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Abstract. Software users rely on software tools such as browser tab controls and spell
checkers to work effectively and efficiently, but it is difficult for users to be aware of all
the tools that might be useful to them. While there are several potential technical solutions to
this difficulty, we know little about social solutions, such as one user telling a peer about a
tool. To explore these social solutions, we conducted two studies, an interview study and a
diary study. The interview study describes a series of interviews with 18 programmers in
industry to explore how tool discovery takes place. To broaden our findings to a wider group
of software users, we then conducted a diary study of 76 software users in their workplaces.
One finding was that social learning of software tools, while sometimes effective, is infre-
quent; software users appear to discover tools from peers only once every few months. We
describe several implications of our findings, such as that discovery from peers can be
enhanced by improving software users’ ability to communicate openly and concisely about
tools.
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1. Introduction

Software tools such as the functionality to correct grammar in Microsoft Word
(2012) or to recover recently closed tabs in Mozilla Firefox (2012), allow users to
perform their tasks more efficiently and do things they were unable to do previously.
We define a ‘tool’ broadly as any software that helps a user accomplish a task. This
includes standalone programs like development environments and desktop
publishing software, but also includes features or commands in those
environments, like source code formatters and spell checkers.

Users have difficulty discovering tools that might be useful to them. When we say
that a user discovers a tool, we mean that she becomes aware of that tool. For
example, when Grossman and colleagues (2009) conducted a study of 10 users of a
computer-aided drafting application, they found that a “typical problem was that
users were not aware of a specific tool or operation which was available for use”. As
another example, Campbell and Miller (2008) have noted that awareness is a
problem in integrated development environments that are used by programmers.
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Arguably, in any sophisticated software, many users will remain unaware of the full
range of tools available.

The focus of this paper is on social solutions to the problem of lack of awareness,
namely where a user learns about a tool from another user. There has been relatively
little research into such solutions. In contrast, there has been considerable research
into technical solutions. Some applications attempt to solve this problem with tip-of-
the-day messages or role-based customizations of the user interface (Findlater et al.
2008). Researchers have proposed other technical solutions as well, such as recom-
mender systems that suggest tools that you are not currently using (Linton et al. 2000;
Maltzahn 1995; Matejka et al. 2009). These systems attempt to assist or replicate
users helping other users, such as ToolBox (Maltzahn 1995), which helps Unix users
find new commands based on the commands that their coworkers are using. As
Fischer and colleagues (1984, p. 115) point out, these technical solutions “should
guide and advise an user [sic] similar to a knowledgeable colleague or assistant”, so
understanding how such knowledge is transferred socially should help inform the
design of such technical solutions.

To illustrate what we mean by social solutions to the awareness problem, let us
give an example drawn from one of the studies that we describe in this paper. FEZ is
a programmer who often works with another programmer named HAL. While using
a remote screen-sharing session together, FEZ noticed that HAL did something to
make some text move around in their shared vim editor. Figure 1 shows an exchange
that followed in an instant-messaging session. In this session, FEZ gained awareness
of a tool that he later found very useful. We call this mode of discovery peer
interaction, where users discover tools from their peers during normal work
activities.

In this paper, we investigate the intertwined social and technical contexts that
allowed FEZ to discover a useful tool from a peer, yet sometimes make it difficult for
other software users to discover other useful tools. In our first study, we explore these
contexts by focusing on programmers, both because we are conversant with the tools
that programmers use and because the range of tools available to programmers is so

(02:02:21 PM) FEZ: Hold on.

(02:02:23 PM) FEZ: What did you just do?

(02:02:39 PM) HAL: Replace the first three arguments with a combined one.

(02:02:39 PM) FEZ: How’d you do that delete?

(02:02:45 PM) HAL: Oh. ’d%’

(02:02:59 PM) FEZ: But then you deleted the -> too.

(02:03:19 PM) HAL: Yeah, it scans forward for the next open thingy, then to the matching close
thingy.

Figure 1. During a remote screen sharing session, a snippet of an instant-messaging log shows
where one user learns about a software tool from another user.
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wide. In our second study, we extend our participant group to software users in
general to compare and contrast our results from the first study. The technical
contexts we explore in this paper are complex software environments, such as
programming editors and desktop web browsers. The social contexts we explore
are broad, representingmany different workplace environments where software users
collaborate to discover new tools. Our long-term research goal is to encourage all
kinds of software users to discover useful tools more successfully, more frequently.

This paper is an extension of a conference paper presented at CSCW 2011
(Murphy-Hill and Murphy 2011), where we presented the first study. In that paper,
we made three primary contributions:
& an enumeration of the modes in which programmers discover new tools;
& a characterization of peer interaction, a mode of discovery where program-

mers learn about the existence of new tools from peers; and
& evidence that peer interaction may be the most effective way for programmers

to learn new tools, yet it appears to occur infrequently.

In this paper, we additionally describe a diary study that provides a broader
account of tool discovery, adding two additional contributions:
& a comparison between tool discovery in software development and tool

discovery for other software users engaged in information work other than
software development; and

& a more accurate quantification over a wider domain of tool use of how often
various modes of tool discovery, including peer interaction, occur in practice.

2. Related Work

We base our work on several existing theories of adoption and learning, described in
several areas of related work.

2.1. Tool Discoverability

Two existing studies have looked at tool discoverability directly. First, in prior work
we interviewed software developers to understand why they adopt security tools
(Xiao et al. 2014). Although that study is similar to the first study we report in this
paper, the present paper seeks to understand tool adoption in a wider context: beyond
security tools and beyond software developers. Second, the diary study that we
present in this paper is similar to a study performed by Rieman (1996). Rieman asked
14 computer users to keep a diary of daily activities and specific learning events. The
main difference between Rieman’s diary study and our own is that we seek to
characterize how users discover tools that they were not intending to learn (we call
this serendipitous discovery), whereas Rieman largely reported on how users pur-
posefully sought out help on how to complete a task with tools (we call this
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purposeful discovery). Of the 60 tool discovery events recorded by Rieman, only 7
were serendipitous; in contrast, in our analysis of our diary study we describe 45
reports of exclusively serendipitous tool discoveries.

2.2. Diffusion of Innovations

Diffusion of Innovations is a theory that attempts to explain “the process by which an
innovation is communicated through certain channels over time among the members
of a social system” (Rogers 2003). Typical studies of Diffusion of Innovations
include research about internet use, hybrid corn in the US, and water sanitation in
developing countries. Similar models have been developed for more specific con-
texts, including the Technology Acceptance Model (Davis 1989; Venkatesh and
Davis 2000), Perceived Characteristics of Innovating (Moore and Benbasat 1991),
Theory of Planned Behavior (Ajzen 1991), and Model of Personal Computers
Utilization (Thompson et al. 1991). Both studies presented in this paper can be
considered Diffusion of Innovation studies that investigate tool discovery.

Several studies have investigated Diffusion of Innovations in other software
engineering contexts. For example, Fichman and Kemerer (1999) describe how
programming languages, relational databases, and Computer-Aided Software/
Systems Engineering (CASE) tools are acquired and deployed in organizations.
Similarly, Iivari (1996) described a study that suggests that the reason that companies
do not use CASE tools is because of a lack of management support, a lack of
perceived advantage, and a lack of freedom of choice. Such research addresses
critical issues, but it also tends to focus on tools that require a significant investment
of time ormoney, and thus warrant careful organizational consideration of whether or
not to adopt. In contrast, our research seeks to investigate a broad spectrum of tools,
all the way down to simple tools such as source code formatters, which likely require
significantly less consideration from individual programmers than higher-level tools.
Thus, while existing research has helped to determine how and why development
environments have been adopted by organizations, our research additionally helps to
explain how and why software users discover tools within those environments.

2.3. Social Learning

Tool discovery is closely related to learning, in that discovery can be thought of as
part of certain learning theories.

