
Designing for Advanced Personalization
in Personal Task Management

Mona Haraty, Joanna McGrenere

Department of Computer University of British Columbia

{haraty, joanna}@cs.ubc.ca

ABSTRACT
Many applications provide personalization mechanisms

through which users can make changes to adapt a system to

better fit ptheir needs or preferences. However, advanced

personalization, such as extending system functionality, is

often only available to programmers. Building on ideas from

end-user programming and personalization literature, we

developed an adaptable task management tool that allows

advanced personalization using a self-disclosing mechanism

and a guided scripting mechanism, ScriPer. We present our

design process, its outcome, and the results of a user study

(n=24). Participants, even those with no to some background

in programming, were able to use ScriPer to perform

advanced personalization (in 142 of 144 trials). We also

found error patterns differed across programming expertise.

Author Keywords
Meta-design; personalization; personal task management.

ACM Classification Keywords
H.5.2 User Interfaces (D.2.2, H.1.2, I.3.6);

INTRODUCTION
Many applications provide personalization (customization)

mechanisms through which users can make changes to adapt

the system to better fit their needs or preferences. But the

personalization available is often quite basic, which cannot

support the diversity of user needs. Advanced

personalization—broadly defined as personalization that

goes beyond changing the look and feel, and involves

changing functionality—often requires programming skills.

In this research, our goal is to bridge the gap between simple

and advanced personalization mechanisms by designing a

mechanism that supports creation of advanced

personalization without requiring the user to code.

Current apps are often limited to basic personlizations such

as making simple changes to the visual appearance of

interface elements (e.g., changing icons or a background),

customizing access to functionality (e.g., adding, removing,

re-arranging commands/buttons to/in a toolbar or defining a

shortcut), and modifying system behavior by choosing

options from a list of predetermined alternative behaviors.

More advanced personalization such as extending system

functionality are possible through mechanisms such as

macros and add-ons, but these mechanisms have limitations.

Recording a macro extends a system’s functionality by

encapsulating a sequence of repeated user actions that can be

invoked later. But sophisticated macros that add new

functionality require users to edit the code generated by the

macro recorder which requires programming skills. Tools

such as web browsers enable users to extend system

functionality by creating and installing add-ons. However,

Figure 1: ScriPer is a guided scripting mechanism for constructing a new feature. Here, a user is adding a “Mute reminders”

button to postpone reminders between a user-defined period. She has already created the button (trigger is marked as 2) and the

first part of its behavior which is to ask for “start time” and “end time” (labeled as [custom command-1], shown in blue (3)). The

screenshot is capturing the creation of the second part of the script (4). The script is composed by selecting one of the options from

ScriPer’s suggestions at each step (5). ScriPer starts with suggesting a set of actions, and updates its suggestions based on the rest

of the script. Typing in the textbox filters the suggestions. Clicking on arrows (6) cycles through usage examples of the suggestions.

1

3

4

2

5
6

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components of

this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.
DIS 2016, June 04 - 08, 2016, Brisbane, QLD, Australia

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4031-1/16/06…$15.00

DOI: http://dx.doi.org/10.1145/2901790.2901805 .

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

239

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2901790.2901805

end users are restricted to using pre-existing add-ons, unless

they have the programming skills to develop new add-ons.

To achieve our goal of designing tools that support advanced

personalization, we built on ideas from end user

programming (EUP) approaches such as controlled natural

languages and sloppy programming [19], and followed

guidelines on designing personalizable tools such as meta-

design guidelines [8]. We chose personal task management

(PTM) as the design domain, because PTM tools need to

support advanced personalization in order to accommodate

differences in PTM behaviors both across individuals and

over time [12,13]. We designed a prototype of a

personalizable PTM tool with two key components for

enabling the creation of new functionalities: 1) a self-

disclosing mechanism that reveals system functionality to

users and thus makes it easier for users to understand what

can be changed, 2) a guided scripting personalization

mechanism (ScriPer) that enables users to construct new

features by combining building blocks that are familiar to

them. To investigate the strengths and challenges of these

two components, we conducted an exploratory user study.

Participants, even those with no or some programming

background, were able to use our personalization mechanism

to complete personalization tasks, except for 2 out of 144

trials. All the participants made mistakes. While

programming expertise was not associated with the number

of mistakes made, participants with no to some programming

background produced different error patterns than

programmers. Our primary contributions are: 1) the design

of a personalizable PTM tool with two key personalization

components, 2) empirical evidence of the challenges and

strengths of both our personalization and self-disclosing

mechanisms. A secondary contribution is our design process

that provides additional insights into how to employ the

theoretical guidelines on designing personalizable tools.

RELATED WORK
We review the guidelines on designing personalizable tools

as well as EUP approaches that informed our design process.

Guidelines on designing personalizable tools
Henderson and Kyng looked at the practice of designing in

use and described three activities that change the behavior of

a technology: choosing between alternative anticipated

behaviors, constructing new behaviors from existing pieces,

and altering an artifact through modifying the source code

[12]. The focus of our work is on constructing new behaviors

from existing pieces. One of the comprehensive sets of

principles for designing for adaptability is outlined by Moran

as the principles of everyday adaptive design: overbuild

infrastructure, under-build features, convey the adaptable

quality of a tool as opportunity to the user, allow for

recombining and repurposing (modularity), and make

adaptations sharable [21]. Similarly, meta-design provides

another comprehensive set of guidelines. Meta-design is a

theoretical framework for empowering users to design their

own tools by providing them with appropriate tools and

opportunities [8]. Meta-design guidelines include: provide

building blocks, under-design for emergent behavior,

establish cultures of participation, share control, promote

mutual learning and support of knowledge exchange, and

structure communication to support reflection on practice.

Key common requirements of both sets of guidelines is that

software systems provide mechanisms that allow users to

create complex personalizations by combining building

blocks (modular components), and that systems should under

design to promote personalization.

In our research, we focus on providing users with building

blocks as well as mechanisms for combining the building

blocks to create advanced personalization in a PTM tool.

While some of the other design methodologies (e.g.,

software shaping workshops [4]) include somewhat concrete

practical steps for specific design situations, prior systems

that have explicitly employed meta-design guidelines to our

knowledge have been mostly domain-oriented design

environments. Two examples are FRAMER for user

interface design [16], and JANUS for kitchen design [9]. In

these design environments, the primary user activity was to

design, thus the building blocks were “design units” such as

sink and refrigerator in the case of the kitchen designer, and

windows and menus in the case of the user interface designer.

