colleague for assistance. This
type of assistance can take many different forms which include: asking informal questions
to the closest person within earshot, posting questions to Usenet newsgroups or bulletin
boards, sending a question via e-mail to a friend or system administrator, or watching over a
colleague’s shoulder as he/she presents a demonstration.

Rieman [1996] found in his field study that users frequently asked for assistance in person
or by phone and often did so in combination with trial-and-error strategies.

 22

Clement [1993] reported that when desktop computers were introduced into a University
administrative off ice, the secretaries found that they learned more by studying on their own
and by discussing diff iculties with co-workers than what they had learned through formal
courses and external sources of expertise.

3.4 Modelling How Users Learn
The goal of cognitive modelli ng is to model how humans gain knowledge and it does so
within the framework of the human as information processor. This information processing
paradigm rests on the assumption that human behaviour can be described in terms of
information processes, essentially programs. Learning is one aspect of cognition and thus
cognitive models that represent learning appear in the literature. One of the goals of
cognitive modelli ng is to predict human performance. As a caveat, Preece [1994] notes that
the cognitive perspective of the individual user performing various tasks at the interface is
losing its recognition as an adequate conceptual framework for HCI. The traditional
cognitive approach has neglected how people work in the real world, for example, it doesn’ t
account for people interacting with others.

Rieman, Young, and Howes [1996] describe a cognitive model of exploratory learning that
covers both trial-and-error and instruction-taking activities. One key aspect captured in this
model is what they refer to as iteratively deepening attention. When trying to accomplish a
task a user will normally use a label-following strategy which means that the user attempts
to find a label that matches a word or concept in the task description. If such a label is not
found the user will often repeatedly scan pull down menus or a subset of them with
increasingly greater attention to each item. Rieman, Young, and Howes explain this
behaviour in terms of dual search spaces: the application interface and the user’s internal
knowledge. Both of these must be explored in such a way that the costs and benefits are
considered. The model implements this dual-space search by alternating between external
scanning and internal comprehension thereby narrowing down a potentially productive
route through an interface. An example of a cost is the fact that undoing a selection of a top-
level menu (by moving the mouse cursor away from the menu) is significantly cheaper than
undoing the selection of a pulldown menu which often involves interacting with a dialog
box. The use of prior knowledge has a cost in that the user may need to apply recall
strategies, consider synonyms and related terms, and form analogies to experiences with
other software.

Models can be represented by formalisms such as a production system. This system is
composed of a number of rules (productions) which represent knowledge and each
production consists of a condition component and an action component. The system
performs the action if the condition is found to be true. These are called recognize-act
cycles. Learning is generally represented in these systems through:
• production composition – collapsing a sequence of productions that are used to solve a

problem into a single production that does the same thing

 23

• proceduralism – the process of building domain-specific declarative knowledge directly
in the productions so that there is no need to hold this knowledge in working memory
[Anderson, 1983 in van Oostendorp, and Walbeehm, 1995]

• strengthening – each time a production rule is used its strength is increased and the time
to execute a production is a function of its strength [Nilsen et al., 1993].

A problem with a number of models found in the literature is that the predictions for
execution time and learning time are based on ideal behaviour. Van Oostendorp and
Walbeehm [1995] propose research directions for the extension of current HCI modelli ng
techniques to include exploratory learning in the context of direct manipulation interfaces.
They propose a method to account for slips (errors) by allowing for partial matching of
productions based on a weighting and a threshold mechanism. They also propose a method
of modelli ng the fact that recognizing is easier than retrieving.

The previously mentioned model by Rieman, Young, and Howes [1996] and that proposed
by van Oostendorp and Walbeehm [1995] are representative of the current state of
cognitive modelli ng. These are based on many predecessors which include GOMS, CCT,
EXPL, and CE+. The description of these models is beyond the scope of this paper,
however, the interested reader is encouraged to look at “The Growth of Cognitive Modeling
in Human-Computer Interaction Since GOMS” [Olson and Olson, 1990] and “Theory-
Based Design for Easily Learned Interfaces” [Polson and Lewis, 1990] for further
information.

Bösser [1987] compares modelli ng and prototyping as two different means to evaluating
system design. Prototyping implies an empirical evaluation of the prototype which he
asserts is lengthy and expensive if done properly. In contrast, he argues that modelli ng
allows for fast evaluation of the formal properties of the model. Bösser suggests that it is
ideal to employ both methods in combination such that the space of possible design
alternatives is modelled and then reduced to a smaller number of designs, which can be
evaluated in the form of prototypes.

Bösser [1987], in the last chapter of his book, describes a way to model learning
requirements. Based on my reading of this section, the description wasn’ t nearly clear
enough for me to implement his learning model.

3.5 Designing for Learnability

3.5.1 Designing for Exploration
Shneiderman [1997a] recommends a strategy that permits a level-structured (sometimes
called layered or spiral approach7) to learning when diverse user classes must be
accommodated by the system. He says that novices should be taught a minimal subset of

7 This approach is based on the spiral model for software engineering [Boehm, 1988].

 24

objects and actions with which to get started because they are most likely to make correct
choices when they have only a few options and are protected from making mistakes. This is
in essence a form of functionality blocking where the functionality is layered.
Unfortunately, Shneiderman doesn’ t suggest specific design guidelines to accomplish this
design strategy.

Carroll and Mack offer a number of general suggestions for exploratory environments
[1984]:
1. Learners should be made to feel responsible and in control. An exploratory environment

establishes and reinforces a role of responsibilit y and control for the learner via the
system interface and training materials.

2. An important property of an exploratory environment is system simplicity.

Carroll et al. proposed the following for successful guided exploration of computer systems
[1986, cited in van Oostendorp and Walbeehm, 1995]:
1. help users set the appropriate goals
2. offer helpful hints on how these goals might be achieved
3. provide users with checkpoints and means of confirming that they are heading in an

appropriate direction

Norman’s three requirements for an explorable system are [1988, cited in van Oostendorp
and Walbeehm, 1995]:
1. All possible actions should be visible at all times and the user should be able to perform

every single one of these possible actions.
2. The effect of every action should be visible and readily interpretable.
3. Actions should be without cost: whenever an action leads to an undesirable outcome, the

user should be able to nulli fy it. For operations that are not nulli fiable, both an
appropriate warning and the opportunity to cancel the operation should be given.

Rieman, Young, and Howes provide a number of design implications related to generating
labels in the interface [1996]:
1. Exploratory action will not be attempted until the user has balanced its predicted “safety”

against the quality of its label. The safest actions are those that are trivial to undo or
those that have a predictably minimal effect.

2. Choosing good labels is not always easy. Designers need to be aware of actions that may
have multiple equally good labels. Some users may become blocked when they don’ t
find the expected label and designers should provide assistance for these actions in the
form of online materials and manuals.

3. Designers should supply additional information that could shift the balance at the point
where benefit-to-cost comparisons are most diff icult. When users pause with the cursor
over a menu item (which occurs frequently in secondary passes of the menu) the system
could recognize the pause and display the system state (dialog box or whatever) that
would be evoked if the user selected the given action. At this point the user can select the
item or can move the cursor which will remove the system state (dialog box or whatever)
automatically without the user having to figure out how to get out of it.

 25

3.5.2 Designing for Err or
An important system property is safety. Safety is defined by Carroll and Mack [1984] as
“ the capacity of the system to protect the learner from demoralizing penalty.” It is
paramount that the learner must feel safe in taking action.

Designing for error is one way to enhance learning in general and more specifically
exploratory learning. Norman [1990] notes that when an error in interaction occurs between
the user and computer, the initial reaction is usually to attribute this error to the user when
in fact we should question the design of the system instead. The work required by the user
to learn a system is significantly reduced when a system is designed to minimize interaction
error and to provide appropriate error messages when an error state is reached. Lewis and
Norman [1986] differentiate two types of errors: mistakes and slips. A mistake occurs when
the user has the wrong intention to begin with. A slip occurs when the user has the correct
intention but performs an action that was not intended. They say that error can be
minimized by using the appropriate representation (e.g., using point and click on an icon to
open a file can minimize “file not found” type of errors) and by avoiding false
understandings.

One of the first hurdles with error recovery is the detection of the error itself. Slips are
easier to detect than mistakes because the outcome of the action in a slip is different than
the intention. With a mistake it is the intention that is wrong to begin with. Six possible
ways in which the system can respond to help the user detect the error are [Lewis and
Norman, 1986]:
1. Gag: Gag is a forcing function. This is something that prevents the behaviour from

continuing until the problem has been corrected.
2. Warn: Warning is less obtrusive than gag. Warning basically tells the user there is a

problem but allows the user to continue despite the warning.
3. Do nothing: Do nothing basically means that no system response is given if the user

attempts an ill egal action.
4. Self correct: When the system detects an ill egal action it can try to correct the action. An

example of this given is simple spelli ng correction. Systems that use self correction must
have undo features in case the corrected action is not the intended action.

5. Let’ s talk about it: This method occurs when the system engages the user in a form of
dialog when a problem is detected.

6. Teach me: This method occurs when the system queries the user on the intention behind
an action and learns from the user.

Although these methods help in the detection of a problem, they don’ t necessarily help
identify the problem.

 26

3.5.3 Learner-Centered Design
Soloway, Guzdial and Hay [1994] have argued that the HCI community must move beyond
“user centered” design to “ learner-centered” design. The goal of design should be to support
individuals’ development of expertise and the development of deeper understandings of
content and practices. Despite the fact that this goal is broad and encompasses the spectrum
of learners, the learner-centered movement has primarily focussed on students in
classrooms who are learning content. This is not to say that researchers in the area of
learner-centered design do not recognize that learning is also for professionals. It is simply
that the research to date has not addressed this group of learners.

The learner-centered design movement was begun by Elli ot Soloway at the University of
Michigan. Soloway explicitl y states that the current focus for him and his students is on K-
168 learners but he does cite Senge’s [1990, cited in Soloway et al., 1996] compelli ng
arguments that an organization must be a learning organization in order to be productive
and thus concludes that learner-centered design should also have validity in the workplace
[Soloway et al., 1996].

According to Soloway, Guzdial and Hay [1994], the following special needs of learners
must be addressed when putting learners at the center of the design:
• Understanding is the Goal: How can learners acquire domain knowledge from an

application? For example, how do users come to know accounting principles and
practices when a spreadsheet is presented to them?

• Motivation is the Basis: Learners tend to procrastinate when confronted with a task for
which they are unprepared. How can software play a role in supporting the learner’s
wavering motivation?

• Diversity is the Norm: How can a single application support learners who are from a
diverse set of backgrounds, with a diverse set of interests, skill s and abiliti es?

• Growth is the Challenge: An application is by and large the same on day 1 as it is on
day 100. But a user can be very different. For example, that person may have learned
quite a bit about a problem domain and might have developed a set of skill s and
practices in that domain. How can the software accommodate the change in the user?

The term scaffolding is used frequently in learner-centered design research. Scaffolding
predates the use of computers in the classroom and in general is a technique for providing
support to learners while they are learning a new task [Wood, Bruner, Ross, 1975 and
Rogoff , 1990 cited in Soloway, Guzdial and Hay, 1994]. For example, the provision of
scaffolding through human tutors has been well established as an effective means of
supporting learning [Jackson, Krajcik, and Soloway, 1998]. Scaffolding essentially allows a
learner to engage in activities that would otherwise be beyond his/her abiliti es. As the
learner develops the required knowledge and skill s, the scaffolding fades so that the learner
is fully in control.

8 Soloway does not clarify what he means by K-16. He is likely referring to the school years K-12 plus four
years of undergraduate education.

 27

Soloway, Guzdial and Hay [1994] propose the TILT Model (Tools, Interfaces, Learner’s
needs, Tasks) to guide the design of learner-centered software. The objective of the model
is to highlight how software might address the special needs of the learner. The TILT
Model uses specific scaffolding strategies that are appropriate for the needs of the learner.
For Tasks, a coaching scaffolding technique is recommended to help students acquire
knowledge and the specific practices of a task domain. For Tools, scaffolding is provided by
making the tools adaptable such that they support a learner growing in expertise. For the
Interfaces to the tools, scaffolding can be provided through the use of different media and
modes of expression.

