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A search-set model of path tracing in
graphs

Jessica Q. Dawson, Tamara Munzner and Joanna McGrenere

Abstract
We present a predictive model of human behaviour when tracing paths through a node-link graph, a low-level
abstract task that feeds into many other visual data analysis tasks that require understanding topological
structure. We introduce the idea of a search set, namely, the set of paths that users are most likely to search,
as a useful intermediate level for analysis that lies between the global level of the full graph and the local
level of the shortest path between two nodes. We present potential practical applications of a predicted
search set in the design of visual encoding and interaction techniques for graphs. Our predictive model is
based on extensive qualitative analysis from an observational study, resulting in a detailed characterization of
common path-tracing behaviours. These include the conditions under which people stop following paths, the
likely directions for the first hop people follow, the tendency to revisit previously followed paths and the ten-
dency to mistakenly follow apparent paths in addition to true topological paths. The algorithmic implementa-
tion of our predictive model is robust to a broad range of parameter settings. We provide a preliminary
validation of the model through a hierarchical multiple regression analysis comparing graph readability fac-
tors computed on the predicted search set to factors computed at the global level and the local shortest path
solution. The tested factors included edge–edge crossings, node–edge crossings, path continuity and path
length. Our approach provides modest improvements for predictions of RT and error using search-set
factors.
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Introduction

We present a characterization of human behaviour dur-

ing the visual data analysis of graphs that are visually

encoded as nodes connected by edges. This characteri-

zation arises from an extensive qualitative analysis from

an observational study that focused on the low-level

task of tracing paths through the graph, a task abstrac-

tion that underlies the many higher level analysis tasks

that entail understanding topological structure. In this

study, 12 participants completed path-tracing tasks by

demonstrating their search progress on a tablet. The

detailed characterization of common path-tracing

behaviours was the base for a predictive model of paths

that users are likely to search.

Our model is built around the concept of a search

set, which we propose as a way to capture an important

facet of human behaviour: it is the set of all paths that

a user follows while attempting to find the shortest

path between a source and goal node. The search set

provides a scope for analysis that lies in between the
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global level of the entire graph and the local level of

the shortest path solution to the path-tracing problem.

Our model predicts this set of paths that participants

are most likely to search as ordered discrete groups of

paths that are equivalence classes, where within each

group all the paths are postulated to be equally likely

paths.

Much of the previous work on characterizing

human behaviour during the visual analysis of graphs

has been devoted to understanding what factors affect

the quality of the layout. Many factors have been pro-

posed, such as the number of edge–edge crossings,

the total curvature of edge bends and the total area of

the drawing. Earlier works1–4 simply proposed fac-

tors and then immediately incorporated them into

optimization-based layout algorithms. The factors

were considered as constraints to minimize or maxi-

mize, and thus a major emphasis was on factors that

are amenable to automatic computation. Subsequent

works5–12 have since begun to determine graph read-

ability – whether and how properties of graph layouts,

including these longstanding factors and more

recently proposed ones, directly affect human graph-

reading behaviour and their understanding of graph

structure in the context of specific tasks. This initial

work has yielded some intriguing preliminary results,

but the characterization of human behaviour during

the visual analysis of graphs is far from complete.

The search-set concept can be applied to this qual-

ity assessment problem by calculating these factors on

only the subsets of the graph encountered during a

specific tracing task; we hypothesized that accounting

for the paths most relevant to the user’s search would

improve upon previous work that has measured factors

across the entire graph globally or on the solution path

locally. As a demonstration of this application of the

search set and as a preliminary validation of our pre-

dictive model, we conducted a careful comparison of

graph readability factors through a hierarchical multi-

ple regression analysis. Our results show a modest

benefit of measuring factors on the search set over pre-

vious work.

Our work has two primary contributions: (1) a

detailed characterization of path-tracing behaviours

based on observational data of human subjects and (2)

a predictive model of the search set. We also provide

two secondary contributions: (3) the introduction of

the concept of the search set itself, as an intermediate

level for behavioural analysis that lies between the full

global graph and the narrow solution path considered

in some previous work and (4) a multiple regression

analysis that provides preliminary support for the pre-

dictive model. A more detailed articulation of each of

these contributions is provided in section ‘Discussion

and future work’.

This article begins with motivation, background

and the research questions that guided our work. We

continue with the related work on observation of

human graph-reading behaviour and evaluating factors

for graph readability. Next, we describe our user study,

which included observation of users completing a

path-tracing task. For clarity, we present our analysis

in three separate sections. First, we present our quali-

tative analysis approach and provide descriptions of

common human path-tracing behaviours that we iden-

tified. Second, we discuss our predictive behavioural

model for the search set. Third, we conduct a prelimi-

nary validation of our search-set model by comparing

the effectiveness of measuring factors at the solution-

path, search-set and global levels for predicting path-

tracing difficulty. We conclude with a discussion of the

implications of our findings regarding human path-

tracing behaviour and the search-set concept, the

value of our methodology for untangling the impor-

tance of different graph readability factors, the practi-

cal applications of a predictive model of the search set

in terms of implications for the design of visual encod-

ing and interaction techniques for graphs, the limita-

tions of our study and analyses, and our plans for

future work.

Motivation and background

We first discuss six considerations that motivated this

work: why characterizing behaviour benefits the infor-

mation visualization community, why path tracing is

an interesting abstract task to study, why we conjecture

that the search set would be a useful scope to investi-

gate, what behaviours have already been identified,

how a predictive search-set model could be used in

practice and why to analyse with multiple regression.

Why characterize behaviour?

Characterizing human behaviour during visual data

analysis is the underlying goal of most experimental

work in visualization. This characterization is useful in

its own right as a theoretical foundation to visualiza-

tion knowledge.13 It directly informs the subsequent

use of the exact techniques for visual encoding and

interaction that are studied.14 More broadly, this kind

of empirical work often spurs the design of new tech-

niques15,16 and supports the development and refine-

ment of quantitative metrics for the quality of a visual

encoding that better corresponds to human judge-

ments of its utility.12,17
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Why path tracing?

The abstract task18 of path tracing is a canonical low-

level task that serves as a building block for the many

high-level tasks that involve understanding topological

structure of graphs.19 Path tracing has been widely

studied7–9,11,20–25 because it underlies many real-world

use cases for visual data analysis with graphs.19,26,27 A

concrete example is a medical investigator generating a

hypothesis about disease transmission in a graph in

which nodes represent people and edges represent

known contact between them and who is checking

whether a short path exists between one infected indi-

vidual and another.

The low-level task of path-tracing tasks for graphs

laid out as node-link diagrams is similar in spirit to the

low-level task of quantity judgement for tabular data.

Many experiments to characterize the accuracy of

length, angle and area judgements have been con-

ducted for table layout techniques such as bar charts

and line graphs,13,28 scatterplots29 and horizon

charts;14 in contrast, graph techniques are less well

characterized.

Why introduce a search set?

The common evaluation of factors for laying out a

graph is global, that is, one or more factors would be

measured across the entire graph. Recent work sug-

gests that for path-tracing tasks, a local approach is

better. Ware et al.23 investigated the effect of factors

measured along the solution path, that is, the specific

path that is the correct solution for a specific path-

tracing problem. They showed that this approach was

effective in predicting path-tracing difficulty and found

no additional benefit from including globally mea-

sured factors. The intuition behind this result is that

global measurements take into account too much of

the graph: a graph that scores poorly globally for a set

of factors may nevertheless have paths that are easy to

trace in regions of minimal clutter.

However, just as global measurement may consider

too much of the graph, we suspect that measuring local

factors only on the solution path does not take enough

of the graph into account. We propose that an even

better solution lies between these two extremes,

where the full subset of the graph that is relevant for

the task at hand is considered; we name this subset

the search set. Specifically, we hypothesize that the

prediction of path-tracing difficulty can be improved

by accounting for the impact of important factors on

the search set: in this case, all the paths that a user

follows during the tracing task before encountering

the solution. Our logic is that if crossings on the

solution path slow a user down, then so should other

crossings on paths investigated before the solution

path is found.

Search-set factors may also be more broadly

applicable than solution-path factors because some

instances of path-tracing tasks do not have solutions.

In a disconnected graph, for example, a solution path

between two points may not exist, but it is possible to

calculate a set of paths that a user is likely to follow

while making that determination.

What behaviours are already identified?

A previous study from Huang et al.7 identified the geo-

desic tendency, that is, when attempting to trace a path

from a source node to a goal node, people have a ten-

dency to follow the branch that is the closest-to-geodesic

from the current node to the goal. A geodesic is the geo-

metric straight line between two points. Figure 1 shows

an example: users looking for the path from A to G

would likely start by following the series of closest-to-

geodesic branches from A to B to C to D. They would

next deviate from the closest-to-geodesic and follow A

to E, before returning to following the closest-to-geo-

desic branches from E to F to G. In this case, the solu-

tion path was the second path explored.

Our initial investigations showed us that the geode-

sic tendency concept is a clear step in the right direc-

tion but lacks sufficient predictive power for a

complete model of human behaviour characterization.

We noted that a corollary of the geodesic tendency is

that certain paths are unlikely to be followed, either

Figure 1. When tracing a path from A to G, the geodesic
tendency predicts that a user would first follow the
incorrect path A–B–C–D that is closer to the straight line
between A and G, before following the solution-path A–E–
F–G.
Redrawn from Huang et al.7
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because they are not on a closest-to-geodesic branch

or because they would naturally fall after the solution

path in an exploration sequence. For example, in

Figure 1, A–E–F–H would not be followed because

the solution-path A–E–F–G is already found. Our def-

inition of the search set is exactly the likely set of paths

that a person would search along the way to finding

the solution path. In this case, the set is the paths A–

B–C–D and A–E–F–G.

What are the uses of a predictive search-set
model?

A predictive search-set model could be used for factor

measurement, for general salience measurement, for

interaction techniques that dynamically adjust layouts

and for static layout algorithms.

Factor measurement. Our original motivation for

developing a predictive model of path tracing was to

predict the difficulty in path tracing in the context of

experimental design. We noted this open problem

when designing a controlled experiment to investigate

different visual encoding techniques for graphs and

found no reliable way to control for or measure path-

tracing difficulty, despite the significant previous work

on graph readability factors; it was a confounding vari-

able that distorted our experimental results. Our pre-

liminary validation of the model addresses exactly this

application.

Salience measurement. A predictive model provides a

salience measure for an edge that is targeted with

respect to a specific query of two nodes. Given a lay-

out of the entire graph and the two specific nodes as

input, a predictive model of the search set provides an

ordered list of paths (or sets of equivalence classes of

paths) as output. The ranking of a particular path

against that set can be checked: does it appear early in

the list, late in the list or not at all? This list can then

be used as a black box by any visual encoding or inter-

action technique that takes a path or an edge as input

and provides a rank as output.

Jänicke and Chen30 discuss many uses of visual sal-

ience within a general comparison framework. They

proposed an image-space salience metric that is guided

by observations of low-level human visual perception

but is agnostic to the data type. A predictive search-set

model offers an alternative way to gauge the salience

that is informed by human behaviour and dataset

semantics in terms of topological structure, in addition

to the geometric layout of the visual encoding. Search-

set salience can be used in all the applications that they

propose and also as a core primitive for graph layout

in any context that requires measuring layout quality

or changing a layout with respect to a subset rather

than all the graphs.

