Martingales

Ezequiel Smucler

Department of Statistics, UBC

October 25, 2017

- Introduction
- Some preliminaries
- 3 Examples
- 4 A concentration inequality
- 5 An application to chromatic numbers

Introduction

Introduction

Definition (Martingales)

Let $X=(X_n)_{n\geq 0}$ and $Y=(Y_n)_{n\geq 0}$ be two sequences of random variables. Suppose that for some Borel function g, $X_n=g(Y_n,Y_{n-1},\ldots,Y_0)$. X is said to be a martingale with respect to Y if

$$E(|X_n|) < \infty$$
 for all n,
$$E(X_n|Y_0, \dots, Y_{n-1}) = X_{n-1} \quad a.s \quad \text{for all n, } n \geq 1.$$

Martingales are stochastic processes that 'tend to remain where they are' as time passes.

Some examples

Random Walk Let X_n , $n \ge 1$ be independent r.v. with zero mean. Let $X_0 = 0$. Let $S_n = \sum_{k \le n} X_k$ for $n \ge 0$. Then $S = (S_n)_n$ is a martingale with respect to $X = (X_n)_n$.

Learning about a r.v. Let Z be a random variable with finite mean. Let $X=(X_n)$ be a sequence of random variables. Let $M_n=E(Z|X_0,\ldots X_n)$. Then $M=(M_n)_n$ is a martingale with respect to X.

Random graphs

Let $\mathcal{G}_{n,p}$ be an Erdos-Renyi Random Graph: we have n nodes, each pair of nodes is connected independently with probability p.

Edge exposure martingale Let Z_i be the indicator variable of whether edge i is present in the graph. Let $A = f(Z_1, \ldots, Z_{\binom{n}{2}})$ be a graph property and $X_i = E(A|Z_1, \ldots, Z_i)$.

Vertex exposure martingale Let $Z_1=0$ and for i>1 let $Z_i\in\{0,1\}^{i-1}$ be a vector of indicators of whether edges between vertex i and vertices j< i are present in the graph. Let $A=f(Z_1,\ldots,Z_n)$ be a graph property and $X_i=E(A|Z_1,\ldots Z_i)$.

Some preliminaries

Conditional expectation

All non-deterministics statements hold a.s. Again, let $Z, W, Y_0, \dots Y_n$ be r.vs.

- If $Z = g(Y_0, ..., Y_n)$, $E(ZW|Y_0, ..., Y_n) = ZE(W|Y_0, ..., Y_n)$.
- If Z is independent of $Y_0, \ldots Y_n$, $E(Z|Y_0, \ldots Y_n) = E(Z)$.
- $E(E(Z|Y_0,...,Y_n)|Y_0,...,Y_{n-1}) = E(Z|Y_0,...,Y_{n-1}).$
- If ϕ is convex, $E(\phi(Z)|Y_0...Y_n) \ge \phi(E(Z|Y_0...Y_n))$.
- $E(a_1Z_1 + a_2Z_2|Y_0, ..., Y_n) = a_1E(Z_1|Y_0, ..., Y_n) + a_2E(Z_2|Y_0, ..., Y_n)$.
- $\bullet \ E(E(Z|Y_0\ldots Y_n))=E(Z).$
- If $Z_1 \leq Z_2$ then $E(Z_1|Y_0,...,Y_n) \leq E(Z_2|Y_0,...,Y_n)$.

Examples

Random Walk

Example (Random Walk)

Let's check $(S_n)_n$ is a martingale.

- $E(|S_n|) \leq \sum_{k \leq n} E(|X_k|) < \infty$.
- $E(S_n|X_0,\ldots,X_{n-1})=E(S_{n-1}|X_0,\ldots,X_{n-1})=S_{n-1}$, due to the X_n s being independent.

Learning about a r.v.

Martingales of the form $M_n = E(Z|X_0,...X_n)$ are also called Doob's martingales.

Example

Let's check $(M_n)_n$ is a martingale.

- $E(|M_n|) = E(|E(Z|X_0, ... X_n)|) \le E(E(|Z||X_0, ... X_n)) = E(|Z|) < \infty.$
- $E(M_n|X_0,...,X_{n-1}) = E(E(Z|X_0,...,X_n)|X_0,...,X_{n-1}) = E(Z|X_0,...,X_{n-1}) = M_{n-1}.$

Some questions

Let $X = (X_n)_n$ be a martingale.

