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ABSTRACT
When integrating geo-spatial datasets, a join algorithm is
used for finding sets of corresponding objects (i.e., objects
that represent the same real-world entity). Algorithms for
joining two datasets were studied in the past. This paper
investigates integration of three datasets and proposes meth-
ods that can be easily generalized to any number of datasets.
Two approaches that use only locations of objects are pre-
sented and compared. In one approach, a join algorithm for
two datasets is applied sequentially. In the second approach,
all the integrated datasets are processed simultaneously. For
the two approaches, join algorithms are given and their per-
formances, in terms of recall and precision, are compared.
The algorithms are designed to perform well even when lo-
cations are imprecise and each dataset represents only some
of the real-world entities. Results of extensive experiments
show that one of the algorithms has the best (or close to the
best) performances under all circumstances. This algorithm
has a much better performance than applying sequentially
the one-sided nearest-neighbor join.

Categories and Subject Descriptors:
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms:
Algorithms, Experimentation

Keywords:
Location-based join, geospatial datasets, spatial join, corre-
sponding objects, integration
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1. INTRODUCTION
Integration of geo-spatial data from heterogeneous sources

has many important applications. One example is com-
bining up-to-date data, say from a satellite image, with
data from a map that contains verbal descriptions of en-
tities. When geographical entities are represented in differ-
ent sources, and each source stores different properties of
the entities, integration makes it possible to obtain all the
available information on each entity.

Integration is essentially a join of datasets. The main task
in a join is to find all sets of corresponding objects, i.e., ob-
jects that represent the same real-world entity in distinct
sources. Over heterogeneous sources, however, finding cor-
responding objects is difficult, since there are no global iden-
tifiers. In principle, both spatial and non-spatial properties
may be used, in lieu of global identifiers, for integrating ge-
ographical data. However, only location is always available
for spatial objects. Thus, we investigate location-based join.

Since in many cases, locations uniquely identify objects
in a dataset, location-based join seems to be an easy task.
This is not so, however, for several reasons. First, measure-
ments introduce errors, and the errors in different datasets
are independent of each other. Second, each organization
has its own approach and requirements. Hence, different or-
ganizations use different measurement techniques and may
record spatial properties of entities using a different scale or
a different structure. For example, one organization might
represent buildings as points, while another could represent
them as polygons. While an estimated point location can
be derived from a polygonal shape, it may not agree with a
point location in another database. A third reason could be
displacements caused by cartographic generalizations.

For the above reasons, location-based joins do not provide
a precise answer, but rather an approximation. The quality
of the approximation is determined by characteristics of the
joined datasets, such as sizes of the errors, the density of
objects, and the relative overlap.

In this paper, we introduce algorithms for location-based
join of three or more sources, under the assumptions that
locations are given as points and each dataset has at most
one object per real-world entity. The rationale underlying all
our algorithms is that even in the presence of measurement
errors, corresponding objects should have close locations.



For location-based join of two datasets, the current state
of the art is the one-sided nearest-neighbor join (nn-join) [13]
that joins an object from one dataset with its closest neigh-
bor in the other dataset (see also Section 3.2 below). Beeri
et al. [1] showed that the nn-join has several disadvantages,
and they introduced three algorithms that outperform the
nn-join, namely, the mutually-nearest join, the probabilistic
join and the normalized-weights join.

In this paper, we consider the problem of computing sets
of corresponding objects when more than two sources are at
hand. Two basic approaches are presented and compared:
the sequential approach and the holistic approach. In the
sequential approach, a join algorithm for two datasets is
applied sequentially. In the holistic approach, the join is
applied to all the sources simultaneously. For the holistic
approach, we had to develop new algorithms. The new al-
gorithms are designed for a join of three datasets, but can
be easily extended to a join of any number of datasets.

It may seem that the sequential approach is problematic,
since sources that appear earlier in the sequence may have
greater influence on the result than sources that appear to-
wards the end of the sequence. Furthermore, an error in
one of the joins of the sequence may cause additional errors
in subsequent joins. Our experiments, however, show that,
in many cases, there is a sequence of joins that produces a
good approximation of the sets of corresponding objects.

We tested our algorithms on both real-world data that
describe hotels in Tel-Aviv, and randomly generated data.
We conducted our tests in varying conditions of the mea-
surement errors, the density of each geo-spatial dataset and
the degree of overlap between the tested datasets. The re-
sults of our tests illustrate the strengths and weaknesses of
the holistic and sequential approaches.

The main contribution of our work is in showing that point
locations can be effectively used for finding corresponding
objects, even when more than two sources are present. Since
locations are always available for spatial objects, location-
based joins provide a practical approach to the integration
of geographic datasets. Additional properties of objects that
may be available (e.g., names or polygonal locations) can be
used to enhance the strength of our algorithms.

2. TERMINOLOGY AND ASSUMPTIONS
In this section, we present the notion of a join algorithm

and describe the results of such an algorithm. In addition,
we discuss the quality of the result and the factors that
influence this quality.

