

Parameter Selection in Keyboard-Based Dialog Boxes
Jeff Hendy, Juliette Link, Kellogg S. Booth & Joanna McGrenere

Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
{jchendy, jlink, joanna, ksbooth}@cs.ubc.ca

ABSTRACT
Recent keyboard-based alternatives to WIMP interfaces do
not have good support for commands that require multiple
parameters. We remedy this by extending a previous design
and mimicking dialog boxes to provide good visual
feedback while still keeping the advantages of keyboard
input. A laboratory study showed the new technique to be
competitive with dialog boxes on speed and error rate, but
strongly preferred over dialog boxes by experienced
command line users. This is a marked improvement over
the previous design, which was also preferred by the target
user group but did not compete with dialog boxes in terms
of performance.

Author Keywords
Command-line interfaces, dialog boxes, WIMP

ACM Classification Keywords
H52 [Information interfaces and presentation]: User
Interfaces – Graphical user interfaces.

General Terms
Design

INTRODUCTION
Many systems allow keyboard input to augment or replace
standard WIMP interfaces. The goal of these keyboard-
based systems is to increase satisfaction and performance
for experienced command line users. Examples include
Quicksilver [1], Enso [3], Inky [4], GEKA [2], and
Ubiquity [5]. They provide well thought out ways to specify
commands. Not as much has gone into how parameters are
specified, especially for commands with multiple
parameters. In WIMP interfaces, parameters are often
specified through dialog boxes, especially multiple
parameters. Evidence suggests experienced computer users
strongly dislike dialog boxes [2]. Quicksilver and Enso
support only one parameter. Ubiquity and Inky support
multiple parameters, but use imprecise syntaxes that can
make parameter entry confusing. They are designed
specifically for web-based commands with smaller, simpler
sets of parameters. In contrast, GEKA has a keyword-based
parameter system in which any number of parameters can

be precisely input in any order, but it showed lower
performance compared to existing WIMP dialog boxes [2].

We describe a new method for specifying parameters,
keyboard-based dialog boxes (KDB), that allows input of
any number of parameters in any order. Our goal is to
increase performance, improve experience, and minimize
cognitive load. To accomplish this, KDB provides graphical
feedback that looks and behaves very much like the dialog
boxes users are familiar with, but with the speed of a
command line interface. A lab experiment with experienced
command line users showed our new method is preferred to
and performs competitively with WIMP dialog boxes.

KDB DESIGN
KDB is based on GEKA. It makes minor changes to the
GEKA command language but replaces its graphical
feedback with a modified version of each command’s
existing dialog box. These changes should give KDB a
strong performance advantage over GEKA and make it
competitive with WIMP dialog boxes.

Multiple parameter entry utilizes auto-completion to
quickly specify parameter name and value pairs. Example
parameter specifications for the print command include:

pages 2
set the value of pages to 2

printer downstairs
set the value of printer to downstairs

downstairs
because downstairs can only be a value for
printer, this sets printer to downstairs

For parameter name selection, a ranked list of possible

Figure 1: KDB graphical feedback. The characters “a 3 c 2 y
re” have been entered. This sets the values of Number of adults
(3), Number of children (2), and Type of seating (Balcony). The
final input, “re”, is selecting which parameter will be set next.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

CHI 2011 • Session: Shortcuts Commands & Expertise May 7–12, 2011 • Vancouver, BC, Canada

2761

matches is generated after each character is typed. Typing
more characters refines the list. Pressing SPACE accepts the
top-ranked match and moves on to value entry. If a
parameter has a discrete set of possible values, the value is
selected using the same auto-complete mechanism.
Otherwise, the value is typed in its entirety. Again pressing
SPACE accepts the value and allows the user to specify
another parameter. If the top-ranked parameter name has a
Boolean value, pressing SPACE toggles the value and
immediately moves on to another parameter.

Each parameter also has a short name, which is a short
sequence of characters that unambiguously identifies the
desired parameter name. Auto-completion uses our GEKA
four-category algorithm [2] to order possible matches: exact
match, prefix match, substring match, subsequence match.
Matches within each category are sorted alphabetically.
Up/down arrow keys scroll the ranked list.