Identifying building blocks of a non-design environment,

such as a PTM tool, is less clear.

End user programming (EUP) approaches
EUP methods often take one of the following approaches:

programming by demonstration, visual languages, and

scripting. In our work, we focus on the scripting approach.

Two approaches to improving a scripting mechanism are: (1)

simplifying the format or syntax, and (2) using a scripting

editor that ensures creation of a correct script, often referred

to as a structure editor [5,18]. Natural languages [23] take the

simplifying format approach. Sloppy programming is a form

of natural language that attempts to simplify format by

making programming similar to entering keywords into a

Web search engine [19]. Systems such as CoScripter [17] for

automating repetitive Web tasks and Inky [20]—a web

command interface that allows users to automate tasks by

entering unstructured text—have taken the sloppy

programming approach. One limitation of this approach is

that users might try commands that are not supported [17].

The structure editor approach addresses both this limitation

and the issue of poor discoverability which is a limitation

with all command line interfaces. The structure editor

approach enables users to create commands by choosing

options from menus, and it guarantees that only correct

combination of options are selected. Controlled natural

languages (CNLs), which are a subset of natural languages

that have restricted dictionaries and grammars for reducing

the complexity and ambiguity, combine both approaches of

simplifying formats and structure editor. While CNLs have

been explored for ontology authoring and semantic

annotation (e.g., [3,10,11]), they have rarely been explored

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

240

for the purpose of automation or personalization. Atomate is

an exception that has used a CNL interface to enable end user

construction of reactive rules using information sources on

the web such as one’s online calendar, email client, and

messaging services [15]; an example of a reactive rule

constructed with Atomate is: “Have Atomate automatically

update your facebook status when you are at a concert.”

While ScriPer is similar to Atomate in that they both use a

CNL interface for creating behaviors, they differ in both the

type of CNL interface and the usage context. As a result of

the difference in the usage context, our approach provides

finer grain building blocks as well as integration with the rest

of the interface. In addition, our approach allows users to

extend functionality of an under-designed PTM system by

changing the behavior of already existing UI elements and

defining behavior of new UI elements. Alfred is an

automation tool that, similar to Inky, offers a command line

for running commands [25]. Unlike Inky, Alfred supports

creation of new commands but not through its command line

interface; simple commands can be created using a visual

programming interface where users can define flow of data

between different apps; creating advanced commands

requires programming knowledge. Unlike Inky and Alfred,

the scripting mechanism in ScriPer is for creation of new

behaviors, and using those behaviors—which is equivalent

to running commands in Inky and Alfred—is done through

the GUI elements in our prototype. While some of the EUP

approaches have been studied, their effectiveness for people

with no to little programming experience has been largely

unexplored [15,20].

The contribution of our work is in bringing the EUP

techniques to the context of personalization in PTM, and

providing empirical evidence on the challenges and strengths

in using them. We designed and developed a personalizable

PTM prototype that includes a scripting mechanism

(ScriPer) for creating advanced personalization. Our design

incorporated both approaches of simplifying format and

structure editor by using a scripting language that resembles

natural language, and by presenting the space of applicable

building blocks (language expressions) that can be used at

each step of composing a script. A key difference between

our approach and that of tools such as Alfred or Inky is that

we use a command line interface for creating new behaviors

for interface elements using very basic building blocks such

as change, move, show, etc., rather than running predefined

commands. Our goal was to design an approach for

command creation that does not require programming.

META-DESIGNING A PTM TOOL
Following the guidelines discussed earlier, we had two

primary research questions in meta-designing a PTM tool:

What are the building blocks of a PTM tool? And what

personalization mechanisms should be provided to users for

enabling them to combine those building blocks to create

new functionality? Below we describe how we addressed

these questions by reviewing our design process.

We developed a prototype of a basic PTM tool that supports

basic functionalities such as creating task lists, adding tasks

to lists, editing task attributes (e.g., color, due date,

reminder), marking tasks as done, and deleting tasks.

Establishing the building blocks of a PTM system
Providing users with building blocks is the cornerstone of the

existing guidelines on designing personalizable tools

[2,8,22]. However, none provided concrete actionable

guidelines as to how to come up with the building blocks for

a system. To address our first question (what are the building

blocks of a PTM system?), we hypothesized that

understanding the types of desired personalizations would

provide insight into what needs to be modifiable and thus the

building blocks of a system. Several types of personalization

(e.g., interface and functionality adaptation [21]) have been

identified in the past, in domains other than PTM. However,

previous categorizations of personalization were based on

the personalizations that were available in the existing

personalizable tools. What we needed, by contrast, were the

types of personalizations that were not necessarily available

but were desired and needed to be supported for

accommodating differences in PTM behaviors both across

individuals and over time. Thus, we reviewed users’ various

PTM needs reported in prior PTM studies (e.g., [1,11]), as

well as the feature requests made by users of PTM tools such

as Remember The Milk [26] which is one of the most active

feature request forums related to PTM. See Tables 1 and 2

for examples of user needs and feature requests.

We considered user needs and feature requests as forms of

personalizations that users should be able to create. Thus, we

treated the words (e.g., task, change, due date) mentioned in

the feature requests and user needs as the building blocks of

a meta-designed tool, and categorized them into UI elements,

actions, interactions, external events, entities, entities’ Show my tasks’ deadlines on a timeline

See & select appropriate tasks that can be done in a given time slot

Filter & show me tasks that were recorded today

Focus on the current tasks, minimize distraction by other tasks

Add an icon next to the tasks that [meet a certain condition]

View task lists & calendar together

Print tasks that are due today in a particular format

Set timer on tasks for tracking time

Color code tasks based on their list / goal

Strike through tasks when done

Table 1. Examples of user needs from prior PTM studies.

Snooze button for notifications

A "make current" button, that takes all selected overdue tasks and

moves them to the present day

Ask for date to which to postpone when postponing a task

Customize reminders for specific lists/tags

Make 'delete' a button instead of an option in 'more actions'

Show tasks due today in bold

Show overdue tasks in the 'Today' tab on the Overview screen

Table 2. Example of feature requests in RTM.

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

241

attributes, and attributes’ values. Table 3 illustrates examples

of the building blocks in each of these categories.

The under-design guideline of meta-design [6] (or overbuild

infrastructure and underbuild features of [21]) guided our

decision of what actions to include as building blocks.