Interaction techniques. Interaction approaches that

rearrange a subset of the nodes, such as the bring-and-

go31 technique, typically minimize the cognitive

impact of disruption on an original layout by main-

taining spatial consistency; search-set salience could

guide the movement to be aligned with behavioural

tendencies. Search-set salience might also support

new techniques that affect a larger portion of the

graph by suggesting relatively subtle local changes

rather than extreme rearrangements.

It could also be useful for permanent rearrange-

ment. For example, if the user interactively indicates

that a small set of nodes are important to emphasize,

the graph could be rearranged so that paths between

them are easier to follow according to the model’s pre-

diction. A search-set model could also guide prioritiz-

ing specific paths deemed to be important according

to characterized behaviours, for example, the predicted

direction of the first hop in the path.

Static layout. Layout techniques that measure the

quality of multiple layout alternatives and choose the

best result, as with Design Galleries,32 could use

search-set salience as a black box. Search-set salience

provides interesting possibilities in guiding multilevel

layout techniques that achieve speed and quality

improvements with multi-pass approaches that act on

subsets of the nodes separately, such as incremental

refinement from coarse to fine levels of a compound

graph hierarchy.33 Search-set salience would support

subsets that are not spatially localized to a contiguous

geometric region because it is based on topology. It

could also be used to develop new global post-

processing layout improvement techniques in a similar

spirit to node overlap removal.34 A novel family of

two-pass layout approaches could optimize for search-

set salience as a second pass with respect to a small set

of important nodes or edges identified in a first pass

using an appropriate importance measure35 such as a

centrality metric for social network analysis.36

Why use multiple regression?

Evaluative studies of factors affecting graph readability

have predominantly relied on significance testing to

conclude that a factor is important or not. A handful

of studies have further attempted to create priority lists

of factors based on their relative importance, but these

have largely been based on significance testing21,37 or

human judgements.38,39 Such approaches are limited
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in their ability to untangle how different factors inter-

act,40 and the magnitude of the effects is rarely

reported. In their study of factors on the solution path,

Ware et al.23 introduced the use of multiple regression

for evaluating the impact of factors on task difficulty

and argued for its further use in evaluation of graph

readability factors. Multiple regression inherently pro-

vides a measure of effect size and has the additional

benefit of assigning quantitative weights to factors,

which can be useful when considering the importance

of one factor over another.

To our knowledge, only one other study, by Huang

and Huang,8 has used multiple regression for untan-

gling the relative contributions of factors: they exam-

ine the relative impact of global edge–edge crossings

and global crossing angles on four different measures

of task difficulty. We differ from previous work in our

focus on the incremental validity of these factors.

Incremental validity is a concept from clinical psychol-

ogy that focuses on ‘the degree to which a measure

explains or predicts a phenomenon of interest, relative

to other measures’41 and on the utility of variables in

terms of cost and efficiency.42 Although the term incre-

mental typically has negative connotations in discus-

sions of research contributions, we note that here it is

being used in a specific technical sense of determining

whether useful information has been added beyond

what is already available. In particular, we show that

factors measured on the search set show modest

improvements over what can be explained with previ-

ously studied factors measured on the solution-path

and global levels.

Related work

We discuss the previous work most closely related to

the behavioural analysis that we conducted to build

our predictive model and to the factor-based analysis

that we use to validate it.

Descriptions of human graph-reading
behaviour

Our work is situated within two veins of evaluative

studies that have looked to human behaviour to assess

and explain graph readability: studies using eye track-

ing to gather data while humans read graphs and stud-

ies focused on human behaviour when manually

arranging graphs.5–7,11,12,24,25,43,44

Several studies have used eye tracking towards the

goal of understanding and describing how users actu-

ally read graphs. Pohl et al.6 found that force-directed

layout outperformed orthogonal and hierarchical lay-

out on a set of five tasks, one of which was identifying

a path between two points. For each task, the authors

used eye-tracking data to briefly explain their results in

terms of observed behaviours, but did not dig into

untangling the relationship between behaviours and

the characteristics of the different layout styles. Burch

et al.5 similarly used eye tracking to study visual explo-

ration behaviours of participants when solving a typical

hierarchy exploration task in traditional, orthogonal

and radial hierarchical layouts. Their results are also

primarily descriptive, and the authors are only able to

make limited recommendations for layout creation

based on their findings.

Huang et al.7,25 used eye tracking to study users

completing path-tracing tasks, with the goal of actually

observing the effect of edge–edge crossings on the

user’s gaze. This work is most similar to our own in

terms of goals: they identify and provide evidence for

the existence of a specific behavioural tendency, the

geodesic tendency, which strongly affects path tracing.

We build on the observational approaches just

described to complete a deeper study and characteri-

zation of human graph-reading behaviours through a

full model of path tracing, where the geodesic ten-

dency is clarified and extended in the context of addi-

tional tendencies, and show that it is possible to

predict a set of paths that a group of users is likely to

follow.

From a detailed analysis of eye-tracking data,

Körner9,24 developed a sequential model of graph

comprehension and examined the impact of factors at

its different stages. This cognitive model is intended to

disambiguate between potential underlying mechan-

isms of visual cognition within a high-level framework.

In contrast, our work provides a behaviour-based

model specific enough to be used for measuring fac-

tors, and we do not attempt to provide any explana-

tions for the cognitive mechanisms.

In contrast to this work using eye tracking, we asked

users to illustrate their search progress and demon-

strate their thinking by tracing their paths on a tablet.

This approach follows a second vein of observational

studies where users were asked to manually generate or

arrange graphs, and then their behaviour and the

resulting graphs were analysed to reveal what factors

and criteria they used.11,12,43,44 When tasked with cre-

ating understandable graphs, the participants in one

study by Purchase et al.44 favoured minimizing edge

crossings and maximizing orthogonality. Van Ham and

Rogowitz12 asked users to create layouts that best rep-

resented the structure of a dataset with distinct clusters

found that users also sought to minimize edge cross-

ings and also tended to create distinct convex hulls to

delineate clusters as distinct perceptual groups. Our

work is similar in its emphasis on behavioural analysis

through observation of user process and interaction
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with graphs. While this previous work led to a refined

understanding of the impact of existing factors, the

described behaviours are primarily about graph cre-

ation tasks and do not attempt to model the behaviours

exhibited in completing tasks that require reading the

graphs.

Evaluation of factors for graph layouts

Many studies have sought to evaluate the impact of

factors on human understanding of graphs. Factors

studied include edge bends,20,21 edge length,12,23

orthogonality,11,21,44 angular node resolution,21,37

edge crossing angles,8,45 clustering,12 node spac-

ing,11,37 edge stress11 and edge–edge cross-

ings.8,9,11,12,21,23,24,37,44 More recent studies explored

the effects of visual features on memorability46 and on

mental map preservation using dynamic layouts.47

However, many factors that are commonly incorpo-

rated into layout algorithms remain unexamined by

controlled experiments. One such factor is node–edge

crossings, which we evaluate for the first time in our

analysis.

Impacts of layout style and factors on task
performance. Some previous work has shown that

some factors may have a varying impact depending on

the task that a user must perform with a graph.

Purchase21 used a shortest path identification task, as

well as two tasks related to graph connectivity, in a

study that concluded that edge–edge crossings are the

most important factor. However, in a study of factors

impacting sociogram use, Huang et al.37 concluded

that edge–edge crossings are only important for path-

tracing tasks. Similarly, in his study of eye movements,

Körner24 found evidence that edge–edge crossings

have no impact during ‘search’ tasks, but do have sig-

nificant impact during the ‘comprehension’ tasks that

involve considering the edges between nodes.

Conversely, Dwyer et al.11 found no effect of edge–

edge crossings on either path-tracing or connectivity

tasks. These analyses focus on global layout and do

not discuss trade-offs or implications of factors. In our

study, we focus specifically on untangling the factors

that affect path-tracing task difficulty. We find that the

concept of search set may shed some light on the

underlying reasons for the mixed results in previous

work, as covered in section ‘Discussion and future

work’.

Measuring factors at local, search-set and global
levels. The prior studies that we have discussed thus

far have all focused on globally measured factors, with

only one exception; Ware et al.23 studied factors

measured on the solution path. In exploring the effec-

tiveness of factors for predicting response time (RT)

in a shortest path identification task, they identified a

new factor of path continuity and found significant

effects of solution-path length, path continuity, total

and average line length of the path, total branches on

the path, average crossing angle on the path and total

edge–edge crossings on the path. Furthermore, they

showed that with only four of these factors – solution-

path length, continuity, edge–edge crossings and

branches – they could account for 78.4% of the var-

iance of RT in their study, and they identified path

length and continuity as having the largest contribu-

tions. A crucial finding was that the globally measured

edge–edge crossings did not account for any additional

variance on top of the solution-path factors. To our

knowledge, only one other study8 compares the effect

of graph readability factors measured locally in addi-

tion to globally on RT. We are the first to do so for

error. Our study is also the first investigation of factors

for either time or error at three different levels: we

introduce the search-set level in addition to the global

and solution-path levels.

Untangling factor importance across measures. In

examining different tasks, the most common measure

of graph readability used in previous work has been

RT. Some studies have also examined the relationships

of factors to measures such as error, user preference

and (less commonly) cognitive load.48 While previous

work has recognized that, for example, the factors that

make a task take longer do not necessarily correspond

to those that increase the likelihood of error, little work

has examined the relative difference in factor impor-

tance for different measures of difficulty. In our later

discussion, we provide a nuanced discussion of the

ways that several factors affect RT and error in varying

ways.

User study design

We collected data through a laboratory-based observa-

tional user study with 12 participants, who were asked

to complete 144 unique path-tracing trials over two

sessions, while using a Wacom Cintiq tablet to demon-

strate the paths that they followed.

Research questions

Our study design was guided by a set of initial ques-

tions about the plausibility of the search-set concept

and its use as a basis for measuring factors that impact

path-tracing difficulty: (Q1) can we identify distinct

path-tracing behaviours and evidence of the search
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set? (Q2) how common are these path-tracing beha-

viours? (Q3) can we predict the search set based on

observed path-tracing behaviours? and (Q4) how

much improvement over previous work is gained by

calculating factors for graph layout on a predicted

search set? To answer these questions, we performed

an extensive analysis, which we present in multiple

parts in subsequent sections. We answered Q1 and Q2

through observation and characterization of path-

tracing behaviours. We then explored Q3 by incorpor-

ating these observed behaviours into the development

of a simple predictive behavioural model for the search

set. Finally, we focused on answering Q4 through a

hierarchical multiple regression analysis to compare

factors measured on the solution-path, search-set and

global levels.

Our intention to observe and characterize path-

tracing behaviours to explore the search-set concept

guided our choice of a tablet interface for recording

the participants’ search process. The study was predo-

minantly designed to support the planned hierarchical

multiple regression presented later, which influenced

the design of the task, the graphs used, the procedure

and the number of trials.

Piloting and rationale

In designing the study, we were particularly concerned

with how easily users would be able to physically trace

their search process, in tuning the difficulty of the

experimental task and in ensuring that the interface

was useable without interaction.

We began by piloting the study with six participants

recruited from the authors’ department, who were

available for extensive piloting but who had little previ-

ous knowledge of the research project. The sessions

lasted about 30 min. Participants were tasked with

finding the shortest path (of length 2–5 hops) between

two nodes in graphs printed out on paper. The graphs

had n = 50, 75 or 100 nodes (where the number of

edges = 2n, as dictated by the Watts–Strogatz model

described later in this section). During the task, parti-

cipants were asked to trace their search progress by

pointing at the nodes that they considered with a

capped pen. One of the authors observed participants

during the session and also videotaped the pen move-

ments from above for later review. For the final design

of the observational sessions, we chose to display the

graphs on an interactive tablet screen in order to sup-

port data logging for later analysis.