2.1 Join Algorithms and Their Results
A geo-spatial dataset stores spatial objects and each spa-

tial object represents a single real-world geographic entity.
To abbreviate the terminology, we use the terms dataset, ob-
ject and entity. In each dataset there is at most one object
for each real-world entity. An object has associated spatial
and non-spatial attributes. Spatial attributes describe the
location, height, shape and topology of an entity. Examples
of non-spatial attributes are building name, accessibility to
people in a wheelchair, number of rooms in a hotel, etc.

When geographic databases are integrated, the main task
is to identify sets of objects that represent the same real-
world entity in different sources. A join algorithm receives
datasets as input and it generates join sets. Each join set
contains at most one object from each dataset. A join set

J is correct if it consists exactly of all the objects that cor-
respond to some entity e; that is, there exists an entity e,
such that all the objects that represent e are in J and there
are no objects in J that do not represent e.

In this paper, we investigate join algorithms under the fol-
lowing assumptions. First, we assume that locations of ob-
jects are recorded as points. More complex forms of record-
ing locations (e.g, polygons) can be approximated by points
(e.g., by computing the center of mass). Second, in each
dataset, distinct objects represent distinct real-world enti-
ties. This is a realistic assumption for many GIS applica-
tions. Finally, we consider only join algorithms that use
locations of objects, but no additional properties of those
objects. As already mentioned, location-based join is a non-
trivial task. Understanding the factors that determine the
quality of location-based join algorithms is a basis for devel-
oping join algorithms that use all available properties.

2.2 Quality of Results

2.2.1 Measuring the Quality
As in information retrieval, we measure the quality of a

join algorithm in terms of recall and precision. Note that
applying these measures requires full knowledge of the corre-
spondence between objects and the entities they represent.
In practical circumstances, this knowledge is not available;
however, it was available for the datasets that we used in our
tests. Hence, we could use recall and precision to describe
the quality of our test results.

The straightforward definition of recall and precision is
based on the number of correct sets. Recall is the percent-
age of correct join sets that actually appear in the result
(e.g., 86% of all the correct join sets appear in the result).
Precision is the percentage of correct join sets out of all the
join sets in the result (e.g., 91% of the sets in the result are
correct). The problem with this definition is that it does not
distinguish between two sets, such that one consists mostly
of objects that correspond to the same entity while in the
other set, each object corresponds to a different entity. In-
tuitively, we would like to consider the first set as having a
higher level of correctness.

Therefore, we use a definition that counts the number of
correct pairs rather than the number of correct sets. In
other words, we count pairs of corresponding objects. Since
entities are not necessarily represented in all the sources,
this counting requires some care.

Consider n datasets D1, . . . , Dn and let ⊥1, . . . ,⊥n be n
fresh symbols. For each 1 ≤ i ≤ n, we call ⊥i the null value
of Di. A pair is either a pair of objects from two distinct
Di’s or an object oi from some Di and a null value ⊥j , where
j 6= i. In the first case, the pair is correct if it consists of
two corresponding objects. In the second case, it is correct
if oi has no corresponding object in Dj . Note that pairs are
unordered, that is, (a, b) is the same as (b, a) and hence is
counted just once.

Consider a join set J over D1, . . . , Dn. For each 1 ≤ i ≤ n,
we add to J the null value ⊥i if J does not include any object
of Di. The result is the set J̄ . We denote by pairs(J̄) the
set of all pairs that are obtained from J̄ .

Let J1, . . . , Jm be the join sets that are produced by some
join algorithm for the datasets D1, . . . , Dn. The set J̄ con-
sists of all distinct pairs obtained from J̄1, . . . , J̄m i.e., J̄ =
∪m

i=1pairs(J̄i). Suppose that there are k real-world enti-



ties e1, . . . , ek. Let Ē1, . . . Ēk be the perfect result for the
datasets D1, . . . , Dn; that is, Ēi comprises all the objects
corresponding to ei and the null values from the datasets
Dj that do not contain any object for ei. The set Ē consists
of all distinct pairs obtained from the perfect result, i.e.,
Ē = ∪k

i=1pairs(Ēi); note that all these pairs are correct.
Let Pr be the number of pairs in J̄ , let Pc be the number

of correct pairs in J̄ and let Pe be the number of pairs in
Ē . For the result J1, . . . , Jm, the precision is Pc/Pr and the
recall is Pc/Pe.

In all our experiments, including those that are presented
in this paper and those that are not, the two definitions of
recall and precision ranked join algorithms similarly. In this
paper, we only present results using the pair-based mea-
sure since, as explained earlier, it is more sensitive to small
changes in the input.

2.2.2 Factors Affecting Recall and Precision
Several factors may influence the quality of results of a

join algorithm. One of these is the distribution of errors in
each dataset. Section 3.1 describes how this distribution is
used in join algorithms.

The density of a dataset is the number of objects per unit
of area. Each dataset has an error which is the maximal
distance between an entity and its representing object. The
choice factor is the number of objects in a circle with a
radius that is equal to the error (note that the choice factor
is the product of the density and the area of that circle).
Intuitively, for a given entity, the choice factor is an estimate
of the number of objects in a dataset that could possibly
represent that entity. When the choice factor is large, it is
difficult to achieve high-quality results. Note that the above
factors need not be uniform in the geographic area that is
represented by a given dataset.