According to this guideline: 1) building blocks should offer

enough functionality that they are useful and usable as a unit

and, 2) they should not be too complex to require users to

break them down in order to combine them with other blocks

[6]. In our design process, before adding a new feature based

on a user need, we assessed the feasibility of building that

feature using more basic blocks. If feasible, we added the

new building block instead of the new feature. For example,

we skipped adding an ‘archive’ feature, because archiving

involves moving a completed task to a list called ‘archive’

and thus could be built by creating a list and using a ‘move’

building block which is more generic than ‘archive.’

Creating new personalizations using the building blocks
After reviewing the user needs and feature requests for

identifying the building blocks, we decided to focus on

designing personalization mechanisms for two classes of

personalizations: the first is adding a new feature to the

system that can be invoked by interacting with a new

interface element (e.g., a button or a menu-item); the second

class is modifying the effect of an existing user interaction

by adding new behaviors to it or changing its current

behavior. While both classes require a mechanism for

defining a new behavior, the first class involves creating a

new interface element and attributing the new behavior to an

interaction with it, and the second one involves attributing

the new behavior to an existing interaction. Below, we

describe how we designed for the above requirements.

ScriPer: Scripting for personalizing

To allow users to combine the building blocks for creating a

new behavior, we designed ScriPer (Scripting for

Personalizing) which is a guided scripting mechanism.

ScriPer allows users to create a script—representing their

desired behavior—by choosing from a list of suggested

building blocks that gets updated based on users’ selected

building blocks so far. ScriPer starts with suggesting a set of

action building blocks (Figure 2.6), each of which has their

own grammatical template. For example, the ‘change’ action

block has the following template:

[1change] [2objects’ attributes to] [3attribute’s values] [4for

(all) objects (that)] [5objects’ attributes] [6attributes’ values].

The numbers represent the order of ScriPer’s suggestions for

the ‘change’ block. After choosing ‘change,’ it suggests all

the attributes of all the objects in the system to ask users what

they want to change. Once an attribute is selected, it suggests

all the possible objects that have that attribute (e.g., ‘all the

selected tasks’ or ‘tasks that’). If users choose objects such

as ‘tasks that’ for which they have to specify conditions, then

ScriPer suggests conditions in two steps: first by suggesting

the attributes of the objects on which users want to apply a

condition, next by suggesting possible values of the selected

attributes (see Fig 1.4). We chose the order of ScriPer’s

suggestions such that a complete script forms a correct

English sentence. This order was chosen to increase

accessibility to non-programmers, at the cost of being

contrary to mainstream programming paradigms (e.g., object

oriented programming where objects come before actions).

The ‘move’ block has a slightly different template:

[1move] [2(all) objects (that)] [3objects’ attributes]

[4attributes’ values] [5to (day)(list)(position in a list)]

[6(day’s values) (list names) (positions’ values)].

ScriPer suggests values for an attribute based on the type of

the attribute. For example, if the user selects an attribute such

as ‘due date’ whose type is date, ScriPer shows a list of dates

such as today and tomorrow, as well as a ‘pick a date’ block

that when chosen, a date picker will be shown. Fig 3

illustrates this for the reminder’s time attribute. When the

script inside the textbox represents a complete script, ScriPer

shows the two buttons of ‘and’ and ‘save’ (Fig 4) to signal to

users that they can either add another script or just save their

current script. ScriPer is implemented as a modal pop-up

window that can be invoked either through a self-disclosing

mechanism [5] or by clicking on a newly created interface

element (e.g., a button) in the “personalization mode”; we

describe the purpose of each approach next.

Personalization mode

To allow users to create new interface elements, we

distinguish between the main mode, where all the regular

PTM-related activities take place, and the personalization

mode where personalization-related activities such as adding

a new button or a menu-item happen. Switching modes is

done by clicking on ‘Personalization’/‘Exit personalization’

button (Fig 2.1); personalization mode adds a gray overlay

to the main interface and all the regular PTM-related

interactions are disabled such that the user interactions will

show their expected effects in a panel (through the self-

disclosing mechanism described next) rather than being

executed. To add a new button, users click on the plus button

next to other buttons (Figure 2.7), name the button, and then

click on it to define its behavior using the ScriPer.

A self-disclosing mechanism

The second class of personalization that our prototype

supports is modifying the effect of an interaction with an

existing interface element (e.g., the effect of clicking on a

button) by either adding a new effect or replacing an existing

Category Examples of building blocks

UI element Button, checkbox

Action Change, ask me for [data], show, move, remove.

Entity Task, list, reminder

Attribute Color, due date, type, status, importance, etc.

Value Gray, tomorrow, long-term, done, high, etc.

Interaction Click, right click, double click, drag, drop, hover

External event Closing a web page, starring an email, etc.

Table 3. Categories of building blocks in a PTM system.

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

242

one. To support such personalization, following one of

Moran’s principles of everyday adaptive design [21], we first

needed to convey the adaptable quality of user interactions

so users know they can change the effect of their interaction.

To do this, we display the effect of an existing interaction,

building on the idea of self-disclosing systems that disclose

their behaviors to users [6]. Whenever a user interacts with

an interface element, the interaction (Fig 2.3) and its effects

(Fig 2.4) are displayed in a fixed panel at the bottom of the

page (Fig 2.2). The interaction is shown as a trigger and its

effects are shown as actions. The background color of the

panel changes to blue for one second when the user interacts

with an interface element to clarify for the user the

connection between her interaction and what is being

displayed in the panel. The panel appears in both the main

and the personalization modes, and its display can be

toggled. The effects of an interaction—displayed as

actions—can be modified via the ScriPer window. New

effects can be constructed and assigned to the displayed

trigger by clicking the “Add a new action/effect” button (Fig

2.5) which invokes ScriPer (Fig 2.6).

EVALUATION
We conducted an exploratory lab study where people with

various levels of programming experience used the tool to

perform a set of predetermined personalization tasks. The

goal of our study was twofold: (1) to evaluate our design

decisions and understand the strengths and potential

challenges involved in using the two components of our

meta-designed tool—ScriPer and the self-disclosing

mechanism—for personalizing software, and (2) to assess

the effect of programming experience on the ability to

perform personalization tasks.

Participants
Twenty four participants completed the study (13 females).