Physically tracing versus eye tracking. One goal of

piloting was to investigate whether having users physi-

cally trace their search process would allow us to

adequately capture the paths that users directly rea-

soned about during that process; we concluded that

this design would indeed suffice for the exploratory

nature of our investigation.

Although eye tracking has been widely used in pre-

vious work, it entails high-overhead analysis for tar-

geted questions; our goal was to analyse low-level data

quickly to focus on broader considerations in later

analysis phases. Moreover, it was important for our

study that we be able to identify exact nodes that users

were considering in very dense regions of the graph.

We were concerned that that eye tracking would not

guarantee sufficient resolution because of limitations

of precision of both the data that can be collected and

of the common methods for visualizing the data: heat

maps, for example, cannot show progression of paths

over time, and gaze plots often suffer from overplot-

ting.49 Furthermore, we wanted to generate a dataset

that could eventually be analysed statistically as part of

our model development and validation, which meant

that we needed records of paths that could be com-

pared to the predicted paths our model would pro-

duce. While there are methods and algorithms for

extracting and comparing scanpaths, it would have

required considerable extra development and analysis

effort in order to match the eye-gaze data to predicted

paths. In contrast, having participants point directly at

nodes on the tablet allowed us to capture exactly

which nodes they were considering and store the paths

directly – we were then able to both visualize these

data in time series plots and use these data for com-

parison against the output of our predictive model,

with minimal massaging or transformation required.

We observed from the pilot sessions that, with a

small amount of practice, participants became accus-

tomed to moving the pen at the same time that they

were searching, and this tracing functioned much as a

think-aloud observation equivalent. We did not

observe any problems arising from occlusion of the

screen by the participants’ hand, but we did note that

participants did not always hover over nodes that they

could reason about with their peripheral vision. The

inability to pick up peripheral vision is also a known

constraint of eye tracking.50

Tuning task difficulty. Another goal of piloting was to

tune the difficulty in our experimental task. Because

we were interested in overall path-tracing behaviour,

we wanted to have a combination of trials that would

span the range of difficulty from easy to hard – but not

impossible – to achieve a good mix of both success and

failure cases to study. In real life, if a task is impossible,

users will simply give up, a tendency that can confound

controlled experiments. Ware and Bobrow51 report an
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example in which the difficult tasks were too difficult

and had shorter times than the easier tasks because the

users gave up.

In our piloting, we found that 5-hop paths were

often too difficult for the graph sizes and density we

used – our participants frequently gave up without

completing the task and often became discouraged.

Thus, for the final design of the observational session,

we chose to use 2-, 3- and 4-hop paths only, with

4 hops being the maximum that we felt users could

reasonably complete without any additional technique

support.

We found that a graph size of 75 nodes and 150

edges reliably produced trials in the target range of dif-

ficulty. While this size may appear small compared to

many real-world datasets, our experiments with larger

graphs of up to 100 and 200 edges resulted in trials

that were too difficult. We carefully tuned the com-

plexity of the visual appearance to approximate the

information density of complex situations while still

allowing for controlled experimentation, and we suc-

ceeded in surpassing the 42-node size used by the pre-

vious study of local path tracing.23 A major constraint

on graph size was the size of tablet screen – nodes had

to be large enough to be easily acquired with the tablet

pen.

Finally, we also noted that a subset of our pilot par-

ticipants would search for a long time (up to 5 min)

before giving up, and their search behaviour became

less consistent and more chaotic over time. In the final

experiment, we capped search time at 90 s. This cap

ensured that the experiment could be finished within

reasonable length of time and that we would be cap-

turing common behaviours in a realistic situation.

Avoiding interaction. Our final goal was to ensure that

the interface was usable for the tracing task without

any scaffolding in the form of interactive techniques.

Many interactive techniques are used in practice for

highlighting, navigation and rearrangement. Examples

include simple colour highlighting of the segment

underneath the cursor (the combination of an edge

and the two nodes that it attaches to), highlighting

using alternate channels such as oscillating motion,51

highlighting larger topologically connected sets such

as all 1-hop neighbours of a node,52 more elaborate

interaction techniques such as bring-and-go31 that

rearrange the layout temporarily, navigation support

for zooming and panning and allowing users to manu-

ally rearrange nodes and edges to disambiguate occlu-

sion. This experiment is designed to understand what

humans do in the static case, which we consider to be

the natural baseline. As we argue above, one possible

use of a predictive model is exactly to determine when

these scaffolding techniques are necessary and when

they could be dispensed with, either globally or locally.

Moreover, many of these techniques would introduce

a confounding effect of interaction time.

We observed that participants struggled with node–

edge crossing ambiguities to the point where the task

was too difficult. To provide purely static support for

resolving node–edge crossing ambiguities, in the final

version of the interface each node was drawn with a

small white halo around it, as shown in Figure 2: edges

terminating at that node would pass on top of the halo

and connect directly to the node, but unconnected

crossing edges were drawn underneath the halo, result-

ing in a small gap between the edge and the node.

Participants

We recruited 12 participants using flyers posted on cam-

pus (four female, aged 20–33 years, M = 23.4 years).

All were students with normal or corrected-to-normal

vision and regular colour vision. They each received

CAD$10 per hour of participation and a bonus CAD$5

for returning to complete both sessions.

Task

We used a shortest path identification task. In each

experimental trial, participants were shown a graph

with a source and a goal node coloured red and blue,

respectively, and were asked to find the shortest path

through the graph from the red node to the blue node.

The remaining nodes were coloured black.

Participants were told explicitly that the path would

always be 2, 3 or 4 hops in length. Participants were

also asked to complete the task as fast as they could

while also trying to avoid making unnecessary errors.

While searching for the path, participants were

asked to use the tablet pen to hover over the nodes in

the paths that they considered. Nodes became high-

lighted when hovered over by the tablet pen. Figure 3

shows an example of a graph displayed on the tablet.

Each trial consisted of two phases. In the search

phase, participants were given a maximum of 90 s to

find the shortest path and then press a button labelled

FOUND IT! located on the side of the screen. In the

Figure 2. Example of a halo drawn around a node to
support identification of node–edge crossings. The near-
horizontal edge crosses the node. The four other edges,
which pass through the halo, connect to the node.
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answer phase, participants were given 20 s to demon-

strate the path that they had found by selecting each

node in the path with the tablet pen and then press

OK to submit their answer. To select or deselect a

node, participants were required to hover over it and

then press a button on the side of the pen. Time

remaining in each phase was displayed on the top of

the screen, and the colour of the node highlighting

changed depending on the phase: orange highlighting

for the search phase and green highlighting for the

answer phase. If participants ran out of time in the

answer phase, the nodes selected at the time-out point

were automatically taken as the participant’s answer.

Participants were asked to limit their search for the

answer to the search phase. During piloting, we noted

that participants sometimes realized during the answer

phase that they had not actually found the correct

answer and sometimes felt pressured to keep trying to

find it although the search phase was over. To address

this issue in the actual experiment, we told study parti-

cipants during training that we wanted to know about

such mistakes and instructed them to select the nodes

they had originally thought made up the answer if this

occurred. Finally, each trial concluded by showing

participants the correct answer to the trial, before

prompting them to begin the next trial.

Dataset and graphs

We generated 144 graphs for use in the user study and

subsequent analysis. We also generated an additional

nine practice graphs, which were only used for practice

by participants and were not included in later analysis.

Sample size. The sample size of 144 graphs was delib-

erately chosen to provide enough graphs to create two

discrete subsets, a training set (24 graphs) and a vali-

dation set (120 graphs). Set sizes were determined by

a power analysis (described later). The size of each set

was determined by the needs of our planned analysis

evaluation, as well as a maximum number of trials that

we could expect participants to complete in a single

session. These sets are used in two separate stages of

analysis:

� A qualitative analysis of human path-tracing beha-

viours and development of a predictive model;
� A regression analysis that acts as an example appli-

cation of the search set and as validation of the pre-

dictive model.

This type of approach, using a training set and a dis-

joint validation set, is commonly used in the machine

learning communities for model selection and valida-

tion53 and was intended to support testing whether or

not the model derived from the training set generalized

to the validation set.

Graph generation. To support both reproducibility

and analysis, we generated the graphs and layouts in

advance of the experiment. We used the Watts–

Strogatz model54 to create graphs with small-world

properties, following the argument of Auber et al.55

and others that these represent realistic models of net-

works from many application domains. The Watts–

Strogatz algorithm parameters were tuned during pre-

piloting experimentation; we used degree-4 edges in

the initial circle lattice and a 15% probability of ran-

dom reattachment. We selected a graph size of 75

nodes and 150 edges as the best balance between den-

sity and difficulty from those tested in piloting, as dis-

cussed above; this edge density ratio of 2 falls well

within the limits discussed by Melancxon56 for synth-

esis of realistic graphs.

We then laid out the graphs by running the force-

directed placement included in the Prefuse toolkit for

5 s to lay out each graph and saved only graphs with

an aspect ratio of 0.8–1.12 to ensure that nodes would

appear at a similar size on the screen. We use a layout

with straight edges because this representation is by far

the most common in real-world applications.

A unique shortest path was selected for each graph.

To generate the paths, each of the graphs was ran-

domly assigned a source node, and then breadth-first

search was performed to assign a goal node to create a

single shortest path of 2, 3 or 4 hops. An equal num-

ber of graphs for each of these solution-path lengths

were generated. The coordinates of the pre-generated

laid-out graphs, along with the assigned solutions,

were stored as XML files for later use.

Figure 3. Example of the user study interface. Graphs
were displayed on a Wacom Cintiq tablet screen, and
participants hovered over nodes with the pen to
demonstrate their search process as they completed the
study task. The FOUND IT! and OK buttons are indicated
with the pink labels and are present on both sides of the
screen.
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Interface

The Cintiq tablet was inclined to a slight angle, about

25� from the horizontal. The OK and FOUND IT!

input buttons used in the task appeared on both sides

of the screen to support both left-handed and right-

handed users. These buttons were configured to accept

input only during the relevant stages of the trial to

reduce the incidence of mistakes.

Apparatus

The experiment was conducted on a Wacom Cintiq

12WX direct input pen tablet, which featured a 12$
screen and was connected to a 13$ 2.7 GHz Intel

Core i7 MacBook Pro with 8 GB of RAM and Mac

OS X Lion 10.7.2. The experiment software was

coded in Java using the Prefuse toolkit.57

For each trial, the system recorded a log of the par-

ticipants’ pen movements, the graph nodes that had

been hovered over (computed as any intersection

between the cursor position and the node geometry),

the task completion time and the final answer.

Procedure

The total experiment length was over 2 h and thus

was split across two sessions to avoid participant fati-

gue. The first session took between 1 and 1.5 h, and

the second session took ~1 h. Participants were able to

complete the experiment on the same day, but were

required to wait a minimum of 1 h between sessions.

In the first session, participants were asked to con-

firm whether at this time they had normal or cor-

rected-to-normal vision and regular colour vision, and

then completed a brief questionnaire on their back-

ground. The experimenter demonstrated the tablet

and the task, and then walked the participant through

a series of steps to configure the tablet. The tablet was

configured to use the participant’s dominant hand.