Another important factor is the overlap between datasets.
If two datasets A and B have m and n objects, respectively,
and there are precisely c entities that are represented in both
sets, then the overlap between A and B is defined to be
p

c
m

· c
n
. The overlap is a measure of the fraction of objects

that have a corresponding object in the other set. One of
the challenges we faced was to develop an algorithm that
has high recall and precision for varying degrees of overlap
between datasets.

3. THE SEQUENTIAL APPROACH
In this section, we describe the sequential approach for

joining three datasets. In this approach, we use a 2-join
algorithm, i.e., a join algorithm for two datasets, and we
apply it twice—first we join two of the given datasets and
then we join the result of the first join with the third dataset.

Applying the sequential approach necessitates answering
the following questions. First, which 2-join algorithm should
we use? Second, how does the error distribution affect dif-
ferent 2-join algorithms? Third, assume that two datasets
have already been joined. The result of this join is viewed
as a (virtual) dataset and it should be joined with the third
dataset. For that, we need to decide what is the location of
objects and what is the estimated error in the result of the
first join. In this section, we answer these questions.

3.1 Accuracy Parameters
First, we briefly consider accuracy parameters for a single

dataset. In a given dataset, the exact error in the locations

of objects is normally distributed with a standard deviation
σ and a mean equal to zero. We assume that the error of
the dataset has a fixed size and we take it to be m = 2.5σ.

When m = 2.5σ, then for 98.8% of the objects, the dis-
tance between an object and the entity that the object repre-
sents is smaller than m. Generally, this percentage increases
when m is increased, and decreases when m is decreased.

When datasets A and B are joined by a 2-join algorithm,
their mutual-error bound, denoted by βAB , is

βAB =
p

mA
2 + mB

2.

The mutual-error bound determines the maximal expected
distance between a pair of corresponding objects from A
and B. Its meaning is analogous to the errors mA and mB.
That is, for approximately 98.8% of all pairs of correspond-
ing objects, the distance between these objects is smaller
than βAB . When a 2-join algorithm is applied to datasets A
and B, we assume that a pair of objects, a ∈ A and b ∈ B,
cannot correspond to the same entity if the distance between
them is greater than βAB . Consequently, the distance be-
tween these two objects is taken to be ∞.

Now, let J (A,B) be the result of joining datasets A and
B. We describe how this result can be viewed as a dataset.
For that, we need to determine the objects in this result, the
location of each object, and the error mAB for the result. In
J (A, B), there is an object for each join set that is generated
from A and B. If a join set that is produced from A and
B is a singleton {o} (i.e, contains a single object), then
the dataset J (A, B) contains the object o, with its original
location. If a join set is a pair {a, b}, where a ∈ A and b ∈ B,
then J (A, B) contains a (virtual) object oab.

As for the location of oab, a simple approach is to take the
average of the locations of a and b. It is customary, however,
to take a weighted average, where the weight of a dataset is
its accuracy [12]. For a dataset A, its accuracy, denoted by

wA, is
“

1
σA

”2

. Intuitively, we consider a dataset as accurate

if most errors are small. That is, the smaller the variance,
the higher the accuracy.

Suppose that the (vector) locations of a and b are la and
lb, respectively. The location of oab is the vector lab, where

lab =
la · wA + lb · wB

wA + wB

. (1)

The location lab is on the line that connects the locations
of a and b. If the dataset A is more accurate than B, then
the new location is closer to la, and vice versa. Intuitively,
this is so because the location of an object (with respect to
the entity that it represents) is likely to be more accurate if
it belongs to the more accurate dataset.

Next, consider the error. The error mAB of the dataset
J (A, B) is given by the following formula.

“ 1

mAB

”2

=
“ 1

mA

”2

+
“ 1

mB

”2

The above formula is equivalent to the next one.

mAB =

r

mA
2 · mB

2

mA
2 + mB

2
(2)

In the rest of this section, we briefly review three 2-join
algorithms that are used in the sequential approach. For
more details on these algorithms, see [1].



3.2 The One-Sided Nearest-Neighbor Join
The one-sided nearest-neighbor join is commonly used in

commercial geographic-information systems [13]. Given an
object a ∈ A, we say that an object b ∈ B is the nearest
B-neighbor of a if b is the closest object to a among all
the objects in B. The one-sided nearest-neighbor join is
asymmetric. So, starting with a dataset A and joining B to
A, the result consists of all join sets {a, b}, such that a ∈ A,
b ∈ B and b is the nearest B-neighbor of a.

By the above definition, the result has three properties.
First, all the join sets have two objects. Second, every a ∈ A
is in one of the join sets. Third, an object of B may appear
in zero, one or more join sets. In order to boost up the
recall and precision of this method, and consistently with
our approach of how the mutual-error bound is used, we
modify the above definition as follows. First, we remove
from the result pairs {a, b} with distance(a, b) > βAB , where
distance(a, b) denotes the distance between the locations of
objects a and b. Then, we add to the result the singleton
sets {a} and {b}, for every a ∈ A and b ∈ B that do not
appear in any pair.