Jackson, Krajcik, and Soloway [1998] use the terms “ fadeable supports” to describe
scaffolding. They argue that although many techniques have been explored that provide
various supportive structures for learners, typically the support does not fade within the
software itself. But the scaffolding must fade as the user develops expertise in the same way
that a human tutor provides less and less support as the tutee acquires knowledge. They list
adaptive and adaptable interfaces as potential solutions. Theoretically, adaptive interfaces
change automatically using a model of the learner’s understanding. In practice, however, an
extensive model of the learner’s knowledge may be hard to specify or evaluate in more
open-ended domains. Adaptable interfaces, on the other hand, put the user in control of the
fading. Because it may be hard for the learner to make fading decisions, the software can be
designed to help the student measure his or her progress and understanding. Jackson,
Krajcik, and Soloway have developed a design approach called Guided Learner-Adaptable
Scaffolding which “ is designed as discrete, fine-grained scaffolding of various types, faded
under control of the learner, with guidance from the software to aid the learner in making
informed decisions.”

Jackson, Krajcik, and Soloway [1998] identify three categories of scaffolding: supportive,
reflective, and intrinsic.

Supportive scaffolding provides support for doing the task. The task itself is unchanged and
so as supportive scaffolding fades, the task is the same as before, however, it is expected
that the learner has internalized the concepts which have been scaffolded. This kind of
scaffolding includes guiding, coaching, and modelling and is the most often referred to as
scaffolding in the literature [Jackson, Krajcik, and Soloway, 1998]. Guiding scaffolding can
be provided through messages which appear when appropriate and which can be faded
through a “stop reminding me” button. Coaching and modelling scaffolds can be provided
through contextualized help buttons. These buttons may not fade per se, but are faded
simply through not being invoked.

Reflective scaffolding is support for thinking about the task (e.g., planning, making
predictions, evaluating). Like supportive scaffolding it doesn’ t change the task itself, but
instead makes the activity of reflection explicit by eliciting the learner’s thoughts. It can be
provided by a notepad that appears alongside the application’s main window where the
learner is encouraged to reflect by typing plans, descriptions, predictions and evaluations.

 28

Jackson, Krajcik, and Soloway [1998] use the term intrinsic scaffolding to mean support
that changes the task itself, through reducing the complexity of the task and focusing the
learner’s attention and by providing mechanisms for visualizing or thinking about a
concept. Ideally scaffolding should support gradual fading such that the task is gradually
changed but associations remain which enable the learner to progress to more complex and
abstract tasks. Intrinsic scaffolding can be implemented as defaults which hide all but the
simplest tools from the novice learner, but make advanced features available as the learner
grows and develops expertise. Intrinsic scaffolding is manifest as different views and
representations of model components, or different sets of enabled controls and tools.

Norman and Spohrer provide an introductory section to a 1996 issue of the
Communications of the ACM (volume 39, number 4) which focuses on learner-centered
design. They evaluate the papers on learner-centered design from this issue along three
dimensions: engagement, effectiveness, and viabilit y. Engagement determines motivation.
Motivation correlates well with time on task and they note that it can make more of a
difference between success and failure than any other factor. Effectiveness is concerned
with the actual learning that takes place. Viabilit y is concerned with the feasibilit y of
creating learner-centered software. Norman and Spohrer note that the primary strength of
the articles presented in this issue is that of engagement. The dimensions of effectiveness
and viabilit y were not the focus of the articles and so they are limited in these areas. The
assessment of effectiveness is limited to the opinions of students and teachers which is not
robust. However, the authors note that conventional assessment that is based on a rigidly
controlled question and answer format is probably not the correct solution. In terms of
viabilit y, they note that this is the most diff icult dimension to assess and that to address this
issue would require the complete development of a curricula and deployment in school
systems.

A number of applications have been implemented in learner-centered design research.
Some examples that are drawn from the aforementioned issue of CACM include: Broadcast
News, a multimedia tool that teaches social studies to high school students by allowing
them to determine the content of a television news story [Schank and Kass, 1996]; Cardiac
Tutor, a knowledge-based simulation for teaching about cardiac resuscitation and the
Engineering Tutor which teaches the concepts of design for manufacturing, specifically
design for injection molding, to first-year engineering undergraduate students [Woolf,
1996]; scaffolded examples for learning object-oriented design which are realistically-sized
sample problems whose complexity is gradually revealed in steps that leverage and
reinforce the intrinsic structure of the problem-solution process [Rosson and Carroll , 1996];
and Model-It, a modelli ng tool that enables students to gain insight into the behaviour of
complex systems [Jackson et al., 1996].

3.5.4 Questioning the All -in-One Model
The worth of complex all -in-one tools is being questioned [Sagar, Hof, and Judge, 1996;
Buxton 1998]. Buxton suggests that too much functionality is often overloaded into a single

 29

device. The result is that the device is a general device that can do most things but nothing
really well and so it can be considered “weak” . Further, the cognitive load associated with
using the device is proportional to the number of features associated with the device. It
follows that the complexity and thus the cognitive load associated with using a complex
tool can be reduced by making the tool less general. Reducing the cognitive load implies
ease of learning.

Figure 3: Representation of a (a) General-Weak tool (b) a Strong-Specific tool (c) a Strong-Specific toolset
and (d) networked Strong Specific toolset (slightly adapted from Buxton [1998]).

The rectangular area in these graphs represents a single tool (e.g., word processor) and the
area within the rectangle represents the cognitive load associated with using this tool. The
x-axis represents the degree to which the tool is a general-purpose tool. The y-axis
represents the degree to which the tool will allow you to accomplish specific tasks.

The idea is that instead of designing general tools that incorporate enormous amounts of
functionality but don’ t have significant strength in many of the functionality domains, it is
better to design individual tools that have very specific purposes. Not only will t he strength
of the individual tools be greater but the cognitive load will be lessened because the user
can select which tools to use.

If one only needs specific functionality, then it is better to use a specific tool instead of a
general tool because the cognitive load required is less. This can be seen by comparing the
area under the curve in Figure 3(a) versusFigure 3 (b). If one only needs some of a general
tool’s functionality, one might be better off selecting a few specific purpose tools. The load
associated with two or three tools shown inFigure 3 (c) may be less than that inFigure 3 (a).
But what if all the functionality is needed? Clearly the load associated with all the tools
inFigure 3 (c) is greater than that inFigure 3 (a). For this case Buxton[1998] advocates the

Generality

Strength

 (a) (b)

Strength

Generality

Strength

Generality
(c)

Strength

Generality

“Net Benefit”

(d)

Cognitive Load

High

Low

None

 30

model shown inFigure 3 (d). Here, the tools are integrated intelli gently, removing most of
the cognitive load from the user. The example he gives is that of using a phone while
driving a car and listening to the car stereo. If these tools are unaware of each other then the
cognitive load would be high. Imagine a situation in which the stereo is playing loudly and
the phone rings. In order to answer the phone the user must not only fiddle with the phone
to answer it but must also adjust the stereo. If, on the other hand, these tools are integrated,
then when the phone rings, the stereo would know to turn itself down. Buxton refers to this
as a net benefit.

4 Intelligent User Interfaces
Research in the area of intelli gent user interfaces provides some insight into the issue of
designing for learnabilit y in heavily-featured systems. Although there is no clear definition
of what constitutes an intelli gent user interface (IUI) [Encarnação, 1997], at the most
abstract level one might want to characterize such interfaces as ones that attempt to bridge
the design/learning gap through the application of intelli gence. Interfaces need not be static,
the same for all , and void of any dynamic understanding of what the user is trying to
accomplish. Rather, interfaces can dynamically reconfigure to accommodate individual
differences, or can do mundane tasks that the user would rather not do, or perhaps even
have a “richer” dialog with the user than what is provided by point-and-click.

Research in IUIs has been underway for the last three decades. Mill er, Sulli van, and Tyler
[1991] provide a brief background on this research. They note that some of the early
research in Artificial Intelli gence (AI), including natural language and problem solving
research, falls within intelli gent interface research. The goal of this AI work was to address
how people might interact with systems capable of solving large, complex problems. This
early work was dominated by the metaphor of natural language-like discourse where the
user asked questions and the computer replied. They note that the vision shifted in the
1980s largely because of the introduction of the graphical user interface and also because
natural-language understanding remained such a challenging area of research. It was felt
that GUIs could make it easier for intelli gent systems to determine the meaning underlying
users’ actions: “ instead of having to search for the meaning in a natural-language statement,
a graphical interface can be built around the important concepts in the task and domain at
hand, making the content of a user’s actions immediately accessible to an underlying
reasoning system.” Despite the latter, Mill er, Sulli van, and Tyler are clearly not saying that
direct manipulation and GUIs are always better than natural language or other agent-
oriented interfaces. In fact, they believe that what is needed is a synthesis of the two
perspectives.

Mark [1991] provides the essence of more recent IUI research in the forward to Sulli van
and Tyler’s [1991] book. He notes that the premise behind IUI research is that software
applications have become significantly complex and that despite advances in interface
design techniques, it is diff icult to design an interface environment that allows users to act
intelli gently:

 31

“ In a complex environment, it is very diff icult to distill out a set of interface controls
that deliver the application’s power, but that human beings can learn and remember;
it is very diff icult to define interface behaviour that treats users fairly - does not
hector them, mislead them, punish them for experimentation, and so on.” [p. vii ,
Mark, 1991]

The approach adopted by IUIs is that the interface is in effect promoted to a team member:

“The goal is no longer to design a user interface that has a complete set of usable
controls and understandable behaviour. The new challenge is to give the interface
some understanding about what the users are trying to do and how they need to go
about doing it. ... The interface must be given enough knowledge of the problem to
allow it to take on significant responsibilit y. The interface must be able to
communicate with the user at the level of taking direction and giving advice about
tasks - if the user has to communicate at the level of detail within tasks, no
significant delegation has taken place. The interface must be able to explain its
activities in order to allow the user to build up confidence that it is to be relied
upon.” [p. viii , Mark, 1991]

Mark [1991] acknowledges that whether all of this is in fact intelli gence is a matter of
expectation and perception.

Encarnação [1997] addresses the shifting definition of intelli gent interfaces. He notes that at
one time the definition of intelli gent user interfaces included “ ...the integration of an AUI
(adaptive user interface)...both with an intelli gent help system (IHS), making context-
sensitive and active help available, and with an intelli gent tutoring system (ITS), supporting
the user in learning the use of the system,” where as in a common definition today, the term
‘ intelli gent’ refers to any of these realizations, but not necessarily their entirety. Dieterich et
al. noted in 1993 that the difference between AUIs and IUI was not well defined.

Based on the review of the literature, it is still not clear where the boundary between AUIs
and IUIs lies. The earlier literature seems to use adaptive interface in place of or
interchangeably with intelli gent interface. Recent classifications such as that by Encarnação
[1997] only serve to confuse the issue further. In a figure he displays AUIs as a superset of
IUIs but has “ Interface Adaptabilit y” as a component/subset of IUIs. For the purposes of the
current review, the broader research area will be referred to as IUIs, and AUI will be
reserved to mean interfaces in which the functionality accessible to the user is adapted
based on user characteristics.

The literature covering intelli gent user interfaces presents a number of recurring themes and
therefore it is possible to impose a rough categorization. The most general categories
include agents, adaptivity, user modelli ng, task modelli ng/plan recognition and multimodal
communication. These should not be seen as mutually exclusive areas of research by any
means. Intelli gent help, intelli gent tutoring, and dynamic multimedia presentation are

 32

categories of applications that are based on the previously mentioned broader categories.
The architecture and evaluation of intelli gent systems is also covered in the literature.

4.1 Agents
There has been great controversy over agents, the foremost contention perhaps being the
lack of a clear definition. The debate over using agent technology in the interface versus
more established techniques such as direct manipulation has been heated. Highlighting the
issues raised in this debate serves as a reasonable introduction to agents. In two recent
debates between Pattie Maes, a leading researcher in the area of agent technologies, and
Ben Shneiderman, a long time proponent of direct manipulation, it seems that some form of
consensus may be on the horizon [Shneiderman and Maes, 1997]. Maes acknowledged that
the word agent is overloaded. The area of agent research that relates to complex technology
is what she calls software agents. She specifically prefers avoiding the terms intelli gent
agents and autonomous agents because they are problematic. Maes gives the following
advantages of software agents:

1. A software agent knows the individual user’s habits, preferences, and interests.
2. A software agent is proactive. It can take initiative because it knows what the user’s

interests are. It can, for example, tell the user about something that he/she may want to
know about based on the fact that he/she has particular interests. Current software is not
at all proactive. All of the initiative has to come from the user.