Participants then completed the built-in calibration

utility until both the experimenter and the participant

were satisfied with the pen tip cursor alignment. When

returning for the second session, participants repeated

the tablet configuration and were reminded of all

instructions. Before starting experimental trials, parti-

cipants completed an equal number of practice trials

of each possible solution-path length – six practice

trials in the first session (two of each length) and three

in the second session (one of each length) – and the

experimenter provided feedback to ensure they under-

stood the task.

For each trial, participants completed the task with

1of the 144 pre-generated graphs. The presentation

order of the graphs was randomized across both ses-

sions, while the practice graphs were shown in the

same order. Participants completed six blocks of 12

trials at a time, for a total of 72 trials per session.

Between each block, participants were required to take

a 1-min break. Each session contained an equal num-

ber of graphs with each possible solution-path length –

24 each of the 2-, 3- and 4-hop graphs – but these

were not controlled for within blocks. The use of

blocks in the experiment was only to ensure that parti-

cipants took consistent breaks.

After each session, the participants rated the task on

a Likert scale from 1 (low) to 7 (high) according to the

overall difficulty and the mental and physical effort

required. A post-experiment interview followed the sec-

ond session. The Likert scale data did not reveal any

interesting trends and thus did not factor into our anal-

yses; we do not report on it any further in this article.

Qualitative analysis of path-tracing
behaviours

The focus of the first part of our analysis for the user

study pertains to our first two questions concerning

the search-set concept: (Q1) can we identify distinct

path-tracing behaviours? and (Q2) how common are

these path-tracing behaviours?

We began with a preliminary analysis of the nodes

hovered over by participants during the study trials

and visualized those data to explore what each partici-

pant’s search set looked like. This early exploration

motivated the central qualitative analysis described

below. First, we manually identified and described

paths from the hovered-over nodes in a subset of the

study trials. From that analysis, we characterized a

number of common path-tracing behaviours. Once we

were able to describe how participants traced paths,

we could then develop a predictive behaviour model of

the search set.

Preliminary node-based analysis of search set

We began with a preliminary analysis of the data col-

lected, focusing on the overlap between the total set of

nodes that each participant hovered over at least once

during the trial for each of the 144 graphs.

The success rate of the user study trials was low.

On average, participants successfully completed

58.7% of the trials (standard deviation (SD) = 11.7%,

min = 34.7%, max = 79.2%). Not surprisingly, the

success rate decreased substantially as the length of

the path became longer. The 2-hop paths had a 76.2%

success rate (SD = 8.4%, min = 62.5%, max =

91.7%), the 3-hop paths had a 60.8% success rate

(SD = 13.1%, min = 35.4%, max = 79.2%) and the

4-hop paths had a 32.8% success rate (SD = 17.3%,

min = 6.3%, max = 68.8%). We felt that this level was
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appropriate for our study, given our desire to analyse

both successful and unsuccessful attempts, and repre-

sented a diverse range of cases from easy to hard.

On average, only 6.1% of the nodes for a given

graph that were hovered over by at least one partici-

pant were also hovered over by the 11 other partici-

pants (min = 0%, max = 25%), and these often

included the nodes on the correct path for the trial.

While we had expected to see some individual variabil-

ity, we were nevertheless surprised by the extent of this

apparent lack of overall commonality, given the previ-

ous work on geodesic tendency, and so we chose to

dig deeper into the question of what behaviours dic-

tated participants’ search patterns.

Visualization of node hover overlap. We generated a

number of visualizations of the node hover data to

further explore how the overlap varied. In this section,

we present views from one of the visualizations that we

created. Additional details about these views, and all

the visualizations developed for this analysis, can be

found in Supplementary Material.

The visualization we discuss here shows a graph and

all the nodes that were hovered over by participants for

the corresponding experimental trials. The visualiza-

tion included 12 small-multiple views, each of which

displayed the nodes hovered over by a single partici-

pant in the trial. The graph for a trial was laid out as in

the experiment, with the nodes in each small multiple

coloured according to whether or not they had been

hovered over by that particular participant, as shown

in Figure 4. A different view, shown in Figure 5, aggre-

gated the hovers of all participants onto a single view

of the graph, with the frequency of hovers encoded in

greyscale.

Figure 4. Example of small-multiple visualizations of all the hovered-over nodes for one graph trial. There is one small
multiple per participant, labelled by the participant number in the top left. Hovered nodes are coloured in orange, with
the remaining nodes shown in white. The source and goal nodes are coloured red and blue, respectively; hovers on
these nodes are not shown.
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By examining these visualizations, we noticed that

subsets of the participants’ hovered-over nodes would

often overlap, although the total overlap across all par-

ticipants was small. When we incorporated the fre-

quency with which each node was visited, we saw that

the most frequently hovered-over nodes tended to fall

in a convex hull around the red and blue nodes and

their respective 1-hop neighbours, as shown in

Figure 5. Three participants alluded to this convex

hull behaviour in the post-experiment interview, stat-

ing, for example, that they ‘often tried to look in the

area between the red and blue nodes’ (P11). On aver-

age, 93% of the total node hovers for a given graph fell

inside the convex hull (min = 73.1%, max = 100%).

This consistency suggested to us that although the

participants’ approaches were not identical, there were

in fact some similarities in how participants were tra-

cing paths.

Qualitative analysis method

Motivated by the findings in the preliminary node-

based analysis, we moved from considering the data

simply in terms of node hovers to reconstructing the

paths searched by the participants. By looking at the

progression of paths over time, we hoped to character-

ize common human path-tracing behaviours.

Given the variability we observed in the node-based

analysis, we did not feel that we had a deep enough

understanding to extract the paths through computa-

tion alone. Instead, we chose to manually extract paths

from the node hover data using qualitative coding after

applying some algorithmic filtering. The data were

then manually transformed from hovers to steps, which

were then coded as paths. One investigator performed

all these qualitative analyses.

Data sample. The training set was made up of 8

graphs for each of the three possible hop lengths, for a

total of 24 graphs. These were selected randomly from

the total set of 144 graphs. We analysed all 12 partici-

pant trials from the user study for each of these graphs,

for a total of 288 trials. We reserved the larger valida-

tion set (of the remaining 120 graphs) for a hierarchi-

cal regression analysis that served as a validation of our

predictive behavioural model and which we discuss in

a later section.

Data preparation and visualization. The raw data in the

log files were hovers over a node, as described earlier.

Some of these hovers were deemed to be spurious and

were eliminated from further consideration. Some

were automatically filtered out based on a quantitative

threshold, while others were discarded as a result of

the qualitative analysis process described below. In the

automatic filtering, hovers lasting less than 5 ms were

discarded. This threshold was derived from a combina-

tion of quantitative analysis and observation while

building the visualization; we found that less than 5 ms

was an unrealistically short length of time to hover over

a node while actually tracing a path. Most discarded

hovers seemed to be caused inadvertently when parti-

cipants transitioned their search from one area of a

graph to another.

After the initial automatic filtering, we manually

transformed the hover data into a sequence of steps.

Initially, a step was created for each individual node

hover in temporal order. From these steps, the investi-

gator could then compose a path: a complete sequence

of nodes that constituted an intended single path-

tracing attempt on the part of the participant. In order

to assist the investigator in identifying topological

paths, the automatic filtering consolidated two or

more successive node hovers into the same step when

they were connected by edges.

Despite this automatic process, a path could still be

split across multiple steps for several different reasons.

First, some paths consisted of a combination of topo-

logical and apparent connections between nodes. We

Figure 5. Example of an aggregate visualization showing
all nodes hovered over by all participants on one graph
trial. Node colour changes from light grey to dark as the
frequency with which the node was hovered increases. The
source and goal nodes are coloured red and blue,
respectively. The convex hull of the source node and goal
node and their 1-hop neighbours (annotated with purple
circles) are shaded in light green.
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saw many examples in which participants followed

apparent paths that were not true topological connec-

tions (there was no edge in the graph between consec-

utive hovers), but these were mistaken for a true

topological connection because of node–edge cross-

ings. Second, some paths were split across multiple

steps because of spurious hovers in the log that the

investigator judged to be incidental to what the partici-

pant was actually considering at the time. These were

typically nodes crossing or near to a path that the par-

ticipant followed repeatedly, or nodes hovered over

during transitions between different parts of the graph.

To support our analysis, we designed a visualization

in which the first 20 steps were directly visible as

small-multiple views of the trial graph with some nodes

and edges coloured to show hover activity. Figures 6

and 7 show an example of the small multiples used in

the visualization. The first node in an automatically

determined topological sequence was coloured light

orange, with subsequent nodes coloured dark orange,

and edges along the topological path between them

also coloured orange. As additional visual support for

the analysis, we included an aggregate view similar to

the one used in the preliminary analysis (Figure 5),

and when the investigator hovered over a node, it was

highlighted in every small-multiple view and its node

ID was shown in a tooltip. An example of the entire

visualization can be found in Supplementary Material.

We chose to stop analysis after a maximum of 20 steps

because our initial exploration showed that, just as we

observed in piloting, later steps tended to be more

chaotic and less representative of common behaviours.

Coding process. All the steps in a trial, up to the maxi-

mum of 20 visualized, were described with at least one

code. The paths identified by the investigator were

coded as a sequence of node IDs, in addition to a num-

ber of other attributes, which we describe next.

First, a path could be either a true topological path

or an apparent path. Second, the investigator coded

the target node that the path was going towards, which

could be the source node (red), the goal node (blue) or

some other node in the graph. Third, the anchor node

that the path started from was identified, which again

could be the source node (red), goal node (blue) or

some other node in the graph.

The final two attributes for a path were used to

describe the branches that the participant followed for

each hop of that path. One was the direction (forward,

right angle or backward) with respect to the target of

each branch in a path. The investigator used his or her

approximate judgement rather than exact angles in

determining whether a branch went towards the target,

at a right angle from it or away from it (i.e. whether

the branch went closer to the target, kept roughly same

distance from it or went away from it). The last attri-

bute was whether the branch at a particular hop was

the closest-to-geodesic branch from the associated node

to the current target. We did not expect participants to

be skilled at judging very small differences in angles

and observed this to be the case in early exploration of

the data. Thus, when the difference between two

branches on either side of the geodesic straight line to

the target was very small, or if those branches over-

lapped, the investigator recorded both as having the

closest-to-geodesic property.

In addition to describing paths, the investigator gen-

erated codes for other types of movements by partici-

pants that emerged during the coding process as being

potentially important. These were jumps between

nodes, switches of a target and/or anchor, checks of nodes

or node–edge crossings and doublebacks over paths just

traced. The investigator used the same attributes

described above in these other codes as appropriate.

Finally, the investigator also coded incidental node

hovers. These were hovers over nodes that occurred

between two nodes in a coded path or during some

other movement, but were judged to not signify the

node a participant was actually considering at the

time.

Example of a coded trial. To illustrate the coding pro-

cess, we next walk through one example of the codes

and the attributes used to code one participant trial.

Figures 8 and 9 demonstrate the paths identified from

all the steps in the example. Where a path spanned

multiple steps, we show these steps collapsed into a

single image; the red and blue nodes are labelled R and

B, respectively. The 20 steps coded for this trial are

also shown without annotation in Figures 6 and 7, as

the investigator saw them during the coding process.

