
Graphically Enhanced Keyboard Accelerators for GUIs

Jeff Hendy Kellogg S. Booth Joanna McGrenere

Department of Computer Science
The University of British Columbia

{jchendy, ksbooth, joanna}@cs.ubc.ca

ABSTRACT

We introduce GEKA, a graphically enhanced keyboard
accelerator method that provides the advantages of a traditional
command line interface within a GUI environment, thus avoiding
the “Fitts-induced bottleneck” of pointer movement that is
characteristic of most WIMP methods. Our design rationale and
prototype development were derived from a small formative user
study, which suggested that advanced users would like alternatives
to WIMP methods in GUIs. The results of a controlled experiment
show that GEKA performs well, is faster than menu selection, and
is strongly preferred over all mouse-based WIMP methods.

KEYWORDS: command line, GUI, shortcut, WIMP, experiment

INDEX TERMS: H.5.2 [Information interfaces and presentation]:
User Interfaces

1 INTRODUCTION AND MOTIVATION

The graphical user interface (GUI) was developed to overcome
limitations of the once-dominant command line interface (CLI).
An emphasis on recognition rather than recall, afforded by visible
representations of commands and their parameters, makes GUI
interfaces easier to learn and less error prone. The rich graphical
feedback that GUIs provide also makes errors easier to detect and
correct. As applications became increasingly sophisticated, every
major operating system came to provide a windows-icons-menus-
pointer (WIMP) interface. But WIMP interaction is not without
problems. WIMP interfaces use a pointing device and interaction
methods such as menus, toolbars, and direct manipulation actions.
The focus in designing pointer-based interaction methods is on
making actions easy to learn and remember. While helpful for new
or infrequent users, these methods fall short for advanced, frequent
users who want to execute commands quickly with little
distraction from their main task.

GUIs have introduced keyboard shortcuts to help advanced
users execute commands quickly. Shortcuts have several
limitations of their own. When the number of commands grows
beyond a handful, shortcuts end up being complicated and bear
little resemblance to the command name. When applications have
dozens of obscure key combinations, it becomes very difficult to
learn and remember all of them. Furthermore, the set of shortcuts
is typically incomplete – shortcuts are generally not available for
every command – and they provide no support for parameters.
Some applications include support for custom keyboard shortcuts.
This partially addresses the issue of incompleteness, but the
number of useful shortcuts is still limited by the number of keys
on the keyboard and the user’s memory.

The limitations of WIMP interaction described above are well
known and described in many books [12] [13]. In 1996, Gentner

and Neilsen [2] described many problems with GUIs saying that
“direct manipulation quickly becomes repetitive drudgery” and
that see-and-point interfaces behave “as if we have […] lost our
facility with expressive language, and been reduced to pointing at
objects in the immediate environment.” They recommend a focus
on expert users and an interface based on language.

In 2000, Raskin [11] called for “[an interaction method] that is
as fast and physically simple to use as typing a few keystrokes and
that makes the commands easier and faster to find than does a
menu system.” In 2007, Norman [10] predicted that one of the
next “UI breakthroughs” will be related to command lines, stating
that “GUIs work well only when the number of alternative items
or actions is small.”

1.1 Goals of the Research

Most GUIs now offer a choice between two very distinct
alternatives: pointer-based interaction that focuses mostly on ease
of use and keyboard-based interaction that focuses mostly on
speed of use. We see an empty design space between these two
extremes that we call the “GUI gap.” Our goal is to fill this gap
with a novel graphically enhanced keyboard accelerator (GEKA)
interaction method that makes use of CLI-like syntax augmented
by an incremental search mechanism with graphical feedback to
quickly and easily select desired commands and parameters.
GEKA bridges the GUI gap by making appropriate compromises,
resulting in interaction that is reasonably fast, available for most
commands, and supports parameters, yet is still straightforward to
learn and use because it supports recognition rather than recall.

There are three contributions in this paper. The first is
preliminary empirical data on usage patterns of different GUI
methods and qualitative feedback we obtained about user
dissatisfaction with dialog boxes. The second is the design of the
GEKA command language and a prototype implementation. The
third is experimental validation showing that users can use GEKA
quickly, with no overall increase in errors, and that GEKA is
strongly preferred over mouse-based methods.

2 DESIGN RATIONALE AND OBJECTIVES

GEKA is designed to augment WIMP interfaces by allowing most
commands to be executed through the keyboard, thus providing a
more efficient and satisfying experience for advanced users. We
do not expect novices or infrequent users to benefit as much from
GEKA, although we do not intend to disadvantage them or
preclude incremental adoption as users gain experience. Our initial
work in GEKA was approached with several concrete goals
derived from these objectives:

Speed – In order to be attractive to advanced users, GEKA
should be faster than pointer-based WIMP methods. We recognize
that GEKA will be slower than current keyboard shortcuts. We
thus expect continued use of keyboard shortcuts where
appropriate, but believe that as long as GEKA is noticeably faster
than pointer-based methods, it will be well received.