3. Software agents are long-lived. They keep running, and they can run autonomously while
the user goes about and does other things.

4. Software agents are adaptive in that they track the user’s interests as they change over
time.

An agent can act on the user’s behalf while he/she is doing other things in much the same
way that a travel agent will act on an individual’s behalf once his/her travel needs and
preferences are made known. An example of an agent is presented by Kozierok and Maes
[1993] in which the agent learns the user’s preferences and needs with respect to scheduling
meetings by observing the user, through reinforcement (direct feedback from the user), and
by direct instructions from the user.

Maes notes the following reasons that we need software agents today:
• Our computing environment is no longer closed and under a user’s complete control li ke

it once was. Our computer provides a viewport into a vast and dynamic network of
information and other people.

• The typical user is no longer a computer professional.
• People use their computer for more and more tasks and are thus required to keep track of

more and more information.

Shneiderman [1995] has argued in the past that “ the effective paradigm for now and the
future is comprehensible, predictable, and controllable interfaces that give users the sense

 33

of power, mastery, control, and accomplishment" and that the term agent itself is ill -defined
but seems to include the following components:

• anthropomorphic presentation
• adaptive behaviour
• accepts vague goal specification
• gives you just what you need
• works while you don't
• works where you aren't

He notes that the first three seem appealing at first, but have proven to be
counterproductive. The latter three are good ideas but can be achieved more effectively with
other interface mechanisms.

Despite some of Maes earlier research directions with agents, she states that it is a
misconception to think that agents are necessarily personified or anthropomorphized. In
fact, she notes that most agents are not. Maes also clarifies that agents do not necessarily
rely on traditional AI techniques, li ke knowledge representation and inferencing. Many of
the commercially available and successful agents rely on either user programming or
machine learning rather than traditional AI techniques.

Maes argues that agents are not an alternative for direct manipulation, but rather they are
complementary metaphors: an agent is not a substitute for a good interface. She argues that
the reason for agents is delegation and that no matter how good the interface, there are some
tasks that she just may not want to do herself. She gives the example that if her car had a
perfect interface for fixing the engine, she still would not fix it.

Maes also addresses the criti cism that agents make the user dumb and that they usurp all
control from the user. Concerns about agents are addressed by the guidelines for agents
presented by Maes at the 1997 International Conference on Intelli gent User Interfaces
[Computer Science and Telecommunications Board, 1997]:

• Make the user model available (inspectable, modifiable) to the user.
• The agent’s method of operation should be understandable to the user.
• The agent should be able to explain its behavior to the user.
• The agent should have the abilit y to give continuous feedback to the user about its state,

actions, and learning.
• The agent should allow variable degrees of autonomy, and the user should decide how

much and what type of tasks to delegate to the agent. The user should be able to
“program” the agent (e.g., teach it things, make it forget things).

• The user should not have to learn a new language to deal with the agent. The goal is to
use the application to communicate between the agent and the user.

These guidelines serve to move the agent research much closer to Shneiderman’s
requirements for controllable and predictable user interfaces. Further, Maes noted at the

 34

second of the two debates that one of the key reasons for the division in philosophies is that
the two camps are focusing on different problem domains. The Shneiderman camp is
dealing with a well -structured task domain and a well -organized information domain, so
that it lends itself to visualizing all of the different dimensions: for example, visualizing the
information stored in a database. The Maes camp, on the other hand, is dealing with an
information domain that may be very ill structured and very dynamic; an example of such a
domain is the World Wide Web.

Shneiderman [1995] cites a number of examples where anthropomorphic terms and
concepts have continually been rejected by consumers and, in fact, Maes notes that the most
successful software agents thus far are ones that are pretty much invisible. Despite this,
there are at least a few examples where agents are visible and are used to help the user
navigate the interface itself. These agents do not adhere to the delegation philosophy of
agents and demonstrate that research on agents is diverse. There is the Microsoft Off ice
personal assistant which is initially instantiated as an anthropomorphic paper clip to whom
the user may ask natural language questions and who will also suggest somewhat
unobtrusively more eff icient techniques for a user’s current task. At this point I haven’ t
seen any literature that covers the user’s response to this agent. A second example by Rich
and Sidner [1996] is called a collaborative interface agent. This agent mimics the
relationships that exist when two humans collaborate on a task involving a shared artifact
such as two mechanics working on a car engine together or two computer users working on
a spreadsheet together. There was no user testing documented on this research.

Dryer [1997] provides a brief discussion of wizards and guides which are perhaps the most
common kind of UI agent today. Wizards are most common. Their goal is to assist the user
by breaking a complex task into a series of steps and then present one step at a time to the
user. Wizards work best with a linear series of steps and are therefore most successful when
the tasks have algorithmically derived solutions. Dryer notes that these agents generally do
not use any artificial intelli gence although they are sometimes perceived by users to be
intelli gent. The benefits of a well -designed wizard are that a multi -purpose task interface is
replaced by a task specific interface that guides the user along an eff icient path to task
completion and that autonomously completes those steps of the task that do not require the
user’s attention. One possible disadvantage of such a constrained process is that the user
may not actually reflect on his/her actions and therefore may not learn from the process.

Based on Dryer’s [1997] account, it wasn’ t entirely clear what guides are. He provides the
following description: “Guides are another kind of UI agent. Typically, guides provide task
assistance by monitoring a person’s interaction with the information system and presenting
information appropriately. ... Guides are intelli gent because they annotate an interface
whenever and however it is most likely to be useful. A well designed guide will direct a
person through the next step in a task.”

According to Dryer [1997] guides are best for frequent tasks because users want to learn
about tasks they do frequently. Wizards are best for infrequent tasks that users don't
necessarily want to learn about but do need to accomplish. Wizards work best for solutions

 35

that can be derived algorithmically whereas guides can assist either algorithmic tasks or
heuristic tasks.

Myers et al. [1993] discuss the use of heuristics9 to predict users’ intentions. They note that
systems that use heuristics attempt to delegate some of the low level details in order to save
the user time and are also hopefully easier to learn because the system does part of the
work. The disadvantages are similar to those already mentioned: that an incorrect action
might occur which might not be noticed by the user; the user might not understand why the
system did a different action or how to get the desired action to occur; again that the user
might have the feeling that the system was unpredictable and that he/she no longer had
control; the additional user testing costs to determine whether the heuristics are suff iciently
predictable to users and to tune the heuristic or its presentation; and the additional
documentation and quality assurance costs. Myers et al. suggest that successful use of a
heuristic requires that:
1. A majority of users would predict the same result of an action performed in a given

context.
2. An algorithm can be developed which interprets the context and produces the result most

users expect.
3. In cases where the algorithm does not do what a user requires, it should still give a result

that is interpreted as reasonable, and the result must not be harmful.
4. It should be undoable.
5. The user can discover ways to override the default behaviour when necessary.

These guidelines for heuristic use and Maes’ guidelines for agents show the importance of
user expectation and control when some tasks are delegated to the system.

4.2 Adaptive User Interfaces
Research in adaptive user interfaces (AUI) addresses the diversity of the user population
differently than agent research. Rather than delegating cumbersome tasks to a trustworthy
agent or collaborating with an agent in order to navigate the interface, the philosophy of
AUI research is that the interface itself should adapt to the needs, preferences, and skill s of
the user. The goal is for the complexity of an adapted interface to be less than that of an
equivalent all -in-one interface because the functionality accessible matches the user’s
needs, preferences, and skill s. Cote-Muñoz [1993] noted the following consequences of
AUIs: the user will better master the complexity of software, there will be better user
performance, the system will be able to gain and maintain the attention of the user, and the
system will avoid underloading or overloading the user.

The question of who adapts the interface is relevant. Tyler and Treu [1989] identify and
discuss three possible sources of adaptation: a computer expert, the user, or the system. In
the first case, a computer expert, perhaps the original designer of the system, modifies the

9 ‘Heuristics’ are a problem solving technique in which the most appropriate solution is chosen using rules
[Myers et al., 1993].

 36

interface based on user feedback. The problem with this scenario is that it doesn’ t scale; an
expert may be able to construct a few differently-tailored interfaces, however, this will not
li kely be suff icient to meet the needs of all the different users. Another problem with this
that was not mentioned by Tyler and Treu is the substantial delay or turn around time
generally required for modifications. The second possibilit y is for the user to take advantage
of the customizabilit y that most systems provide by tailoring the interface to suit his/her
own style and abiliti es. This scenario works well for experienced users who know both
what needs to be tailored and how to go about tailoring. However, it doesn’ t hold for
inexperienced users who will not likely know what they need to tailor and how they should
go about tailoring [Innocent, 1982; Page et al., 1996]. The last approach mentioned is that
the system adjusts the features of the interface based on acquired knowledge about the
individual user. The basic idea is that the system monitors the user and adjusts the interface
to suit that individual.

Given that the goal of adaptive interface research is to match the interface to an individual’s
profile, the solution of having a computer expert in charge of adapting the interface is not
practical. This leaves the adaptation up to the user or the system itself. Dieterich et al.
[1993] provide a survey of the AUI literature and a framework for understanding the
adaptation process. They identify four stages in the process of adapting a user interface:

1. initiative: the need for adaptation is suggested
2. proposal: alternatives for the adaptation are proposed
3. decision: one of the alternatives is chosen
4. execution: the chosen alternative is executed

At each of the four stages it is either the user or the system that is in control. For example,
when the system controls each stage, the system is essentially a self-adaptive system. When
the user is in control of all stages, the user is doing the adaptation which is tantamount to
tailoring or customization. (These two extremes are sometimes juxtaposed as adaptive vs.
adaptable systems [Fischer, 1993].) Then of course there are different combinations. Figure
4(a) represents the configuration in which the software is entirely self-adaptive: the system
is completely in control. Dieterich et al. [1993] note that the majority of research into AUIs
has been from the system-adaptive perspective and they make the following conclusions
from their survey:

• Systems that have user control seem more promising than those that have all /mostly

system control. A configuration in which the user and the system share control, which
they call Computer-Aided Adaptation, is deemed by the authors to be the most
promising approach in order to obtain a user interface that will help the user to perform
his tasks in a pleasant and effective way. This configuration is depicted in Figure 4(b).

• More effort should be spent on the integration of developed adaptivity mechanisms into
common user interface design and management tools.

• Aspects of user acceptance and the evaluation of adaptation have been neglected in the
past and need far more attention.

 37

Figure 4: Categorization of adaptive systems: (a) Self-Adaptive (b) Computer Aided Adaptation

The first point given above that advocates user control can be seen to parallel the more
recent direction in agent research which acknowledges the importance of user control and
user understanding of the agent behaviours.

To achieve the Computer-Aided Adaptation configuration, Kühme [1993] proposes an
inspectable user model which gives the user an insight into adaptation strategies and
underlying assumptions. The user should clearly be made aware of the existence of the user
model and should have access to the included information. By changing the information in
the user model, the user is essentially adapting the interface in an implicit manner. The user
should also be able to adapt the interface explicitl y by inspecting and adjusting the
adaptation-related mechanisms. These include an adaptable dialog monitor which collects
information relevant for adaptation and an adapter which adapts the dialog by applying the
information represented in the user model.

Greenberg and Witten [1985] conducted some early work on adaptive interfaces and noted
some advantages and disadvantages to adaptation. The advantages are:

1. variations in expertise across users
2. evolving user needs
3. user has appropriate control
4. attempts to rectify user-designer conflicts

The disadvantages are:

1. dynamics of user-system concurrent modelli ng (at the same time the adaptive system is

trying to make a model of the user, the user is trying to model the system)
2. user will l ack confidence in a system that seems inconsistent (although Grudin [1989]

argues successfully that consistency is only one of many competing design goals)
3. user does not have appropriate control
4. complexity of implementation
5. inaccuracies of model construction
6. diff iculties in evaluating adaptive systems

Initiative
 Proposal
 Decision
Execution

System User

 (a)

Initiative
 Proposal
 Decision
Execution

System User

 (b)

 38

From the above we can see that control, which appears both as an advantage and a
disadvantage, is indeed controversial and further it is not clear what constitutes appropriate
control.