One related theory is Lave and Wenger’s (1991) situated learning, where the
learning occurs in the same place that the learning is used, a more general form of
peer interaction. For instance, apprenticeships are a kind of situated learning. Where-
as Lave and Wenger have largely studied a fixed teacher-learner relationship, our
research on peer interaction is on learning in peer-peer relations. Despite a focus on
teacher-learner relationships, Lave and Wenger imply that there is significant poten-
tial in peer-peer learning: “There is anecdotal evidence…that where circulation of

392 Emerson Murphy-Hill et al.



knowledge among peers and near-peers is possible, it spreads exceedingly rapidly
and effectively.” Our studies confirm this implication.

Another type of learning is Marsick and Watkin’s (2001) informal and
incidental learning, where learning happens as a by-product of other activi-
ties. Marsick and Watkins note that with this type, “control of learning rests
primarily in the hands of the learner.” In contrast, in peer interaction,
learning is controlled by two people. We extend research on informal and
incidental learning into the domain of software.

The zone of proximal development (Vygotsky 1978), the distance between what a
learner can do on her own and what she can do with help frommore capable peers, is
also related in that learning about tools during peer interaction is within the zone of
proximal development. While the zone of proximal development has applied to help
people learn while using software (Borthick et al. 2003; Crook 1991; Luckin 2001),
we do not believe it has been applied to understanding how people learn software
itself.

Yet another related concept is over-the-shoulder learning, where colleagues help
each other informally to use a computer application (Twidale 2005); over-the-
shoulder learning is closely related to peer interaction in that they both occur among
peers and both in a technology setting. The difference is that work on over-the-
shoulder learning, as defined by Twidale (2005), is focused on situations where the
learner purposefully asks for help, not in situations when the learner discovers a new
tool serendipitously. In peer interaction, the learner does not initially know that she
might find a tool useful.

2.4. Learning During Programming

Some existing work has explored software tool learning specifically in the domain of
programming, such as Cockburn and Williams’ (2000) description of learning of
tools from peers during pair programming. Specifically, they describe peer interac-
tion happening during pair programming, when two programmers work on the same
programming task at the same computer. In such situations, the “driver” is at the
keyboard, and the “navigator” is sitting beside the driver, observing and making
suggestions. We hypothesize that a programmer may discover a new tool in either
role:
– The driver may discover a new tool when the navigator says something like,

“you could really use tool X instead.” We call this peer recommendation.
– The navigator may discover a new tool when observing the driver using the

tool, saying something like, “how did you do that?” We call this peer
observation.

Note that, in both cases, the learner did not expect beforehand to learn something
new. Thus, in this paper, we focus on unexpected learning events, where a learner
does not realize she needs a tool before she learns about it.
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In pair programming, Cockburn and Williams suggest that:

Knowledge is constantly being passed between partners, from tool usage tips (even
the mouse), to programming language rules, design and programming idioms, and
overall design skill. Learning happens in a very tight apprenticeship mode.

The partners take turns being the teacher and the taught, frommoment to moment.

Similar statements, describing peer interaction (as well as other kinds of learning),
which suggest that knowledge about tools is passed between programmers, is oft
repeated in the literature, but little evidence previously existed to support it. Both
Cockburn and Williams (2000) and Müller and Tichy (2001) provide evidence that
student programmers learn a variety of technologies during pair programming, but as
M¨uller and Tichy question, “are these conclusions generalizable to professional
software developers?”

Indeed, these studies prompt many questions about peer interaction. Does this kind
of learning happen in the workplace, as well as in the university? Does it only happen
during formal pair programming sessions, or in other situations as well?What kinds of
tools do people learn in this way? How effective is learning in this way versus other
kinds of learning?Whatmakes this kind of learning effective or ineffective? How often
does it happen? Does it happen to non-programmers as well? In this paper, we extend
Cockburn and Williams’ and M¨uller and Tichy’s findings by providing a more
detailed analysis of the conditions, process, and results of this kind of learning for
software users. We begin with an interview study of programmers, then attempt to
generalize our findings through a diary study of a variety of software users.

3. Two Studies of Peer Interaction

Programmers work with environments that contain thousands of tools (Murphy-Hill
et al. 2012), and the number of available tools is frequently expanding because new
“plugins” are often added to such environments; as a result, we began our research of
peer interaction in the domain of programming. Using Cockburn and Williams’
research as a starting point, we conducted an interview study (Section 3.1) to
determine how peer interaction works and how it relates to other modes of
discovery, such as Twitter (2012) and exploring an application’s user interface. After
the interview study, we conducted a diary study (Section 3.2) to determine how these
results generalize to a wider variety of information workers.

3.1. Study 1: Interviews

To better understand peer interaction, we wanted to collect a substantial number of
descriptions of peer interaction, so we conducted retrospective interviews for several
reasons. First, we suspected that peer interaction occurs so infrequently that direct
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observation is impractical; this suspicion was confirmed. Second, interviews better
enable us to speak with a variety of programmers at different companies and with
varying experience. Third, interviews allow participants to reflect on motivations and
long-term effects of peer interaction, not just the events that are visible from an
observing researcher’s perspective. Our interviews are an instance of the Critical
Incident Technique, where researchers gather observations about individuals’ con-
tributions to an activity (Flanagan 1954). Readers of our prior CSCW paper (Mur-
phy-Hill and Murphy 2011) may safely skip this section because it does not differ
significantly from the study we presented there.

3.1.1. Methodology
We conducted one-on-one, semi-structured telephone or instant-messaging inter-
views lasting about an hour each. The interview script can be found in the Appendix
(Murphy-Hill et al. 2015). The interview began with questions to ascertain the
participant’s programming experience. Next, we defined tools broadly as “something
that helps you perform a task,” and referred the participant to a document that listed
several pictures of different kinds of programming tools, which we chose from the
Eclipse (2012) and Visual Studio (2012) development environments, as well as the
extensible editors Vim (2012) and Emacs (2012). Although retrospective interviews
are commonly used in this type of research, the results can be influenced by people’s
memory of discovery and adoption. Therefore, we used the tool list to help stimulate
the participant’s memories of tools that she might have discovered, using them as
recall cues for known-item memory retrieval (Allen 1989). We asked the participant
to pick three tools from the list (or tools similar to tools on the list) and to describe
how she discovered and learned about them. The purpose was to attempt to ascertain
the most frequently occurring modes of discovery, on the assumption that the most
frequently mentioned modes are the most frequently occurring modes.

We then asked each participant to choose, in her experience, the twomost effective
modes for discovering new tools, from a list of seven different purposeful discovery
modes, as shown in Table 1. We also encouraged the participant to think of other
modes. We then asked the participant which, in her experience, are the two least

Table 1. Seven discovery modes, as read to participants.

Peer Observation where you observe someone else use a tool while programming that you didn’t
know about
Peer Recommendation where someone observes you programming and suggests the new tool
Tool Encounter where you just happen to find the tool by exploring the user interface of your
development environment
Tutorial where you are reading or watching a tutorial that mentions a new tool
Written Description where you notice that a tool is mentioned on a website or publication
Twitter or RSS Feed where you learn about tool from someone or some site that you are following
Discussion Thread where you learn about a new tool after reading it on list of comments, forum, or
email discussion
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effective modes. We defined effectiveness as how impactful each mode is on “your
likeliness to use a tool again.”We defined effectiveness in this way because we
assumed that, if a user is likely to use a tool in the future, the user believes that the
tool will be useful to her.

At this point, we revealed to participants that we were specifically interested in peer
observation and peer recommendation, and asked for the participant to describe her
experiences learning new tools in those modes. We asked the participant to relate
experiences when she was the learner or teacher during peer observation and peer
recommendation. For each experience, we asked a semi-structured set of questions to
elicit detailed responses, including the context in which the learning happened, the
nature of the relationship with the peer, andwhat was said or done to facilitate learning.

We then asked the participant directed questions about her experience with peer
interaction, including how often she learns or teaches, and how it has changed over
her career. Finally, we asked the participant some opinion questions, then thanked the
participant and concluded the interview.

To analyze the data that we collected, the first author recorded the interviews, then
transcribed and summarized them. From the summaries, he coded the discovery
instances by mode, and also by any other categories that emerged, such as by the
location in which the discovery took place. Similar to open coding (Glaser and Strauss
2009), he then re-read the summaries and codings several times, iteratively refining the
codes during reviewing. He also categorized the contents of the summaries by question
and identified patterns in responses and relationships between responses.