There are two components to KDB graphical feedback, the
input window, which closely resembles the graphical
feedback in GEKA, and a new dialog box representation,
which provides additional visual feedback. Figure 1 shows
these two components. The input window has a text box
where input is typed and a list of possible matches to the
input is shown. The best match is highlighted and appears
first. For all entries, the matching characters are in red. The
short name is underlined. The dialog box representation
provides graphical feedback identical to a command’s
WIMP dialog box. Because users are already familiar with
this dialog box, we expect that displaying it will allow users
to quickly identify parameter names they want to use.

The best matching parameter highlighted in the input
window is shown with a blue box in the dialog box. The
dialog box also has the short name for each parameter
underlined and the characters that match the entered text are
in red. This gives users the same information whether they

look for feedback in the parameter list or the dialog box.
Highlighting also allows users to quickly verify that the
parameter they want is selected. If the best matching
parameter is located in a sub-dialog box or a different tab
within the dialog box, the feedback is automatically updated
to show the location with that parameter.

LABORATORY EXPERIMENT
We conducted a laboratory experiment to evaluate KDB
against the goals of high performance and preference over
dialog boxes (DBs) by experienced command line users.
We also included a GEKA condition to compare KDB to an
existing keyboard-based interface.

The tasks were to specify parameters for one of four
commands. This was done in three conditions: KDB,
GEKA as implemented by Hendy et al. [2], and DBs. With
DBs, participants could use any combination of mouse
clicks, TAB key navigation, or keyboard mnemonics.

The experiment tested familiar commands from a standard
application and unfamiliar commands that we invented. It
also tested simple commands, specified in a single DB, and
complex commands, which involved multiple tabs and sub-
dialog boxes. The four commands are listed below.

 Familiar Unfamiliar
Simple Insert table Order tickets

Complex Print Order food

For the two familiar commands we implemented replicas of
Word 2003 DBs (including parameter names). All of our
participants reported using these DBs in Word 2003.
Order tickets was created for this experiment; it has
the same number of parameters and a similar DB layout to
insert table. Order food was similarly analogous to
print. The two invented DBs are shown in Figures 1 & 2.

For each command in the experiment, we created a short
task, in which only one parameter value was to be specified,
and a long task, in which four values were to be specified.
Thus, there were eight different task combinations. For the
complex commands, both the short and long tasks required
the use of at least one sub-dialog box. As in an earlier study
of GEKA [2], all tasks were prompted using image-based
descriptions to avoid biases introduced by using text
descriptions. Figure 2 shows the prompts for the long
order food task. For each task, the command was pre-
selected in the interface, meaning that the dialog box or
GEKA parameter pane was already open. The participant
needed only to select the specified parameter values. This
was done to isolate parameter selection times.

Participants
There were 12 participants (3 females). In a pre-screening
questionnaire all reported command line experience and
correctly answered at least two of three command line
knowledge questions. Participants received $20. The top
third fastest participants got a $5 bonus to motivate quick
and accurate performance.

Figure 2: The dialog box condition showing the long task for
order food. The user has already clicked “menu” to open a
sub-dialog. The left window shows that “spinach salad,”
“pasta,” “chicken,” and “coke” must be selected. Salad and
drink options are in different tabs. Parameters not listed in the
left window use default values and are not set by participants.

CHI 2011 • Session: Shortcuts Commands & Expertise May 7–12, 2011 • Vancouver, BC, Canada

2762

Procedure
Each participant completed a single two-hour session. A
session began with an introduction. Participants then
completed all trials in a particular condition before moving
on to the next condition. Presentation order of the three
conditions was counterbalanced. Each condition began with
an introduction to the method used and a practice block in
which the eights tasks were each completed once. During a
practice block, participants could ask questions and refer to
printouts of the task images that referred to each parameter.
No aids were permitted during experimental blocks.

Presentation order of the four commands was randomized
across participants but remained constant across the three
conditions for each participant. The order of the two task
lengths was similarly randomized across participants.
During each condition, participants completed one trial for
each of the two task lengths for a command and then
repeated this pair four more times before moving on to the
next command. Completion time was recorded for each
trial from when the participant dismissed a begin-task
prompt (by clicking the mouse or pressing a keyboard
button) to when the task was successfully completed.