Stephanidis, Karagiannidis, and Koumpis [1997] document a methodological approach to
adaptive systems. They note that in most adaptive systems, the adaptation strategy is hard-
coded into the system and therefore when changes are needed, it is relatively diff icult to
implement the changes. They focus on the adaptation strategy as a decision making process,
which is characterized by the following attributes:
• what to adapt: aspects of the user-computer interface that are subject to adaptations are

called adaptation constituents and can be semantic, syntactic, or lexical;
• when to adapt: aspects of the interaction called adaptation determinants on which the

adaptation decisions are made;
• why to adapt: the adaptation goals underlying the adaptation process;
• how to adapt: adaptations are driven by a set of rules, adaptation rules, that essentially

assign certain adaptation constituents to specific adaptation determinants for given
adaptation goals.

Stephanidis, Karagiannidis, and Koumpis [1997] describe a methodological approach that
enables:
• the customization of the set of adaptation determinants and constituents;
• the incorporation of the adaptation goals as an integral part of the adaptivity process;
• and the modification of adaptation rules, according to the goals of adaptivity.

4.2.1 Examples of Adaptive User Interfaces:
Adaptive Prompting
Malinowski et al. [1993] introduce the idea of adaptive prompting. This technique aims to
reduce the user’s confusion caused by the volume of prompts (menu items, dialog boxes,
etc.) by leading the user to the functionality which is most relevant in a given situation.
Adaptive prompting is provided to the user through a complementary preselection of the
relevant options and is not a substitute for existing interaction techniques.

The authors discuss two different adaptive prompters. The first is the Adaptive Action
Prompter which is a permanently visible, dynamic menu (or control panel) which will
include only the most appropriate and most likely to be chosen actions based on the user’s
context. Thus the prompter contents are updated with every context change. The user can
always select actions from either the prompter or the regular menus, whatever is more
convenient in a given situation. Because the prompter li sts the most appropriate actions in
one place the user has a good survey of sensible alternatives. The prompter can be shown as
plain menu items alone, or menu items that indicate the referred object (e.g., “CUT selected
text” where selected text is the referred object), or menu items with task-oriented
explanation (e.g., “START to start the simulation using the selected sample”). The user can
optionally be involved in controlli ng the rules used for the prompting.

 39

The second form of adaptive prompting discussed is Adaptive Dialog Boxes. This
prompting is to address the problem that dialog boxes often present a lot of parameters that
are required for a function. The authors suggest that strategies for coping with the volume
of parameters such as sorting the parameters based on frequency of use or moving rarely
needed parameters to an additional dialog box titled something like More Parameters10
change the layout of the dialog box and therefore results in confusion to the user. The
strategy of adaptive prompting in dialog boxes is to present the information in a way that
allows the user to identify the important items and their parameter settings at a glance. This
is achieved by using forms of highlighting and color coding to draw the focus of the user.
The structure of the dialog box is not changed in this approach. No user testing for either
prompters is documented.

AIDA
Cote-Muñoz [1993] documents an adaptive system for interactive drafting and CAD
applications that fixes the amount of functionality offered by icons and menus based on the
user’s knowledge. But to support exploratory learning, the user has access to the full
system’s functionality through a command line. In addition, new functionality is introduced
in one of two ways; either the user creates a new command/macro or the system recognizes
a repetiti ve operation (such as creating three lines that result in a triangle) and suggests the
creation of a command/macro. These command/macros become available to the user
through new menu items. No user testing is documented.

SAI - Skill Adaptive Interface
According to conventional wisdom, direct manipulation interfaces are better for novices
and command line interfaces are better for experts. Some attempts to create hybrid
applications (applications that include both direct manipulation and command line
interfaces) have been made. Gong and Salvendy [1995] studied hybrid systems and found
that most users never moved beyond using the menu. To rectify this they created the Skill
Adaptive Interface (SAI) that gently pushed the user to use the command line. Once a user
had selected a menu item a threshold number of times, all subsequent times the same item
was selected the system would provide a prompt which gave the equivalent command. The
user was then forced to use the command line for this item. Gong and Salvendy reported
user studies that showed this hybrid technique to have promise.

In addition to gently forcing a user into command line usage, SAI was also adaptive in that
the menu contents were variable. Once the user was able to enter the command at the
command line without using the prompt available from the menu, the menu item was
transferred from the active menu to a hidden menu that was attached at the end of the active
menu. Users had access to the hidden menu, although the authors do not specifically say
how. The hidden menu contained items for which the users had already learned the

10 This solution of having a button in a dialog box that permits access to more advanced options appeared in
the Xerox Star. The term “Progressive Disclosure” has been used by the original Star design team to describe
this model [Johnson et al., 1989].

 40

corresponding command and also items that the user had not yet encountered. When an
active menu item was transferred to the hidden menu, an empty menu slot was then
available. To fill t he empty slot, the system selected an item from the hidden menu that had
not yet been made visible. The determination of which item should be selected for the
empty slot was based on a priority parameter. The authors do not elaborate any further on
how this parameter was set. This adaptive aspect of the system was not subject to user
testing.

Adaptive Version of Microsoft Excel - Flexcel
Thomas and Krogsœter [1993] note that the great majority of research in adaptive systems
has been done with prototype systems. One of their goals was to assess adaptation in a
complex software product that was commercially used. They chose Microsoft Excel. They
were able to modify the Excel interface through the Excel dialog editor and the macro
programming language.

The following adaptation features were implemented:
• The user could define new menu entries and new key shortcuts for function

parameterization.
• The user could define key shortcuts for Excel functions which normally can only be

invoked from the menu.
• For functions with default parameters, the default could be changed.
• A separate adaptation toolbar was made available to make the aforementioned tools

more visible.
• System generated adaptation suggestions were indicated by an acoustic signal and a

blinking button. The user could access the suggestions at his/her convenience. Unread
suggestions were maintained in a tip li st.

• Usage suggestions reminding the user of seemingly forgotten adaptations, and a critique
model telli ng the user how the adaptation tools may be used more eff iciently were also
included.

In general, the system was well received in user testing although the paper didn’ t specify
some key details including: the number of users tested, the duration of system use, and the
background knowledge of the users.

UIDE - The User I nterface Development Environment
The core of UIDE is a knowledge base [Sukaviriya and Foley, 1993]. An application is
described in the knowledge base in such a way that no particular interface style is adopted -
it is essentially just the functionality that is described in terms of instances of application
actions. This is the domain dependent part of the knowledge base. Interface actions and
interaction techniques reside in a domain-independent part. These interface actions can be
linked to specific application actions and parameters which in essence specifies the
interactions associated with each application function. More than one interaction technique
can be linked to an interface action for alternative interactions.

 41

Two types of interface adaptation are discussed: redesign of menus and dialog boxes, and
addition of new commands (macros). They do not provide enough detail to determine
exactly what is meant by “ redesign of menus and dialog boxes” but one can assume that it
has to do with altering the contents of the menus and dialog boxes by re-ordering the
contents or adding and deleting items.

Both the temporary loss of productivity due to relearning and the longer-term productivity
gain due to the reorganization are factors considered by the system in determining whether
adaptation should occur. To suggest command macros, the chronological history of
interactions is periodically examined to find repeated sequences of commands. No user
testing is documented.

4.3 User Modelling
In order for a system to self-adapt or to suggest adaptations that are appropriate to the user,
the system must have knowledge about the user. This knowledge is generally maintained in
a knowledge base called a user model, which is responsible for acquiring and managing
data as well as providing means for the application (or consumer of the user model) to
access the data. This user model should not be confused with what are sometimes referred
to by the same name in HCI research. User models in HCI may refer to the user’s mental
model or the designer’s model of the user [Norman, 1986].

Kay [1993] defines a user model as “a collection of information that constitutes a model of
the user. This information is explicit and it is a separate entity...It is emphasized that this
model, li ke all models, attempts to represent only some aspects of the user, namely those
that are relevant to the domain at hand.” Greenberg and Witten [1985] provide the
perspective that a user model is the computer’s model of the user.

There are a three main issues in user modelling: what user information is relevant, when
and how the information will be acquired, and how it will be represented in a user model.

what user information is acquired?
Encarnação [1997] provides the following list of the types of user information that are
generally of interest in user modelli ng:
1. existing or missing knowledge of the user
2. goals and plans of the user
3. user preferences and tendencies
4. user experiences and skill s
5. user misunderstandings

how and when is the user information acquired?
Kühme [1993] notes that there are two sources of relevant information about the user. The
first is an explicit method in which the user provides self-estimations and preferences

 42

through question-and-answer type sessions at isolated times during the interaction. The
second method is implicit where the system attempts to deduce information by constantly
monitoring the user’s dialog with an application [e.g., Vaubel and Gettys, 1990]. Kühme
notes that there are problems with both self-estimations and deduction through dialogue
monitoring. Self-estimations are not always reliable and deduction is “most often severely
restricted by a very small user-system communication bandwidth” . Encarnação [1997] has
used the terms separated acquisition and integrated acquisition for these two methods.
Further, he says that separated acquisition can be system controlled or user controlled. If the
system controls when the user must complete the acquisition sessions, it is much more
obtrusive then when the user is free to do it at his/her convenience.

how is the acquired user information translated into a user model?
Encarnação [1997] describes five different techniques used to create and represent a user
model. The three most commonly used techniques are given below:
1. Primary acquisition heuristics use rules to build the user model on the basis of

interaction with the user. These rules are generally dependent on the current application
domain but there has also been work done on domain-independent acquisition heuristics.

2. Stereotypes are a natural way to generate initial or default values in a model [Kay, 1993].
When stereotypes are used, it is only necessary to gain suff icient information about the
user in order to determine to which stereotype he/she belongs. Stereotypes are defined by
the system designer and the number of stereotypes needed is often dependent on the
application domain. It can be a significant disadvantage if a large number of stereotypes
need to be generated [Kass and Finin, 1991]. The user can be associated with one or
more stereotype.

3. Overlay models essentially represent an individual’s knowledge as an overlay of the
domain or expert knowledge. For each concept in the domain the user model contains an
estimate of the user’s knowledge about the concept.

Kay [1993] identifies some pragmatic issues that should be considered by the IUI research
community in order for user modelli ng to move beyond prototype systems:
• need for tools that do the tasks involved in building and maintaining the user model;
• need to reuse models - models are expensive to create therefore the costs need to be

amortized;
• need to address the issue of granularity - probably need to move away from heavy-

weight and computationally expensive modelli ng to light-weight models;
• need to make the model accessible to the user - there is evidence that users want access

and want to understand. Advantageous side effects are that the user can play an active
role in constructing and verifying their model and the accountabilit y of the programmer
may be improved.

The development of user modelli ng shell systems have to some extent addressed the issue
of model reuse and cost. The idea with these systems is that the system designer need not
code all the necessary user modelli ng modules from scratch and embed them within the

 43

system but rather use a pre-coded modelli ng system that can be simultaneously active for
other applications as well .

4.3.1 Examples of User Models:
UIDE – The User I nterface Development Environment
Sukaviriya and Foley [1993] created an overlay of the UIDE knowledge model (described
in Section 4.2.1) that serves as a user model which records information about the user’s
history of interaction. This overlay model can maintain statistical history of interaction,
chronological history of interactions, and history of help requests.

AIDA
The user model used in Cote-Muñoz’s [1993] AIDA (described in Section 4.2.1) considered
three types of user knowledge in ordered to determine the class of user:
• the user’s task domain knowledge;
• the user’s general computer knowledge – this covers the general computer concepts that

are needed to work with computers;
• the user’s system-specific knowledge – this covers practice and experience specific to

the software system that is rarely transferable to other systems.
Cote-Muñoz gives the example that if a user knows a lot about the task of engineering
design but knows littl e about computers, then he needs completely different assistance than
an expert in computer systems who knows nothing about engineering design.

GUMS – A General User Modeling Shell
Kass and Finin [1991] designed GUMS, a user modelli ng shell system, to serve a whole set
of application programs. For each application GUMS kept a knowledge base of user models
relevant to that application. Applications were responsible for acquiring information about
the user and supplying it to GUMS to update the user model. In turn, the application
queried GUMS to obtain information about the user.