3.1.2. Participants
We recruited participants from two main sources. First, we emailed invitations to 62
participants who volunteered to be contacted at Open Source Bridge 2009, a
conference for “developers working with open source technologies and for people
interested in learning the open source way” (http://opensourcebridge.org). Second,
we sent emails to personal contacts at seven large companies, asking them to pass on
our invitation to potentially interested colleagues. Two people volunteered through
these personal contacts and the rest through the conference.

Overall, 18 people responded and completed the interview, comparable to the size
of similar studies such as those by Twidale (2005) (5 participants) and Rieman
(1996) (14 participants). Participants had between 3 and 32 years of professional
programming experience (median=9); not all were employed as programmers or
software developers, although programming played a role in their job, or most
recently held job. Participants were between the ages of 21 and 51 (median=30.5).
Participants reported using a total of 18 different editors or development environ-
ments within the last year; the common ones (ordered from most to least frequently
mentioned) being vi/vim (2012), emacs (2012), Visual Studio (2012), TextMate
(2012), Eclipse (2012), and Netbeans (2012). Participants reported using a total of
24 different languages within the last year; the common ones being python (2012),
Flanagan (2006), PHP (2012), Ruby (2012), Java (2012), C (2012), and perl (2012).
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Participants reported a variety of working experience. We will refer to participants
in our study by pseudonyms, listed in the left-most column of Table 2. In the next
column to the right, we list how many years of experience each participant reported.

Overall, participants had between 3 and 32 years of experience, with a mean of
12 years of experience. In the next column, we list whether or not each participant
works on a team with other programmers in their current or most recent job. Overall,
12 of 18 of participants worked on teams. The next two columns show which
participants regularly read technical blogs — websites where people post regular
writings on technical topics — and which participants are users of Twitter. Overall,
13 of 18 participants used blogs and 14 of 18 used Twitter. We were interested in
blogs and Twitter because we suspected that they played a role in tool discovery. We
will explain the right two columns of Table 2 in the next section.

3.1.3. Results
Overall, participants reported 41 different instances of peer interaction, of which 27
were peer observation and 14were peer recommendation. In this section, we describe
the steps involved in peer observation and peer recommendation, how frequently

Table 2. Participants’ pseudonyms are displayed in the leftmost column; pseudonyms assigned
alphabetically based on participants’ experience level (in years).

Pseudonym Experience Team Blogs Twitter Learn Teach

ART 3 ✓ ✓ ✓ ◖ +
BEN 4 ✓ ✓ ● −
CAL 5 ✓ ○ +
DEL 6 ✓ ✓ ✓ ● −
DON 6 ✓ ✓ ● +
ELI 7 ✓ ✓ ◖ +
ENU 7 ✓ ✓ ✓ ○ ≈
FEZ 8 ✓ ● +
GIL 9 ✓ ✓ ◖ +
GUS 9 ✓ ✓ ✓ ● +
HAL 10 ✓ ✓ ◖ +
HAO 10 ✓ ● −
KAI 13 ✓ ✓ ✓ ○ +
KEN 13 ✓ ✓ ◖ ≈
ROB 19 ✓ ✓ ✓ ○ −
VAL 25 ✓ ○ ≈
YIT 31 ✓ ✓ ○ +
ZAC 32 ✓ ✓ ○ −

Next, potentially programming-relevant social activities are listed. Finally, likeliness to learn or teach
tools via peer interaction is listed. ● means that a participant learns via peer interaction between once
every week and twice per month; a ◖ means that a participant learns every 1 or 2 months; and a ○
means that the programmer learns between once every 3 months and once per year. Programmers
estimated that they taught less often (−), about equally often (≈), or more often (+) than they learned
via peer interaction.
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peer interaction occurs, how effective peer interaction is compared to other modes of
discovery, the barriers to successful peer interaction, and how tool knowledge flows
between peers. At the end of each subsection, we briefly summarize our findings.

The Steps of Peer Observation. Based on our interviews, the process of peer
observation occurs in several steps: two programmers interact in some situation,
the learner observes the teacher using a tool that she does not know, the learner
interrupts the teacher, the learner asks a question about the tool, and then the teacher
responds to the learner. In what follows, we describe what programmers told us
happens during each of these stages.
– Observation Situation. Peer observation occurred with participants in four kinds

of situations (Table 3): traditional pair programming, remote pair programming,
happenstance interaction, and change notification.

– Tools Observed. Participants described teaching or learning a variety of
different tools, including tools for debugging (such as Firebug and Web
Developer), tools to help change code (such as sed/awk and refactoring),
operating system tools (such as quicksilver), tools for collaboration (such as
screen sharing), and shortcuts (such as vim macros).

– Interruption Timing. Participants reported that the learner almost always
interrupted work to question the teacher, typically immediately after the tool is
used. FEZ also pointed out an instance where the learner asked the teacher even
before she was finished using the tool and ZAC described an instance after
repeated uses of the tool in the same programming session. In contrast, BEN noted
that, over the course of learning vim tools from peers, for the most part he did not
ask questions while learning new tools within vim, presumably because the
commands that his teacher was executingwere largely visible and self-explanatory.

– Interruption Wording. Typically the interruption is a comment along the lines of
“what is that?” (ELI, HAO, ZAC), “how did you do that?” (FEZ, GUS, HAO,
ROB), or an exclamation of amazement or surprise (BEN). Such reactions to
initial tool use were not always polite, such as in the case of KEN, who recalled
a peer remark in response to his tool use, “what the hell is all this crap?”

– Response to Interruption. The teachers’ response to the interruption from the
learner varied, though participants reported that typically the teacher gave an
explanation of what the tool did and a short demonstration (less than a couple
of minutes). Several participants also reported that they followed up with this
discovery episode by trying the tool out when the teacher and learner separated.
Other participants reported being given URLs by the teacher for later reference.

In sum, participants reported that peer observation occurs in pair programming
situations, consistent with other researchers’ observations (Cockburn and Williams
2000), but also in other situations where two programmers are not working on the
same task. Rather than passive discovery, participants reported that the observer
interrupted the other programmer verbally (or by instant-messaging, if the interaction
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was remote), which was followed by an immediate discussion and demonstration, or
post-discovery exploration and reading.
– The Steps of Peer Recommendation. Based on our interviews, the process of

peer recommendation has steps similar to peer observation: programmers
interact in some situation, the teacher observes the learner do something for
which the teacher knows an alternative tool exists, the teacher interrupts the
learner, and then the teacher delivers the recommendation.

– Recommendation Situation. Participants reported that peer recommendation
happened in five kinds of situations (Table 3): traditional pair programming,
happenstance interaction, help giving, remote help giving, and email.

– Interruption Timing and Wording. As with peer observation, most participants
reported that the person making the recommendation made it immediately. The
recommendation was sometimes direct, as in “you should use X” (BEN, CAL,
ENU, KEN), and sometimes more subtle, as in “you might try X” (HAL,
GUS). However, not all participants reported this immediate interruption. For
instance, HAL described watching a colleague repeatedly open classes
inefficiently, and recommended the Open Type dialog after some time:

I’ll generally leave them to their way of working for a while before observing a
pattern that I think I can help with…they may feel comfortable with what they’re doing,
and comfort is important…I try to introduce things slowly, especially when I’m not sure
that the person I’mworking with sees it as a problem or thinks that they need help. If it
doesn’t look like they’re suffering toomuch, it may be better to leave them alone. (HAL)
– Tools Recommended. Participants mentioned a variety of tools that they had

learned about via peer recommendation, including program navigation tools
(such as Open Type in Eclipse and emacs tags), debugging tools (such as
Firebug), and data transfer tools (such as Postgres and FTP).

– Recommendation Delivery. As with peer observation, most participants reported
that the recommender responded by demonstrating the tool in a task-relevant
manner. For example, when ART recommended Firebug, he demonstrated how
it was used on the same webpage with which the learner was having trouble.
The learner also sometimes followed up the recommendation by visiting
websites or tutorials, and trying out the tool on their own.