Participants were recruited by posting signs around a large

North American university campus as well as emails to

different departments. Participants ranged from 21 to 31

years of age. They were all university students, and only 6 (3

females) were from the computer science department.

Prior to signing up for the experiment, interested participants

filled out a short questionnaire to describe their programming

expertise and rated it on a scale of 1-3 (1 little to no

programming background, 2 some programming

background, and 3 proficient in programming). While our

design was targeted at the first two groups, we included the

third group for comparison purposes. We were able to recruit

8 participants in each expertise category. In the rest of the

Figure 4: A grammatically correct script.

Figure 3: To select a value for a reminders’ time, (1) the user

chooses ‘pick a time’, (2) then ScriPer shows a time picker for

the user to select a time, (3) after picking 7 AM and pressing

done, ScriPer adds the picked value to the script.

Figure 2: The prototype in personalization mode, hence the gray overlay (1). The plus button (7) is only displayed in

personalization mode. The ‘Mark as done’ button has been clicked and thus the panel (2) is showing the effects (4) of that

event (3). In this screenshot, the user is adding a new effect to the ‘Mark as done’ button by clicking on “Add a new

action/effect” (5) which has invoked the ScriPer window (6). ScriPer starts with suggesting a set of action building blocks. Next

to each action block are examples of using the block to familiarize the user with the block.

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

243

paper, participants are referred to as their gender (M/F) +

expertise (N/S/P) + a number (1-8). For example, a male

proficient programmer is referred to as MPx where x is

between 1 and the number of participants in that category.

Tasks
To maintain ecological validity in designing personalization

tasks, we reviewed user needs from prior PTM studies as

well as the feature request forum of a PTM tool, Remember

the Milk. Table 1 and 2 shows examples of user needs and

feature requests that influenced our tasks. Based on those

examples, we designed six personalization tasks, all of which

could be performed using our prototype.

Four of the tasks involved creating a new button and defining

its behavior. For each of these tasks, we designed a group of

two tasks—henceforth a task group (TGi). The second task

in each group was a personalization task, which explicitly

asked participants to create a button that performs a desired

personalization. The first task was to perform what the button

would do prior to performing any personalization. The first

task involved some repetition, which was to motivate the

need for the personalization. This is often challenging when

designing personalization tasks for lab studies. Another goal

of the first task was to familiarize participants with the goal

of the personalization they were asked to perform in the 2nd

task. The task groups TG1, TG2, TG5 and TG6 were

designed this way (see Table 4).

The remaining task groups (TG3 and TG4) involved using

the self-disclosing mechanism. TG3 included 3 tasks, and

TG4 included 4 tasks. The last task of each of these task

groups was a personalization task that asked participants to

change the effect of an interaction with already-existing

interface components (e.g., ‘mark as done’ button). The other

tasks in each of the task groups were designed to familiarize

the participants with that interaction and its current effects.

In those tasks, participants performed an action, e.g.,

marking a few tasks as done, and explained its current effect.

Procedure
First, to familiarize participants with the system, we walked

them through performing a personalization task. Next, they

were given all tasks one at a time in the order shown in Table

4, and were asked to think aloud while performing the tasks

without any time limit. The screen and the audio were

recorded. After finishing the tasks, participants were asked

about their experience with ScriPer and the self-disclosing

mechanism in a semi-structured interview. The session took

on average 42 minutes (min=20, max=60).

Data analysis
We collected usage log data (the personalization scripts and

task completion), the screen recordings, the interview data,

and the notes of the participants’ actions and comments. The

screen recordings and the transcriptions of the think aloud

were coded against the number and type of mistakes, and

whether or not they reused their created personalization in

subsequent tasks. The semi-structured interviews were

transcribed and coded against the strengths and challenges of

different parts of the design. We ran mixed-model regression

to analyze participants’ success in completing the tasks

without mistakes and the number of mistakes. In the

Task groups Tasks

TG1

T11: Change the due date of the following tasks to tomorrow: “finish paper review”, “learn javascript”, “do yoga”

T1P: Imagine that you’d like to do the previous task for a whole bunch of tasks and that you might need to do this again in the future.

For this situation, you decide to create a button (called ‘postpone to tomorrow’) that when you click on, the system modifies the due

dates of the to-dos that you have selected to tomorrow.

TG2

T21: Find tasks that are overdue (i.e., due before today) and change their color to red so that you won’t miss them.

T2P: To save time on the previous task in the future, you decide to create a button called “Highlight overdues” that when you click on,

it automatically turns the overdue tasks into red.

TG3

T31: Mark the following tasks as done to indicate that you are done with them: (Code, do yoga)

T32: What did the system do when you pressed the ‘Mark as Done’ button? (please explain)

T3P: Imagine that you would like the system to move your tasks to the bottom of the list when you are done with them, in addition to

crossing them off. So, make the system do that.

TG4

T41: Create a list called “tomorrow”.

T42: Add the following new tasks to the tomorrow list and set their due dates to tomorrow: “buy bread”, “register”, “return book”

T43: What does the system do when you add a task to a list? (please explain orally)

T4P: In addition to adding the task to the bottom of the list, make the system set the tasks’ due date to tomorrow by default when you

enter a task in this list.

TG5

T51: You do not want to disturb your sleep by the automated task reminders that are sent when you are asleep. So, find tasks that their

reminders are set to be sent out between 10 pm and 7 am and postpone them to 7 am.

T5P: Imagine that there are other times that you you’d like to define quiet hours so that you tell the system a time period in which you

don’t want to receive any reminders and the system postpones sending the reminders to the end of that period. In this situation, you
decide to create a button called ‘mute reminders’ that when you click on, the system asks you to enter the time period and then the

system changes the reminders that are supposed to be sent out within that period such that they will be sent out at the end of that period.

TG6

T61: Today, you want to focus on the following 3 tasks (Read paper, learn javascript, Finish paper review). Gray out the rest of your

tasks so they don’t distract you.

T6P: Imagine that you’d like to do the previous task again in the future. For this situation, you decide to create a button called ‘Focus’

such that when you select the tasks that you want to focus on and click on the ‘Focus’ button, it makes the other tasks gray.

Table 4. Tasks used in the experiment. Participants were given one task at a time.

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

244

regression models, we included the fixed effects of the

number of tasks already attempted, programming expertise,

gender, and age, as well as the random effects of the task that

was being attempted and participant.