As noted above, the nearest-neighbor join is asymmetric:
the results of joining B to A is often different from the result
of joining A to B. In the sequential approach, we employ the
simple heuristic of always starting with the larger dataset
and joining the smaller one, since it produces better results
than joining the larger dataset to the smaller one. If we
start with the smaller dataset, each object has near it many
objects of the larger set, and thus, the choice factor is large.
Starting with the larger dataset decreases the choice factor.

3.3 The Mutually-Nearest Join
We say that two objects, a ∈ A and b ∈ B, are mu-

tually nearest with respect to A and B if a is the nearest
A-neighbor of b and, in addition, b is the nearest B-neighbor
of a. In the mutually-nearest join, a two-element join set is
created for each pair of mutually-nearest objects that have a
distance of βAB or less between them. The intuition behind
the mutually-nearest join is that corresponding objects are
likely to be mutually nearest. A singleton join set is created
for each object that is not in any pair of mutually-nearest
objects. Note that it is possible that b is the nearest B-
neighbor of a and a is not the nearest A-neighbor of b. In
this case, a will be a singleton.

3.4 The Normalized-Weights Method
The normalized-weights method used in the sequential al-

gorithm is an improved version of the method presented
in [1]. Consider two datasets A = {a1, . . . , am} and B =
{b1, . . . , bn}. For each object a ∈ A, we define the function
Pa : B → [0, 1] that assigns to each b ∈ B the probability (or
likelihood) that a chooses b among all the objects of B. Sim-
ilarly, for each b ∈ B, we define the function Pb : A → [0, 1].

Formally, the probability function Pai is defined, as shown
below, in terms of three parameters: the distance, the dis-
tance decay factor α > 0 and the mutual-error bound βAB

(the probability function Pbj
is defined similarly).

Pai(bj) =
distance(ai, bj)

−α

Pn

k=1 distance(ai, bk)−α + βAB
−α

(3)

There is also the probability that ai does not choose any
object of B, i.e., the probability that ai will be in a singleton

join set of the result. This probability is as follows.

Pai(⊥B) =
βAB

−α

Pn

k=1 distance(ai, bk)−α + βAB
−α

(4)

Thus, the sum of the probabilities that ai chooses one of the
bj ’s or chooses being a singleton is 1.

The mutual-error bound βAB has the following effect in
Formula 3. If distance(ai, bj) > βAB , then ai and bj are not
likely to be corresponding objects. Thus, distance(ai, bj) is
taken to be infinity and distance(ai, bj)

−α = 0. In this case,
Pai(bj) = 0. Note that the denominator of Formula (3) is
always greater than 0, assuming that βAB > 0.

According to Formula 3 and the fact that α > 0, the
probability that ai chooses bj increases when the distance
between ai and bj decreases. In particular, ai chooses its
nearest B-neighbor with the highest probability. The pa-
rameter α determines the rate of decrease in the probability
as the distance increases. In our tests, we used α = 2.

Now, we describe the normalized-weights method. The
matching matrix M is an (m + 1) × (n + 1) matrix, such
that the element in row i and column j, denoted by µij , is
defined as follows.

• For 1 ≤ i ≤ m and 1 ≤ j ≤ n,

µij = Pai(bj) · Pbj
(ai).

• For 1 ≤ i ≤ m and j = n + 1,

µij = Pai(⊥B) ·
n

Y

k=1

(1 − Pbk
(ai)).

• For i = m + 1 and 1 ≤ j ≤ n,

µij = Pbj
(⊥A) ·

m
Y

k=1

(1 − Pak
(bj)).

• For i = m + 1 and j = n + 1, µij = 0.

Note that in the first case of the above definition, µij

is assigned the probability that ai and bj mutually choose
each other. In each row i, the element in the last column
(j = n + 1) gives the probability that ai does not choose
any b ∈ B and is not being chosen by any b ∈ B. Similarly,
in each column j, the element in the last row (i = m + 1)
gives the probability that bj does not choose any a ∈ A and
is not being chosen by any a ∈ A.

A row (or a column) r is normalized to a value x > 0
if the sum s of all the elements of r is equal to x. We
can always normalize r to x by dividing each element by s

x

(since s > 0). The normalization algorithm is a sequence
of iterations over M . In each iteration, the first m rows
are normalized to one and the last row is normalized to the
number of objects in A that do not have a corresponding
object in B. Then, the first n columns are normalized to one
and the last column is normalized to the number of objects
in B that do not have a corresponding object in A. When
the values for normalizing the last row and last column are
not known, we use the mutually-nearest join for computing
approximations of these values.

Let M (0) denote the matrix M , as defined above, and let
M (k) denote the matrix after k iterations. It was shown by
Sinkhorn [18, 19] that the normalization algorithm converges
and the result does not depend upon the order of normaliz-
ing rows and columns in each iteration. We terminate the



Figure 1: Datasets A (circles) and B (pluses).

normalization algorithm when the sum of each row and each
column, except for the last row and the last column, differs
from 1 by no more than some very small ε > 0.