In sum, participants reported that peer recommendation happened in similar
circumstances to peer observation, with similar follow-up. However, in contrast to
peer observation, where the interruption was often made with little hesitation, during
peer recommendation participants reported sometimes exercising more sensitivity to
the learner. These results may suggest that programmers are more comfortable
professing ignorance than expertise.

Frequency of Peer Interaction. We estimated how often peer interaction happens in
two different ways. The first way was to ask programmers to tell us about situations
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in which they learned about a new tool, before we told them we were specifically
interested in peer recommendation and peer observation. We then categorized each
situation according to Table 1 and compared how often peer interaction was men-
tioned versus other discovery modes. This provided an estimate of relative frequency.
The second way was to ask programmers how many times per year, month, or day
they learned about a new tool. This provided an estimate of absolute frequency. We
also asked programmers to estimate how their frequency of learning has changed
over time.

Peer interaction did not appear to occur particularly frequently, compared to how
often other discovery modes that were mentioned. In Figure 2, a name in a box
represents one participant’s description of an instance of discovery. The number of
boxes in each mode is the total number of instances of discovery that participants
mentioned. For example, participants mentioned a total of three instances of written
description: one from CAL and two from DON. Peer observation was mentioned
seven times by five people; peer recommendation was mentioned only once.

Likewise, participants estimated that they learned and taught via peer interaction
fairly infrequently. The right two columns of Table 2 indicate how often participants
reported learning or teaching a tool via peer interaction.

While we expected that participants in a team would report more instances of
discovery via peer interaction than participants not in a team, that hypothesis appears
not to be supported by Table 2. Something that the table suggests that we did not
expect was that the most experienced participants (ROB, VAL, YIT, ZAC) learned
via peer interaction relatively infrequently. This infrequency might suggest that
experienced participants have more to teach than to discover. However, three out
of four of these more experienced participants taught as often or even less often than
they learned this way. This suggests that more experienced programmers may be
simply less involved in the practice of peer interaction.

When we asked participants to describe how their learning via peer interaction has
changed over their careers, participants generally believed that peer interaction
tended to be higher in their initial years as programmers, and has since decreased.

Peer Observation BEN BEN FEZ HAO HAO YIT ZAC

Peer Recommendation KEN

Tool Encounter ENU ENU GIL GIL GUS GUS HAL HAL ROB ZAC

Tutorial BEN DON KAI KAI ROB VAL VAL ZAC

Written Description CAL DON DON

Twitter or RSS Feed ART FEZ KAI

Discussion Thread DEL DON DON ROB

Figure 2. Histogram of the most frequent discovery modes.
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They attributed this decrease to two sources. One source was an environment that
was initially suitable to peer interaction (for example, school projects and intern-
ships), but then later in their career being in environments that were less suitable (for
example, distributed development teams). The other source that participants men-
tioned was becoming more accustomed to their tools and having fewer new features
to discover within those tools. DON, however, reported the opposite trend; he has
become more likely to learn via peer interaction as his peer network has grown.

In sum, compared to other discoverymodes, peer observation and, especially, peer
recommendation, were less frequently reported modes of discovery, compared to the
most frequently mentioned mode. This finding is consistent with Rieman’s field
study of learning and discovery, a study which provided evidence that tool encoun-
ters are the most frequent way of discovering tools in a variety of software applica-
tions (Rieman 1996).

Effectiveness of Discovery Modes. We asked participants to rate how effective each
mode is in terms of their likeliness to use a tool again in the future. Specifically, we
asked participants to name their two most effective modes, though we did not force
participants to choose exactly two. Figure 3 displays the results.

Peer observation and peer recommendation were rated as the most effective
modes. These ratings are notable because the question was asked before we revealed
to participants that we were particularly interested in these two modes.
– Effectiveness of Peer Interaction. Participants reported that peer observation and

peer recommendation were effective for several reasons:
& the learner has respect and trust in the teacher, so if the teacher had a good

experience with the tool, then the learner should take it seriously (BEN, CAL,
DEL, GUS);

& the learner can reflect on the teacher’s use and apply it to her own
programming (DON, HAL, KEN, YIT);

& programmers enjoy demonstrating their skills (ELI, HAO, ZAC); and
& the learner and the teacher share a common background so the tool is more

likely to be relevant (ELI, HAL).

Peer Observation BEN CAL DON DEL ELI ENU FEZ HAL HAO KEN ROB VAL

Peer Recommendation BEN CAL FEZ GIL GUS KEN HAL VAL YIT

Tool Encounter GIL HAL ZAC

Tutorial ART ENU KAI

Written Description HAO

Twitter or RSS Feed ART DEL DON ROB ZAC

Discussion Thread ELI HAL YIT

Figure 3. Histogram of the most effective discovery modes.
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Also, participants found peer observation effective because:
& the learner can see the value of a tool while it is in use on a real problem

(ENU, KEN, ROB, YIT);
& the teacher imparts a minimal amount of tool information, allowing the learner

to feel like she discovered it herself and look up more material later (DEL,
ELI); and

& the learner can associate the tool with its context of use, which makes it
memorable (FEZ).

– Effectiveness of Twitter/RSS. Participants reported that Twitter/RSS are effective
mechanisms because they trust or value the opinion of the people that they
follow (ART, ROB) and they can gather the opinions of many people all at
once (DEL, DON). However, some participants reported finding Twitter/RSS
ineffective, because the density of recommendations is too low (ART, ELI,
HAL, HAO), people tend to recommend the most popular tools but not the
most useful ones (ELI), the sources have low credibility (CAL), some messages
feel like advertising (CAL), and most messages are not relevant to
programming (KEN). Moreover, HAL felt that Twitter/RSS and discussion
threads were ineffective for the same reasons: the author does not have a similar
background to the recipient.

– Effectiveness of Discussion Threads. Participants reported that discussion
threads are effective because participants reported having trust in the sources
(YIT) and because discussion threads tend to have a high level of detail (KAI).
Others reported them being ineffective because the people who post are outside
of their trust network (ROB, GUS, CAL).

– Effectiveness of Tutorials. Participants said that tutorials are effective because
they fit with their personal learning style (ART) and because tutorials,
specifically in the form of online screencasts, typically have a real-world
example and are “highly rewindable” (KAI). Other participants reported that
tutorials are ineffective because the tools used in tutorials are esoteric, not
useful, or not widely available (FEZ), and because tutorials require a significant
investment of time (YIT).

– Effectiveness of Tool Encounters. Although some participants reported that tool
encounters (finding a tool by exploring the user interface) were effective, none
gave a rationale. Some participants reported that tool encounters were
ineffective because the environment that they use does not lend itself to
exploration (BEN, DEL, HAO), a tool encounter takes too long (HAO), tools
found in this manner are easily forgotten (DON), and because exploration tends
to lessen as the programmer becomes more familiar with their environment
(ENU).

– Effectiveness of Written Descriptions. Finally, HAO found written descriptions
to be effective because that is how he currently learns. Others found written
descriptions ineffective because of lack of trust or because there is a suspicion
of marketing (GIL, GUS, KAI, ROB).
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In sum, participants rated peer observation and peer recommendation as the most
effective modes for discovering new tools. However, these modes also occur less
frequently than other discovery modes (see Figure 2). This confirms McGrenere’s
conjecture, pointing out that while exploratory learning may be the most frequent
kind of tool discovery, “it may not necessarily be the most efficient or effective
method of learning how to use a system” (McGrenere 2002). Indeed, these results
confirm that exploratory learning is not the most effective. Another important finding
is that trust was the most commonly cited determinant to the effectiveness of
discovery, whichever the mode.

Barriers to Peer Interaction. Participants rated peer interaction as effective, but they
also listed situations when it had not been effective. First, physical isolation makes peer
interaction difficult because it is hard to observe other programmers remotely, although
other programmers reported instances of effective remote observation. Second, when
coworkers are working in entirely different programming environments, such as one
using vim and another using Eclipse, then there are fewer tools that they can share.
Third, once programmers have worked together for a certain amount of time, they get
acclimated to each others’ toolsets, so the possibility of discovery is reduced. Fourth,
company policies can inhibit social learning; participants reported companies dictating
which tools to use, even when they were not the best tool for the job. Fifth, when a
project is under time pressures, such as a release deadline, programmers may not be
willing to set aside time to discuss a tool during a development task. Sixth, program-
mers’ themselves are sometimes unwilling to share tool knowledge.