Figure 8 shows the first six paths. In path 1 (R–C–

B, steps 1 and 2, anchor = red, target = blue), the

participant follows 2 hops in the closest-to-geodesic

direction; the hop from R to C is a true topological

path, but the second hop is apparent because no edge

exists between C and B. In path 2 (B–D, steps 2 and

3, anchor = blue, target = red), the participant follows

1 hop in the closest-to-geodesic direction. The node I-

1 is coded as incidental although it connects to D with

an edge, because B is also connected to D. In path 3

(R–C, steps 4–7, anchor = red, target = blue), the

participant again follows 1 hop along the closest-to-

geodesic branch, repeating part of path 1. C-1 and C-

2 from steps 5 and 6, respectively, are examples of

checks around node C to which the participant returns

in step 7.
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Figure 6. Example of the small-multiple visualization of discrete steps used to support the qualitative coding process;
each step is labelled in the top left. The first node in an automatically determined sequence is coloured light orange and
subsequent nodes coloured dark orange; edges along the topological path between them are also coloured orange.
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Path 4 (B–E–F–G–R, steps 8 and 9, anchor = blue,

target = red) is another example of an apparent path

because there is no edge between F and G. The first

hop B and E goes in a right angle direction. The

remaining hops all take the closest-to-geodesic branch.

Path 5 (R–G–F–E, steps 9–11, anchor = red, target =

blue) is a doubleback of the previous path, path 4. In

path 6 (E–F–H, steps 11–13, anchor = E, target =

red), the participant again retraces part of path 4, but

deviates to follow a true topological connection

between F and H, which is in the closest-to-geodesic

direction. Step 12 shows another incidental hover, I-2;

it seems clear that the participant is following the E–F

edge and thus would probably not think I-2 is con-

nected to either E or F.

Paths 7–10 are shown in Figure 9. In path 7 (R–I,

step 14, anchor = red, target = blue), the participant

follows 1 hop in the backward direction. In path 8

Figure 7. Example of the small-multiple visualization of discrete steps used to support the qualitative coding process;
each step is labelled in the top left. The first node in an automatically determined sequence is coloured light orange and
subsequent nodes coloured dark orange; edges along the topological path between them are also coloured orange.
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(R–J–G, step 15, anchor = red, anchor = blue), the

participant follows a different branch in the backward

direction for the first hop and then follows the closest-

to-geodesic branch for the second hop. Between paths

8 and 9, another incidental hover occurs in step 16,

which is not shown. In path 9 (R–K, steps 17–19,

anchor = red, target = blue), the participant follows

another branch in the backward direction. Finally, in

Figure 8. Paths 1–6 extracted from steps 8–13 and collapsed into single images. Steps 8–12 are shown in Figure 6,
while step 13 can be found in Figure 7.
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path 10 (R–I–L, step 19, anchor = red, target = blue),

the participant follows the same hop as in path 7 before

following the closest-to-geodesic branch for the second

hop. Between each of the paths from path 1 to path 6,

we observe switching, whereas for paths 7–10, the parti-

cipant continues to search around the red source node.

Final coded dataset. We eliminated 11 of the 288 trials

during the coding process because participants entered

the answer phase of the trial without hovering over any

nodes in the search phase. The investigator ultimately

classified 95.8% of the steps in the remaining 277 trials

with at least one code.

The remaining 4.2% of steps could not be made

sense of in the context of our coding scheme and were

coded as unclassified. We suspect that some of these

unclassified trials were caused by incomplete data, for

example, if a participant missed a node with the pen

tip despite looking at it. We had anticipated this

limitation of the tablet, but decided that this number

was small enough to be acceptable. In addition, some

of the unclassified steps may have been deliberate but

uncommon types of movements that we simply did

not see often enough to classify with a unique code.

Results

We now describe the behaviours that emerged during

the coding process and from subsequent analysis of the

final code set. Some of these findings stem from differ-

ences between specific graphs and the common cases

we observed, whereas others hold across all graphs.

Choice and use of anchors for searching. Although

participants were instructed to search from the red

node to the blue node, we found that they often

searched from blue to red, especially when the task

was more difficult. On average, the majority of paths

Figure 9. Paths 7–10 extracted from steps 14–19, shown in Figure 7. Where a path spanned multiple steps, it has been
collapsed into a single image.
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coded across the 24 training graphs used either red or

blue as the starting or anchor node (M = 86.9%,

SD = 10.4%, min = 64.8%, max = 100.0%). We had

expected that participants would also frequently use

intermediate nodes that were part of the way along

promising paths as anchors, for example, following 1

or 2 promising hops, and then choosing a node to

search out from. However, we were surprised to find

that this behaviour was not very common. Instead, we

observed that participants were much more likely to

give up following a path and restart from a red or blue

node, even if this meant immediately retracing the

path they had just followed. The extracted paths in

Figure 8 demonstrate this behaviour; the participant

switches anchor and target before beginning each path

from path 1 to path 6, searching back and forth in

alternating directions between red and blue. The par-

ticipant only uses an intermediate node once as an

anchor in path 6 (node E).

Prevalence of the closest-to-geodesic tendency. Participants

preferentially followed paths along nodes forming clo-

sest-to-geodesic branches, suggesting strong evidence

of a geodesic tendency. On average, the majority of the

identified paths for a given graph (M = 65.5%,

SD = 9.7%, min = 49.0%, max = 81.3%) fell along

the closest-to-geodesic branches either for all hops

(M = 39.4% SD = 10.7%, min = 15.8%, max =

56.3%) or for all but the first or last hop in the path

(M = 26.2%, SD = 8.2%, min = 15.8%, max =

47.4%). In the post-experiment interviews, eight par-

ticipants explicitly described strategies involving the

closest-to-geodesic path.

We also examined how common it was for the very

first branch followed in a trial to be the closest-to-geo-

desic branch for the starting anchor. The majority of

participants began trials with the closest-to-geodesic

branch (M = 60.3%, SD = 25.2%, min = 16.7%,

max = 91.6%), which again points to the strength of

the geodesic tendency. However, for six of the graphs

in the training set, this number was well below 50%,

and as low as 16.7%, which suggests that other factors

occasionally override this tendency or impact its

strength. In particular, we noted that as the angle

between the closest-to-geodesic branch and the

straight line to the target increased to 90� or larger, it

became more likely that the participant would pick a

different branch. This observation suggests that the

tendency decreases in strength the farther the closest-

to-geodesic branch is from the actual straight line to

the target; that branch may diverge significantly.

Figure 10 shows an example. For this graph, only

three participants started by following the closest-to-

geodesic branch from red or blue, which in both cases

went to A. Another interfering factor we observed was

the length of the closest-to-geodesic branch with

respect to the target distance; if the target was far away

and the closest-to-geodesic branch was much shorter

than surrounding branches, or if the target was very

close and the closest-to-geodesic branch went past the

target, then the closest-to-geodesic branch seemed less

likely to be searched at all.

Likely directions of search. Despite the prevalence of

the geodesic tendency, participants did spend consid-

erable time searching along other branches. Typically,

the likelihood of expanding to nodes that were not

along the closest-to-geodesic branch increased with

the amount of time a participant spent on a trial. We

saw the largest divergence from the geodesic tendency

for the first hop of paths emanating from red or blue.

However, participants were likely to return to the clo-

sest-to-geodesic branch for subsequent hops.

Our analysis did not suggest that there was a fully

continuous ordering of the likelihood of searching in a

particular direction for the first hop. For example,

branches did not simply become decreasingly likely as

the size of the angle with the geodesic straight line to

the target increased in a directly continuous way.

However, the order was also far from random: we

observed similar likelihoods within discrete groups of

branch directions.

As shown in Figure 11, we loosely grouped direc-

tions of the first hop into four ordered groups more

specific than those we used in coding – we did not

strictly define these groups in terms of exact angles.

The first is directly towards, meaning a small angle with

Figure 10. Example of a portion of a graph from the study,
with a 2-hop solution, where most participants did not
follow the closest-to-geodesic branch in either direction
(B–A or R–A) for their first hop at the beginning of the trial
(the red and blue nodes are labelled R and B,
respectively). We attribute this divergence from the
geodesic tendency to the large angle size approaching 90�.
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respect to a line straight towards the target; next is

towards, up to slightly beyond a right angle. We noted

in our analysis of the coded data that when the angle of

the first hop was just larger than a right angle, the like-

lihood was still similar to other hops that were more

clearly going towards the target, thus this definition.

The third group is away, for even larger angles; the last

and least likely category is directly away, for angles that

were essentially in the opposite direction from the tar-

get. Participants had a roughly similar likelihood of

selecting a branch within each group, starting with

directly towards, and earlier groups were more likely to

be searched to exhaustion before later ones were

begun. This grouping of branches into likely groups

also extends to intermediate nodes along promising

paths, but the range of angles describing similarly likely

branches at such nodes was much larger. The second

hop in a path was more likely to go towards or directly

towards the target than away, and paths where users

went two subsequent hops away from the target were

uncommon.

It appeared that participants tended to exhaust the

options around red and blue before exhausting the

options around nodes 2 or 3 hops along a path. This

phenomenon partially explains our observation that

participants tended to return to closest-to-geodesic

candidates for subsequent hops in paths. It also pro-

vides some explanation for the relationship between

the angle of the closest-to-geodesic branch and the

likelihood that it would be followed first in a trial.

When the closest-to-geodesic branch goes directly

towards the target, it becomes very likely that it will be

followed first. But as the angle increases to 90� or

larger, it becomes more likely that the participant

would follow any other branch in the same group. We

suspect that in these instances, other factors, such as

path straightness, begin to take precedence.

Use of apparent and topological paths. Participants

primarily followed topologically connected paths, but

apparent paths created by node–edge crossings did

sometimes cause significant distraction. Despite the

fact that all users were trained to use the halos to iden-

tify node–edge crossings, some reported that it

required extra effort to realize that they were looking

at a crossing. Such paths were a common source of

error, especially when they lay on top of a branch

directly connected to the red or blue nodes. We see

examples of this in paths 1 and 3, and paths 4 and 5 in

Figure 8. The participant examines node C in both

paths 1 and 3, although it forms an apparent path,

presumably because it seems so promising. Similarly,

in paths 4 and 5, the participant repeatedly follows the

apparent path between nodes G and F, taking consid-

erable time to determine that there is a node–edge

crossing before trying a different route from F in

path 6.

Revisitations. We observed that participants often

revisited the same path again and again. This repeti-

tive behaviour took two forms. We saw many instances

of doublebacks, where participants would retrace a path

one or more times immediately after tracing it the first

time. We also saw that participants would return to a

path after tracing others, even if they had followed it

multiple times before. This finding is not surprising in

light of the known limits of working memory for

remembering the results of previous searches.27 P2

admitted that he would often ‘look at a path more

times than was helpful’. Some participants also related

this behaviour to the tendency to search within the

convex hull and along closest-to-geodesic path. P6

explained that ‘I would try to counteract and look for

different paths, but the [closest-to-geodesic path] was

more natural, and it was harder to force myself to look

away’.