- How and when can we bound $P(|X_n X_0| > \varepsilon)$?.
- Let $A \subset \mathbb{R}$. Let $T = \inf\{n : X_n \in A\}$. What's E(T)? What can we say about X_T ?
- When does there exists a random variable X_{∞} such that $X_n \to X_{\infty}$? In what sense?

A concentration inequality

13 / 27

Azuma-Hoeffding

Theorem (Azuma-Hoeffding)

Let $(X_n)_n$ be a martingale with respect to $(Y_n)_n$. Let $D_n = X_n - X_{n-1}$. Assume there exists constants $(d_n)_n$ such that $|D_n| \le d_n$ almost surely. Then for any t > 0

$$P(X_n - X_0 \ge t) \le \exp\left(\frac{-t^2}{2\sum_{k < n} d_k^2}\right).$$

Proof of Azuma-Hoeffding

For simplicity assume $X_0=0$. Using Markov's inequality we get that for all θ , t>0,

$$P(X_n \ge t) \le \frac{E(\exp(\theta X_n))}{\exp(\theta t)}.$$

Now

$$E(\exp(\theta X_n)) = E(E(\exp(\theta X_n))|Y_0, \dots, Y_{n-1})).$$

Note that

$$\exp(\theta X_n) = \exp(\theta (X_{n-1} + D_n)) = \exp(\theta X_{n-1}) \exp(\theta D_n).$$

Proof of Azuma-Hoeffding

Since
$$X_{n-1} = g(Y_{n-1}, ..., Y_0)$$
,

$$E(\exp(\theta X_n)) = E(E(\exp(\theta X_n))|Y_0, ..., Y_{n-1}))$$

$$= E(E(\exp(\theta X_{n-1})\exp(\theta D_n))|Y_0, ..., Y_{n-1}))$$

$$= E(\exp(\theta X_{n-1})E(\exp(\theta D_n))|Y_0, ..., Y_{n-1})).$$

Suppose we can show that $E(\exp(\theta D_k))|Y_0,\ldots,Y_{k-1}) \leq \exp(\theta^2 d_k^2/2)$. Then

$$E(\exp(\theta X_n)) \le E\left(\exp(\theta X_{n-1})\right) \exp(\theta^2 d_{n-1}^2/2) \le \cdots \le \prod_{k \le n} \exp(\theta^2 d_k^2/2)$$

and

$$P(X_n \ge t) \le \prod_{k \le n} \exp(\theta^2 d_k^2/2) \exp(-t\theta).$$

Proof of Azuma-Hoeffding

Minimizing the RHS of

$$P(X_n \ge t) \le \prod_{k \le n} \exp(\theta^2 d_k^2 / 2) \exp(-t\theta)$$

over θ gives that the optimal θ is $t/\sum_{k\leq n}d_k^2$ and we get the bound

$$P(X_n \ge t) \le \exp\left(\frac{-t^2}{2\sum_{k \le n} d_k^2}\right).$$

To show $E(\exp(\theta D_k))|Y_0,\ldots,Y_{k-1}) \le \exp(\theta^2 d_k^2/2)$ we will need a lemma.

Lemma (Hoeffding's Lemma)

Let V be a r.v. and Z a random vector such that $V \in [a,b]$ a.s., where a < 0 < b. Assume E(V|Z) = 0. Then $E(\exp(\theta V)|Z) \le \exp((\theta (b-a))^2/8)$.

Proof.

 $\exp(\theta x)$ is convex. Take $x\in[a,b]$ and let $\lambda=(b-x)/(b-a)\in[0,1].$ Note that $\lambda a+(1-\lambda)b=x.$ Then

$$\begin{split} \exp(\theta x) &= \exp(\lambda \theta a + (1 - \lambda)\theta b) \leq \lambda \exp(\theta a) + (1 - \lambda) \exp(\theta b) \\ &= \frac{b - x}{b - a} \exp(\theta a) + \frac{x - a}{b - a} \exp(\theta b) \end{split}$$

Hence

$$\begin{split} E\left(\exp(\theta V)|Z\right) &\leq \exp(\theta a) E\left(\frac{b-V}{b-a}|Z\right) + \exp(\theta b) E\left(\frac{V-a}{b-a}|Z\right) \\ &= \exp(\theta a) \frac{b}{b-a} + \exp(\theta b) \frac{-a}{b-a} \end{split}$$

Let p = -a/(b-a). Then

$$\begin{split} E\left(\exp(\theta V)|Z\right) &\leq \exp(-\theta p(b-a))(1-p) + \exp(\theta(1-p)(b-a))p \\ &= \exp(-\theta p(b-a))\left((1-p) + p\exp(\theta(b-a))\right) \\ &= \exp(-pu + \log(1-p + p\exp(u))) \leq \exp(u^2/8), \end{split}$$

where $u = \theta(b - a)$.