We were especially interested in this last barrier to peer interaction; when are
people unwilling to teach or learn? It is worth mentioning that, for the most part, the
programmers that we interviewed appeared to be enthusiastic about learning and
teaching tools with peers, a self-selection bias. However, participants mentioned
several cases where a programmer was unwilling to share or receive tool knowledge.
First, ELI and HAL mentioned that people are sometimes unwilling to learn about a
new tool because they are not sufficiently mature to appreciate the tool’s usefulness.
Second, ROB said that some programmers simply do not have an interest in learning
new tools. Third, KAI and YIT mentioned that programmers sometimes feel that
they do not need to discover a new tool because existing tools will do the job. Playing
the role of such a programmer, YIT said:

“Why should I bother? I’ve got ido-mode, I’ve got ack, I’ve got this, that, and the
other. . . the feeling is that, so far, I’ve made it without that [new] tool.”Developer
inertia, I guess you could call it.

Fourth, FEZ mentioned that, in any given programming session, the
programmers involved need to feel that they have made progress to feel
positive, and when they end up spending all of their time learning about new
tools, they have the feeling that it was not time well spent. Finally, DON
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described not learning new tools while programming because he was un-
comfortable billing clients for learning about tools.

In sum, participants reported the barriers to effective peer interaction are isolation,
toolset differences, toolset acclimation, company policy, time pressures, peer matu-
rity, lack of interest, “developer inertia,” the necessity of sensing progress, and client
pressures. It is notable that these barriers occur because of a wide variety of internal
and external sources: the client, the company, the management, the programmer, the
development environment, and the tool.

Flow of Peer Interaction. Although we did not initially plan to ask participants
explicitly, we became interested in whether peer interaction occurs between peers or
between a supervisor and a subordinate. If incidental tool learning is largely a kind of
apprenticeship learning (Lave and Wenger 1991), then we should expect tool
knowledge to flow largely from senior to junior programmers. While ART, FEZ,
and GIL each described an instance of recommendations coming from supervisors,
our results suggest that this is not always the case.

First, the instances of peer interaction were more often between peers than
between programmers at different experience levels. As HAL explained, “differences
[in skill sets] make the collaboration interesting, but the similarities make the
collaboration easier.”

Second, two participants took the opposite view, that during peer interac-
tion, it is more often the junior programmers who are the teachers. FEZ and
KEN explained this position; junior members have more free time to explore
new tools, making them more likely to bring new tools into the organization.
KEN said:

The junior members tend to be more voracious in their desire to learn new APIs
and tools, and stay plugged in to what’s going on with languages and stuff. My
time is spent digging in to more bugs and more things that I’m responsible for
delivering, I have less time to do independent research. . .No one is upset when a
junior member says they have a better way to do things.

FEZ confirmed this:

There’s a fair amount of bias towards me teaching [other programmers] some-
thing…I’m a student, an intern; I’m in the process of learning as much as I can
from asmany tools as I can…several developers I know, especially those that have
10, 20, 30, 40 years of experience, tend to say that they know the tools that they
use, and they do not necessarily have the time, or more commonly, the patience to
sit down and fiddle with a new tool.

These quotes provide evidence that learning about tools can flow from the bottom
upwards.
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In sum, although tool knowledge appeared to flow primarily between peers, it also
flows from supervisors to their subordinates and from subordinates to supervisors.
This finding may be a result of the relatively flat organization of many software
teams, where programmers feel comfortable asking about and recommending tools
to other programmers, regardless of seniority.

A Remote Pair Programming Vignette. During the study, we learned that FEZ and
HAL sometimes pair programmed together using a remote vim session. This offered a
unique look into how peer interaction happens, from the perspective of both peers.
Moreover, the two participants had saved full instant-messaging histories of their
remote pair sessions, andwere willing to share a few snippets of those histories with us.

Figure 1 displays one such occurrence. FEZ reported such occurrences were fairly
common, where he would see something happen on the screen, ask about it, and HAL
would reply. Interestingly, both peers gave examples of learning from one another,
confirming the bidirectionality of peer interaction. One curious aspect of Figure 1 is
that in order to learn the tool, FEZ needed to understand both the cause (pressing d%)
and the effect (replacing the first three arguments with a combined one).We discuss the
significance of understanding causes and effects in the Section 4.

3.1.4. Threats to Validity
While this study provided a unique look into how programmers discover new tools,
there are several threats to the validity of our study design.

Some participants noted that it was difficult to remember instances of peer
interaction. This difficulty of recall may have affected the fidelity of the results,
especially when we asked participants to estimate how often they learn via peer
interaction. We tried to address this threat by focusing on specific instances of
learning rather than generalizations.When we did ask participants a general question,
such as to estimate discovery modes’ effectiveness, we preceded the general question
with other questions that focused on specific instances.

To make conducting the study easier for the interviewer, we introduced the
different discovery modes in a fixed order for every participant, as shown in Figure 1.
This order may have biased participants’ effectiveness responses.

The study may suffer from sampling bias, because the programmers are not
representative of all programmers, for two main reasons. First, although we did not
ask participants about their cultural or geographic background, we suspect that
participants are largely Americans living in the western United States. Second,
because each study participant volunteered to spend an hour talking to a researcher
about discovery and learning, it may be that these programmers are more positive
about social learning than the average programmer. Future studies should be con-
ducted over a wider variety of programmers, both socially and culturally.

Finally, another threat to validity is whether participants’ understood what we
meant by “tools.”We attempted to mitigate this threat by providing both a definition
and examples. The tools mentioned by participants fell within our broad definition,
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though participants may still have been overly conservative in their interpretation of
the word.

3.2. Study 2: Diaries

In our second study, we had two primary goals: first, to obtain more recent accounts
of tool discovery than could be provided by interviewees during the first study, and
second, to examine how our results from programmers generalize to a broader
population of information workers. To meet these goals, we asked a variety of
software users to keep an electronic diary of when they discovered new tools at work.

This study augments the results of our first study in four ways. First, while our
interview study focuses on only programmers, this study additionally included other
types of information workers. Second, because our participants use types of software
beyond programming environments, the types of tools that they discover are broader.
Third, rather than depending on participants’ memories of discovery events, we
attempted to capture discoveries soon after they occurred. This complements the
methodology used in the interview study by reflecting users’ more concrete and
recent tool discovery experiences. Fourth, in this study we investigated the effect of
tool discovery modes on longer-term adoption as a way to assess the effectiveness of
different discovery modes.

3.2.1. Methodology
In this study, we recruited participants from academia and the larger community by
offering participants the chance to win a tablet computer. When participants
consented to participate, they submitted a short screening survey.

We conducted a diary study of what software users are learning about new software
tools at their work. Over a 13 week period, each week we randomly selected people
from our volunteer pool to participate. We chose 13 weeks as the length of the study
because it is the length of a typical co-op work term at the University of British
Columbia, so any co-op students that participated would likely be working during the
study. During the study, for 1 week each participant submitted a webbased report
whenever they discovered a new tool at their jobs. This report included questions
about how the participant discovered the tool.1 To answer this question, the participant
chose one of the discovery modes listed in Table 1, or optionally filled in an “Other”
mode. They also chose one of four intents, “I was in the process of purposefully
learning how to use the software”, “I had a problem, so I looked for a [tool] to solve
that problem,” “I discovered the feature by chance,” and “Other.” The first two options
indicate purposeful intent, while the third indicates serendipitous intent.

1 In the reports, we used a term “feature” rather than “tool” because we felt it was more understandable to
general software users. We will continue to use the word “tool” in this paper for consistency. Nonetheless, the
definition we gave participants in the diary study for “features” was the same one we gave interviewees for
“tools,” that is, “something that helps you perform a task.”
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The report included several other questions, including which software the tool was
discovered in and whether the participant took any steps to remember the tool. After
participants submitted reports, the first author of this paper wrote follow-up emails to
participants when more elaboration on a discovery was warranted.