We only analyzed personalization tasks (T1P-T6P) in the

task groups. Some participants performed personalization

even for the non-personalization tasks in which they were not

explicitly asked nor expected to personalize, i.e. the first task

in TG1, TG2, TG5, and TG6. Some of them skipped the

personalization task in the task group as they recognized that

they had already performed that task. In these cases, we

considered their first tasks as their personalization tasks.

FINDINGS

Task completion and mistakes made
Except for two participants who gave up completing T5P,

participants did complete all personalization tasks, albeit

some with mistakes (due to the iterative nature of writing a

script, only uncorrected mistakes are counted as mistakes).

A mistake meant that the solution was either a slightly or

completely different personalization than the intended one.

Out of the 144 (24x6) trials of the six personalization tasks,

only 2 were left incomplete, 94 were completed successfully

with no mistake (Fig 5-A). In the remaining 48 trials, 54

mistakes were made in total. The number of mistakes made

in a single task ranged from 1 to 3, with only 1 participant

ever making 3 mistakes on a task (T5P). Table 5 illustrates

the distribution of mistakes across the tasks.

We grouped the similar mistakes, and labeled the 4 emergent

groups as: lack of precision, terminology related, mental

model mismatch, and wrong trigger. In 41% of the mistakes,

a wrong block was chosen due to lack of precision, e.g.,

choosing ‘for all tasks’ instead of ‘for all selected tasks’ or

‘yesterday’ instead of ‘before today’. 37% of the mistakes,

were terminology related, e.g., using ‘completion date’

instead of ‘due date’ or ‘time’ instead of ‘date’. 18% of the

mistakes were due to changing the effect of a wrong trigger

which was most common in the tasks that required use of the

self-disclosing mechanism (T3P, T4P). For example, when

performing T4P, which required attributing a new effect to

the ‘add’ button, some participants added the new effect to

an irrelevant trigger that was displayed through the self-

disclosing mechanism because that irrelevant trigger

happened to be their last interaction with the system. Finally,

only 4% of the mistakes were due to a mental model

mismatch such as a mismatch between the functionality of a

building block and what users expected it to do. For example,

3 participants made an unnecessary use of the ‘show’ block

in T21—where they were asked to find tasks that were

overdue and change their color to red—before using the

‘change’ block. For example, FN4 created the following two

scripts: “Show tasks that their due date is before today on

calendar” and “Change tasks’ color to Red for tasks that their

due date is before today”. But all those 3 participants

mentioned “I probably didn’t have to use ‘show’” right after

using the ‘change’ block. Fig 5-B illustrates a breakdown of

mistake types across programming expertise. Compared to

programmers, participants with no to some programming

background made disproportionately more mistakes due to

lack of precision and choosing a wrong trigger.

To examine if the number of mistakes were associated with

programming expertise and other aforementioned factors, we

ran a Poisson mixed model regression. Also, to analyze

success in completing a task (0 mistakes vs. 1 or more), we

ran a logistic mixed model regression. Neither of these

analyses identified any significant predictors.

Unexpected personalization behaviors
Personalizing when performing non-personalization tasks:

As mentioned, some participants performed personalization

in tasks where they were not directly asked to do so (T11,

T21, T51, and T61). Out of the 96 trials of these four tasks,

57 were done by creating a personalization. When asked

Task

Correct personalization script

of mistakes in the script

 0 1 2 3 --*

T1P

[When clicked on “Postpone”],

[Change] [tasks’ due date to] [tomorrow] [for all selected tasks]
17 7 0 0 0

T2P

[When clicked on “Highlight overdues”],

[Change] [tasks' color to] [Red] [for tasks that] [their due date is] [before] [today/now]
10 12 2 0 0

T3P

[When clicked on “Mark as done”],

[Move] [all selected tasks to] [location in the list:] [bottom of the list]
20 4 0 0 0

T4P

When clicked on “add”,

[Change] [tasks' due date to] [tomorrow] [for all tasks in this list]
12 11 1 0 0

T5P

When clicked on “Mute reminders”,

[Ask me for] [a Time called "start"], [a Time called "end"]

[Change] [reminders' time to] [*end*] [for reminders that] [their time is] [between] [*start*] and [*end*]

13 7 1 1 2

T6P

When clicked on “Focus”,

[Change] [tasks' color to] [Gray] [for all unselected tasks]
22 2 0 0 0

Total Number of trials = 144 94 48 2

Table 5. Correct personalization for each personalization task and the number of participants who made 0, 1, 2, 3 errors in their

scripts when performing each task. Each correctly selected building block of a personalization is shown within a bracket. * The

last column shows the number of participants who left the tasks incomplete.

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

245

about their choice, participants mentioned one of the

following: 1) they were aware of the manual method but

thought that the task involved “too much hassle” if done

manually, 2) they mentioned that they never would have

thought that they should do the task manually, or 3) they

could not figure out how to do the task without personalizing.

In an extreme case, FS4 couldn't find the 'Mark as done'

button, when she was asked to mark two tasks as done in

T31, and she created a button called 'completed.' A logistic

mixed model regression of whether participants personalized

in these tasks did not identify any significant predictor.

Creating more generalizable personalization than asked for:

Four participants (MP2, MS2, MP3, MS4) created more

generalizable personalizations when not asked to

personalize; instead of the simpler anticipated solution of

“Change tasks' start date to tomorrow for all selected tasks”

for T11, they combined the following two scripts: “ask me

for a Date called ‘dateChange’” and “change tasks' start

date to *dateChange* for all selected tasks”.

Reusing a personalization created in prior tasks: Some

participants reused their personalizations without being

instructed to do so. Task T42 asked the participants to add 3

tasks to a list and set their due dates to tomorrow. To save

time on this, 5 participants (MP3, FP2, MP5, FN5, FN6)

reused the ‘postpone to tomorrow’ button that they had

created in T1P, instead of manually changing the due dates

of the three tasks. We expect to see such reuse behavior when

users build their own personalization in a real-world setting,

and it was reassuring to see this behavior in the lab setting.

ScriPer: strengths and challenges

Flexibility of the system

For each personalization task, we had anticipated a single

solution, but participants performed some of the tasks

differently. This showed the system’s flexibility in

supporting different ways of expressing a feature. For

example, for T3P where they were asked to add a new effect

to the ‘Mark as done’ button such that it moves the tasks to

the bottom of the list, 3 participants performed the task with

this script: “change tasks' location to the bottom of the list

for all selected tasks” instead of our anticipated solution of

“move all selected tasks to location: bottom of the list”.