Low errors – GEKA should not be more error prone than
mouse-based methods. A frequent need to correct errors would

32010

Graphics Interface Conference 2010
31 May - 2 June, Ottawa, Ontario, Canada
Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print form, and ACM
to publish electronically.

negate the benefit of faster command execution. We want GEKA
to have error rates similar to existing methods.

Easy to learn and remember – We want GEKA to be easier to
learn and remember than keyboard shortcuts. Making extensive
use of graphical feedback, the basis of GEKA interaction is
recognition rather than recall, eliminating the need to memorize
obscure keystroke combinations.

Low visual demand – One huge drawback of pointer-based
interaction methods is that the user’s visual attention has to be
fixed on the pointer to ensure that the right item is being selected.
GEKA is designed to allow practiced users to execute commands
with little or no visual attention.

Completeness and choice – GEKA should be available for use
with most commands and parameters. While we don’t expect all
users, or even all advanced users, to use GEKA every time they
execute a command, it is important to give users a choice.
Allowing most commands to be executed with either the mouse or
the keyboard could relieve a lot of frustration where users are
currently forced to move their hands from the keyboard to the
mouse just to execute one command.

3 RELATED WORK

We review other GUI enhancements, discuss the influence of CLIs
on our work, and highlight relevant empirical studies.

3.1 Applications that offer CLI alternatives to WIMP

Quicksilver [1] is a Mac OS X application that allows many tasks
to be completed through the keyboard. All interactions with
Quicksilver begin with a search for an object from its catalog.
Objects are selected through an adaptive incremental search
mechanism. Once an object is selected, an action can be chosen to
execute on the object. For a file, some of the possible actions are
“open,” “rename,” and “move to.” Some commands involve a
parameter, selected at the end. The full command syntax for
Quicksilver is objectactionparameter. This allows for quite a
bit of flexibility. For example, the command "Hello!" 
email to  Mom can be executed. Unfortunately, this syntax
does not match how a user would typically think of the action. The
restriction to only one parameter is also a major limitation.

Enso [4] is a Windows application that uses text commands for
several actions. It has simple syntax: a command name optionally
followed by one parameter. Enso often makes use of the selection
in the Windows GUI, for example opening the highlighted file
with a specific application or doing a spell check on highlighted
text. Enso is available for a small number of commonly used
commands such as navigating between windows and looking up
words in a dictionary. A Firefox plug-in called Ubiquity [9] was
introduced while our design work was underway. Ubiquity offers
interaction similar to Enso but with support for multiple
parameters in a fixed order.

Inky [8] is described as a “sloppy command line.” It uses a text
interface to invoke common browser commands. Many of the
challenges of traditional command lines are overcome by
including multiple synonyms for command and parameter names
and using a very loose syntax.

Built-in OS and application support for CLI alternatives – Mac
OS X 10.5 has a search box in the help menu that locates all menu
items in the current application that match the input. There is a
plug-in available for Microsoft Office 2007 [7] that has similar
functionality to locate commands in the ribbon. These two
alternatives are more focused on locating items within the GUI
than actually executing commands: they search only the top-level
menu or ribbon items and have no support for parameters. Modern

IDEs, including Eclipse and Visual Studio, have well developed
auto-complete features that help search for possible variable or
function names and allow easy input of parameters.

3.2 Traditional command line interfaces

Our work builds on a number of features that existed in pre-GUI
CLI implementations. We mention only a few highlights. OS/360
introduced JCL, perhaps the most complex CLI to date, with a
myriad of commands, parameters, and optional specifications.
Like JCL, the OS/360 macro assembler language accepted both
positional and keyword parameters. Keyword parameters allowed
shorter specifications because parameters whose default values
were appropriate need not be listed. The original command
completion feature on the SDS 940 Genie operating system was
automatic – as soon as the stem uniquely determined a command
the full command name was typed by the system. This was later
modified in the PDP-10 Tenex CLI so command completion only
took place when ESC was typed and this was extended to provide
file name completion. This led to TAB completion in Unix tcsh,
which provides a list of possible completions as recognition-based
hints to the user if CTRL-D is typed instead of TAB [14].

There is a clear pattern. As the complexity of the CLI increased,
features were introduced to decrease the number of keystrokes
required to specify a command and its parameters. In some cases
(such as tcsh) visual aids were added (the list of possible
completions) to allow users to rely on recognition rather than
recall. Many of these same ideas apply to GUIs.