At the end of the each participant’s week of participation, we asked the participant
to fill out a post-study questionnaire, which included information about perceptions
of effectiveness of discovery modes, demographics, and software experience. A
blank discovery report and post-study questionnaire can be found in the Appendix
(Murphy-Hill et al. 2015).

About 6 weeks after a participant submitted a tool discovery report, we sent a
follow-up questionnaire to determine whether the participant was still using the tool.

3.2.2. Data Cleaning
In manually reviewing discovery reports, we found that several reports were not
internally consistent. For example, one participant reported learning a tool while
browsing the internet forum, but classified it as “tool encounter.” However, the
correct classification for this mode of discovery was “discussion thread.” As another
example, one participant reported that the intent for discovering a tool in Excel was
“purposefully learning how to use the software,” yet should have instead classified
the intent as “I had a problem, so I looked for a [tool] to solve that problem” because
the participant searched Google to find a solution to a problem she was having.

To correct such inconsistencies, we recruited three raters to re-code each report’s
discovery mode and intent. To do so, each rater performed the reclassification by
manually reading each report and using a pre-defined classification rubric that
contained definitions for each discovery mode and intent. If two of the three raters
agreed on each re-classification, the new classification was considered correct. If
none of the raters agreed, the classification was treated as a missing value for the
remainder of the analysis.

To determine whether how internally consistent our new ratings were, we mea-
sured agreement between different raters using the Fleiss’ kappa (Fleiss et al. 1981)
value. The higher the kappa value, the more inter-rater reliability: Fleiss’ kappa
values between 0.61 and 0.80 are considered as substantial, and values between 0.81
and 0.99 are considered as almost perfect (Landis and Koch 1977). For discovery
mode, the kappa value was 0.86, while for intent, the kappa value was 0.79. These
kappa values indicate strong agreement between the three raters.

3.2.3. Participants
We postulated that peer interaction occurs not only between programmers, but for a
variety of technology workers as well. To examine this postulate, we recruited two
different groups of participants. The first group was students from a variety of majors
participating in summer-term work co-ops; we contacted these students through the
University of British Columbia’s co-op offices. We call this group “co-op students,”
as shown in the first major row in Table 4. The second group was recruited from the
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general public in British Columbia; we contacted these participants using an adver-
tisement posted in public libraries and on local websites. We call this group
“workers,” as shown in the second major row in Tables 4 and 5.

We required participants to meet the following three qualifications: the participant
anticipated working during the 13 week period; the participant anticipated spending
at least of 50% of their work time using computer software; and the participant
anticipated working a minimum of 35 hours per week. 51 co-op students consented
to participate and 25 workers consented, a total of 76 participants.

We classified participants into four different categories. Co-op students were
divided into computer science (n=16), electrical and computer engineering (n=
12), and other majors (n=23) such as biochemistry, cognitive systems, and statistics.

Table 4. Participant demographics.

Participants Specializations Variables Mean Min Max n*

Co-op students Computer Science
(n=16)

Age (years)
22.4

20.0 26.0 9

Job Length (months)
2.8

1.0 7.0 12

Experience (months)
11.8

0.0 32.0 12

Electrical and
Computer Engineering
(n=12)

Age (years)
20.3

19 22 6

Job Length (months)
2.2

0.8 4 6

Experience (months)
7.8

0 19 6

Other Majors (n=23) Age (years)
22.6

19 43 15

Job Length (months)
16.7

0.5 240 18

Experience (months)
25.9

0 264 18

Workers Software Developer (n=5) Age (years)
34.3

33 35 3

Job Length (months)
31.5

2 72 4

Experience (months)
126.0

96 180 4

Non-Software Developer
(n=20)

Age (years)
32.9

20 55 14

Job Length (months)
25.7

1 72 15

Experience (months)
122.7

0 396 15

n (2nd column) denotes the number of participants. The last column n* represents the number of
participants (out of n participants) who filled out the corresponding demographic variable.
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Workers were divided into software developers (n=4) and non-software developers
(n=20), such as designers, bookkeepers, librarians and medical office assistants.
When randomly choosing participants to participate each week, we took a stratified
sample from these categories so that, for example, at least one computer science
student participated each week.We used stratified sampling to prevent temporal bias,
so that, for example, we collected students’ discovery experiences from the begin-
ning, middle, and end of their co-ops.

Table 4 shows mean, minimum, and maximum values for each sub-group with
regard to age, job length, and experience. Job Length refers to the number of months
participants have been at their current jobs. Experience indicates the number of
months of work experience participants have. Note that some of participants did not
fill out all of demographic information; the last column n* represents the number of
participants who filled out data for each variable.

3.2.4. Data Characterization
In this study, 76 participants submitted a pre-study questionnaire. Of those,
50 submitted a post-study questionnaire and at least one tool discovery
report. 5 submitted a post-study questionnaire, but did not submit any
discovery reports. 4 submitted at least one discovery report, but did not
submit a post-study questionnaire. 17 submitted neither tool discovery re-
ports nor a post-study questionnaire. 156 tool discovery reports were sub-
mitted by 54 participants. Of the 156 reports submitted, participants also
filled out 84 follow-up questionnaires, indicating how often they were using
each tool, 6 weeks later. Of the 76 participants who filled out the pre-study
questionnaire, 51 were co-op students and 25 were workers.

To be consistent with the previous interview study, for the following analysis
(with one clearly marked exception; Table 6), we only included tool discovery
reports where the user reported that they discovered the tool serendipitously. This
excluded reports where the user was purposefully in the process of learning how to
use the software and when the user purposefully went looking for a tool to solve a
problem that they were having. Participants were not aware that we were exclusively
interested in serendipitous discovery. Of the 156 tool discovery reports submitted, 45
of them met this criterion.

Table 5. How often tools that were discovered using each discovery mode were used again 6 weeks
later.

Discovery Modes Frequently Occasionally Not at all

Peer Recommendation 0% (n=0) 80% (n=4) 20% (n=1)
Peer Observation 0% (n=0) 100% (n=1) 0% (n=0)
Written Description 0% (n=0) 50% (n=1) 50% (n=1)
Tool Encounter 54% (n=7) 31% (n=4) 15% (n=2)

n denotes the number of discoveries.
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3.2.5. Results
Frequency. To estimate how often peer interaction occurs, we measured how many
times participants’ reported discovering a tool via peer interaction. Figure 4 shows
the frequency of each discovery mode. For example, there were two reports of peer
observation: one (in blue ) from a computer science co-op student and the other one
(in pink ) from a non-software developer. Note that no “Tutorial” or “Discussion

Table 6. The amount of off-task time (OTT) for different modes and intents for discovery.

Discovery Modes Intent n OTT (sec)

Peer Observation Discovered the tool by chance 2 240
Had problem, looked for a tool to solve 0 .
In process of learning to use the software 0 .

Peer Rec. Discovered the tool by chance 8 97
Had problem, looked for a tool to solve 22 410
In process of learning to use the software 7 930

Tool Encounter Discovered the tool by chance 31 26
Had problem, looked for a tool to solve 21 245
In process of learning to use the software 5 533

Written Desc. Discovered the tool by chance 3 120
Had problem, looked for a tool to solve 40 753
In process of learning to use the software 4 680

Discussion Thread Discovered the tool by chance 0 .
Had problem, looked for a tool to solve 4 390
In process of learning to use the software 1 1200

Twitter/RSS Feed Discovered the tool by chance 1 60
Had problem, looked for a tool to solve 0 .
In process of learning to use the software 0 .

n represents the number of participants for the corresponding discovery mode and intent.

Figure 4. Histogram of the most frequent discovery modes in the diary study (n=28 participants).
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Thread” bars are shown because no participant submitted this type of discovery
report.