Let M (t) denote the matrix upon termination of the iter-
ative normalization algorithms. The confidence of the join
set {ai, bj} is the value in row i and column j of M (t). The
confidence of the join set {ai} is the value in row i and col-

umn n + 1 of M (t). The confidence of the join set {bj} is

the value in column j and row m + 1 of M (t). The result of
the normalized-weights method consists of all the join sets
with confidence values above a given threshold τ . In gen-
eral, τ could be given by a user who may wish to control the
recall-precision tradeoff. In our tests, we used a threshold
that minimized the error count. The error count of a join
result is the number of objects that do not appear in any
join set plus the number of objects that appear in more than
one join set. It has been shown in [1] that a threshold that
minimized the error count provides a combination of recall
and precision that is near the best.

The following example illustrates the normalized-weights
method.

Example 3.1. Consider two datasets A = {a1, a2} and
B = {b1, b2, b3}, with a mutual-error bound βAB = 15. The
positions of the objects are shown in Figure 1. The distances
between objects are given in the following table.

Distances (β = 15)

b1 b2 b3 ⊥B

a1 7 > β 12.8 15

a2 3 10 10.2 15

⊥A 15 15 15

We use the above distances to compute the probability
functions, according to Equation 3 and Equation 4. The
probability functions Pai are presented in the next table.

Choice Probabilities for A

b1 b2 b3 ⊥B

Pa1
0.66 0 0.20 0.14

Pa2
0.82 0.07 0.07 0.03

The following table shows the probability functions Pbj
.

Choice Probabilities for B

Pb1 Pb2 Pb3
a1 0.15 0 0.30

a2 0.82 0.69 0.48

⊥A 0.03 0.31 0.22

The initial weights in the matching matrix are as follows.

Initial Weights

b1 b2 b3 ⊥B

a1 0.10 0 0.06 0.09

a2 0.67 0.05 0.03 0.00

⊥A 0.00 0.28 0.16 0

We now show the first iteration of the normalization algo-
rithm. For each row in the matching matrix, we first com-
pute the sum of all the elements in that row and then divide
each element by that sum. For simplicity, in this example,
we do not normalize the last row and the last column.

Normalizing the Rows

b1 b2 b3 ⊥B Sum

a1 0.41 0 0.24 0.35 1.00

a2 0.89 0.07 0.04 0.00 1.00

⊥A 0.00 0.28 0.16 0

Sum 1.29 0.35 0.45

Now, for each column, we divide every element by the sum
of all elements in that column.

Normalizing the Columns

b1 b2 b3 ⊥B Sum

a1 0.31 0 0.54 0.35 1.20

a2 0.68 0.19 0.10 0.00 0.98

⊥A 0.01 0.81 0.36 0

Sum 1.00 1.00 1.00

This completes the first iteration. In this example, the
normalization algorithm terminates after 9 iterations and
returns the following matrix.

After Normalization

b1 b2 b3 ⊥B Sum

a1 0.27 0 0.47 0.26 1.00

a2 0.72 0.18 0.10 0.00 1.00

⊥A 0.01 0.82 0.43 0

Sum 1.00 1.00 1.00

For a threshold τ = 0.45, the algorithm returns the join
sets {a1, b3}, {a2, b1} and {b2}. If a threshold of τ = 0.6 is
used, then only the sets {a2, b1} and {b2} are returned.

4. THE HOLISTIC APPROACH
In this section, we present two join methods that use the

holistic approach. The methods are designed for joining
three datasets, but can be easily modified to join any num-
ber of datasets. One method is the holistic version of the
mutually-nearest method and the other is the holistic ver-
sion of the normalized-weights method.

4.1 The Holistic Mutually-Nearest Method
The holistic version of the mutually-nearest method is a

three-step algorithm. Suppose that A, B and C are the
datasets that should be joined. In Step 1, a join set is created
for each three objects a ∈ A, b ∈ B and c ∈ C, such that
every two objects in {a, b, c} are mutually nearest and the
distance between them does not exceed the mutual-error
bound (i.e., distance(a, b) ≤ βAB , etc.) That is, the objects
a and b are mutually nearest w.r.t. (with respect to) A and
B; the objects a and c are mutually nearest w.r.t. A and C;
and b and c are mutually nearest w.r.t. B and C.

In Step 2, we add join sets that contain pairs of mutually
nearest objects. We add only some of the mutually-nearest
pairs, because an object should not appear in more than one
set of the result. Thus, we add a pair of objects a ∈ A and
b ∈ B to the result when the following four conditions hold.
First, the objects a and b are mutually nearest w.r.t. A and
B. Second, distance(a, b) ≤ βAB . Third, no set of triplets
that was added in Step 1 contains either a or b. Fourth, there



is no object c ∈ C, such that either a and c are mutually
nearest and distance(a, c) < distance(a, b) or b and c are
mutually nearest and distance(b, c) < distance(a, b). Pairs
of objects from A and C or from B and C are added under
similar conditions.

In Step 3, a singleton join set is created for each object
that does not belong to any set that was created in either
Step 1 or Step 2. Note that indeed any object of either A,
B or C appears in exactly one join set.

4.2 The Holistic Normalized-Weights Method
There are three variants of the holistic normalized-weights

method. In all three variants, first we construct a three-
dimensional matrix, such that each possible join set has a
corresponding element in the matrix. Then, an iterative
normalization is applied to the matrix. The three variants
differ in how the normalization is performed; however, in all
of them, at the end of the normalization, the elements of the
matrix are the confidence values of their corresponding join
sets. The method returns the sets with confidence values
that exceed a given threshold value.