3.3 Empirical studies of keyboard accelerators

Attempts to utilize keyboard-based interaction within GUIs are not
new. The most obvious example is keyboard shortcuts. Recent
work by Lane et al. [5] found that use of keyboard shortcuts was
low in a survey of experienced Microsoft Word users, and
Grossman et al. [3] explored ways to help users learn and use
keyboard shortcuts more effectively. We were surprised by the
very low shortcut usage in Lane et al.’s study, which does not
match our perception of experienced users. Our work builds on
this study by focusing on highly advanced computer users.

4 FORMATIVE STUDY

To verify that a new keyboard-based interaction technique would
benefit advanced GUI users, and to validate our GEKA goals, we
conducted a small formative study to examine advanced computer
users’ current habits. We were interested in comparing Lane et
al.’s [5] results of low shortcut usage to a more experienced group
of participants. We were also interested in exploring how
advanced users interact with dialog boxes and gathering
qualitative feedback on when and why users choose each
interaction method.

Consistent with our goal to improve interaction for advanced
users, our 10 participants (3 female) included nine computer
science graduate students and one computer engineering graduate
student. In the study, we worked with Microsoft Word 2003, with
which all participants indicated a high level of familiarity.

Participants were interviewed about their use of 26 word
processor commands, selected based on Linton, Joy, and
Schaefer’s 1999 list of most frequently used commands [6], with
some no-longer-used commands removed and a few common
formatting commands added. Participants were asked how often
they use each command, which method (shortcut, drop-down
menu, context menu, or toolbar) they most frequently use to
execute the command, which other methods they sometimes use,
and which methods they know but don’t use. The results of this

4 2010

part of the study are summarized in Figure 1.
Participants were next asked to consider commands that they

use frequently and know how to execute using all four methods,
and then to order the methods in terms of preference. All
participants ranked keyboard shortcuts first and drop-down menus
last, with toolbars and context menus varying between second and
third place. Common reasons for liking keyboard shortcuts
included speed, precision, and being able to keep one’s hands in
the same place. Common reasons for disliking menus included the
need for multiple clicks and scanning through many options.

While our participants stated a strong preference for keyboard
shortcuts and reported far more shortcut usage than did the less
experienced users studied by Lane et al. [5], shortcuts still had a
fairly low usage. The bottom portion of Figure 1 shows how many
users selected each method as most frequently used for each
command. Shortcuts are the most commonly used method for only
11 of the 26 commands, even though 21 of the 26 commands have
shortcuts available. There were 16 commands where at least half
of the participants did not even know the keyboard shortcut.

Figure 2 shows how often each method is used for each
frequency of command usage. As we expected, keyboard shortcuts
are the most used method for frequently used commands. Even so,
mouse-based methods are used for nearly half of the frequently
used commands. For sometimes-used and rarely-used commands,
mouse-based methods dominate.

When asked why they would use mouse-based methods when
they preferred keyboard shortcuts, all participants said that the
main reason is “not knowing the shortcut.” Other reasons include

having their hand already on the mouse, and “habit” from when
they first learned the command.

The final part of our formative study examined dialog box usage
to expose any issues with multiple-parameter commands in WIMP
interaction. Participants were observed completing tasks with
dialog box usage. Across the 10 participants, there were 40 total
command executions that could have been completed using the
keyboard exclusively. Keyboard shortcuts were used 16 times to
invoke the dialog box. Ten of those 16 times, the participant
moved their hand to the mouse at some point to navigate in the
dialog box. When asked why they would switch to the mouse to
navigate dialog boxes, participants said that using the keyboard to
navigate through a dialog box is unpredictable and slow because
they aren’t sure where the cursor will move when the TAB key is
pressed. This suggests a significant shortcoming with dialog
boxes, as even when a command was started with the keyboard,
participants switched to the mouse more than half the time.

4.1 Discussion

Advanced users prefer keyboard interaction – At least while
word processing, where users spend most of the time with hands
on the keyboard, our users indicated that they like to use keyboard
shortcuts as often as possible to speed up command execution.

Keyboard shortcuts are insufficient – While our advanced
computer users did report more shortcut usage than Lane et al.’s
participants [5], usage was still fairly low, mainly due to obstacles
in learning and remembering the shortcuts.

Keyboard navigation in dialog boxes is insufficient – When
faced with a dialog box, most of our users relied on the mouse to
select parameters due to the confusing nature of keyboard
navigation in dialog boxes.

Filling the GUI gap – While our formative study was limited in
terms of the number of participants and the reliance on self-
reported data, it certainly suggests that advanced computer users
are in fact suffering the consequences of the GUI gap and
motivates our work on GEKA. Our advanced users wanted quick
keyboard interaction for executing commands, but were too often
forced to resort to mouse-based methods. If GEKA can
successfully fill this gap, these users would clearly benefit.