4.4 Task Modelling and Plan Recognition
Task modelli ng attempts to represent the tasks that users will perform with the system. The
various models can be differentiated into four categories [Wilson et al., 1988 in Dieterich et
al., 1993]: models which analyze the knowledge content of real world tasks; models that
predict diff iculties from interface specifications; models which analyze the users’
conceptual structures; and models which analyze cognitive activities. Dieterich et al. [1993]
discuss task modelli ng. They indicate that despite the numerous formalisms for task
modelli ng, these have been diff icult to apply to intelli gent systems because they do not
handle modern interactive interfaces. For example, many are unable to describe parallelism
and interrupts. In addition, the majority of these models are static and in order for them to
be operational, they have to be transformed into an executable form.

 44

Plan recognition attempts to recognize users’ plans or parts of plans in order to obtain
further information for adaptation or to infer new tasks [Dieterich et al., 1993]. There are a
number of advantages to inferring users’ plans through monitoring: context-dependent
assistance and feedback can be provided; possible completions of sub-plans can be
presented; default parameters can be supplied; and a more reasonable undo facilit y can be
provided; global errors can be detected and possibly corrected. As one would imagine,
recognizing plans when the task space is constrained and structured is significantly easier
than in complex domains where a user’s plans might consist of a hierarchy of subplans and
subgoals needed to accomplish the overall goal [Carberry, 1989].

Encarnação [1997] differentiates three different categories of approaches to plan
recognition:
1. Intended plan recognition occurs when the user is aware and actively cooperating with

the recognition process.
2. Keyhole plan recognition occurs when the user is unaware or indifferent to the

recognition process. This form of recognition requires less complex recognition
mechanisms and provides less sophisticated interpretations of the user’s actions.

3. Obstructed plan recognition assumes that users are aware of the recognition process and
are actively trying to obstruct it.

4.4.1 Examples of Task Modelli ng and Plan Recognition:
CHORIS - The Computer-Human Object-oriented Reasoning Interface System
Tyler et al. [1991] describe an emergency crisis management system that is based on
CHORIS, which is a generic architecture for intelli gent interfaces. The architecture and
hence the crisis management system contains a plan manager that incorporates a task
model. The plan manager consists of three criti cal elements: a declarative representation of
plans, routines for utili zing such representations to assist users in their interactions, and the
reasoning abilit y to determine what particular goals users are trying to achieve. For
example, when a user logs into the system and indicates that an earthquake has occurred,
then the substep hierarchy for the manage earthquake task will appear. The interface assists
the user in that the system can compare the user’s commands and arguments to commands
with the constraints on the task substep’s parameter values and thereby detect global errors.
In a similar fashion the interface can make reasonable guesses about appropriate default
parameters for the current task step and provide these automatically for the user. At the time
of writing, the third component which was to recognize the users intention from low level
interactions had not been fully realized. No user testing was documented.

SAUCI – A Self-Adaptive User-Computer I nterface
Tyler and Treu [1989] document a system called SAUCI which was designed to support
learnabilit y and usabilit y. One of the ways the system accomplishes this goal is by
providing task-specific guidance to the user. The system is essentially a graphical interface
to the UNIX operating system. The user selects the desired high-level task from a menu and
the system then provides a break-down of all the substeps necessary to complete the task

 45

and provides visual feedback as to which substep the user is currently engaged in. User
testing showed that this system performed favourably for novice UNIX users.

4.5 Multimodal Communication/Natural-Language Dialog
Multimodal communication combines multiple forms of interaction which can include
natural-language (spoken or input as text), gestures, and the more traditional interaction
techniques: command line entry and direct manipulation. The goal of multimodal
communication is to make interacting with technology more intuitive and natural. It can
allow users to operate hands-free or eyes-free and can thus provide greater flexibilit y to the
user. Despite the apparent advantages of multimodal communication, both determining
appropriate situations for its application and the complexities of processing natural
language remain challenging areas of research [Encarnação, 1997].

4.5.1 Examples of Multimodal Communication/Natural-Language
Dialog:

CHORIS – The Computer-Human Object-oriented Reasoning Interface System
The emergency crisis management system [Tyler et al., 1991] described in Section 4.4.1
allowed the use of natural language queries and gestural input in the middle of such queries.
For example, the user could type the query “What is the population of these schools?” and
subsequently gesture through cursor pointing to the representations of the desired schools.

The Adaptable User I nterface
Kantorowitz and Sudarsky [1989] developed a User Interface Management System that
supports the creation of adaptable user interfaces which allow the user to switch between
dialog modes (not strictly limited to direct manipulation and command language) at the
token level of granularity.

4.6 Intelligent Help
Providing help for the user has proven to be a more diff icult problem than most designers
would have expected. Research has shown that online help or manuals are not users’
preferred method of knowledge acquisition [Rieman, 1996]. The problem is that users have
diff iculty finding the help that they need: help provided is not related to the user’s context,
more information is given than necessary, or the information given does not match the
user’s expertise level. Research in intelli gent help has attempted to address these problems.

4.6.1 Examples of Intell igent Help:
SAUCI – A Self-Adaptive User-Computer I nterface

 46

SAUCI [Tyler and Treu, 1989], described in Section 4.4.1, attempts to support learnabilit y
by providing intelli gent advising. Part of the intelli gent advising capabilit y is giving user-
tailored advice on the UNIX commands. When the user requests general help on a
command, a help sheet pops up providing the purpose, arguments, and operation of the
command. Each of these components of the help sheet is tailored to the user level. The user
can also request specific advice by providing a command and the arguments that they would
like to try. Rather than the system executing the command, the system provides feedback on
any potential problems that would arise from the command execution. Tyler and Treu
[1989] note that this supports exploratory learning.

UIDE – The User I nterface Development Environment
Applications that are built using UIDE (described in Sections 4.2.1 and 4.3.1) are able to
automatically generate and provide context-sensitive, animated, and multimedia help [de
Graff et al., 1993; Sukaviriya et al., 1990; Sukaviriya et al., 1993c; all three references cited
in Encarnação, 1997].

4.7 Intelligent Tutoring Systems
Intelli gent tutoring (teaching) systems are concerned with the acquisition of domain
knowledge rather than operational knowledge. They attempt to follow the teaching model
of a good teacher who is faced with a diverse group of students. The model adapts the
teaching content and style to the domain being taught as well as to the individual student’s
needs and abiliti es [Kay, 1993].

Cardiac Tutor
The Cardiac Tutor is a knowledge-based simulation for teaching about cardiac resuscitation
[Woolf, 1996]. The Tutor includes both a real-time simulation and a graphical view of an
emergency room patient. The students are given the goal to save the patient by selecting the
proper advanced cardiac li fe support procedures. Clues are provided through spoken advice,
emergency room sounds, and graphical representations of ECG traces, blood gases, and
vital signs. Automated tutorial help is offered with cutomized problems to suit the student’s
level of achievement. The Tutor provides positive feedback for both good and improved
performance and incorrect behaviour is categorized and commented upon. Preliminary user
feedback was very positive.

4.8 Dynamic Presentation
Research in dynamic presentation seeks to provide views of data that are dependent on the
characteristics of the data set and tailored to the individual user’s experience, capabiliti es,
and preferences. The goal is to make the data as comprehensible as possible.

 47

4.8.1 Examples of Dynamic Presentation:
GAMES – Guided Adaptive Multimedia Editing System
Gutkauf [1997] introduces a chart editing system which generates critiques by user request.
These critiques are based on a user model, on expert knowledge in chart editing and on the
chart currently being edited. The goal is for the system to help the author to avoid
commonly made mistakes and to empower recipients of charts to adjust certain parameters
(e.g., colors) to their individual abiliti es and needs. A chart will only change its appearance
or behaviour when the user requests a critique. The user can also request an explanation
from the critique.

AGA – Adaptive Graphics Analyser
Holynski [1988] describes AGA which generates images that are classified based on 8
variables: balance, grid size, busyness, complexity, regularity, colour variety, shape variety
and symmetry. He had 200 subjects evaluate the images and standard regression analysis
was used to discover which variables were appropriate predictors for user preference. In
order to determine more detailed information the average attractiveness rating for each
image along with the value of the 8 variables were input into a rule acquisition program.
The program produced clear presentation rules for a given set of viewers such as
attractiveness is low if complexity and busyness are both low. AGA modifies rules obtained
from the rule acquisition program by accepting specific knowledge from a particular user
about that individual’s perceptual judgment.

4.9 Software Architectures
Early research in intelli gent interfaces was understandably more focused on trying out ideas
rather than being concerned about the extensibilit y, understandabilit y, reusabilit y, and
maintainabilit y of the implementation that instantiated the ideas. It soon became clear that
the aforementioned concerns needed to be addressed and that an understanding of the
software architecture for the software components that comprised the intelli gent aspect of
systems was needed. This of course parallels a larger trend in computer science over the last
two decades towards extensible, understandable, reusable, and maintainable systems.

The Seeheim Model [Pfaff et al. 1985, in Encarnação, 1997] represents one of the first and
best known models for general user interface architecture. There are three main components
to this model. The presentation describes the visual interaction objects on a lexical level.
The dialog describes the structural elements of the dialog and the behaviour of the
interaction objects on a syntactic level. The application interface describes the purpose of
the dialog in the proper application context on a semantic level.

 48

Figure 5: Seeheim model

Other well known models include the Seattle model, the Lisbon model, and the PAC model
[Bass and Coutaz, 1991]. Despite the variety, there has been a lack of consensus on which
is the best. This has prompted some of the leading researchers in this area to conclude that a
single prescriptive model to fit all types of interactive systems is very diff icult, if not
impossible, to define [UIMS tool Developers Workshop, 1992].

To address this deficiency, these researchers proposed an approach that examined the nature
of the data that passes between the user interface and the non-user-interface portions of an
interactive system. The approach led to the definition of the Arch Model which models the
runtime architecture of an interactive system.

Figure 6: Arch Model [UIMS Tool Developer’s Workshop, 1992] .

Components of the Arch Model as described from the UIMS Tool Developer’s Workshop
[1992]:
• Domain-Specific Component: controls, manipulates and retrieves domain data and

performs other domain-related functions.

Domain-
Specific

Component

Domain-
Adaptor-

Component

Dialog
Component

Presentation
Component

Interation
Toolkit

Component

Domain Objects

Domain Objects Presentation Objects

Interaction Objects

Presentation
Component

Application
Interface

Dialog
Component

Feedback

User Application

 49

• Interaction Toolkit Component: implements the physical interaction with the end-user
(via hardware and software).

• Dialog Component: has responsibilit y for task-level sequencing, both for the user and
for the portion of the application domain sequencing that depends upon the user; for
providing multiple view consistency; and for mapping back and forth between domain-
specific formalisms and user-interface-specific formalisms.

• Presentation Component: a mediation, or buffer component between the Dialog and the
Interaction Toolkit Components that provides a set of toolkit-independent objects for
use by the Dialog Component.

• Domain-Adaptor Component: a mediation component between the Dialog and the
Domain-Specific Components. Domain-related tasks required for human operation of
the system, but not available in the Domain-Specific Component, are implemented here.
The Domain-Adaptor Component triggers domain-initiated dialog tasks, reorganizes
domain data, and detects and reports semantic errors.

The objects depicted in the figure represent information that is transmitted between the
components. The term “object” does not refer to formal objects as they exist in object-
oriented programming. Rather, objects are an abstraction for describing a communication
mechanism.

• Domain Objects: when used in the Domain-Specific Component, Domain Objects

employ domain data and operations to provide functionality not associated directly with
the user interface. In the Domain-Adaptor Component, domain data and operations are
used to implement operations on domain data that are associated with the user interface.

• Presentation Objects: are virtual interaction objects that control user interactions.
Presentation Objects include data to be presented to the user and events to be generated
by the user. The medium used in the presentation or event generation is not defined.

• Interaction Objects: are specially designed instances of media-specific methods for
interacting with the user. Interaction Objects are supplied by the Interaction Toolkit
software and may be primitive or complex.

The Arch model can be generalized to the Slinky Metamodel [UIMS tool Developers
Workshop, 1992] which essentially provides a set of Arch models by shifting functionality
among components. Such a metamodel is desirable because it enables the selection of the
Arch model to be dependent on the goals of the developers, their weighting of development
criteria, and the type of system to be implemented.

Although the architecture models mentioned thus far have been instrumental for research in
user interface software architectures, none of them are suff icient for the realization of
intelli gent user interfaces. To address this Hefley and Murray [1993] integrated the Triple
Agent Model by Card [1989; Card 1984 in Encarnação, 1997] shown in Figure 7 with the
Arch Model to form the Arch Model for an Adaptive Intelli gent Human-Machine Interface.