We now describe the algorithm in more detail. We start by
describing the initial matrix. Consider three datasets A =
{a1, . . . , al}, B = {b1, . . . , bm} and C = {c1, . . . , cn}. The
six probability functions Pai(bj), Pbj

(ai), Pai(ck), Pck
(ai),

Pbj
(ck) and Pck

(bj) are defined as in Section 3.4. The
matching matrix M is an (l +1)× (m +1)× (n + 1) matrix,
such that the element in position (i, j, k), denoted by µijk,
is defined as follows.

For 1 ≤ i ≤ l, 1 ≤ j ≤ m and 1 ≤ k ≤ n, the element µijk

corresponds to the set {ai, bj , ck} and

µijk = Pai(bj) · Pbj
(ai) ·

Pai(ck) · Pck
(ai) ·

Pbj
(ck) · Pck

(bj)

That is, µijk is the probability that every two elements,
among ai, bj and ck, choose each other.

For 1 ≤ i ≤ l, 1 ≤ j ≤ m and k = n + 1, the element µijk

corresponds to the set {ai, bj} and

µijk = Pai(bj) · Pbj
(ai) ·

Pai(⊥C) ·
n

Y

h=1

(1 − Pch
(ai)) ·

Pbj
(⊥C) ·

n
Y

h=1

(1 − Pch
(bj))

That is, µijk is the probability that ai and bj mutually
choose each other and, in addition, ai and bj do not choose
any object of C and are not chosen by any c ∈ C. By sym-
metry, µijk is defined similarly in the following cases.

• 1 ≤ i ≤ l, j = m + 1 and 1 ≤ k ≤ n (for {ai, ck}).

• i = l + 1, 1 ≤ j ≤ m and 1 ≤ k ≤ n (for {bj , ck}).

For 1 ≤ i ≤ l, j = m + 1 and k = n + 1, the element µijk

corresponds to the singleton {ai} and

µijk = Pai(⊥B) ·

m
Y

g=1

(1 − Pbg (ai)) ·

Pai(⊥C) ·
n

Y

h=1

(1 − Pch
(ai))

That is, µijk is the probability that ai chooses neither an
object of B nor an object of C and ai is not chosen by any
b ∈ B or c ∈ C. The element µijk is similarly defined in the
following two cases.

• i = l + 1, 1 ≤ j ≤ m and k = n + 1 (for {bj}).

• i = l + 1, j = m + 1 and 1 ≤ k ≤ n (for {ck}).

Finally, µijk = 0, for i = l + 1, j = m + 1 and k = n + 1.
Next, we present the three variants for normalizing the

matrix. We use the following simple notation to denote sets
of elements of M . The set comprising the element µijk is
denoted by M(i, j, k). We generalize this notation by writing
a range of values instead of just a single value. For example,
M(i, 1 · · ·m, 1 · · ·n) is the set of all elements, such that the
first index is equal to i while the second and third indices
take all possible values in the ranges 1, . . . , m and 1, . . . , n,
respectively. In set notation,

M(i, 1 · · ·m, 1 · · ·n) = {µijk | 1 ≤ j ≤ m and 1 ≤ k ≤ n}.

We use ∗ to denote the ranges 1 · · · l + 1, 1 · · ·m + 1 and
1 · · ·n+1 for the first, second and third indices, respectively.

Basic Normalization: A plate of the matrix M com-
prises all the elements corresponding to join sets that con-
tain a given object. That is, the plate for ai ∈ A is M(i, ∗, ∗),
the plate for bj ∈ B is M(∗, j, ∗), and the plate for ck ∈ C
is M(∗, ∗, k).

A plate is normalized to the value x if the sum s of all
its elements is equal to x. Normalizing a plate to x, when
s > 0, is multiplying each element of it by x

s
. The basic

normalization is a sequence of iterations over M , such that
in each iteration, each of the l + m + n plates is normalized
to 1. The intuition behind normalizing the plates to 1 is
that each object is contained in exactly one correct join set.

Complete Normalization: Let x, y ∈ {A, B, C}, where
x 6= y. Pxy is the number of correct join sets of size 2 that
contain an object from x and an object from y. Similarly, Sx

is the correct number of join sets of size 1 (i.e., singletons)
that contain an object from x.

In a complete normalization, in each iteration all the plates
of M are normalized to 1, as in the basic normalization. In
addition, in each iteration the following sets are normalized.
The set M(1 · · · l, 1 · · ·m, n + 1) is normalized to the num-
ber PAB . The set M(1 · · · l, m + 1, 1 · · ·n) is normalized to
PAC . The set M(l+1, 1 · · ·m, 1 · · ·n) is normalized to PBC .
The set M(1 · · · l, m+1, n+1) is normalized to SA. The set
M(l + 1, 1 · · ·m, n + 1) is normalized to SB . Finally, the set
M(l + 1, m + 1, 1 · · ·n) is normalized to the number SC .

Note that in real applications, Pxy and Sx are not known.
The method can still be used in simulations, where the cor-
rect values are known. It thus provides a yardstick against
which other methods can be compared. As for real applica-
tions, the following variant uses heuristics to approximate
the unknown values.