An error occurred if a participant selected OK in the DB
condition or pressed ENTER in the GEKA or KDB
conditions with an incorrect set of parameter values
selected. If a participant made an error during a trial, a pop
up notified the participant that an error was made and the
task had to be repeated until it was successfully completed.
After all trials for a command, participants took a 30 second
break. Between conditions, participants took a 2 minute
break. A questionnaire and interview completed the study.

Design
The experiment used a mixed factor design: 3 (interface) x
2 (command complexity) x 2 (command familiarity) x 2
(task length) x 5 (repetition) x 6 (presentation order). All
factors were within-participant except for presentation
order, which was a between-participant control variable.
Bonferroni corrections were used for all pairwise
comparisons. Greenhouse-Geisser corrections, identified by
non-integer df, were used when sphericity was an issue.

Note on experimental design and participants
The focus of the KDB design and evaluation was on

experienced command line users, but we were also
interested in exploring how KDB would be received by
users lacking command-line experience. Our initial
experimental design thus included experience as a factor
and we had 12 additional participants with no command
line experience. We saw potential trends due to experience
level, but there was very high variance in the data from
inexperienced users. We would have needed to run many
more participants to expose any significant differences that
existed. We thus only report data from experienced users.

RESULTS
Most participants used both the keyboard and mouse
(11/12), choosing the keyboard for different combinations
of: inputting numbers (10/12), using a few mnemonics
(4/12) and/or tabbing between adjacent parameters (7/12),
and used the mouse for everything else.

Completion Time
A RM ANOVA indicated no main effect or interactions of
presentation order, so it was dropped as a factor. Figure 3
shows that participants got faster over time: a main effect of
repetition (F(1.51, 16.58)=77.812, p<.000, η2=.876) with
significant differences (p <.05) between all pairs of
repetitions, except repetitions 4 and 5 (p=.20), indicating
performance was plateauing. The RM ANOVA we report
dropped repetition as a factor and used mean times for only
repetitions 4 and 5 to eliminate the obvious learning affect.

Overall, KDB and DBs are not significantly different. There
was a main effect of interface (F(2, 22)=20.476, p<.001,
η2=.654) with mean times for DBs, KDB, and GEKA being
5.76s, 6.19s, and 9.69s. Pairwise comparisons showed no
significant difference between KDB and DBs (p=1.0). All
other pairs had significant differences (p <.05).

For simple commands, DBs are fastest. The interfaces were
impacted differently by command complexity (an
interaction effect between interface and complexity,
F(2,22)=5.969, p=.008, η2=.352). For simple commands, a
trend (p=.072) suggested DBs (4.09s) were faster than KDB
(5.73s), but there was no difference for complex commands
(p=1.0). GEKA was slower than DBs for both (p <.003).

For short tasks, KDB is fastest. An interaction between
interface and task length (F(2,22)=30.88, p=.000, η2=.737)

Figure 3: Mean completion times (N=12) Figure 4: Error rates for interfaces in each repetition (N=12)

CHI 2011 • Session: Shortcuts Commands & Expertise May 7–12, 2011 • Vancouver, BC, Canada

2763

indicated that for short tasks, KDB (2.64s) was faster
(p=.007) than DBs (3.74s). There was no difference
between the two for long tasks (p=.355). GEKA was slower
than KDB for both task lengths (p <.007).

There was no interaction between interface and command
familiarity (F(2,2)=.867, p=.434, η2=.073).

Errors
Figure 4 shows that participants made fewer errors as the
study progressed. While there was a trend of interface
(F(2,22)=3.01, p=.07, η2=.215) across all repetitions, by
repetition 5, errors had nearly disappeared for all three
interfaces. In repetition 5, out of the 96 total trials for each
interface DBs, KDB, and GEKA had 3, 3, and 4 errors,
respectively, across all participants.

Questionnaire and interview
Overall, participants rated KDB the highest, with a mean of
17.00 on a scale of 0 (“I really dislike it”) to 20 (“I really
like it”) vs. 10.50 for DBs and 12.25 for GEKA. A RM
ANOVA showed no significant difference between DBs
and GEKA (p=.392); all other pairs were significant
(p<.004). When asked to explain why they preferred KDB,
the most common reasons cited were being able to set
parameter values without first having to specify the
parameter name (7/12), liking the graphical feedback from
the dialog box representation (6/12) (especially for
verifying that the correct parameters were set (4/12)), and
being able to only use the keyboard (5/12).