Figure 4 shows that participants reported tool encounter more frequently than any
other mode of discovery, consistent with the findings in our interviews (Figure 2).
The figure also shows that participants experience peer recommendation more
frequently than peer observation, in contrast to our interview findings (Figure 2). If
we assume that all participants reported all instances of peer recommendation, this
data suggests that the average software user will discover a new tool via peer
recommendation about once every 2 months. If we make the same assumptions
about peer observation, the data suggests that the average software users will
discover a new tool via peer observation only about once every 8 months. These
projections are even less frequent than our interviewees’ estimates of learning via
peer interaction (Section 3.1.3).

Effectiveness.Aswith our first study, we wanted to estimate how effective eachmode
of discovery is for adopting new tools. In this study, we did this in two ways.

First, we estimated effectiveness in the same way that we did in the interviews, by
asking participants’ to rank the modes from most effective to least effective in their
post-study questionnaire. Figure 5 shows a histogram that displays the top two
highest ranked discovery modes for each participant. For example, the figure shows
that in total 11 people reported that written descriptions were one of their top two
most effective ways that they learned about new tools. When we asked this question
in our interviews, participants rated peer observation and peer recommendation as
the most effective modes for discovering a new tool; however, in this study, this was
not the case. In particular, computer science students and software developers tended
to rank tool encounter as their most effective mode. Interestingly, however, students

Figure 5. Histogram of the most effective discovery modes estimated by participants in the
diary study (n=50 participants, 2 modes per participant).
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who were not in computer science tended to rank peer observation and peer
recommendation as their most effective modes.

Discovery Frequency by Age and Experience. In our interview study, we noticed that
more experienced programmers tend to teach and learn via peer interaction less than
junior programmers (Table 2). To investigate this further, we evaluated whether age,
job length and experience is correlated with discovery frequency. Using a Pearson
correlation, we found that age is very weakly correlated with number of tool
discoveries (r=−0.03 and n=47). Similarly, job length and experience show weak
correlations with number of discoveries (r=−0.1 and n=55, and r=0.06 and n=55,
respectively). This suggests that users discover new tools at all levels of experience.

Off-Task Time for Tool Discovery. In addition to understanding the effectiveness of
discovery modes, we are also interested in understanding the efficiency. To do so, we
analyzed how long participants spent learning about new tools, with respect to
discovery modes and intent. Table 6 shows our results, where we notice two trends.
First, tool encounter tends to be the fastest discovery mode, in terms of off-task time.
Second, finding a tool by chance was consistently the fastest intent under which tools
were discovered, across all modes.

3.2.6. Threats to Validity
Although in this diary study we attempted to strengthen and generalize the results of
the interview study, there are still several threats to the validity of the diary study that
the reader should consider when interpreting our results. One threat was that, in
follow-up emails, some participants noted that they made mistakes when categoriz-
ing a discovery by mode. We attempted to mitigate this threat by having three raters
recode the data based on the remainder of the discovery report (Section 3.2.2).
Another threat is that the study may suffer from sampling bias because participants
were not representative of all software users, in part because participants were all
working in British Columbia, Canada. A third threat is that, because participants sent
tool discovery reports at their leisure, they may not have been motivated to write
especially detailed reports, reducing the fidelity of our results. We tried to mitigate
this thread by asking for additional information via email, when necessary. Another
consequence of having participants report tool discoveries is that it probably made
participants especially reflective about the tools they used, thereby increasing the
probability that they would use the tool again at some point in the future. Partici-
pants’ self-estimates of the elapsed time it took to discover a tool may not have
reflected the wall-clock time to discover the tool, a phenomenon that has been
observed in experimental psychology (Huttenlocher et al. 1990). While the time
estimate may not be accurate to the actual elapsed time, if the inaccuracy is consistent
across all modes, we can still reasonably compare the time estimates against one
another. Finally, as the interview study, another threat to validity is whether partic-
ipants’ understood what we meant by “tools.”
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3.3. Study Comparison

In both our interview and our diary study, tool encounters dominated as the most
frequent way that software users discovered new tools, both for programmers and
other types of software users. Peer interaction was rarely reported in either study,
both relative to tool encounters and in absolute terms; based on the diary study, peer
interaction would only occur every few months. Peer interaction may be even rarer
than we thought after conducting the interview study; even though we had about four
times as many participants in the diary study than in the interview study, we only
collected about a quarter as many episodes of peer interaction in the diary study.

The assessed effectiveness of peer interaction was not consistent between the
studies. In the interview study, it appeared clear that programmers believed that peer
interaction was effective, but in the diary study, programmers (and other workers) did
not rate it as especially effective. We believe this disagreement probably arises partly
from differences between the groups of participants, but also partly from differences
between how participants interpreted “effectiveness” in the two studies. Further
research is necessary in a more controlled setting to evaluate the effectiveness of
the various discovery modes.

In our interview study, participants’ remarks suggested that tool learning may
decline with age and experience, yet the diary study did not show any substantial
correlations between such maturity measures and the number of tools discovered. This
agrees with previous work on technology learning in the workplace (Brooke 2009),
which suggests that there is a perception that older technology workers are less able to
cope with new technology, even when research suggests the opposite (Morrison and
Murphy-Hill 2013). Indeed, our second study suggests that learning, at least in terms
of software tools, continues unabated throughout information workers’ careers.

4. Implications

While preliminary, our results have several implications. We discuss four of them in
this section: how software environments can make it easier for users to discover tools
from peers, how teams can encourage peer interaction, implications for the design of
recommender systems, and methodological implications.

4.1. Improving Tool Discoverability

Our diary study suggests that users discover new tools at all levels of experience
(Section 3.2.5, Discovery Frequency by Age and Experience), underscoring the
importance of discoverability for all types of users. We suggest that there are at least
two ways toolsmiths can make tools more discoverable, so that when users interact,
peer interaction is more likely to be successful.
– Noticeable Causes. If the manner in which a tool is used can be easily

observed, then an observing user is more likely to both recognize that a tool
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was used and, implicitly, know how the tool is used. A positive example of
such a tool — and one mentioned by several programmers in our interview
study— is Eclipse’s Open Type dialog box, which shows a noticeable dialog
box used for searching. Hotkeys, used in many software environments so that
users can quickly invoke commands, such as Ctrl+] in Microsoft Word to
increase text size, are a negative example because the keys that are pressed are
typically not visible on the screen. One solution is to show the keys that are
pressed on the screen for a few seconds.

Noticeable Effects. In addition to making the causes of a tool invocation obvious, peer
interaction may be facilitated if the effects of a tool are clear. This is a collaborative
extension of Nielsen’s (1993) “visibility of system status” usability heuristic.

Eclipse’s Organize Imports command is an example of a tool that may not have
noticeable effects; the tool automatically adds and removes import statements from
Java files, but if those statements are not visible on screen, then an observer may not
notice the effect of running the command. Another counter example is Microsoft
Powerpoint’s “Set Layout” command, which may not produce any obvious visual
changes, yet links a slide to a slide template, so that future changes to the template are
reflected in the slide.

4.2. Peer Interaction Without Collocation

Our results from both studies suggest that peer interaction is already very rare
(Figures 2 and 4). As teams increasingly domore andmore work in a remote fashion,
our section on barriers to peer interaction imply that it will become even more
challenging for remote teammates to learn tools from one another.
– Remote Pair Programming. Several interviewees reported learning new tools

via peer interaction with a peer by working at separate, remote workstations
using a screen-sharing program. However, additional constraints have to be
satisfied in order for such peer interaction to take place. First, the pair needs
some channel by which to ask “what just happened?”, such as using instant
messaging or an audio link. Second, visible causes and effects are especially
important during remote pair programming, because implicit cues about how a
tool is used, such as where a programmer’s fingers are on the keyboard or
where a programmer is looking, are absent. Third, programmers need a
convenient, concise way to communicate about their tools. This third constraint
is sometimes difficult to achieve. For example, if the programmers choose to
collaborate using Eclipse and a tool requires several complicated steps to use,
the teacher may be forced to say “first you click here, then here, then here, then
type in this,” and so on. More elegantly, if the programmers choose to
collaborate using an environment with purely textual commands, like vim, the
steps can be easily represented as a series of brief commands. Although we
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know of no equivalent of pair programming for general information workers,
we believe that these constraints apply equally to situations where remote
information workers wish to learn from their peers.