 50

Figure 7: Card’s Triple Agent Model of human-computer interaction (diagram adapted from Encarnação
[1997]).

The Triple Agent Model comprises four parts: the user, a User Discourse Machine which
interacts with the user, a Task Machine interacting with the task, and the task itself. Card
[1989] notes that the User Discourse Machine and the Task Machine may in fact be
independent computers or they may just be separate modules within the same system. There
are three agents in this model: two computational agents (the Task Machine and the User
Discourse Machine) and the user. Each of these agents can potentially have models of the
other agents and possible even of the other agents’ models.

The Arch Model for an Adaptive Intelli gent Human-Machine Interface extends the Domain-
Adaptor Component of the Arch Model to include the following three components: Domain
Adaptation, Discourse Management, and an Intelli gent Decision Support System (IDSS).
The integration described by Hefley and Murray [1993] is not entirely clear but the main
points are paraphrased below:

• Intelli gent interfaces are really instances of domain adaptors.
• The domain specific component could house the user model data and both the domain-

specific and dynamic knowledge-bases.
• Layers close to the user interface itself can perform recognition, presentation,

explanation, user tailoring and so on.
• A robust intelli gent interface will have several embedded layers within it, in addition to

the provision of adaptivity and intelli gent presentation. These include specific levels
for:

• Domain adaptation: goal management, higher level (i.e., cognitive) user
modelli ng.

• Discourse management: management of the interaction, action/presentation-level
user modelli ng.

Feedback and
adjustments

User

Discourse
Machine

Task

Machine
User Task

User affects
task indirectly

Task is observed
indirectly

Task control and
effects of being

sensed

User affects task directly

Task is directly observed by the user

 51

Figure 8: Architectural model for an adaptive human-machine interface [Hefley and Murray 1993] .

4.10 Evaluation
The evaluation of adaptive systems has been identified as a weak area within this field of
research [Dieterich et al., 1993]. Höök [1997] identifies important issues relevant to
evaluating adaptive systems. The main points include:

• The importance of being able to distinguish the adaptive features of the system from the

general usabilit y of the system. Höök [1997] notes that most studies of adaptive systems
are comparisons of the system with and without adaptivity and the problem can be that
the non-adaptive system may not have been designed optimally for the task.

• The issue of what to measure. Often the main evaluation criteria is task completion time.
Although this may be important it may not be the best or only measure. Höök describes a
hypermedia system for which the quality of the search and the result is more important
than the overall search time.

Domain
Specific

Component

Domain
Adaptor

Component

Dialog
Component

Presentation
Component

Iteration
Toolkit

Component

Domain
Adaptation

Discourse
Management

Domain Knowledge Base Manager

Coordinator Criti c

Explanation
Generator

Response
Generator

Presentation
Generator

Plan
Identification

IDSS

 52

• Users' own evaluations of the system are important. How do they feel the adaptive and
non-adaptive systems compare? Do they feel in control of the adaptive parts of the
system?

• Duration of study is relevant. The advantage of most adaptive systems is that they adapt
to the users’ changing needs and goals. Thus short term studies that do not allow these
needs to change in a natural way do not provide an accurate assessment of adaptive
systems.

5 Summary and Discussion
Over the last two decades there has been a noticeable increase in the number of features that
are included with application software. As previously mentioned, this trend is not isolated
to software but can be seen also when considering household appliances such as food
processors and VCRs. “The more the better” seems to be the prevaili ng philosophy. There
has been some research on how people are coping with the added complexity but not
suff icient research to clarify the issue. A brief summary of the research is as follows:

• Users who are new to an application are able to complete tasks faster and with fewer

errors when functionality that is not needed for the tasks is blocked off .
• If a task can be completed on two different versions of a software package, a user who is

new to the package will be able to complete the task on the earlier version faster.
• The number of distracting interface objects affects the abilit y of reasonably experienced

users who are new to an application to find the appropriate object.
• Users generally use only a subset of an application’s functionality and they don’ t often

master even this subset.
• Users are generally more comfortable with mastering a subset of functionality rather than

being a novice with respect to the total functionality.

The latter two points suggest a trend about usage: only a subset of an application’s
functionality is used by the majority of users. It is not exactly clear why this is the case. One
possibilit y is that the full functionality is not needed by most users. Another possibilit y is
that users don’ t know how to use the functionality or don’ t even know that it exists and so
although they could use it, they get by without it. The reality is most certainly a
combination of these two scenarios, but the extent to which one scenario is more prevalent
than the other is unknown.

The first three points above strongly suggest that for users who are new to a system, it is
significantly easier to accomplish a task if the features that are not required for that task are
either removed from the interface or are blocked off . This, in and of itself, should not seem
entirely surprising. One only need look for examples in the everyday world of how users
learn to use and continue to use complex tools or featured systems. Two such examples
come to mind.

 53

One example is learning to use a calculator. Speaking from personal experience, I was
given my first calculator when I was in grade school. It supported littl e more than addition,
subtraction, multiplication, and division. When I entered high school, this calculator no
longer met my needs and so I acquired a basic scientific calculator. And in second year of
my undergraduate degree I transitioned yet again, but this time to a programmable
calculator.

Putting the cost factor aside, no one would think of giving a grade schooler a programmable
calculator because it is obviously far beyond the needs of a child. It would only confuse the
child and the likelihood of the child pressing the wrong button by mistake would be high.
Not only would such a calculator not fit the task of a child but it would likely hamper the
child’s learning.

Another example is learning to drive a car. This example isn’ t quite as clean as that of the
calculator but is worthwhile nonetheless. To make the example work one needs to include
the physical world as part of the system in question. Most city people when they learn to
drive start out in an easy condition. They may start out in a large, empty parking lot and
when they feel comfortable controlli ng the car they will probably try driving in a residential
area where a few basic traff ic signs need to be observed and other cars need to be
negotiated, all at a reasonably low speed. Next, a new driver would probably feel most
comfortable trying to drive on major city streets where more traff ic signs are found and
more complex maneuvers, such as changing lanes, are required. The new driver would most
li kely leave highway driving until l ast. Despite the minimal traff ic signs on highways, the
high speed usually deters new drivers from highway driving until they are comfortable in
low-speed conditions.

What this example shows is that people, when given the opportunity, chose to reduce the
complexity when learning a new system. It is worth pointing out that by the time a person is
learning how to drive, he/she often has a very good operational model of an automobile.
This is what enables new drivers to set the level of diff iculty with which they are
comfortable. By comparison, novice users have a poor operational model of a computer.

Returning again to the discussion of the literature, there are a number of issues and
questions that remain unanswered:
• All of the literature that attempts to assess reduced complexity only looks at the first few

hours a user spends with the system. How do users cope with a full -featured system
beyond these initial hours? If users were to continue using the reduced system, at what
point would they find it to be insuff icient? Is there something in between a reduced
system and a full system that would be appropriate for some users?

• Is learning on a simpli fied system equally beneficial for all users? One might presume
that it is more beneficial for a novice user than an expert user. Is this true? To what
extent? Is it dependent on whether the user is novice/expert in the computer domain or
the task domain?

 54

We do know how users approach learning a system. They learn through exploration, by
applying previous knowledge, by taking formal training, by reading the user manual, by
taking advantage of online help and online tutorials and demonstrations, and by asking for
assistance from friends and colleagues. Although all of these learning avenues are used,
research clearly shows that users generally learn through exploration and they do so in the
context of real tasks. This learning behaviour is sometimes referred to as trial and error,
learning by doing, or simply active learning. There is evidence that exploration is
occasionally done in conjunction with reading the manual or using online help. Just because
exploration is the most common approach, however, it is not to say that this is the most
effective way to learn. Empirical evidence seems to suggest that this method is more
effective than some passive methods, such as reading the manual or using online help and
tutorials, however, there is no evidence that compares exploratory learning to formal
training.

There is empirical evidence that suggests ways to make exploratory learning more effective.
In general, if users are left to explore in an unrestricted fashion, they do not behave
adaptively, they interact too much, and think too littl e. This maladaptive behaviour is in fact
encouraged by the interactivity of systems. Exploratory learning can be made more effective
when it is rooted in relevant tasks, and when users are encouraged to reflect on their
interactions. Reflection can be enforced by a number of means, namely, by limiti ng the
number of keystrokes users have during exploration, by making the interface more diff icult
to use, and by forcing users to explore one subset of the functionality at a time. Limiting
keystrokes is an interesting empirical result, however, there is no obvious way to use this
technique in practice. Similarly, making the interface more diff icult doesn’ t seem like a
practical long term solution especially because users clearly prefer easier interfaces (such as
direct manipulation) even though they may not equally promote good problem-solving
behaviours.

Forcing the exploration of one subset of functionality at a time is an extrapolation of the
functionality blocking that was seen in the Training Wheels Interface [Carroll and
Carrithers, 1984a, 1984b] in which there was only a single functionality subset. What hasn’ t
been suggested by the literature is a means of implementing functionality blocking with
more than one functionality subset. The Trudel and Payne [1995] study reported the
benefits of limiti ng exploration. Their experimental design had the experimenters advance
the user to a new functionality subset after a given amount of time. This, of course, is not a
practical solution for commercially available software. This study as well as that of the
Training Wheels Interface present some ground work on functionality blocking, but many
questions remain before this strategy can be considered for commercial software:

• How can appropriate subsets of functionality be determined? To what extent is

functionality layered or clustered?
• How should the user transition from one subset to another?

These are fundamental questions that need to be addressed if functionality blocking is going
to be a viable method to support learning by the user. It is essential that there be some way

 55

to determine what functionality needs to be grouped, what functionality is needed all the
time, what functionality is only needed occasionally, what functionality is only needed by
the expert users, etc. Buxton’s [1998] model seems to suggest a point of departure not so
much in terms of the expert/novice dimension but in terms of functionality grouping. He
advocates parsing functionality based on task although this in and of itself remains a
research question.

It is worth considering a slight extension of Buxton’s model such that specific tools appear
within a more general tool. The representation of this can be seen in Figure 9. Although at
first glance the cognitive load (i.e., the area under the curve) is higher than what is shown in
Figure 3(a) it is important to remember that users use only a small subset of the total
functionality. The user would only need to use those tools within the toolset that are
required. The image in the figure should be understood to be significantly different than
what is common in today’s user interfaces. Take Microsoft Word for example. Much of the
functionality is always available from the first few levels of the menus and the default
toolbars. Additional toolbars can be added to both increase the accessibilit y of some
functionality already found in the menus and also to make accessible functionality not
available in the menus.

Continuing with the word processing example, the model in Figure 9 advocates that the
functionality be grouped into tools that address given tasks. For example, when the user
wants to draw in a document, the user is placed in the drawing tool. All functionality
required for drawing operations is accessible from that tool and nothing more. This would
most likely mean that there would be some overlap in functionality between tools. There
would be some “net benefit” because of consistency of style and terminology among tools
and also because the tools could be aware of the context in which they are operating.

Figure 9: Extension of Buxton’s model to include strength and specificity within a general tool.

Assuming that functionality subsets can be determined, then the next hurdle is figuring out
how to design a system that supports multiple functionality subsets such that the user can
transition easily between the subsets.

Although the abilit y to dynamically adjust the available functionality seems like a tall order,
one needs to remember that software is fundamentally more malleable than most
technology. It is precisely this malleabilit y that is the subject of research in adaptive and
intelli gent user interfaces. Adaptive interfaces seek to adjust the interface such that the

Cognitive Load

High

Low

None
Strength

Generality

 56

functionality accessible matches the user’s needs, preferences and skill s. Initial research in
this area sought to have the system self-adapt, in other words, the system inferred what the
user needed and adjusted its interface accordingly. There were two main problems with this
approach. The first was that the AI techniques used to determine the user’s needs and wants
were not as robust as initially claimed and so system inferences were subject to
considerable error. The second problem was that users need to feel as though they are in
control of the system; when a system changes without a visible cause it leads the user to
feel a loss of control.

The research in adaptive user interfaces is motivated by the desire to improve user
performance in systems that are reasonably complex. This motivation can be identified by
looking at the prototypes that attempt to recognize frequent user key sequences and then
provide the user with a single command or macro that accomplishes the same result, that
reorder menus or dialog boxes based on the user’s usage, that infer the user’s task and
supply appropriate default parameters, and that provide a prompter that lists the most likely
actions based on the current context.