Participants said they were faster with KDB, with a mean of
18.17 on a scale of 0 (“very slow”) to 20 (“very fast”) vs.
11.75 for DBs and 13.25 for GEKA. There was no
significant difference between DBs and GEKA (p=1.0); all
other pairs were significant (p<.03). Participants explained
they sometimes were able to skip specifying the parameter
name (4/12) or that typing was faster than a mouse (3/12).

Participants said they made fewer errors with DBs, with a
mean of 2.17 on a scale of 0 (“very few errors”) to 20
(“many errors”) vs. 6.58 for KDB and 9.08 for GEKA. The
only significant difference was between DBs and GEKA
(p=.002). While they did not necessarily like the mouse,
they felt that using a mouse made errors less likely (5/12).

Ten of 12 participants said KDB was easier to learn than
GEKA and gave reasons similar to why they had preferred
KDB overall. However, DBs were felt to be the easiest to
learn because participants were already familiar with them.

LIMITATIONS
Because we made improvements to both the command
language (the changes only ever decrease the required
keystrokes) and the graphical feedback, it is not clear how
much of the improvement over GEKA can be attributed to
each. Because the reduction in keystrokes is fairly small
and the graphical feedback is radically different, we believe
that most of the gains are a result of the graphical feedback.

While we made an effort to evaluate diverse tasks by using
simple, complex, familiar, and unfamiliar commands with
short and long tasks, our experiment still used only a small
number of commands and tasks compared to what users
experience in actual scenarios. Furthermore, while we saw
performance appear to plateau by the end of our
experiment, we cannot know how performance would
change with prolonged usage. A longitudinal field study
would help address these issues. Additional future work
includes a study with more focus on non-experienced users
and one that examines cognitive load.

DISCUSSION AND CONCLUSIONS
KDB showed speed and error rates in the final repetitions
nearly identical to DBs. Participants reported a very strong
preference for KDB. This suggests KDB should be an
option for parameter specification: it makes experienced
users more satisfied without impeding performance.

Despite the very similar speeds between dialog boxes and
KDB, participants felt that they were much faster with
KDB. We found a similar contradiction while evaluating
GEKA [2]. This is an interesting finding about users’
perceptions that bears further investigation.

KDB significantly outperforms GEKA in speed under
almost all conditions. This suggests that the dialog box-like
graphical feedback of KDB is a major improvement over
the feedback in GEKA. Another major improvement over
GEKA is that KDB can support a wide variety of parameter
types. Earlier work [2] lists several types of commands that
GEKA is not able to accommodate because of its restrictive
graphical feedback. KDB overcomes most limitations.

We previously showed GEKA to be an effective general
interaction method for specifying many types of commands,
but it fell short compared to dialog boxes. We have now
shown that KDB outperforms GEKA for parameter
selection and is highly competitive with dialog boxes.
Application designers looking to improve interfaces for
experienced command line users could incorporate KDB-
style parameter selection into any keyboard-based
command selection scheme, including but not limited to
GEKA. This would give users a well-liked way to select all
commands and parameters using only a keyboard.

REFERENCES
[1] Blacktree (2009). Retrieved March 31.

http://www.blacktree.com
[2] Hendy, J., Booth, K.S., McGrenere, J. (2010). Graphically

Enhanced Keyboard Accelerators for GUIs. In Proc.
Graphics Interface 2010, 3-10.

[3] Humanized (2009). Retrieved March 31.
http://humanized.com

[4] Miller, R. C., Chou, V. H., Bernstein, M., Little, G., Van
Kleek, M., Karger, D., and schraefel, m. (2008). Inky: a
sloppy command line for the web with rich visual feedback.
In Proc. UIST 2008, 131-140.

[5] Mozilla Labs. (2009). Ubiquity. Retrieved December 12.
https://mozillalabs.com/ubiquity/

CHI 2011 • Session: Shortcuts Commands & Expertise May 7–12, 2011 • Vancouver, BC, Canada

2764