Approximate Normalization: In this method, an ap-
proximation of Pxy and Sx is computed from the result
of the holistic normalized-weights method using the basic-
normalization variant, as described above. Then, complete
normalization, using the approximate values, is applied to
the matching matrix.

Let M (0) denote the matrix M , as it was defined above,
and M (k) denote the matrix after k iterations. We terminate



Figure 2: A fragment of a randomly generated test.

the iterative normalization when the sum of elements in each
plate is different from 1 by at most some very small ε > 0.

Let M (t) denote the matrix upon termination of the itera-
tive normalization. The confidence of the join set {ai, bj , ck}

is the value µi,j,k of M (t). The confidence of the join set

{ai, bj} is the value µi,j,n+1 of M (t). The confidence of the

join set {ai} is the value µi,m+1,n+1 of M (t). Confidence val-
ues for other combinations are defined similarly. The result
of the normalized-weights method consists of all the join sets
with confidence values above a given threshold τ . In gen-
eral, τ could be given by a user who wants to control the
recall-precision tradeoff. In our tests, we used a threshold
that minimized the error count, as explained in Section 3.4.

5. TESTING THE METHODS
We tested the different join methods on both randomly

generated datasets and real-world datasets. In this section,
we present our experiments and use the experimental results
to compare the methods.

5.1 Tests on Random Datasets
Our experiments on random datasets are trying to answer

the following two questions. First, what is the influence of
the density, the choice factor and the overlap on the results
of the join algorithms? Second, knowing the density and the
overlap of the three datasets, what is the best algorithm for
computing their join?

5.1.1 Random-Dataset Generator
There are not sufficiently many real-world datasets to test

our algorithms under varying degrees of density and over-
lap. Moreover, in real-world datasets, it is not always pos-
sible to determine accurately the correspondence between
objects and real-world entities. Thus, we implemented a
random-dataset generator. Our generator is a two-step pro-
cess. First, the real-world entities are generated. The loca-
tions of the entities are randomly chosen and are uniformly
distributed in a square area. In the second step, the objects
in each dataset are generated. Each object is associated
with a distinct entity. The location of an object is defined
by a random vector whose origin is the point location of the
entity. The size of the vector (i.e., the distance between the
object and the entity) is randomly chosen according to a
normal distribution, and the angle of the vector is randomly
chosen according to a uniform distribution. Locations in
each dataset are chosen independently of the other datasets.

The user provides the following parameters to the dataset
generator. For the entities—their number, the size of the
square area in which they are located and the minimal dis-
tance between entities; for each datasets—the number of

objects in it and the standard deviation of the error. These
parameters allow a user to generate tests with different de-
grees of density and overlap.

5.1.2 Test Results
We have experimented with many randomly generated

datasets, but in this section we only describe a few tests that
demonstrate the main conclusions about the performance of
each method. In all the tests, entities were generated and
their locations were randomly chosen in a square area of
900 × 900 square meters. For the first six tests, 200 entities
were generated, and for the other three tests, we generated
300 entities. The minimal distance between entities was set
to 15 meters. In all the datasets, the error is m = 2.5σ (i.e.,
for about 98.8% of the objects, the distance between the
object and its corresponding entity is less than m). A frag-
ment of a randomly generated test is presented in Figure 2.
This figure illustrates the complexity of computing correct
join sets over the randomly generated data.

As explained in Section 2.2, the performance of a join
algorithm is measured in terms of recall and precision. For
comparing the different algorithms, we compute for each
algorithm a rating which is the harmonic mean of the recall
and the precision.

Before presenting the test results, we provide notations
for the join algorithms. The sequential nearest-neighbor join
is denoted s-nn. The sequential mutually nearest and the
holistic mutually nearest are denoted s-mn and h-mn, in cor-
respondence. The sequential normalized-weights method is
denoted s-wijk, when source i and source j are joined first
and the result is joined with source k. As for the holistic
normalized-weights method—with basic normalization, it is
denoted h-w; with approximated normalization, it is de-
noted h-ww; with normalization according to the real num-
bers of pairs and singletons, it is denoted h-wr.

We tested our join algorithms on trios of datasets. The
parameters for each trio are the sizes of the datasets and
their errors. Since the area and the number of entities are
fixed, an increase in the size of a dataset cause an increase
in the density and in the overlap. An increase in the error of
one dataset causes an increase in the choice factor and, so,
for the objects of the other two datasets, there are poten-
tially more corresponding objects in this dataset. In order
to examine the effect of changing the sizes and errors of the
datasets, we performed four sets of tests.

In the first set, all three datasets have the same size and
the same error of m = 30 meters. The result of these tests
are presented in Figure 3. The graph in Figure 3(a) shows
a join of three datasets, each containing 40 objects (small
overlap); the graph in Figure 3(b) presents a join of datasets
of size 120 (medium overlap); and Figure 3(c) shows a join
where all the entities are represented in all the datasets
(complete overlap). In the graphs, the Y axis shows the
rating of the algorithms. Note that results of sequential
algorithms are shown by gray bars, and results of holistic
algorithms are shown by black bars.