Path stopping conditions. Contrary to what might be

expected, participants often did not follow every path

that they started until they reached the maximum

length possible in this study (4 hops). However, we did

observe some commonalities in when participants were

likely to stop following a path. Some stopping condi-

tions were largely dictated by the experimental tasks

and common sense: participants typically stopped a

path when the number of hops equalled the maximum

of 4, they had cycled to reach a node already in the

current path or they had reached the target. Other

stopping conditions were less obvious. We found that

participants actually tended to stop when the number

of hops was one less than the maximum path length in

the task. We also saw that they frequently stopped

Figure 11. Illustration of the ordered groups of similarly
likely candidates for the first hop, coloured in greyscale in
decreasing order of likelihood and named by their
directionality with respect to the target: directly towards,
towards, away and directly away.
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when their current path took them past, or nearly past,

the target with respect to the starting anchor. We

defined past the target generally as the line through the

current target that was at a right angle to the geodesic

straight line between the path anchor and the current

target as illustrated in Figure 12(a), where the geodesic

is the dashed green line and the perpendicular through

the blue target is the solid green line; a user tracing

from red (R) to blue (B) would likely trace R–C–D,

stopping at D, which is just past the blue node, and

not get to E. Consistent with other observations we

have described, we note that this definition is not

exact, but is dependent on participant’s ability to judge

angles. In this case, we noted that when the current

node was very far away from the target, the past the tar-

get condition seemed to be met at an angle narrower

than 90�.
There were two exceptions that we sometimes

observed to the final two conditions of stopping at the

maximum hops minus 1 or going past the target.

Figure 12(b) illustrates an example of these exceptions

for the past the target condition. A participant tracing

from R to B along the path R–C–D would be less likely

to stop at D as in the previous example if (1) the next

hop formed a nearly straight line with the previous hop

(as in D–F) or (2) the next hop went directly towards

the target (as in D–G). We suspect that these excep-

tions occurred for different reasons. In the case of the

first exception (1), we suspect that the close to straight

line created a continuous path that encouraged users

to go straight from C to F, with less consideration of

D. In the case of the second exception (2), we suspect

that participants were relying on peripheral vision to

determine that a suitable candidate was not present

and only considered the path promising enough to

keep following if the next hop went in the direction of

the target.

Continuity and geodesic tendency. In previous work,

Ware et al.23 found continuity, namely, the straight-

ness of the path, to be a very important factor. Huang

et al.7 avoided variation in continuity in order to avoid

confounding their results on the geodesic tendency

and conjectured that geodesic tendency takes prece-

dence over path continuity. We often observed that

continuity can take precedence over the geodesic ten-

dency, refuting their conjecture; however, we also saw

examples of precedence in the other direction. In fact,

interaction between path continuity and geodesic ten-

dency is quite complex and cannot simply be reduced

to one of these factors taking precedence over the

other

We found that in many instances participants would

follow straight paths for more hops than they would

‘bendy’ paths and that straight paths could distract

participants by causing them to miss a branch con-

necting to the solution. Figure 13 shows an example in

which R–A–B is the solution. In this graph, three parti-

cipants who followed the branch from R to A next fol-

lowed the branch from A to C and missed the branch

from A to the blue node (B). Only one of the three

participants detected the solution in the steps that

immediately followed. In such instances, we suspect

Figure 12. Example of the past the target stopping condition. (a) A user would typically stop a path at the first node past
the target with respect to the starting anchor, where past the target is the line through the current target that was
perpendicular (solid green line) to the geodesic straight line between anchor and target (dashed green line). A user
tracing from red (R) to blue (B) would likely trace R–C–D and stop without going to E. (b) Exceptions to this condition
(and of the stopping condition of maximum hops minus 1) were when the next hop went directly towards the target (D–G)
or in a straight line from the previous hop (D–F).
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that the Gestalt principle of continuity27 sometimes

contributes to participants perceiving the straight line

formed by multiple nodes as a single hop, causing

them to skip over interconnected nodes without con-

sidering their branches. We suspect that this principle

also contributed to the straight line exception to some

stopping conditions that we previously described.

Summary

Through the coding process described in this section,

we determined that it is possible to identify distinct

path-tracing behaviours, addressing Q1. Furthermore,

we were able to characterize and describe a number of

common path-tracing behaviours exhibited by our

participants, addressing Q2. The behaviours include

the use of both topological and apparent paths, the

conditions under which participants stop following

paths, the likely directions for the first hop in a path

and the tendency to revisit previously followed paths.

Unexpected behaviours included the strategy of fre-

quent switches between source and goal nodes as the

anchors in the search and infrequency of using inter-

mediate nodes as anchors. We verified the prominence

of the previously proposed geodesic tendency, but

found complex interactions between it and the other

tendencies that we observed, including the impact of

path continuity on behaviour, providing a more

nuanced understanding of issues raised in previous

work.7

All these findings are useful in their own right as

descriptions of human path-following behaviours when

interacting with visual representations of graphs. They

were also crucial in helping to develop a predictive

behavioural model of search set, which we present in

the next section. While many of the behaviours that we

observed could play out in different ways for different

participants, enough commonalities exist to allow us

to make informed guesses about the likely set of paths

that a group of users may search.

A behavioural model to predict the search
set

This section is devoted to our third research question:

(Q3) can we predict the search set based on observed

path-tracing behaviours? To explore this question, we

developed a simple predictive model of the search set

based on the strongest common behaviours that we

described in the previous section. We next briefly

describe the predictive model and discuss our prelimi-

nary validation of its effectiveness in predicting the

search set and as a basis for measuring factors for pre-

dicting task difficulty. We look at further validation

approaches in the next section. A more detailed

description of the model components, the algorithmic

implementation and parameter selection can be found

in Supplementary Material.

The search-set model

Briefly, the model takes as input a network graph with

a defined solution between two points, which are used

as anchors to explore likely paths. The model is

designed to predict the set of paths that a group of users

would be likely to search, rather than the set of paths

that one individual user would use. The model output

is an ordered set of discrete groups, where paths

within each group are unordered and considered to be

similarly likely; together, these paths compromise the

search set.

The model begins by selecting a batch of likely can-

didate branches from each anchor to comprise the first

hop in a path and then follows the closest-to-geodesic

branch between each of these candidates and the tar-

get. The search set contains one copy of each path fol-

lowed. The conditions that determine when a model

stops following a path are directly based on the com-

mon stopping patterns that we characterized in the

previous section. Once all the candidates in a batch are

eliminated, the model takes the next most likely set of

candidate branches and begins the path-following pro-

cess once again. The entire process stops once the

solution path has been added to the search set (in

either direction from either anchor) or all likely batches

of candidates are exhausted and the task is judged to

be too difficult to reasonably complete.

Validation of search-set prediction

We ran the algorithmic implementation of our beha-

viour model to predict search sets for each of our 144

Figure 13. Example in which a straight line appeared to
interfere with geodesic tendency (the red and blue nodes
labelled R and B, respectively). Some participants followed
R–A–C and missed the solution path of R–A–B.
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study graphs. The predicted search set produced by

the algorithm contained, on average for each graph,

87% of all of the node hovers made by participants in

this study. Conversely, on average for each graph, 86%

of the predicted nodes were hovered over at least once

during the study. We consider these results to be an

appropriate fit for a first attempt at developing a pre-

dictive behavioural model.

Using the search set to predict task difficulty

Finally, we conducted a preliminary exploration into

whether or not factors measured on the search set

would be effective predictors of path-tracing task diffi-

culty. We selected the factor of edge–edge crossings,

given its prevalence in previous work and our intention

to use it in the hierarchical regression analysis

described later. We measured search-set edge–edge

crossings for each of the 24 training set graphs by

summing the crossings on each path in the set

(M = 330.4, SD = 298.7, min = 37, max = 1166),

and we measured difficulty both by RT and by total

errors.

We used bivariate Pearson correlations to examine

the individual effect of search-set edge–edge crossings

on average participant RT in seconds (M = 42.5,

SD = 22.5, min = 10.6, max = 86.1) and total errors

(M = 5.5, SD = 3.3, min = 0, max = 12) for the train-

ing set graphs. RT was measured as the time the parti-

cipant spent in the search phase, before pressing

FOUND IT! We found strong positive correlations of

search-set edge–edge crossings with RT (r = 0.765,

p \ 0.01) and with error (r = 0.605, p \ 0.01). In gen-

eral, |r| . 0.10 is considered to be a weak correlation,

|r| . 0.30 a moderate correlation and |r| . 0.50 a

strong correlation.58 Scatterplots of these relationships

are shown in Figure 14, along with the line of best fit.

Summary

With respect to our third research question, Q3, our

results suggest that it is possible to accurately predict

the search set for a group of users by using the human

path-tracing behaviours that we characterized in the

previous section. Furthermore, our exploration into

the use of the factors measured on the search set for

predicting RT and total errors yielded promising

results, encouraging us to perform the more in-depth

validation that we present next.

Measuring graph readability factors using
the search set

The focus of the last stage of our analysis is on answer-

ing our final question: (Q4) how much improvement

over previous models is gained by calculating factors

for graph layout on a predicted search set? This analy-

sis was intended to serve as a validation of our predic-

tive behavioural model as well as an example of how

the search set might be used. To do this, we compared

the relative importance of factors measured at three

levels: the solution path, the search set and globally. As

a part of our analysis, we also evaluated the impact of

node–edge crossings, which had not been previously

investigated in a user study. We present results that

show a modest improvement in measuring factors on

the search set over measuring on just the solution path.

More crucially, we also identify important differences

in the relative contributions of these factors in predict-

ing RTand error.

Method

Our methodology follows directly from Ware et al.23

and Huang and Huang.8 We measured a selection of
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Figure 14. Scatterplots with linear line of best fit showing
relationships between search-set edge–edge crossings
and our dependent variables on the training set graphs
(n = 24). Top: average response time (s) per participant.
Bottom: total errors across participants.
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factors on different levels of the graph, which we call

predictors in accordance with the literature on regres-

sion analysis. We use bivariate correlations to examine

the individual effects of these predictors on user per-

formance and to determine which factors have any sig-

nificant impact. We then use hierarchical multiple

regression to factor out the internal relationships

between the predictors in order to examine the relative

contributions of each factor in predicting perfor-

mance. This approach allows us to examine the total

percentage of variance in performance accounted for

by the predictors, as well as any overlaps in what the

predictors explain. The use of hierarchical regression

follows recommendations from the literature on incre-

mental validity42 and on the benefit of requiring the

researcher to reason about and justify the order in

which variables are entered into a regression model.

Data sample. Our sample consisted of the 120 graphs

in the validation set, which were those that remained

after we removed the 24 graphs for the training set

used in the earlier analysis. This number was deter-

mined through a power analysis using the following

parameters: R2 = 0.13, a =0.05 and nine independent

variables. This analysis gave us a power level . 0.80

for 120 graphs, which is conventionally considered to

be an acceptable level.58 From this level of power, we

expected to be able to detect medium and large effects,

where R2 = 0.02 is a small effect, R2 = 0.13 is a

medium effect and R2 = 0.26 is a large effect.58 The

sample consisted of an equal number of graphs with

each possible solution-path length: 40 graphs each of

lengths 2, 3 and 4 hops.

Dependent measures. We measured user performance

on each of the 120 graphs with two dependent vari-

ables: average RT and the number of incorrect user

responses (error). We chose these measures because

we were interested in the impact of the predictors on

both correct and incorrect answers – it is important to

understand how long a user might spend only to find

an incorrect answer.

RT was recorded as the average time to complete

the search phase for each trial for all 12 participants,

between 0 and 90 s. Error was calculated as the total

number of incorrect responses by participants for each

graph, between 0 and 12.

Predictor variables. We selected nine different factors

to measure on each of the 120 graphs in the validation

set, which we used as predictor variables. A subset of

our predictors were those found to be most important

by Ware et al.,23 all of which were measured on the

solution path: the length of the path in hops (sp-ln);

the continuity of the path, calculated as the sum of the

angles in degrees at each step (sp-cn); the total edge–

edge crossings on the path (sp-ex) and the sum of the

branches on each node on the path (sp-br).