There are a couple obvious limitations of the research in adaptive user interfaces. The first
is that, with the exception of the Flexcel prototype based on Microsoft Excel [Thomas and
Krogsœter, 1993], all the research is based on prototype systems. One must question the
validity of research that attempts to improve performance in complex systems and uses
limited prototypes to do so. Another significant limitation is the lack of reported user
testing. This is disappointing given that the intelli gent user interface research community
initially set out to be a mix of the HCI and AI research communities. User evaluation is a
fundamental principle in HCI, yet it receives minimal attention in the intelli gent interface
research.

In general, the reduction of complexity has not been adequately addressed in intelli gent user
interface research. Take the Adaptive Action Prompter [Malinowski et al., 1993] described
in Section 4.2 as an example. It advocates adding an additional selection box that is always
visible with the most likely options given the user’s current context. The net effect of this is
that more interaction objects are added to the interface in order to address complexity. This
certainly seems backward. Instead of advocating better design it suggests adding another
widget to navigate. The anthropomorphized paper clip in the Microsoft Off ice suit
represents the same problem. It suggests that features can be pumped into the interface so
long as there is a littl e agent in the corner to whom the user can ask natural language
questions.

Recent literature on intelli gent and adaptive user interfaces suggests a number of
requirements if this research is going to impact commercial applications. These include: the
need to make user modelli ng light-weight, and the need to put the user in control of
adaptation. Research issues arise directly from these:
• A light-weight user model cannot account for all i ndividual differences. What are the

dimensions of a light-weight user model? How light-weight can a user model be before
being rendered useless?

 57

• How can the user effectively control the adaptation process?

5.1 Putting it all Together - Two Possible Scenarios
From the research gathered for this literature review it is possible to imagine at least two
distinct interface scenarios that provide at least partial solutions to the functionality
explosion that has occurred. Each of these is based on metaphors that are described below.

5.1.1 Gradual tool selection and de-selection - toolbox/workbench
metaphor

A carpenter initially starts off with a clean workbench. Gradually as he/she crafts the work
artifact, tools are brought from the toolbox to the workbench. Sometimes the carpenter uses
a tool and then immediately returns it to the toolbox knowing that the tool will not be
needed again in the near future. Other times, tools will be left on the workbench after their
use in anticipation of using them again in the near future. At some points the workbench
will become cluttered with tools to the point that it is diff icult to continue working with the
work artifact. Many tools may be returned to the toolbox in order to clear some space. The
carpenter will i nevitably change tasks periodically. These task changes may accompany
significant changes to the selection of tools used on the workbench.

Figure 10 shows what the user might see if we take this approach. There is a single
workspace and a toolbox from which the user can select the desired tool(s) and return them
when no longer needed. When a tool is added to the workspace, all the functionality of the
tool is made available in the workspace. When the workspace becomes too cluttered, the
user puts the tool back in the toolbox.

Example: The user loads a word processing application for the first time. Only a minimal
functionality subset is available, i.e., the user can create a new document, open an existing
document, save, print, input text, cut, paste, and delete. The toolbox that accompanies the
barebones word processor, includes tools such as Text Formatting, Drawing, Charts,
Tables, etc. The user is easily able to add or remove these tools from the application’s
workspace.

 58

Figure 10: Workspace and toolbox described in Scenario One. The image depicts the workspace after the
Formatting tool has been added.

5.1.2 Task dr iven tool selection - multiple workbench metaphor
An alternative to bringing all the required tools to a single workbench is a workshop with
multiple workbenches, each providing different utilit y. The carpenter moves with the work
artifact from one bench to another, e.g., because some tools such as a drill press or electric
saw are large, certain tools require a special surface, or there are physical constraints such
as proximity to an electric outlet or a light source. In this scenario it is easier to leave the
tools stationary and for the carpenter to move to them.

Figure 11 shows what the user might see if we take this approach. When the user first
accesses the system he/she is required to answer a few brief questions which allows the
system to roughly assess the user’s knowledge, i.e., light-weight user modelling categorizes
users into one of three categories: novice, intermediate, or expert (or possibly a three
dimensional model of expertise). The user next selects a task from the list of high-level

Formatt ing
Drawing
Tables
Charts
 .
 .
 .
 etc.

Basic formatt ing functionali ty: e.g., font, style, alignment

drag and drop or toggle
switch (??) to

add/remove tool

Formatting toolbar

 59

tasks presented by the system and tools appropriate to the selected task are then
automatically selected by the system. (Alternately, the user will be presented with a list of
functions rather than tasks – this to be determined through user studies). The system then
opens into a default tool and a gestalt click-able map representing all tools available is
provided at the periphery of the workspace. In this way, this system can be adapted to both
the user’s current task (or function) and knowledge. For example, all of a tool’s
functionality will be disclosed to an expert user whereas only a subset of the functionality
will be disclosed to a novice. When a novice or intermediate user is ready to have access to
increased functionality within a tool they click a button that represents “More functionality
please”. The system would present a high level view of all the alternatives and the user
would once again select a high-level task.

Example: The user loads a word processing application. Based on the user’s response to a
few brief questions, the system determines the user to be a novice. The user selects “create
business letter” as the desired task, he/she is given the default novice tool-set which
includes three tools, Text Entry and Formatting, Spell Checker, Thesaurus. The basic
functionality of Text Entry and Formatting is for example, font, font size, style, and
justification. To access more advanced formatting features, e.g., paragraph, page layout, etc.
the user clicks the button asking for more functionality.

To select another tool, e.g., the Spell Checker, the user clicks on its representation in the
map. The Spell Checker is highlighted and basic functionality available to that tool is
shown in the toolbar. To return to Text Entry and Formatting, the user need only click its
representation in the map.

5.2 Research Contributions
Investigating scenarios such as those mentioned above could potentially provide all or some
of the following research contributions:
• a continuation of the training wheels (functionality blocking) research that was very

successful and highly cited in the literature but has never been furthered;
• an understanding of the benefits of a simpli fied system for diverse users;
• assessment of adaptive strategies in the context of commercial, complex software rather

than prototype software (e.g., MS Word, MS Excel, Lotus Notes, Alias Wavefront’s
Maya, MAD);

• performing user testing of an adaptive interface which would further the understanding
of appropriate user testing strategies and methodologies for adaptive systems;

• an investigation of the pertinent issues of light-weight user modelli ng in adaptive
interfaces;

• an assessment of an adaptive interface beyond the first few hours of usage;
• the development and testing of a 3D model of expertise.

 60

Figure 11. Workspaces as depicted in Scenario Two. At any given time only one of these screens is visible. It
is possible to navigate from one screen to any other by simply clicking on the desired tool button

Text Entry and Formatt ing Tool

Text Entry and Formatt ing toolbar

Task: Tools: Text Entry and Formatt ing Spell Checker Business Letter Thesaurus

+ More

Spell Checker Tool

Task: Business Letter Tools: Text Entry and Formatt ing Spell Checker Thesaurus

Spell Checker toolbar + More

Thesaurus Tool

Tools: Text Entry and Formatt ing Spell Checker Thesaurus Task: Business Letter

Thesaurus toolbar + More

Highlighted to
indicate tool in use

Button to
increase

functionality

By clicking here the
workspace will

become the spell
checker tool

 61

6 References
Baecker, R., Grudin, J., Buxton, W., and Greenberg, S. (1995). Readings in Human-Computer Interaction:

Toward the Year 2000, San Mateo, Cali fornia: Morgan Kaufmann.
Baecker R., Small , I., and Mander, R. (1991). Bringing icons to li fe. Proceedings of CHI’ 91, 1-6.
Baecker, R. and Buxton, W. (1987). Readings in Human-Computer Interaction: A Multidisciplinary

Approach, San Mateo, Cali fornia: Morgan Kaufmann.
Bass, L., and Coutaz, J. (1991). Developing Software for the User Interface, Reading, Mass: Addison-Wesley.
Boehm, B.W. (1988). A spiral model of software development and enhancement. IEEE Computer, 21(2), 61-

72.
Bonar, J. and Liff ick, B. (1991). Communicating with high-level plans. in Intelli gent User Interfaces, J.S.

Sulli van and S.W. Tyler (eds.), 129-156.
Borenstein, N. (1985). The Design and Evaluation of On-line Help Systems. PhD Dissertation, CMU-CS-85-

151, Department of Computer Science, Carnegie-Mellon University.
Bösser, T. (1985). Learning in Man-Computer Interaction: A Review of the Literature, Germany: Springer-

Verlag.
Buxton, W.S. (1998). Conversation with Bill Buxton, Chief Scientist Alias Wavefront and Sili con Graphics;

Associate Professor, University of Toronto, Spring, 1998.
Carberry, S. (1989). Plan recognition and its use in understanding dialog. in User Models in Dialog Systems,

A. Kobsa and W. Wahlster (eds.), Berlin, Heidelberg: Springer-Verlag, 133-162.
Card, S.K. (1989) Human factors and artificial intelli gence. in Intelli gent Interfaces: Theory, Research and

Design, P.A. Hancock and M.H. Chignell (eds.), North-Holland: Elsevier Science Publishers B.V., 27-46.
Carroll , J., and Carrithers, C. (1984). Blocking learner error states in a training-wheels system. Human

Factors, 26(4), 377-389.
Carroll , J., and Carrithers, C. (1984). Training wheels in a user interface. Communications of the ACM, 27(8),

800-806.
Carroll , J., and Mack, R. (1984). Learning to use a word processor: By doing, by thinking, and by knowing. In

Thomas, J., and Schneider, M. (eds.), Human Factors in Computer Systems, Ablex, 13-51.
Carroll , J.M. (1990). The Nurnberg Funnel. Cambridge, MA: MIT Press.
Clement, A. (1993). Computer support for computer work: A social perspective on the empowering of end

users. in Readings in Groupware and Computer-Supported Cooperative Work: Assisting Human-Human
Collaboration, R.M. Baecker (ed.), San Francisco, Cali fornia: Morgan Kaufman, 315-328.

Computer Science and Telecommunications Board, National Research Council (1997). More than Screen
Deep: Toward Every-Citizen Interfaces to the Nation’s Information Infrastructure, National Academy
Press, Washington, D.C.

Constantine, L.L. (1995). Constantine on Peopleware. Englewood Cli ffs, NJ: Prentice Hall .
Cote-Munoz, J.A. (1993). AIDA - An Adaptive System for Interactive Drafting and CAD Applications. in

Adaptive User Interfaces: Principles and Practice, M. Schneider-Hufschmidt, T. Kuhme and U.
Malinowski (eds.), Elsevier Science Publishers B.V., 225-240.

Davis, S. and Bostrom, R. (1992). An experimental investigation of the roles of the computer interface and
individual characteristics in the learning of computer systems. International Journal of Human-Computer
Interaction, 4(2), 143-172.

Dieterich, H., Malinowski, U., Kuhme, T., and Schneider-Hufschmidt, M. (1993). State of the Art in adaptive
user interfaces. in Adaptive User Interfaces: Principles and Practice, M. Schneider-Hufschmidt, T. Kuhme
and U. Malinowski (eds.), Elsevier Science Publishers B.V., 13-48.

Dryer, D.C. (1997). Wizards, guides, and beyond: Rational and empirical methods for selecting optimal
intelli gent user interface agents. Proceedings of IUI'97, 265-268.

Encarnação, L.M. (1997). Concept and Realization of Intelli gent User Support in Interactive Graphics
Applications, unpublished dissertation, der Fakultät für Informatik, der Eberhard-Karls-Universität zu
Tübingen. http://www.gris.uni-tuebingen.de/gris/proj/guis/Papers/DISS/diss.html.

Fischer, G. (1993). Shared knowledge in cooperative problem-solving systems - integrating adaptive and
adaptable components. in Adaptive User Interfaces: Principles and Practice, M. Schneider-Hufschmidt, T.
Kuhme and U. Malinowski (eds.), Elsevier Science Publishers B.V., 49-68.

 62

Franzke, M. (1995). Turning research into practice: Characteristics of display-based interaction. Proceedings
of CHI’ 95, 421-428.

Franzke, M., and Rieman, J. (1993). Natural training wheels: Learning and transfer between two versions of a
computer application. Vienna Conference VCHCI'93, 317-328.

Gong, G., and Salvendy, G. (1995). An approach to the design of a skill adaptive interface. International
Journal of Human-Computer Interaction, 7(4), 365-383.