MP5, who used Todoist (a dedicated PTM tool), was eager

to provide suggestions for improving the PTM support of our

prototype before realizing that he could achieve some of his

suggestions through personalization: “that's the nice thing

about the system, you can always edit and do anything you

want. So for example, I want 'Mark as done' to move all of

this into a 'done' list. I can easily do it with personalization”.

Then he went ahead and changed the effect of ‘Mark as done’

button and said: “So, it's hard to criticize the system because

you can create anything you want. Like if you have anything

missing, it's like a plugin, you can just create it.”

Some of the participants speculated about the potential

usefulness of ScriPer in other apps: “I like that you can

construct features. Other apps don't do that. The gray out

thing [referring to T6P], I have an app similar to this but it

doesn't do the gray out…you can prioritize them [your

tasks], but you have to do it individually, you can't say all

these ones are priority ones together” [FS1]. MP2 could see

ScriPer being used for macro creation in spreadsheets:

“Instead of having to record your macro you can actually do

something that's a bit more plain text [as in ScriPer] it's

really frustrating to make those macros; they are always very

strict…they won’t allow any easy process.”

Overall ease of use

Overall, participants liked the concept of creating their own

features, and found ScriPer easy to use for the most part.

Even programmers appreciated not having to code for the

purpose of personalization: “I loved the feature construction

window. I’m a programmer but I don’t like doing it when I

don’t have to especially for something like personalization”

[MP1]. One participant commented on the value of the save

button in ScriPer: “I liked the fact that when you want to save

you need to complete every step. It's not like you complete

half the steps and you can save it, that didn't work. It's giving

you some feedback that you are right” [MN2].

Findability of the building blocks among the suggestions

Participants took different approaches to finding their

desired block among the suggested blocks: some participants

typed a keyword they were looking for to filter the

suggestion list, and others visually scanned the list to see

what fits. In cases where the list of suggestions was long,

participants who filtered seemed to find their desired block

faster, based on observation as the time to select a suggestion

was not logged. However, the filtering behavior led some

participants to either make precision-related mistakes or

create less efficient scripts, as they sufficed to the first best-

matched block and did not find the correct block, which was

filtered out. For example, MP3 inefficiently performed T6P;

Figure 5: (A) Number of participants who successfully completed each task with no mistake, (B) Breakdown of mistakes

across types and programming expertise.

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

246

while the intention was to gray out the unselected tasks, he

created the following two scripts: "change task’s color to

gray for all tasks" + “change tasks’ color to green for all

selected tasks." He missed the option of “for all unselected

tasks” when writing the first script. Some participants

preferred scanning the options rather than typing and

filtering, because they anticipated a potential mismatch

between their own vocabulary and that of the system: “there

wasn't so much stuff that I thought that [the filter] was

necessary. I also realized I was scared I'd miss something if

I didn't type it as exactly the way it was typed” [MS4].

Match between the order of blocks and users’ expectations

ScriPer imposes an order in which users are expected to

express their desired personalization. While the majority of

the participants mentioned that the order made sense to them,

7/24 pointed to a mismatch between the order they thought

about the personalization and the order the blocks were

suggested. All those 7 participants wanted to first identify

objects and only then apply an action on them; however, in

our prototype, the action building blocks were suggested

first. For example, FP3 said: “I like how it constructs it for

you. But sometimes I felt like I have to think about the order

of how to construct things in a certain way. First I need to

select and then I need to do change whatever it was. I think

it's more helpful to have the system help you construct it like

this, but at the same time the rigidness made it hard to figure

out.” However, many participants (without prompting)

pointed to the learning curve in getting to know the order of

ScriPer’s suggestions and that by their last tasks, they knew

what suggestions they should be expecting and when.

Difficulty in creating composite data types

The ‘ask me for’ block was designed to be used for

instructing the system to ask for data (e.g., a time, a text).

Part of T5P involved using this block to instruct the system

to ask users to enter a ‘time period’—a composite data type.

Fig 6 illustrates the steps involved. Following the under-

design guideline, we chose not to include composite data

types such as ‘time period’ as a building block, since they

could be built using more basic blocks such as time. Thus, in

T5P participants were expected to instruct the system to ask

them for two time inputs, which proved to be difficult for

some of the participants with little to no programming

background. Two of the participants gave up completing

T5P. For example, when performing this task, FP2 thought

aloud “I want the system to ask me for a range but this is only

asking for one time. I don’t know how to enter a time period.”

Self-disclosing mechanism: strengths and challenges
The panel that disclosed the system behavior was available

in both the main and the personalization modes. Most

participants liked having it in the main mode. MS2

mentioned that he should be able to have it in both modes:

“that's kinda cool because it visually shows you what's being

done for whatever is pressed live, whereas in personalization

[mode] you have to go and click and see.”

However, as mentioned earlier in the discussion of mistakes,

some participants had difficulty finding the right trigger, and

made mistakes by attributing a new behavior to a wrong

trigger (10/54 mistakes). The triggers shown in the panel are

updated on each user action. Thus, to change the effect of an

action through the self-disclosing mechanism, a participant

has to first perform the action so that the panel displays it as

a trigger. If done in the personalization mode, the action and

its expected effects are displayed without being executed.

However, participants who performed an action in the main

mode just to make the panel display the right trigger had to

undo the effect of their action. One approach to alleviate this

issue is to show a history of user interactions in the panel,

instead of only the last interaction, and allow users to choose

their desired trigger manually from the panel without going

through the process of performing and undoing an action, or

having to switch to the personalization mode.

In addition, there was a mismatch in how the system set

triggers and some of our participants’ mental model of it. In

our prototype, triggers are general actions such as “when

clicked on the checkbox next to a task.” To attribute a new

behavior to a trigger such that the behavior is only applied to

certain of objects (e.g. tasks that are in the ‘shopping’ list),

participants had to specify those objects when constructing

the new behavior, and not when setting the trigger. However,

some participants expected to first define a more specific

trigger such as “when clicked on the checkbox next to a task

in the ‘shopping’ list”, and then to add a behavior to it.

Therefore, they avoided changing the effect of a general

trigger: “I was a bit scared of using the panel because it

applies to very general actions… If I click on a task and then

add an action I say oh my God I'm gonna screw up every time

I click on that very generic action. I'll leave that for really

general behaviors unless there are some sort of filtering built

into that” [MP3]. To resolve this issue, triggers need to be

editable so that users can add conditions to them.