5 GEKA DESIGN

We envision future iterations of GEKA-style interaction being
available for most commands in most applications. However, in
order to maintain a reasonable scope for our initial design efforts,
we chose to work only within a specific application domain. We
chose word processors because they tend to exemplify WIMP

Figure 2: Percentage of commands reported to be most frequently
executed with each technique broken down by frequency of
command use (N=10).

Figure 1: Command usage in Word 2003. The first four rows show number of participants who use each command with each frequency.
The fifth row shows number of participants who know keyboard shortcuts for each command. The final four rows show number of
participants who use each method most frequently for each command. (* The final column is the average number of commands in each
category per participant, i.e. the sum of the columns divided by 10 participants) (N = 10).

52010

interfaces and because they have a rich enough command set to
illustrate all of the issues we want to address. For our laboratory
experiment, described below, we created a replica of the Microsoft
Word 2003 user interface. Our prototype runs within that context.

Our initial focus has been on the fundamentals of GEKA
interaction, a command language, and a command and parameter
completion algorithm. We also implemented a graphical feedback
component to support recognition over recall.

5.1 Command language and auto-completion

GEKA works as a separate command mode within the application,
entered by typing CTRL+ENTER. The GEKA command syntax
resembles a traditional CLI. A command name is selected, after
which optional parameters may be specified by selecting a
parameter name followed by a parameter value. Examples include:

bold - no parameters

zoom 200 - only one possible parameter

print pages 1-5 - one parameter used of many
possibilities

insert_table rows 2 columns 3 - multiple parameters

As each character is typed, an incremental search mechanism
lists all possible matches and selects a most likely match. These
are presented in the graphical feedback component. This
eliminates the need to type or memorize full command or
parameter names. Each command has a “short name,” an
abbreviated sequence of characters that will always select that
command as the first match. In our initial prototype, short names
are typically between 1 and 3 characters and are based on one of
the following: a command’s keyboard shortcut, the first letters of
each word of a command’s name, or the first few letters of one
word in a command name. This allows frequently used commands
to be executed quickly without having to examine the graphical
feedback if a user knows the short name.

The “match list” for auto completion is ordered in a way that
should place the intended command near the top. There are four
categories of matches, with all results that fall under one category
occurring in the list before the next category begins. Results
within each category of match are sorted alphabetically. An
example of a match list is shown in Figure 3. The four categories
of matches are as follows.
Exact match – the entered text is exactly the command or

parameter name (either the full name or the short name)
Prefix match – the command or parameter name begins with the

characters in the entered text
Substring match – the entered text is a contiguous sequence within

the command or parameter name
Subsequence match – each character in the entered text is

contained in the command or parameter name in order, but there
may be other characters in between

5.2 Graphical feedback

We implemented a simple graphical feedback component. It is
based on the three-panel layout of Quicksilver, which fits nicely
with the three distinct phases of entering a command in GEKA
(command name, parameter name, parameter value). However, the
underlying interaction in GEKA is very different from
Quicksilver’s structure (object search, action name, parameter).

Our prototype is shown in Figure 3. Part A shows the initial
state when opening GEKA, which lists all commands
alphabetically. As the user types each character, the match list is
refined and the best match is visible at the top of the pane,
replacing the initial prompt (parts B, C, and D of Figure 3). The
best matching command name shows which characters in the

name match the input by making them red. It also shows the
command’s short name by underlining those characters. In part B,
the command has been selected by typing its short name ‘p’ and
thus that character is both red and underlined.

When the best matching command is one that has parameters, a
second pane appears (part B of Figure 3), listing the parameters
and their current values. Pressing the space bar will move input
focus to the second panel and allow selection of parameters.

For commands with only one parameter, the value can be
entered right away (part C of Figure 3). For commands with
multiple parameters, a parameter name must first be selected. This
is done by typing some, or all, of the parameter name. The list of
parameters and the best matching parameter are determined just as
for the command list. Once a parameter name is selected, pressing
the space bar again allows a value to be entered. Text and
numerical values are simply typed in, while choices from a list of
possible values are handled with an incremental search just like
command selection. After a parameter value has been selected,
pressing the space bar again moves the focus back to the second

Figure 3: GEKA prototype graphical feedback showing four
distinct phases of interaction. Part A is before anything has
been typed, B shows command name selection, C shows
inputting a parameter for a command with only one parameter,
and D shows inputting a parameter for a command with multiple
parameters.

6 2010

pane. Our prototype does not allow spaces in command or
parameter names.

The title bar of the window shows all of the characters that have
been entered, as shown in part D of Figure 3 where the table
command has been selected after “tab c 3 r 5” has been
entered. This allows an advanced user executing a known
command to use GEKA just like a traditional command line
without needing to look at any of the rest of the feedback.