For comparison, our analysis also looked at factors

that were not measured on the solution path. We

selected edge–edge crossings as a factor to measure on

the search-set and global levels because edge–edge

crossings are often cited as the most important metric.

We measured the sum of the edge–edge crossings on

the entire graph (gl-ex) and on each path on the search

set (ss-ex).

We chose node–edge crossings as a second factor to

compare at our three levels of interest. Node–edge

crossings are widely allowed in many layout algo-

rithms, but to our knowledge have not previously been

evaluated with user studies. Our qualitative analysis

results regarding apparent paths indicate that node–

edge crossings might also be important for under-

standing errors. We measured the sum of the node–

edge crossings at each level of interest: on the solution

path (sp-nx), on each path in the search set (ss-nx)

and globally across the entire graph (gl-nx).

Hypotheses. Our hypotheses were as follows:

H1. Solution-path node–edge crossings (sp-nx) will

account for additional variance in performance beyond

other factors on the solution path. We expected that

solution-path node–edge crossings would explain var-

iance not accounted for by the other factors of length,

continuity, branches and edge–edge crossings mea-

sured on the solution path.

H2. Search-set (ss-) factors will account for additional

variance in performance beyond all the solution-path fac-

tors. We expected that search-set factors would explain

additional variance beyond the solution-path factors

(sp-) because they account for factors on all the paths

that a user might search.

H3. Search-set (ss-) factors will predict performance more

efficiently than solution-path (sp-) factors. The search set

typically overlaps the solution path, so we suspected

that search-set factors might predict more variance

with fewer (or the same number) of variables.

H4. Global factors (gl-) will not account for additional var-

iance in performance beyond the solution path and search-

set factors. We expected from previous work that global

levels would not add additional explanation to what

can be explained by the more task-relevant levels.

Our hypotheses focused on the incremental validity

of factors measured on the search set and on node–

edge crossings on the solution path, neither of which
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had been evaluated by previous research. Although we

do not make formal hypotheses about the individual

effects of the factors, we expected to see some positive

correlation of all factors with both dependent vari-

ables. In other words, as any of these factors increases

in number for a particular graph, so should the aver-

age RT and the total number of errors made by par-

ticipants. This expectation includes replicating the

results of Ware et al.23 that global edge–edge crossings

and solution-path length, continuity, branches and

edge–edge crossings would be positively correlated

with RT. We also expected to find significant contribu-

tions of the factors studied by Ware et al. when used in

regression models.

Linear correlations for individual effect

Descriptive statistics for RT and error, as well as the

predictor variables, are shown in Table 1. Upon

inspection, the distributions for RT and error were

found to have a positive skew, so we performed square

root transformations59 on both variables to improve

their distribution. We report on the Pearson correla-

tion coefficients (r) between predictor variables and

the dependent variables in Table 2. We found signifi-

cant positive correlations between all predictors and

the dependent variables, with the exception of those at

the global level. These results show that all factors

measured on the solution path and search set were

moderate to strong individual predictors of RT and

error.

Multicollinearity between factors

We also inspected the correlations between all the pre-

dictor variables to detect multicollinearity, that is, two

or more highly correlated predictors. Collinearity

between two predictors prevents us from understand-

ing the degree to which either of the two predictors

entered into the model impacts the dependent vari-

ables; thus, standard practice in regression analysis is

to omit one. Choosing to omit some of these predictors

allows us to better examine the extent of the contribu-

tions of the remaining predictors, but leaves questions

surrounding the omitted variables to future work.

We identified two pairs of highly correlated predic-

tors (r . 0.90) that were cause for concern: search-

set edge–edge crossings (ss-ex) correlated with search-

set node–edge (ss-nx) crossings, and solution-path

length (sp-ln) correlated with solution-path branches

(sp-br). We omitted search-set node–edge crossings

because the correlation with each dependent variable

was weaker. We suspect that the relationship between

solution-path length and branches stems from our

graph generation model, so we would not necessarily

expect to see it in other types of graphs. We chose to

keep solution-path length (and omit solution-path

branches) because previous work suggests that it more

commonly accounts for a larger variance in perfor-

mance than does the number of branches.23

Hierarchical multiple regression analysis

We constructed two separate hierarchical multiple

regression models, one for RTs and one for errors, the

results of which are shown in Table 3. We included all

the predictors that significantly correlated with our

dependent variables, but excluded solution-path

branches (sp-br) and search-set node–edge (ss-nx)

Table 1. Descriptive statistics for predictors and for the
dependent variables of RT and error for the test set graphs
(n = 120).

Descriptive statistics

M SD Min Max

RT 38.71 22.83 5.94 85.15
Error 4.84 3.75 0 12
gl-ex 304.59 51.66 195 434
gl-nx 71.34 13.99 35 108
ss-ex 380.28 294.99 6 1382
ss-nx 170.73 136.53 0 684
sp-ex 14.05 7.51 1 41
sp-nx 5.66 2.99 0 15
sp-ln 3.00 0.82 2 4
sp-cn 159.06 94.14 1 422
sp-br 17.00 3.90 11 26

SD: standard deviation; RT: response time.
Predictors are grouped by level of measurement; those that our
study is the first to evaluate are shaded.

Table 2. Pearson correlation coefficients (r) between predictor variables and the dependent variables of RT and error.

Pearson correlation coefficients (r)

gl-ex gl-nx ss-ex ss-nx sp-ex sp-nx sp-ln sp-cn sp-br

RT 20.046 20.092 0.772* 0.721* 0.528* 0.495* 0.816* 0.753* 0.807*
Error 0.006 20.018 0.699* 0.672* 0.407* 0.447* 0.661* 0.687* 0.636*

RT: response time.
Predictors are grouped by level of measurement; those that our study is the first to evaluate are shaded.*p \ 0.01.
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crossings because of multicollinearity. For each regres-

sion model, we also confirmed that the assumptions of

homoscedasticity (similar variance in the dependent

variables) and linearity were met.

The predictors were blocked as follows: block 1

contained solution-path length (sp-ln), continuity (sp-

cn) and edge–edge crossings (sp-ex), block 2 contained

solution-path node–edge crossings (sp-nx) and block 3

contained search-set edge–edge crossings (ss-ex). By

placing the individual factors of interest into blocks 2

and 3, we were able to examine the incremental valid-

ity of each factor.

We report on the standardized beta coefficients (b)

at each step, which indicate the individual contribu-

tion of each predictor to the model. We also report on

R2, a measure of the amount of variation accounted by

the predictor(s) included in the model at each step,

and adjusted R2, which takes into account the number

of predictors in the model. All significant results were

p \ 0.01. For additional guidance in understanding

the statistics, we recommend Field59 for an entertain-

ing introduction to interpreting the results of multiple

regression analyses.

RT model. After step 1, the regression model

accounted for 75.2% of the variance (R2 = 0.752).

The relative contributions of the three predictors can

be further understood by examining their individual b

values, the highest of which came from solution-path

length (sp-ln) (b = 0.487), followed by continuity (sp-

cn) (b = 0.359) and edge–edge crossings (sp-ex)

(b = 0.160). These results replicate the relative impor-

tance of these factors found by Ware et al.23

Adding solution-path node–edge crossings (sp-nx)

in step 2 accounted for an additional 2% of the var-

iance (R2 = 0.772, DR2 = 0.020). Finally, adding

search-set edge–edge crossings (ss-ex) in step 3

accounted for an additional 1.8% of the variance

(R2 = 0.790, DR2 = 0.018). The final regression

model accounted for 79% of the variance in RT and

contains three statistically significant variables:

solution-path length (sp-ln) had the highest b value

(b = 0.389), followed by continuity sp-cn (b = 0.298)

and search-set edge–edge crossings ss-ex (b = 0.242).

Error model. After step 1, the model accounted for

54.5% of the variance (R2 = 0.545). Only solution-

path length (sp-ln) (b = 0.303) and continuity (sp-cn)

(b = 0.441) made significant contributions. Adding

solution-path node–edge crossings (sp-nx) in step 2

accounted for an additional 3.3% of the variance

(R2 = 0.578, DR2 = 0.033). Finally, adding search-set

edge–edge crossings (ss-ex) in step 3 accounted for an

additional 3.7% of the variance (R2 = 0.614,

DR2 = 0.037).

The final model accounted for 61.4% of the var-

iance in error. Only search-set edge–edge crossings (ss-

ex) (b = 0.342) and solution-path continuity (sp-cn)

(b = 0.355) were significant contributors to the final

model.

Summary

Our results replicate previous findings in the literature

that the factors of path length, continuity, edge–edge

crossings and branches have a significant individual

effect on RT when measured on the solution path.23

We further found significant individual effects for

node–edge crossings measured on the solution path

and both node–edge and edge–edge crossings mea-

sured on the search set. We did not see any significant

individual effect at the global level for edge–edge (gl-

ex) and node–edge (gl-ex) crossings.

Table 3. Summary of results from the hierarchical multiple regression analysis of measured factors on response time
and error.

Standardized b coefficients (b values)

RT Error

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

sp-ln 0.487* 0.458* 0.389* 0.303* 0.267* 0.168
sp-cn 0.359* 0.358* 0.298* 0.441* 0.440* 0.355*
sp-ex 0.160* 0.083 0.027 0.101 0.004 20.075
sp-nx 0.171* 0.097 0.217* 0.113
ss-ex 0.242* 0.342*
Adj. R2 0.745 0.764 0.781 0.533 0.563 0.597
R2 0.752 0.772 0.790 0.545 0.578 0.614
DR2 0.020* 0.018* 0.033* 0.037*

RT: response time.
Predictors that our study is the first to evaluate are shaded.
*p \ 0.01.
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Through regression modelling, we showed that we

can predict 79% of the variance in RT using only three

predictors: solution-path length is the most important,

followed by solution-path continuity and then search-

set edge–edge crossings. Our results from the final step

of the regression model for RT suggest that measuring

crossings on the search set has incremental validity

over measuring them on just the solution path –

search-set edge–edge crossings added only an addi-

tional 1.8% to the total variance explained, a small

effect, but it also removed the need for solution-path

edge–edge and node–edge crossings, making for a

more efficient model in terms of the number of factors

needed for maximal variance prediction.

We found that the relative importance of the factors

differed quite dramatically for error from what we

found for RT. Our results showed that all the factors

we measured on the solution-path and search-set lev-

els had strong individual effects on error. Similar to

our results for RT, our results in the final step of the

regression model for error suggest that measuring

crossings on the search set has incremental validity

over the solution path, explaining an additional 3.7%,

which is a small effect. The final regression model

accounted for 61.4% of the variance in error using

only two predictors, search-set edge–edge crossings

and solution-path continuity, which were very similar

in importance.

We found some evidence that, at the solution-path

level, node–edge crossings may be more important

than edge–edge crossings. Adding solution-path node–

edge crossings in step 2 of both models had a small

effect, explaining an additional 2% of variance in RT

and 3.3% more in error, but in the case of RT it also

reduced the contributions of solution-path edge–edge

crossings to insignificant levels. These results suggest

that for layouts that allow node–edge crossings, it may

be a more important factor to control for relative to

edge–edge crossings at the solution-path level. We were

not able to examine the relative effects of node–edge

crossings at the search-set level due to the multicolli-

nearity with search-set edge–edge crossings, but our

results about the individual effects of the factor suggest

that it may be of similar importance. This conjecture is

further evidenced by our observations of the difficulty

that apparent paths caused for participants during the

study.