Figure 6: Steps involved in using the 'Ask me for' block to

perform part of T5P.

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

247

DISCUSSION AND CONCLUSION
The theoretical guidelines on how to design personalizable

tools have been rarely put into practice. To our knowledge,

our work is first in following such guidelines to design a

personalizable tool that is not a design environment as in

[9,16]. Our work paves the way for designing personalizable

tools by revealing its detailed design process and putting the

theoretical guidelines into practice, specifically by providing

insights into how to identify the building blocks of a system

and how to under-design, as well as providing an example of

a mechanism (ScriPer) for combining building blocks to

create some types of advanced personalizations; ScriPer is a

proof of concept and was not intended to offer complete

language expressivity; it covers trigger-action rules where

the trigger is a user interaction with an interface element.

To identify the building blocks of a PTM system we

reviewed user needs and feature requests of an existing PTM

application. We think that our high level categories—UI

elements, actions, interactions, external events, entities,

entities’ attributes, and attributes’ values—provide a more

practical starting point for designers of personalizable tools

to identify building blocks of a system. We found the under-

design guideline helpful in deciding whether to add a new

feature. It led us to include more basic building blocks

instead of adding more features or composite blocks. This

approach increases the number of possible features users

could build. However, our decision about not including the

composite data type of ‘time period’—since it could be built

using two times—did not work out for some participants.

Thus, under-design decisions need to be tested carefully to

ensure that composite blocks can be built intuitively,

especially for people with no programming background.

ScriPer is one possible design of a mechanism for combining

building blocks to create advanced personalizations, and our

preliminary evaluation shows that it is promising. One of the

most encouraging results is that many participants intuitively

personalized even when not required. Out of the 96 trials of

four of the non-personalization tasks, 57 were done by

creating a personalization. Further, most users were able to

create advanced personalizations when instructed to. On the

downside, however, ScriPer does not prevent the user from

making mistakes, and indeed about one third of the created

personalizations were either slightly or completely different

than the intended ones. Part of the issue is the ability for the

user to easily spot a mistake. Our evaluation did not include

having participants using our tool with their own tasks,

something that would have likely highlighted any mistake

quickly. Further investigation is needed to see how well users

are able to recover from their mistakes. Beyond recovery, it

is important for a personalization mechanism to limit the

possibility of making a mistake in the first place. Mistakes

due to choosing a wrong trigger in the self-disclosing

mechanism were related to not noticing the trigger part in the

panel. To avoid such mistakes, the self-disclosing

mechanism should emphasize the trigger part and ask

users—once they are done with creating a personalization—

to confirm that their personalization is attributed to the right

trigger. Compared to programmers, participants with no to

some programming background made disproportionately

more mistakes due to lack of precision, i.e. mistakes such as

choosing ‘yesterday’ instead of ‘before today’. One approach

to reduce the possibility of such error is to suggest other

conceptually similar options to what they have selected or

are about to select. This can be done, for example, by

highlighting those similar options when a user is about to

select an option. This approach requires designers to

determine clusters of conceptually similar building blocks

which might be an added step to the design. Alternatively, a

data-driven approach may be adopted by tracking how errors

are made and then corrected.

One usability issue with ScriPer was related to the order it

imposed on using the blocks. Action building blocks such as

change, move, etc. were so basic (i.e., low-level) that they

did not necessarily correspond to any user interaction or

interface element in the system. Therefore, ScriPer had to be

able to provide specific suggestions for each step of

composing a script to compensate for users’ lack of

familiarity with the actions and their parameters. Thus, we

chose to impose an order for combining building blocks so

the number of suggestions at each step would be manageable

for users. The order allowed the personalization scripts to

form an English sentence and provided the benefit of

knowing what building block should be selected at each step.

However, it did not match some participants’ preferred order.

Part of the problem was due to lack of visibility of the next

steps, which was partly due to their dependence on user’s

prior selections. An alternative approach is to show all the

steps to users and let users choose the order in which they

want to complete each step. However, that might make the

interface crowded and confusing. Also, systems that use

higher level building blocks that are more familiar to users

can support a flexible order. Inky is an example of such a

system, since it replaces a GUI with a command line

interface, where users are likely to be familiar with the

available commands and their parameters.

Although the personalization tasks in our study were

ecologically valid, they were not derived from our particular

participants. Longitudinal studies are needed to assess if

users can translate their own needs into personalizations and

whether they can reuse those personalizations effectively.

Similar to our prototype, even a fully developed PTM tool

can be limited in its coverage of primitive building blocks.

To overcome this, users should be able to add building

blocks to the system; but this could be challenging. For

example, adding an action building block such as ‘hide’

requires determining all the possible building blocks that can

be combined with it, a template to represent arrangement of

the building blocks, and the underlying functionality

associated with the block. Although the first two can be

achieved by people with no to some programming

background, defining the underlying functionality associated

with an action block perhaps needs to be left to programmers.

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

248

REFERENCES
1. Victoria Bellotti, Brinda Dalal, Nathaniel Good, Peter Flynn,

Daniel G Bobrow, and Nicolas Ducheneaut. 2004. What a to-

do: studies of task management towards the design of a

personal task list manager. Proceedings of the SIGCHI

conference on Human factors in computing systems, ACM,

735–742.

http://doi.org/http://doi.acm.org.proxy.lib.sfu.ca/10.1145/985

692.985785

2. Richard Bentley and Paul Dourish. 1995. Medium versus

mechanism: supporting collaboration through customisation.

Proceedings of the fourth conference on European

Conference on Computer-Supported Cooperative Work,

Kluwer Academic Publishers, 133–148. Retrieved October

31, 2012 from

http://dl.acm.org/citation.cfm?id=1241958.1241967

3. Abraham Bernstein and Esther Kaufmann. 2006. GINO–a

guided input natural language ontology editor. In The

Semantic Web-ISWC 2006. Springer, 144–157. Retrieved

November 30, 2015 from

http://link.springer.com/chapter/10.1007/11926078_11

4. Maria Francesca Costabile, Daniela Fogli, Piero Mussio, and

Antonio Piccinno. 2004. Software environments for end-user

development and tailoring. Psychnology 2: 99–122.