– Learning from the Strengths of Peer Interaction. In the future, we might expect
that collocated peer interaction will decrease as teams become more distributed,
while at the same time, micro-blogging (Twitter) and internet tutorials
(screencasts) may be increasingly common. However, both of these typically
lack the qualities that make peer interaction effective, such as that peer
interaction takes place in the context in which the tools are used. We view this
as an opportunity: what can we learn from peer interaction to make other
discovery modes more effective?

Twitter bears some similarity to peer recommendation in that both are
types of social discovery, yet few interviewees and zero participants in the
diary study learned about tools via Twitter. One reason that interviewees
cited for Twitter being ineffective is lack of trust in the sources and lack of
relevance (Section 3.1.3, Effectiveness of Twitter/RSS). From the interviews,
it appears what programmers meant by trust was that the recommender
(human or otherwise) requires some prior interaction with the recommenda-
tion recipient, so that the programmer can estimate the recommender’s
knowledge and skills (Section 3.1.3, Discovery Modes). Our studies suggest
that trust and relevance might improve if the Twitter messages originated from a
trusted peer, someone that a software user works with or has worked with in the past.
Rather than burdening the trusted peer with having to report whenever she discovers
a new tool, we imagine a system that automatically notices when she uses a novel
tool and generates microblog messages to coworkers on her behalf.

Several interviewees reported watching screencasts that were professional-
ly produced (e.g., peepcode.com). Although watching screencasts is similar
to peer observation, participants reported that the tools used in screencasts
may not be very relevant (Section 3.1.3, Effectiveness of Tutorials), presum-
ably because the people who made the professional screencasts did not have
working styles that aligned with individual interviewees’ working styles.
Because peers are more likely to have similar working styles, a screencast
produced by a peer is potentially more relevant. However, no participant in
either study reported watching a screencast produced by a peer. We suspect
that the reason that software users do not make screencasts for their peers is
that the costs (the time required for recording, editing, and distributing) are
too high compared to the benefits (the possibility of a peer discovering a
tool). KAI, from the first study, hinted at this; “I wish people did make more
screencasts; they’re a pain in the ass to make.” Better tool support for
creation, editing, and distribution of screencasts may make it more likely
that software users will produce screencasts for their peers, improving screencasts’
effectiveness.
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4.3. Design of Recommender Systems

Systems that can recommend relevant tools are one approach to helping users learn
new tools. Past systems have included the controversial Clippy (http://
www.microsoft.com/presspass/features/2001/apr01/04-11clippy.mspx), which takes
the form of a virtual talking paperclip to recommend features of Microsoft Word. In
what follows, we discuss two design considerations for such systems.
– Trust. Interviewees’ high valuation of trust (Section 3.1.3) underscores trust’s

importance in tool recommender systems. CAL, when asked about his opinion
of a potential recommender system, summed up the problem as:

Honestly; I bet the [recommender system] would have better success rate [than a
peer] at recommending things that I would like, but that doesn’t mean that I would
trust the [recommender system] more.

Since trust appears to be a by-product of prior social interactions during peer interac-
tion, how can a recommender system without any prior interactions be trusted at all?

One way is to borrow trust from a trusted peer. Specifically, rather than saying,
“You should use this tool,” a system could instead say, “your friend, John, also uses
the tool, so you should check it out,”2 making a recommendation based on what your
peers are using. In this way, the user no longer needs to have trust in the recommen-
dation system beyond that it is accurately recording her teams’ tool usage, and
instead the user can rely on trust between teammates (Murphy-Hill 2012). This
was the approach taken by Toolbox, where the system looked for expert tool users,
requested that these experts write down descriptions of the tools, and published the
descriptions as newsletters in the expert’s organization (Maltzahn 1995). We have
sketched such a system using screencasts for software developers in a recent paper
(Murphy-Hill 2012).

Another way to avoid the trust dilemma is to sidestep it altogether. ELI mentioned
that a recommender system might be acceptable if it makes “you feel like you
discovered it.” Implementing such a recommender system would require a more
subtle interface than the traditional “you should use this tool” interface.
– Beyond Peer Interaction. Although recommender systems may have been

originally inspired by recommendations offered by trusted peers, the design of
recommender systems could benefit by going beyond traditional peer
recommendation by closely examining the limitations of peer interaction.

Interviewees noted that peer interaction does not work when the peers are under
time pressure because the teacher feels like he cannot respond to the learner’s
question, “what did you just do?” (Section 3.1.3, Barriers to Peer Interaction). If a

2 A direct quote from YIT.
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recommender system can capture experts’ usage of tools, that usage can be played
back repeatedly and at the convenience of a user who wants to learn a tool.

Peer interaction has other limits: just because a single software user uses a tool, that
does not mean that other users would find it useful. However, if many users find a tool
useful, it is more likely that a user who does not yet know it will also find it useful.
Recommender systems could gather, summarize, and present the usage habits of the
community, rather than relying on only one individual. This is the approach taken by
some recommender systems, such as CommunityCommands (Matejka et al. 2009).

Interviewees noted that sometimes they did not make recommendations because
they did not think that their peer was ready to appreciate the usefulness of a tool
(Section 3.1.3, Barriers to Peer Interaction). One way that recommender systems
could deal with this would be to explicitly model how specific users learn by
monitoring what tools they know, and inferring discovery patterns and contexts. A
recommender system could then recommend appropriate tools at the right time and
in the right context, and therefore not only make relevant recommendations, but also
improve the likelihood that the user will adopt the tool.

4.4. Methodological Implications
– Individual Interpretation Differences. As we speculated about in Section 3.3,

different participants may have had different interpretations of the word “effective-
ness.” They may have also had different interpretations of the meaning of different
modes of discovery (Table 1). Because we re-categorized discovery reports based on
our own intended meaning, the impact of this potential issue was limited.
Nonetheless, in future studies we intend to provide richer definitions to participants,
congruent with the complexity we observed of each mode in this study.

– Generalizability. As we mentioned in the threats sections for both studies, the
studies have limited generalizability due in part to the number of instances of
peer interaction captured. In retrospect, the low number of instances that we
were able to capture were inevitable, given that peer interaction apparently
occurs so infrequently. A much longer-term diary study might have been able to
capture more instances, but at the same time participants may have been
unwilling to keep a diary of their tool discoveries for much longer than a week.
One alternative would have been to have them focus on peer interaction only,
rather than reporting all modes of tool discoveries. A focus on peer interaction
may, however, encourage more social tool discoveries than would normally
take place. Ultimately, our goal of capturing realistic peer interaction in the field
remains a challenge that is difficult to overcome.

– Within-Group Comparisons. As a consequence of the somewhat low number of
instances of peer interaction, our ability to make reliable within-group
comparisons was limited. For example, in Table 5, we compared how different
discovery modes correlated with participants’ likelihood to continue to use a
tool 6-weeks after the initial discovery. In that table, most cells have four or
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fewer instances of tool discovery, making it difficult to draw strong conclusions
about the effectiveness of different modes.

One method that would enable more reliable comparisons between groups would be a
laboratory experiment. For instance, we could teach several undergraduate students about
a given new tool, exposing groups to different discovery modes, then ask them several
weeks later if they were still using the tool. Fortunately, based on the results from the
present studies, we can craft several realistic learning scenarios for such an experiment.

5. Conclusion

Awide variety of tools have been built to help software users, but individuals must
necessarily discover those tools before they can be used. While there are many ways
that users discover useful tools, the interview study described in this paper suggested
that peer interaction is effective but infrequent. Our diary study suggested that tool
encounters occur more frequently than peer interaction. Successful peer interaction
occurs in social contexts where users have peers that they can observe, such as in a
collocated team, but also in technical contexts where such observations are facilitat-
ed, such as when one user can see the outcome of another user’s tool use. Towards
our goal of encouraging software users to discover useful tools more successfully and
more frequently, our results open new possibilities to make existing tools and
environments more discoverable and distributed collaboration more effective.
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