Pressing enter at any time will execute the best matching
command with its selected parameters. The backspace key will
clear the most recently entered character and, if appropriate,
change the state of the graphical feedback window to reflect the
change. If, in part C of Figure 3, backspace were pressed, the
space, which was what moved focus to the second GEKA pane,
would be eliminated from the end of the input string “fonts ”, and
thus focus would return to the first (leftmost) GEKA pane for
command selection. Pressing the escape key exits GEKA without
executing a command.

GEKA has three key design improvements over existing
applications: (1) support for multiple parameters in arbitrary order,
(2) smarter matching including abbreviations for all commands,
(3) clear visual feedback of the input characters to facilitate
learning and re-use. GEKA’s support for an essentially
unrestrictedly large command vocabulary offers a clear advantage
over keyboard shortcuts, which are limited by the number of keys
and modifiers on the keyboard.

5.3 Examining the command language

To assess whether our goal of executing most commands through
GEKA is realistic, we examined the actions available in Microsoft
Word 2003 and made note of the cases where GEKA might be
problematic:

Multi-part dialogs between the user and the computer –
Completing actions that require multiple iterations of user input,
such as find/replace, spell check, or any action involving a wizard,
will require extending GEKA.

Inherently visual tasks – Actions that rely heavily on graphical
representation of parameters, such as selecting a colour or
inserting special symbols, could be challenging for novice or
infrequent users unless new naming conventions or a preview
capability are introduced.

Direct manipulation – Operations such as the format paintbrush
require text to be “painted” with the mouse. This could be adapted
to GEKA by decomposing it into copy format and paste format
components with selections performed independently of the
command.

Nested or multi-part parameters – Some parameters are not
simple name-value pairs. When sorting values in a table, the
separate fields at parameter has a value other which requires
further input of the actual value. The rigid three-panel layout of
our graphical feedback would need to be extended for this.

GEKA’s command language is robust, and most of these issues
can be addressed by redesigning just the graphical feedback
component. Instead of the existing rigid structure for displaying
parameters, each command could have its own specifically
tailored visual feedback. This might resemble current dialog
boxes, but be controlled through the GEKA command language
rather than the primitive TAB-based method now in use. Future
research will determine how to best resolve these issues.

6 LABORATORY EXPERIMENT

We conducted a laboratory experiment with our GEKA prototype
to explore how well users can learn and use GEKA, how their

performance in GEKA compares to WIMP performance, and
whether they will use GEKA when given a choice.

6.1 Experimental tasks

We created a replica of the Microsoft Word 2003 user interface
using the C# programming language. Our software has the same
toolbar and menu layout as Word 2003. Dialog boxes were
recreated where needed. Our GEKA prototype is programmed in
Java and communicates with the Word replica through standard
input/output redirection.

In this study, we worked with a slightly different set of WIMP
methods than in the formative study. Toolbars were further
categorized as either buttons or drop-downs for direct comparison
to zero- and one-parameter GEKA commands. Dialog boxes were
added to compare to multiple-parameter GEKA commands.
Context menus were not considered because the formative study
showed that they are rarely used.

To compare GEKA to each of these WIMP methods, we chose
three commands from each category to test with users. Each
command is representative of its method and should be familiar to
advanced Microsoft Word users. We implemented the following
15 commands.

Keyboard shortcuts – underline, italic, copy

Toolbar buttons – bold, center alignment, toggle bullets

Toolbar drop-downs – font size, apply style, line spacing

Menu bar commands – paste, undo, save

Dialog boxes – print, insert table, insert page numbers

In addition to the above commands, which were fully
implemented in both the WIMP interface and in GEKA, the
WIMP interface contained all of the menu items and toolbar
buttons from Word 2003, and the GEKA command list contained
all of those same items. Commands not listed above, however, had
no functionality in our prototype.

In the experimental environment (see Figure 4), there is an
instructions window on the left side of the Word replica screen to
instruct the participant on which commands to execute. Each
screen of instructions is considered as one task, and is composed
of a text selection at the top followed by four command
specifications below. Because prompting participants with the
command name could bias performance in GEKA, we used
images to represent each command. The three images shown on
the left in the screenshot in Figure 4 are typical. They represent
insert_page_numbers position top alignment center first_page no,

Figure 4: Screenshot of the experimental environment.

72010

undo, and apply_style heading_2. A fourth image for center
alignment is below the others. The command highlighted in blue
represents the current command (insert page numbers, in Figure
4). The highlight automatically moves to the next command when
the current one is completed.

Most WIMP commands can be executed through several
different methods. We are only interested in one method for each
command, so the instruction window indicates the method with
which each command should be executed. If a user selects the
wrong command, an error is logged and the user must try again
until the correct command is executed.