5. Allen Cypher, Mira Dontcheva, Tessa Lau, and Jeffrey

Nichols. 2010. No Code Required: Giving Users Tools to

Transform the Web. Morgan Kaufmann. Retrieved April 12,

2015 from http://books.google.ca/books?hl=en&lr=&id=-

bJKhQWYesoC&oi=fnd&pg=PP2&dq=no+code+required&

ots=aHQ20HID3N&sig=pFdjOWG3bmxD86QPlZo9LAS_D

Gg

6. Chris DiGiano and Mike Eisenberg. 1995. Self-disclosing

design tools: a gentle introduction to end-user programming.

Proceedings of the 1st conference on Designing interactive

systems: processes, practices, methods, & techniques, ACM,

189–197. Retrieved April 13, 2015 from

http://dl.acm.org/citation.cfm?id=225455

7. Gerhard Fischer and Thomas Herrmann. 2011. Socio-

technical systems: a meta-design perspective. International

Journal of Sociotechnology and Knowledge Development

(IJSKD) 3, 1: 1–33.

8. Gerhard Fischer and E. Scharff. 2000. Meta-design: design

for designers. Proceedings of the 3rd conference on

Designing interactive systems: processes, practices, methods,

and techniques, 396–405. Retrieved October 26, 2012 from

http://dl.acm.org/citation.cfm?id=347798

9. G. Fischer, R. McCall, and A. Morch. 1989. JANUS:

Integrating Hypertext with a Knowledge-based Design

Environment. Proceedings of the Second Annual ACM

Conference on Hypertext, ACM, 105–117.

http://doi.org/10.1145/74224.74233

10. Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. 2008.

Attempto Controlled English for knowledge representation.

In Reasoning Web. Springer, 104–124. Retrieved November

30, 2015 from http://link.springer.com/chapter/10.1007/978-

3-540-85658-0_3

11. Adam Funk, Valentin Tablan, Kalina Bontcheva, Hamish

Cunningham, Brian Davis, and Siegfried Handschuh. 2007.

Clone: Controlled language for ontology editing. Springer.

Retrieved November 30, 2015 from

http://link.springer.com/chapter/10.1007/978-3-540-76298-

0_11

12. Mona Haraty, Joanna McGrenere, and Charlotte Tang. 2015.

How and Why Personal Task Management Behaviors Change

Over Time. Proceedings of the 2015 Graphics Interface

Conference, Canadian Information Processing Society,

GI’15.

13. Mona Haraty, Diane Tam, Shathel Haddad, Joanna

McGrenere, and Charlotte Tang. 2012. Individual differences

in personal task management: a field study in an academic

setting. Proceedings of the 2012 Graphics Interface

Conference, Canadian Information Processing Society, 35–

44. Retrieved October 4, 2012 from

http://dl.acm.org/citation.cfm?id=2305276.2305284

14. Austin Henderson and Morten Kyng. 1991. There’s no place

like home: Continuing Design in Use. 1991) Design at Work:

Cooperative Design of Computer Systems. Lawrence

Erlbaum Associates, Hillsdale, NJ: 219–240.

15. Max Van Kleek, Brennan Moore, David R. Karger, Paul

André, and m.c. schraefel. 2010. Atomate It! End-user

Context-sensitive Automation Using Heterogeneous

Information Sources on the Web. Proceedings of the 19th

International Conference on World Wide Web, ACM, 951–

960. http://doi.org/10.1145/1772690.1772787

16. Andreas C. Lemke and Gerhard Fischer. 1990. A cooperative

problem solving system for user interface. AAAI, 479–484.

Retrieved December 28, 2015 from

http://www.aaai.org/Papers/AAAI/1990/AAAI90-072.pdf

17. Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa

Lau. 2008. CoScripter: automating & sharing how-to

knowledge in the enterprise. Proceedings of the twenty-sixth

annual SIGCHI conference on Human factors in computing

systems, ACM, 1719–1728.

http://doi.org/10.1145/1357054.1357323

18. H. Lieberman, F. Paternò, and V. Wulf. 2006. End user

development. Springer. Retrieved October 2, 2012 from

http://books.google.ca/books?hl=en&lr=&id=9bTgzKA1fkY

C&oi=fnd&pg=PR7&dq=component-

based+approaches+to+tailorable+systems&ots=ujhXsoIR-

e&sig=atGOBVjZktFJw1SeVEzbVLG2V3I

19. Greg Little, R. Miller, V. Chou, Michael Bernstein, Tessa

Lau, and Allen Cypher. 2010. Sloppy programming. Morgan

Kaufmann. Retrieved April 12, 2015 from

http://books.google.ca/books?hl=en&lr=&id=-

bJKhQWYesoC&oi=fnd&pg=PA289&dq=sloppy+programm

ing&ots=aHQ20HNGaK&sig=ECLvPwTV1wtc4A_jk0DU6J

MleL8

20. R. C. Miller, V. H. Chou, M. Bernstein, G. Little, M. Van

Kleek, and D. Karger. 2008. Inky: a sloppy command line for

the web with rich visual feedback. Retrieved November 19,

2012 from http://dspace.mit.edu/handle/1721.1/51696

21. Thomas Moran. 2002. Everyday Adaptive Design (keynote).

Retrieved from http://www.sigchi.org/dis2002/

22. Anders Mørch. 1995. Application units: Basic building

blocks of tailorable applications. In Human-Computer

Interaction. Springer, 45–62. Retrieved October 10, 2013

from http://link.springer.com/chapter/10.1007/3-540-60614-

9_4

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

249

23. Brad A. Myers, John F. Pane, and Andy Ko. 2004. Natural

Programming Languages and Environments. Commun. ACM

47, 9: 47–52. http://doi.org/10.1145/1015864.1015888

24. R. Oppermann and H. Simm. 1994. Adaptability: User-

initiated individualization. Adaptive User Support–

Ergonomic Design of Manually and Automatically Adaptable

Software. Hillsdale, New Jersey. Retrieved November 5,

2012 from

http://books.google.ca/books?hl=en&lr=&id=0N9xdnrutSoC

&oi=fnd&pg=PA14&dq=Adaptability:+User-

Initiated+Individualization&ots=ptwQxyR8-

j&sig=BWDthV-2warCk0Ko4oO3KQ0IYmI

25. Alfred. Retrieved from https://www.alfredapp.com/

26. Remember The Milk - Forums / Ideas. Retrieved March 30,

2016 from http://www.rememberthemilk.com/forums/ideas/

.

Personalisation DIS 2016, June 4–8, 2016, Brisbane, Australia

250