Goodwin, N.C. (1987). Functionality and Usabilit y. Communications of the ACM, 30(3), 229-233.
Greenberg, S. and Witten, I.H. (1985). Adaptive personalized interfaces - A question of viabilit y. Behaviour

and Information Technology, 4(1), 31-45.
Grudin, J. (1989). The case against user interface consistency. Communications of the ACM, 32(10), 1164-

1173.
Gutkauf, B. (1997). Accounting for individual differences through GAMES: Guided Adaptive Multimedia

Editing System. Extended Abstracts, CHI 97, 22-27 March 1997, Atlanta, GA, 57-58.
Hefley, W.E. and Murray D. (1993). Intelli gent User Interfaces. Proceedings of the 93 International

Workshop on Intelli gent User Interfaces, January 4-7, Orlando, Florida , 3-10.
Holynski, M. (1988). User-adaptive computer graphics. International Journal of Man-Machine-Studies, 29,

539-548.
Höök, K. (1997). Evaluating the utilit y and usabilit y of an adaptive hypermedia system. Proceedings of IUI

97, 179-186.
Howes, A. and Payne, S.J. (1990). Supporting exploratory learning. Human-Computer Interaction -

INTERACT ‘90, D. Diaper et al. (eds.) North-Holland: Elsevier Science Publishers B.V., 881-885.
Innocent, P.R. (1982). Towards self-adaptive interface systems. International Journal of Man-Machine

Studies, 16, 287-299.
Jackson, S.L, Stratford, S.J., Krajcik, J., and Soloway, E. (1996). A learner-centered tool for students building

models. Communcations of the ACM, 39(4), 48-49.
Jackson, S.L, Krajcik, J., and Soloway, E. (1998). The design of guided learner-adaptable scaffolding in

interactive learning environments. Proceedings of CHI 98, 187-194.
Johnson, J., Roberts, T., Verplank, W., Smith, D., Irby, C., Beard, M., and Mackey, K. (1989). The Xerox

Star: A retrospective. IEEE Computer 22(9) 11-29.
Kantorowitz, E., and Sudarsky, O. (1989). The adaptable user interface. Communications of the ACM, 32(11),

1352-1358.
Kass, R. and Finin, T. (1991). General user modeling: A facilit y to support intelli gent interaction. in

Intelli gent User Interfaces, J.S. Sulli van and S.W. Tyler (eds.), 111-128.
Kaufman, L, Weed, B. (1998). User interfaces for computers - Too much of a good thing? Identifying and

resolving bloat in the user interface. Conference Summary, CHI 98, workshop #10, 207-208.
Kay, J. (1993). Pragmatic User Modelli ng for Adaptive Interfaces. In Adaptive User Interfaces: Principles

and Practice, M. Schneider-Hufschmidt, T. Kuhme, and U. Malinowski (eds.) Amsterdam, Holland:
Elsevier Science Publishers, 129-147.

Keating, D. (1998). Conversation with Dan Keating, chair of Human Development and Applied Psychology at
Ontario Institue for Studies in Education, University of Toronto. Spring, 1998.

Kesterton, M. (1998). Social Studies. The Globe and Mail , May 20th, 1998, A20.
Kerr, M.P. and Payne, S.J. (1994). Learning to use a spreadsheet by doing and by watching. Interacting with

Computers, 6(1), 3-22.
Kozierok, R. and Maes, P. (1993). A learning interface agent for scheduling meetings. Intelli gent User

Interfaces ‘93, 81-88.
Kühme, T. (1993) A user-centered approach to adaptive interfaces. Intelli gent User Interfaces ‘93, 243-245.
Lester, J.C., FitzGerald, P.J., and Stone, B.A. (1997). The pedagogical design studio: Exploiting artifact-based

task models for constructivist learning. Proceedings of IUI 97, 155-162.
Lewis, C., and Norman, D. (1986). Designing for error. in D. Norman, and S. Draper (eds.), User Centered

System Design, Lawrence Erlbaum Associates, 411-432.
Mack, R.L., Lewis, C.H., and Carroll , J.M. (1983). Learning to use word processors: Problems and prospects.

ACM Transaction on Office Information Systems, 1(3), 254-271.
Malinowski, U., Kühme, T., Dieterich, H., Schneider-Hufschmidt, M. (1993). Computer-aided adaptation of

user interfaces with menus and dialog boxes. in Human-Computer Interaction: Software and Hardware
Interfaces, Proceedings of the Fifth Conference on Human-Computer Interaction, (HCI International ‘93),

 63

Orlando, Florida, Volume 2. M.J. Smith, and G. Salvendy, (eds). Elsevier Science Publishers B.V., 122-
127.

Manley, John (1998). Canada by Design Lecture Series, Knowledge Media Design Institute, University of
Toronto, March 12, 1998.

Mark, W. (1991). Foreward. in Intelli gent User Interfaces, J.S. Sulli van and S.W. Tyler (eds.), vii -viii .
McGrath, J. (1995). Methodology Matters: Doing Research in the Behavioral and Social Sciences. in

Readings in Human-Computer Interaction: Toward the Year 2000, R. Baecker, J. Grudin, W. Buxton, and
S. Greenberg, 151-169.

Meyer, T.H., and Sutherland, I.E. (1968). On the design of display processors. Communications of the ACM,
11(6), 410-414.

Mill er, J.R., Sulli van, J.W., and Tyler, S.W. (1991). Introduction. in Intelli gent User Interfaces, J.S. Sulli van
and S.W. Tyler (eds.), 1-10.

Munk, N. (1996). Technology for technology’s sake. Forbes, October 21, 280-288.
Myers, B.A., Potosnak, K., Wolf, R., and Graham, C. (1993). Heuristics in real user interfaces. Proceedings of

InterCHI’ 93, panel, 304-307.
Nilsen, E., Jong, H., Olson, J., Biolsi, K., Reuter, H., and Mutter, S. (1993). The growth of software skill: A

longitudinal look at learning & performance. Proceedings of InterCHI’ 93, 149-156.
Norman, D.A. (1986). Cognitive Engineering. in User Centered System Design: New Perspectives on Human-

Computer Interaction, D.A. Norman and S.W. Draper (eds.), Hill sdale, N.J.: Lawrence Erlbaum, 31-61.
Norman, D.A. (1990). Human error and the design of computer systems. Communications of the ACM, 33(1),

24-27.
Norman and Spohrer (1996). Learner-centered education. Communcations of the ACM, 39(4), 24-27.
Olson, J.R., and Olson, G.M. (1990). The growth of cognitive modeling in human-computer interaction since

GOMS. Human-Computer Interaction, 5, 221-265.
Page, S.R., Johnsgard, T.J., Albert, U., and Allen C.D. (1996). User customization of a word processor.

Proceedings of CHI 96, April 13-18, Vancouver, Canada, 340-346.
Payne, S.J. and Howes, A. (1992). A task-action trace for exploratory learners. Behaviour and Information

Technology, 11(2), 63-70.
Payne, S.J., Chesworth, L., and Hill , E. (1992). Animated demonstrations for exploratory learners. Interacting

With Computers, 4(1), 3-22.
Polson, P.G., and Lewis, C.H. (1990). Theory-based design for easily learned interfaces. Human-Computer

Interaction, 5, 191-220.
Preece, J. (1994). Human-Computer Interaction, Addison-Wesley.
Raskin, J. (1997). Looking for a humane interface: Will computers ever become easy to use?

Communications of the ACM, 40(2), 98-101.
Resnick, L.B. (1990). Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser, L.B. Resnick

(ed.), Hill sdale, New Jersey: Lawrence Erlbaum.
Rich, C. and Sidner, C.L. (1996). Adding a collaborative agent to graphical user interfaces. Proceedings of

UIST’96, Seattle Washington, USA, 21-30.
Rich, E. (1989). Stereotypes and user modeling. in User Models in Dialog Systems, A. Kobsa and W.

Wahlster (eds.), Berlin, Heidelberg: Springer-Verlag, 35-51.
Rieman, J. (1996). A field study of exploratory learning strategies. ACM Transactions on Computer-Human

Interaction, 3(3), 189-218.
Rieman, J., Young R., and Howes, A. (1996). A dual-space model of iteratively deepening exploratory

learning. International Journal of Human-Computer Studies, 44, 743-775.
Rosson, M. and Carroll , J.M. (1996). Scaffolded examples for learning object-oriented design.

Communcations of the ACM, 39(4), 46-47.
Sagar, I., Hof, R.D., Judge, P. (1996). The race is on to simpli fy: Pulli ng the unwired masses into the

information age means gadgets must be as easy to use as the telephone. Business Week, June 24, 1996, 72-
75.

Sellen, A., and Nicol, A. (1990). Building User-centered on-line help. in B. Laurel (ed.), The Art of Human-
Computer Interface Design, Addison-Wesley, 143-153.

Schank and Kass (1996). A goal-based scenario for high school students. Communcations of the ACM, 39(4),
28-29.

 64

Shneiderman, B. (1995). Perspectives: Looking for the bright side of user interface agents. Interactions,
(January), 13-15.

Shneiderman, B. (1997a). Designing the User Interface: Strategies for Effective Human-Computer
Interaction. Third Edition. Addison Wesley.

Shneiderman, B., (1997b). Direct manipulation for comprehensible, predictable and controllable user
interfaces. Proceedings of IUI '97, 33-39.

Shneiderman, B., and Maes, P. (1997). Direct manipulation vs. interface agents: Excerpts from debates at IUI
97 and CHI 97. Interactions, (November/December), 42-61.

Soloway, E., Guzdial, M., and Hay, K.E. (1994). Learner-centered design the challenge for HCI in the 21st
century. Interactions, (April), 36-48.

Soloway, E., Jackson, S.L., Klein, J., Quintana, C., Reed, J., Spitulnik, J., Stratford, S.J., Studer, S., Eng, J.,
and Scala, N. (1996). Learning theory in practice: Case Studies of Learner-Centered Design. CHI 96, 189-
196.

Stephanidis, C., Karagiannidis, C., and Koumpis, A. (1997). Decision making in intelli gent user interfaces.
Proceedings of IUI ‘ 97, 195-202.

Sukaviriya, P., and Foley, J.D. (1993). Supporting adaptive interfaces in a knowledge-based user interface
environment. Intelli gent User Interfaces ‘93, 107-113.

Sulli van, J.S., and Tyler, S.W. (1991). Intelli gent User Interfaces, J.S. Sulli van and S.W. Tyler (eds.), New
York: ACM Press.

Svendsen, G.B. (1991). The influence of interface style on problem solving. International Journal of Man-
Machine Studies, 35, 379-397.

Thomas, C.G. and Krogsoeter, M. (1993). An adaptive environment for the user interface of Excel. Intelli gent
User Interfaces ‘93, 123-130.

Trudel, C.I. and Payne, S.J. (1995). Reflection and goal management in exploratory learning. International
Journal of Human-Computer Studies, 42, 307-339.

Tyler, S.W., and Treu, S. (1989). An interface architecture to provide adaptive task-specific context for the
user. International Journal of Man-Machine Studies, 30, 303-327.

Tyler, S.W., Schlossberg, J.L, Gargan Jr., R.A., Cook, L.K., and Sulli van, J.W. (1991). An intelli gent
interface architecture for adaptive interaction. in Intelli gent User Interfaces, J.S. Sulli van and S.W. Tyler
(eds.), 85-109.

UIMS Tool Developers Workshop (1992). A metamodel for the runtime architecture of an interactive system,
SIGCHI Bulletin, 24(1), 32-37.

van Oostendorp, H., and Walbeehm, B. (1995). Towards modelli ng exploratory learning in the context of
direct manipulation interfaces. Interacting with Computers, 7(1), 3-24.

Vaubel, K.P., and Gettys, C.F. (1990). Inferring user expertise for adaptive interfaces. Human Computer
Interaction, 5, 95-117.

Wahlster, W., and Kobsa, A. (1989). User Models in Dialog Systems. in User Models in Dialog Systems, A.
Kobsa and W. Wahlster (eds.), Berlin, Heidelberg: Springer-Verlag, 4-34.

Wright, P. (1983). Manual dexterity: A user-oriented approach to creating computer documentation.
Proceedings of CHI ’ 83, 11-18.

Woolf, B.P. (1996). Intelli gent multimedia tutoring systems. Communcations of the ACM, 39(4), 30-31.