We created five document editing tasks involving only the 15
commands listed above. Each task contains a mixture of
commands and methods that a user could reasonably use during
document editing.
Task 1 – bold, italic, paste, insert table
Task 2 – font size, underline, save, print
Task 3 – insert page numbers, undo, apply style, center alignment
Task 4 – font size, toggle bullets, line spacing, italic
Task 5 – insert page numbers, undo, bold, copy

Grouping commands into tasks was done in order to present
commands to users in reasonable chunks. The task groupings are
not relevant in our hypotheses or analysis. The only goal was for
the 5 tasks to collectively capture exactly 4 invocations of each of
the five WIMP methods. (Five of the commands, one for each
WIMP method, appear twice in the task set.)

6.2 Participants

Our study had 12 participants (3 female). Consistent with our
focus on advanced computer users, all participants were graduate
students: 3 in computer science, 6 in electrical and computer
engineering, and 3 in mechanical engineering. All had significant
Word 2003 experience. Participants received $30 for their time.
To motivate quick and accurate performance, an additional $10
incentive was awarded to the top-third high performers.

6.3 Procedure

Each participant completed a single three-hour session. During the
session, four distinct phases were completed:

Introduction – Participants were presented with a list of all the
commands used in the experiment and asked to identify all of the
ways that they knew how to execute each command in Microsoft
Word. Next, they were given a demonstration of how GEKA
works and then shown a printout containing all of the images used
to represent commands in the study and the names of the
commands and parameters that they represent. When participants
felt comfortable with the images, the next phase began.

Performance testing – Participants completed a series of tasks
in two separate conditions: one using WIMP methods only and
one using GEKA only. Presentation order for the two conditions
was counterbalanced.

Each condition began with a practice block, which consisted of
each of the 15 commands being executed once. During the
practice block, participants were able to look at the printout of
command images and ask questions. After the first practice block,
participants were given an overview of the rest of the study.

Each condition consisted of three blocks that were each made
up of the five tasks repeated ten times each. The order of the five
tasks was randomized for each participant and remained consistent
across all blocks for each participant. Within a block, after each
task was repeated ten times, participants took a break for at least
30 seconds, and after each block, participants took a break for at
least 90 seconds. Participants were provided with magazines to

peruse during the breaks.
Method choice - After the WIMP and GEKA conditions,

participants were reminded of all the methods they knew for each
command by going through their list from the introduction phase
and executing each command once using each listed method and
once using GEKA. Then, participants completed one final block
using the same five tasks repeated three times each, in which they
were able to choose any available method for each command.

Qualitative feedback – Finally, participants completed a
questionnaire where they rated many aspects of their interactions
with GEKA.

6.4 Dependent measures

Time was recorded for each command, from the moment the
previous command was completed until the current command was
correctly entered (there was an implicit error penalty). Time for
each interaction method is the mean of the times for each of the
four command executions using that method. Similarly, the
number of errors made was recorded for each command. An error
consisted of trying to execute an incorrect command, or a correct
command with incorrect parameters. For an interaction method,
errors are the sum of the errors for each of the four command
executions using that method.

Method choice was measured for each command as the method
used in the final repetition of each task during the method choice
phase. The final repetition was used because participants
frequently changed methods during the repetitions. Finally, the
questionnaire had participants rate the methods on a scale
resembling the NASA TLX on 12 dimensions. The five WIMP
methods were included as well as three cases for GEKA: zero-,
one-, and multi-parameter commands.

6.5 Hypotheses

We had the following hypotheses, which are consistent with our
goals in designing GEKA:
H1: Command selection in GEKA will be faster than and

preferred to menu selection.

H2: Command selection in GEKA will be slower than and will
not be preferred to keyboard shortcuts.

H3: For commands with multiple parameters, GEKA will be
faster than and preferred to dialog boxes.

H4: For commands with one parameter, users will prefer GEKA
to toolbar drop-downs.

H5: GEKA will be no more error-prone than WIMP.
Here, preference refers to a combination of explicit method

choice and the qualitative questionnaire ratings.

6.6 Design

Because our hypotheses deal with the interaction methods rather
than the task and command structure that participants saw, the data
was collapsed into the following mixed factor design: 2
(conditions) x 3 (blocks) x 5 (interaction methods) x 10
(repetitions) x 2 (presentation orders). Presentation order was a
between-participants factor, while all others were within-
participants factors. Pairwise comparisons used Bonferroni
corrections. When sphericity was an issue, Greenhouse-Geisser
corrections were used, which can be identified by non-integer df.

7 RESULTS

Initial analysis showed no significant main or interaction effects of
presentation order, so presentation order was dropped as a factor
to simplify further analysis.