By simmetry, we also get

$$P(X_n - X_0 \le -t) \le \exp\left(\frac{-t^2}{2\sum_{k \le n} d_k^2}\right).$$

and

$$P(|X_n - X_0| \ge t) \le 2 \exp\left(\frac{-t^2}{2\sum_{k \le n} d_k^2}\right).$$

McDiarmid's Inequality

Theorem (McDiarmid's Inequality)

Let X_1, \ldots, X_n be independent random elements of $\mathcal{X}_1, \ldots, \mathcal{X}_n$ respectively. Let $\mathcal{X} = \prod_{i=1}^n \mathcal{X}_i$. Suppose that $f: \mathcal{X} \to \mathbb{R}$ satisfies that: if \mathbf{x} and \mathbf{x}' differ only on the k-th coordinate then $|f(\mathbf{x}) - f(\mathbf{x}')| \le \sigma_k$. Let $Y = f(X_1, \ldots, X_n)$. Then

$$P(|Y - E(Y)| \ge t) \le 2 \exp\left(\frac{-t^2}{2\sum_{k \le n} \sigma_k^2}\right).$$

Proof.

Let $Y_k = E(Y|X_1, ..., X_k)$ and $Y_0 = E(Y)$. We will show that Y_k satisfies the hypothesis of Azuma-Hoeffding. Write $X_{i:j} = (X_i, ..., X_j)$, $x_{i:j} = (x_i, ..., x_j)$.

$$Y_{k} = E(Y|X_{1},...,X_{k})$$

$$= \sum_{x_{k+1:n}} f(X_{1:k},x_{k+1:n}) P(X_{k+1:n} = x_{k+1:n}|X_{1:k})$$

$$= \sum_{x_{k+1:n}} f(X_{1:k},x_{k+1:n}) P(X_{k+1:n} = x_{k+1:n}).$$

Proof.

$$Y_{k-1} = \sum_{x_{k:n}} f(X_{1:k-1}, x_{k:n}) P(X_{k:n} = x_{k:n})$$

$$= \sum_{x_{k:n}} \sum_{x_{k}} f(X_{1:k-1}, x'_{k}, x_{k+1:n}) P(X_{k} = x'_{k}) P(X_{k+1:n} = x_{k+1:n}).$$

Proof.

Thus

$$|Y_k - Y_{k-1}| \le$$

$$\sum_{x_{k+1:n}} |f(X_{1:k}, x_{k+1:n}) - \sum_{x_k'} f(X_{1:k-1}, x_k', x_{k+1:n}) P(X_k = x_k') | P(X_{k+1:n} = x_{k+1:n})$$

$$\leq \sum_{x_{k+1:n}} \sigma_k P\left(X_{k+1:n} = x_{k+1:n}\right) \leq \sigma_k.$$

An application to chromatic numbers

Shamir and Spencer 87'

Consider an Erdos-Renyi random graph $\mathcal{G}_{n,p}$. Let χ be its chromatic number. Let $Z_1=0$ and for i>1 let $Z_i\in\{0,1\}^{i-1}$ be a vector of indicators of whether edges between vertex i and vertices j< i are present in the graph. Note that

$$\chi = f(Z_1, \ldots, Z_n),$$

for some function f.

Shamir and Spencer 87'

If we modify Z_i by adding edges incident to i, we can mantain a proper coloring by eventually adding a new color for i, hence the chromatic number increases by at most 1; if we modify Z_i by removing edges incident to i, the chromatic number cannot decrease by more than 1.

Hence we have (Shamir and Spencer 87')

$$P(|\chi - E(\chi)| \ge t) \le 2\exp(-t^2/(2n)).$$

In particular, deviations of X from E(X) by an order greater than \sqrt{n} are unlikely.