Summary of hypotheses. All four of the hypotheses

were supported, although two were only partially

explored because we were not able to include search-

set node–edge crossings in our multiple regression

models due to limitations in our study. We summarize

the outcomes for each.

H1. Solution-path node–edge crossings (sp-nx) will

account for additional variance in performance beyond

other factors on the solution path. Supported. Solution-

path node–edge crossings explained additional var-

iance for both dependent measures.

H2. Search-set (ss-) factors will account for additional

variance in performance beyond all of the solution-path

factors. Supported for search-set edge–edge crossings,

but we were not able to examine search-set node–edge

crossings in this analysis. Adding search-set edge–edge

crossings accounted for additional variance in both

dependent measures.

H3. Search-set (ss-) factors will predict performance more

efficiently than solution-path (sp-) factors. Supported

for search-set edge–edge crossings, but we were not

able to examine node–edge crossings. The overlap

between the search set and solution path considerably

reduced the relative contributions of node–edge and

edge–edge crossings measured on the solution path,

such that the search-set edge–edge crossings

accounted for additional variance in performance

without requiring an increase in the total number of

predictors required.

H4. Global factors (gl-) will not account for additional

variance in performance beyond the solution path and

search-set factors. Supported. We found no significant

relationship of node–edge or edge–edge crossings

measured globally with either dependent measure.

Discussion and future work

The main goal of this research was to dig deeper into

what makes path tracing in graphs difficult. We did so

by characterizing human path-tracing behaviour, both

as a worthwhile pursuit in its own right and in service

of developing a predictive model of the search set, as

our primary contributions. We also present as second-

ary contributions the concept of the search set itself

and the preliminary validation of the predictive beha-

vioural model through multiple regression analysis of

graph readability factors. We now discuss how our

research has addressed these goals, including the lim-

itations of our approach and possible routes for future

work.

The characterization of path-tracing
behaviours

Our characterization of path-tracing behaviours in

graphs extends beyond the previously proposed geode-

sic tendency.7 While we did find strong supporting evi-

dence for this tendency, we also found many situations

in which it falls short for explaining what people do.

We sharpened the description and shortened the term
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that was used in previous work, where this phenom-

enon has been called the geodesic path tendency. Our

discussion emphasizes that it entails following the clo-

sest-to-geodesic branch. We find this description more

evocative because it emphasizes that a decision is made

many times along a path, once for each perceived hop,

rather than only once for the entire path.

Our observations revealed a more complex beha-

vioural framework, within which the geodesic ten-

dency plays a major role but can be overridden by

other tendencies: the tendency to continue following

straight lines, the tendency to avoid directions that

point away rather than towards the target and the ten-

dency to be misled into tracing apparent branches that

are not in fact true topological connections. Moreover,

a full model of path-tracing behaviour requires under-

standing when people stop tracing one path in order

to try another and where they begin their next tracing

attempt. From our observations, we also characterized

a number of behavioural-based stopping conditions,

such as the tendency of users to stop searching soon

after going past the target, making paths that do so

much harder to find.

The behavioural framework we present here can act

as a baseline against which to compare further work.

While we believe that the framework should allow rea-

sonable guesses for parameters that could be used for a

range of similar situations, our study design and our

analytic approach were necessarily limited by balan-

cing precision and completeness against the time avail-

able to conduct this research. More observational work

can be done to untangle the relationships between the

geodesic path tendency and other tendencies that we

characterize in order to model exactly how they inter-

act and under what conditions each should take prior-

ity. One parameter space to explore in future work is

the characteristics of the graph itself: size, edge density

and synthesis technique (e.g. hierarchically clustering a

base graph rather than permuting a mesh according to

a preferential attachment model). Another large para-

meter space worth exploring is the visual encoding

technique used to lay out the graph, including layouts

through algorithms such as multilevel methods33,60,61

or constraint optimization62 rather than relatively naive

force-directed placement.63 The layout technique

directly affects the search set since it determines which

paths are closest to the geodesic, and thus, it is likely

that a search-set model should be customized for fami-

lies of layout approaches; however, we conjecture that

it is not necessary to create one for each individual

algorithm. Another space of alternatives is how edges

are drawn, for example, as curved lines rather than the

simple straight line encoding that we studied.64,65

Moreover, it would be useful to see whether and how

the addition of scaffolding interaction techniques such

as highlighting may change the nature of the beha-

viours we described here. Finally, it would be useful to

investigate how behaviours differ for other abstract

tasks, for example, those that combine reading attri-

bute information with topological structure traversal.19

While we found the recorded path-tracing data from

the Cintiq tablet to be quite rich and sufficient for our

study, we know that it did not capture the complete

picture of what users were doing. Some of the noise in

our logged data can be attributed to instances where

users visually examined nodes but forgot to point at

them with the pen. We chose not to use eye tracking in

our study primarily because of its high overhead with

respect to the analysis required in the development of

our predictive model. A follow-up study could com-

bine the tablet approach with eye tracking using tools

to automatically compare or correlate node hover and

eye-tracking data to examine how well pointing and

eyes match up and to potentially capture aspects that

the tablet misses.

Qualitative analysis through coding always involves

a degree of subjectivity: a different investigator might

describe some of the path-tracing behaviours that we

identified in a different way or even identify other

behaviours that we did not. A useful follow-up analysis

could employ additional coders to examine the relia-

bility of our single investigator’s codes and potentially

expand upon our findings. Alternative visual analysis

techniques may bear fruit; our approach to exploring

trajectory data with small multiples that show the evo-

lution over time for a single person and a single layout

is only one possible tactic. Andrienko et al.49 discuss

many alternatives for the visual analysis of trajectories:

flow maps, clustering by flow similarity and frequent

sequence discovery seem like the most appropriate

choices to try. Quantitative computational methods

such as machine learning might reveal different pat-

terns than human judgement yields and are another

promising avenue for future research to explore.

The predictive search-set model

Our predictive behavioural model allowed us to pre-

dict a set of paths that users were likely to follow at

fairly high accuracy (87%). We consider this model a

good first step: it captures most of the behaviours that

we observed in a robust way that avoids overfitting the

training set in the first analysis phase. We encourage

future research on search-set models that strive for fur-

ther breadth, completeness and accuracy. For exam-

ple, although we noted in our characterization of

behaviours that users could be quite distracted by

apparent paths caused by node–edge crossings, our

final predictive model only accounts for true topologi-

cal paths. A more complex model could take into
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account both true topological paths and apparent

paths, thereby supporting layout algorithms featuring

nuanced adjustments to local regions of the graph to

eliminate node–edge crossings on important paths.

Future work could lead to models that support relative

rankings of paths within the equivalence classes that

we propose, or even more specific priorities to differ-

ent paths within the search set based on their relative

salience, supporting a layout adjustment algorithm

that determines whether a particular path is of suffi-

ciently high priority to merit a layout change.

The search-set concept

A secondary contribution of this work is the concept

of a search set. It appears to be an apt model for real

human behaviour: we have shown it to be predictable

when applied to path-tracing tasks. We promote the

idea of a search set to analyse exactly the subset of a

graph that is relevant to a particular task, at an inter-

mediate level between completely global and the

strictly local single path that is the answer to a specific

query.

The search-set concept may serve to illuminate

aspects of human behaviour that have been difficult to

unravel thus far; it may serve to explain the variation

in results on global edge–edge crossings found in pre-

vious research. Evaluation results for this factor have

been very mixed;8,11,20,37 our own study was one of

several to find a lack of effect of global edge–edge

crossings on performance. Our conjecture is that the

effect depends on the size of the search set in relation

to the size of the full graph. In a small graph, a user

may search most of the graph to complete a task, so

global measurements of factors will heavily overlap

with the search set. Our study used somewhat larger

and denser graphs than have typically been in used in

previous work for a smaller overlap; this difference

may explain the lack of any significant relationship

between the global factors and our dependent

variables.

Factor measurement for model validation

Although factor measurement was the initial impetus

for our investigation, in the end it was relegated to a

supporting role in validating our predictive beha-

vioural model. We applied our predictive model of a

search set to the problem of factor measurement both

as validation that the model itself is a reasonable

approximation of the human behaviour we had

observed and as an example of how the technique can

be used. We consider the results of the regression anal-

ysis to be encouraging evidence that the concept of a

search set is on target; indeed, we see a modest

quantitative improvement for even this first attempt at

a predictive model.

Our findings pertain specifically to one type of

path-tracing task in graphs. It would be useful to

understand how the relative importance of the factors

we examined in our study differs for different abstract

tasks, such as browsing or comparison. Future

research could also explore whether the incremental

improvements seen by extending measurement of

edge–edge crossings from the solution path to the

search set also hold true of other factors. The differ-

ences we found in our analysis between how the vari-

ous factors influence RT and error strengthen the case

that no single factor dominates graph readability, so

we should seek to understand a factor’s priority or

importance in a specific context. This idea has

received limited practical attention beyond Huang

et al.,66 who showed that compromises between fac-

tors based on their relative importance can lead to bet-

ter layouts. Future research should continue to

examine how factors might be traded off to provide

the best support for particular user tasks or priorities.

Regression versus analysis of variance for
factor characterization

We echo and emphasize the call of Ware et al.23 for

the benefits of regression analysis over simply testing

for statistical significance with methods such as analy-

sis of variance (ANOVA). Untangling the relationships

between factors will help characterize the algorithms

that use these factors, and it will also help develop

guidelines of how to map between algorithms and the

requirements of specific visual encoding and interac-

tion techniques.67 A small methodological contribu-

tion in this article is that we advocate for hierarchical

rather than stepwise multiple regression based on rec-

ommendations from the clinical psychology literature

on incremental validity.42

Conclusion

In this article, we proposed the concept of the search

set: the subset of the graph that is likely to be carefully

investigated by a user in carrying out a path-tracing

task in a graph. The search-set concept was motivated

by our interest in determining path difficulty for the

purposes of experimental comparisons of techniques,

and we focused on this application in our work. We

also presented a range of potential practical applica-

tions of a predictive search-set model in the design of

visual encoding and interaction techniques for graphs.

A primary contribution of this work is a characteriza-

tion of common human path-tracing behaviours based
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on detailed qualitative analysis of observations of peo-

ple using visual representations of graphs for path tra-

cing. These include verification of the closest-to-

geodesic tendency and descriptions of conditions

under which people stop following paths, the likely

directions for the first hop in a path, the tendency to

revisit previously followed paths and the tendency to

mistakenly follow apparent paths in addition to true

topological paths. Another primary contribution of

this work is an initial predictive behavioural model of

the new concept of a search set that is based on these

observed behaviours and is robust to a range of para-

meters. We validated the search-set model by measur-

ing graph readability factors on this set, in comparison

with measuring them globally on the entire graph or

very locally on only the single path that is the correct

solution. The factors tested included edge–edge cross-

ings, node–edge crossings, path continuity and path

length. The modest improvements that we achieved in

the efficiency and total variance accounted for in pre-

dicting RT and error are encouraging evidence that

the concept of a search set has merit, although our

model is a first attempt at algorithmic instantiation of

complex human behaviour. A secondary contribution

of this article is the careful comparison of the relative

importance of factors measured at these three levels of

a graph through multiple regression analysis. We also

found key differences in the relative weighting of the

importance of the factors that affect RT versus error.
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