8 2010

7.1 Time

GEKA is faster than menus, while shortcuts and toolbar buttons
are faster than GEKA. The analysis is dominated by a 3-way
interaction between condition, block, and interaction method
(F(2.65, 29.13) = 27.604, p < .001, η2 = .715). Figure 5 shows the
breakdown. Pairwise comparisons show that in block 1 each
WIMP method was significantly faster than its GEKA equivalent
(all p < .05), except for menu, which showed no significant
difference (p = .817). By block 3, WIMP was only significantly
faster for shortcuts and toolbar buttons (both p < .05). (There was
no significant difference for toolbar drop-downs, p = .503, or
dialog boxes, p = .102). GEKA was significantly faster than
menus (p < .05).

Performance is still improving with GEKA, less so for WIMP.
Given the above 3-way interaction, we examined differences
between blocks 2 and 3. In the WIMP condition there, was only a
significant difference for toolbar buttons (p = .042) and borderline
difference for menus (p = .057). For the GEKA equivalents, there
were differences for toolbar buttons, drop-downs, menus, and
dialog boxes (all p < .05).

Additionally, there were significant main effects of condition
(F(1, 11) = 13.320, p = .004, η2 = .548), block (F(1.12, 12.35) =
115.610, p < .001, η2 = .913), repetition (F(1.79, 19.68) = 65.505,
p < .001, η2 = .856), and interaction method (F(1.14, 12.57) =
216.641, p < .001, η2 = .953), and an interaction between
condition and interaction method (F(1.27, 13.96) = 19.670, p <
.001, η2 = .641).

7.2 Errors

GEKA and WIMP have similar error rates. The analysis for errors
showed no significant difference for condition with a total of 254
errors in WIMP and 256 in GEKA (F(1, 11) = .004, p = .948, η2 <
.001). There was a borderline significant main effect of block
(F(2,22) = 3.322, p = .055, η2 = .232), but no interaction between
block and condition. There
was a significant interaction
between condition and
interaction method (F(4,44)
= 3.260, p = .020, η2 = .229),
with pairwise comparisons
showing two borderline
significant differences:
GEKA had more errors than
dialog boxes (p = .071) and

fewer errors than toolbar drop-downs (p = .085). Table 1 shows
the full breakdown of this interaction.

7.3 Method Choice

GEKA is chosen overwhelmingly for commands with parameters.
GEKA was chosen over toolbar drop-downs or dialog box. Figure
6 shows the breakdown.

Keyboard shortcuts are chosen for commands with no
parameters, except for the commands center and toggle bullets.
Participants generally did not know those shortcuts (one knew
center and none knew toggle bullets). They chose to use GEKA
rather than a mouse-based method.

7.4 Qualitative Findings

GEKA is rated significantly better than WIMP in all cases but
shortcuts. Reliability analysis confirmed high consistency among
the 12 dimensions (ease of learning, etc.) rated by participants
(Cronbach’s  = .966), so we collapsed them into a single rating
for brevity. Figure 7 shows the collapsed rating; a low score is
better than a high one. A Friedman test on the transformed ratings
showed a significant main effect of interaction method
(χ2(7)=63.328, p < .001) and Wilcoxon Signed Rank Tests
showed significant differences (p < .05) between each GEKA
method and its corresponding WIMP method: between GEKA
zero-parameter and both toolbar and menu, between GEKA one-
parameter and dropdown, and between GEKA multi-parameter
and dialog box. The one exception is that there was no significant
difference between GEKA zero-parameter commands and
keyboard shortcuts (p = .155).

Figure 5: WIMP and GEKA times for each
interaction method in each block. The scales
on the y-axes are different for each graph.
Blocks are labeled with a * when the time
differences are statistically significant (p <
.05) (N=12).

Table 1: Total errors. Each method
was used 1440 times per condition
(N = 12).

Figure 6: Percentage of command executions using each method in
the method choice phase of the experiment (N=12).

92010

7.5 Summary

Hypotheses H1, H2, H4, and H5 were supported. H3 was partially
supported, with no difference in speed, but a preference for
GEKA. Overall, we found that GEKA’s speed is competitive with
WIMP. It is at least as fast as the mouse-based WIMP techniques,
except for toolbar buttons, and is faster than menus. GEKA’s error
rates were comparable with WIMP, which shows that we have
succeeded in creating a keyboard-based interaction method that
supports recognition. Finally, GEKA is overwhelmingly preferred
to mouse-based WIMP methods. Both the method choice and
qualitative feedback phases of the experiment showed very strong
preference for GEKA over all mouse-based WIMP methods. We
expect that other applications such as Quicksilver or Enso would
perform similarly in a comparable experiment. However, we did
note that most of our participants were using our built-in
command abbreviations, which we expect would provide a
noticeable advantage to GEKA.

8 DISCUSSION

GEKA speed did not plateau, suggesting it could be faster.
Performance did not plateau fully in either condition, despite
repeating the same set of tasks many times. This points to the
challenge of study design. We could not extend a single session
beyond three hours; follow-on work will need to consider a multi-
session study. The takeaway, however, is that speed of execution
in GEKA was continuing to improve more so than in WIMP. This
suggests that with further practice GEKA may outperform WIMP.

There are design opportunities to increase GEKA’s speed. It is
possible to reduce the number of keystrokes required to execute a
command in GEKA either by using a single keystroke to enter
GEKA mode or by using a quasi-mode like Enso does. Perhaps
both could be provided, leaving the user to choose which to use: a
quasi-mode may be most appropriate for zero- and one-parameter
commands, and a full mode for multi-parameter commands.

Multiple-parameter commands are a key area for improvement.
Our formative study showed dialog boxes to be slow and
frustrating indicating an opportunity for GEKA to outperform
against this method. Our current prototype does not yet achieve
this goal. In our next design iteration of GEKA graphical
feedback, we will focus on multiple-parameter commands to
pursue this opportunity.

User’s perceive GEKA to be faster than it actually is. In the
method choice phase of the experiment, GEKA was consistently
chosen over all mouse-based methods even though it was only
actually faster than menus. This is consistent with responses on
speed in the questionnaire. Those responses could have been
biased by desire to please the researchers, but this is much less
likely in the method choice because participants were aware that
there was a monetary reward contingent on their performance.

We have as yet no firm basis on which to conclude why GEKA
feels faster than it truly is. We speculate that our participants
found GEKA more pleasant to use than WIMP and therefore the
time spent using GEKA seemed to pass more quickly. This
finding on perception of speed causes us to reflect back on our
original goal that GEKA should be faster in order to be attractive
to advanced users. Achieving pleasurable use is likely more
important than a speed improvement alone.

9 CONCLUSIONS AND FUTURE WORK

Our formative study suggested that advanced users are indeed
frustrated with some aspects of WIMP interaction and desire
alternatives. While we have not yet shown that GEKA is faster or
less error-prone that WIMP in all cases, it is generally not any
worse, and it was very well received in the method choice and
qualitative feedback phases of our experiment. We believe that
users’ perception of a more pleasant interaction with an
application is no less important than raw speed. Satisfied users are
more likely to be productive and to continue to use an application.

Further study is required to understand GEKA interaction,
including a longitudinal controlled study with a larger command
set to examine users’ performance over time, and a field study to
examine how GEKA is used in actual work environments.

There are many potential benefits to the GEKA approach that
we are excited to explore. These include advanced command line
features such as scripting and piping, accessibility benefits for
people who have physical difficulty using a pointing device,
possible expansion of the GEKA technique beyond keyboards to
support speech- or handwriting-based interfaces, and providing
more flexibility in defining commands.

REFERENCES

[1] Blacktree. (2009). Retrieved March 31.
http://www.blacktree.com

[2] Gentner, D., and Nielson, J. (1996). The anti-Mac interface. In
Communications of the ACM 39(8):70-82.

[3] Grossman, T., Dragicevic, P., and Balakrishnan, R. (2007). Strategies
for accelerating on-line learning of hotkeys. In Proc. CHI 2007,
1591-1600.

[4] Humanized. (2009). Retrieved March 31.
http://humanized.com

[5] Lane, D., Napier, H., Peres, C., and Sandor, A. (2005). The hidden
costs of graphical user interfaces: The failure to make the transition
from menus and icon tool bars to keyboard shortcuts. In
International Journal of Human-Computer Interaction, 18:133-144.

[6] Linton, F., Joy, D., and Schaefer, H. (1999). Building user and expert
models by long-term observation of application usage. In Proc.
Conference on User Modeling 1999. 129-138.

[7] Microsoft. (2009). Search commands. Retrieved September 16.
http://www.officelabs.com

[8] Miller, R. C., Chou, V. H., Bernstein, M., Little, G., Van Kleek, M.,
Karger, D., and schraefel, m. (2008). Inky: a sloppy command line
for the web with rich visual feedback. In Proc. UIST 2008, 131-140.

[9] Mozilla Labs. (2009). Ubiquity. Retrieved December 12.
https://mozillalabs.com/ubiquity/

[10] Norman, D. (2007). The next UI breakthrough: command lines. In
Interactions, 14(3):44-45.

[11] Raskin, J. (2000). The humane interface: New directions for
designing interactive systems. Addison-Wesley.

[12] Shneiderman, B. and Plaisant, C. 2004 Designing the User Interface:
Strategies for Effective Human-Computer Interaction (4th Edition).

[13] Stone, D., Jarrett, C., Woodroffe, M., Minoca, S. (2005). User
interface design and evaluation.

[14] Wikipedia. (2009). Retrieved March 31.
http://en.wikipedia.org/wiki/Command_line_completion

Figure 7: Collapsed questionnaire results (N = 12).

10 2010