The second set of tests is when all three datasets have the
same size, but the errors are different. The results of these
tests are presented in Figure 4. As in the previous case,
the tests were with a small overlap (Figure 4(a)), a medium
overlap (Figure 4(b)) and a complete overlap (Figure 4(c)).
In the test, sources 1, 2 and 3 had errors of size 20, 30 and
40, in correspondence.
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(a) 40 objects in each dataset.
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(b) 120 objects in each dataset.
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(c) 200 objects in each dataset.

Figure 3: A join of datasets that have the same size and the same error.
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(a) 40 objects in each dataset.
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(b) 120 objects in each dataset.
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(c) 200 objects in each dataset.

Figure 4: A join of datasets that have the same size and different errors.
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(a) All the datasets have the
same error.
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(b) When the size increases, the
error increases.
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(c) When the size increases, the
error decreases.

Figure 5: A join of datasets with different sizes.

The third set of tests is with datasets that have the same
error but different sizes. Figure 5(a) shows the results. In
these tests, the error is m = 30 meters. The sizes of sources
1, 2 and 3 are 100, 200 and 300 objects, respectively.

Finally, we tested the algorithms with three datasets that
have different sizes and different errors. The results are
shown in Figure 5(b) and in Figure 5(c), where sources 1,
2 and 3 have 100, 200 and 300 objects, in correspondence.
Figure 5(b) presents tests where m1 = 20, m2 = 30 and
m3 = 40. That is, when the size of the dataset increases,
the size of the error increases. In Figure 5(c), we present the
case where m1 = 40, m2 = 30 and m3 = 20, i.e., when the
size of the dataset increases, the size of the error decreases.

5.1.3 Conclusions from the Tests
In all our tests, h-wr provided results that are either the

best or near the best. But, as explained earlier, using h-wr

is limited to cases where the numbers of correct singletons
and pairs are known. The method h-ww provided results
that are almost as good as the results of h-wr and it can be
applied without knowing these numbers.

The holistic mutually nearest join (h-mn) and the sequen-
tial mutually-nearest join (s-mn) provide faulty results when
the density of the sources is high. The reason for this be-
havior is that when the sources have low or medium density,
there are only a few (or no) pairs of near objects that are
not corresponding objects. Thus, in this case, creating join
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Figure 6: Precision (solid line) and recall (dashed
line) as a function of the threshold.

sets from sets of objects that are pairwise mutually near-
est is a good strategy. When the sources have high density,
there are many pairs of mutually-nearest objects that are
not corresponding objects. Hence, in this case, the results
of h-mn and s-mn are poor.

The holistic normalized-weights, in its basic version (h-

w), is only good when the overlap between the sources is
low. We now explain why this happens. In the matching
matrix, any possible set has a confidence value, including
2-sets (i.e., sets with two objects) and singletons. When the
overlap is medium or small, indeed there are correct join
sets of size 1 or 2. But when the overlap is high, there are
almost no join sets of size less than 3. Without normalizing
to the number of singletons and to the number of 2-sets,
many correct 3-sets receive a low confidence value. These
sets are discarded in the phase of removing sets that do not
exceed the threshold. Thus, the rating of this method is low
when the overlap between the sources is high.

As for the sequential normalized-weights method s-wijk,
in each test it provides a good result for at least one of the
three join sequences. The difficulty in using this method is
that there is no single sequence that always produces the
best result. Finding a good sequence can be done using the
following rule of thumb. The join should start with the pair
of datasets that have the largest overlap and the largest
accuracy. This rule, however, does not cover cases when
there is a conflict between the degree of the overlap and the
degree of accuracy, i.e., cases where the pair with the largest
overlap has relatively low accuracy.

The nearest-neighbor join (s-nn) is available in many com-
mercial systems. Nonetheless, our experiments show that
for datasets with low or medium overlap, its performance
is poor in comparison to all the other methods. The cause
for the poor performance is that in a nearest-neighbor join,
when a dataset A is joined to a dataset B, every object of A
is joined with its nearest neighbor in B (unless there is no
object of B within a distance smaller than the mutual-error
bound). If the overlap between A and B is medium or low,
then many objects of A do not have corresponding objects
in B and, thus, many incorrect join sets are produced.

Our tests show that the sequential normalized-weights
method (s-w) and the holistic normalized-weights method
(h-wr, h-ww) provide the best combination of recall and
precision, in most cases. But there are cases where high
precision is more important than an optimal combination of
recall and precision. In Figure 6, we present typical graphs

Figure 7: Three datasets of hotels (fragment).
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Figure 8: Results of test on real-world data.

of the recall and precision as a function of the threshold.
These graphs are for the holistic and sequential normalized-
weights methods. They show that in the holistic approach,
we can increase the precision by increasing the threshold. In
the sequential approach, however, precision never reaches 1.

5.2 Tests on Real-World Datasets
We tested the different methods on real-world datasets

that describe hotels in Tel-Aviv. One dataset, called MUNI,
was extracted from a photo of scale 1:7,000 (equivalent to
digital maps at the scale of 1:500) and was made by the
City of Tel-Aviv. A second dataset, called SOI (Survey of
Israel), was extracted from a photo of scale 1:40,000 (equiv-
alent to digital maps at the scale of 1:5,000–1:10,000). A
third dataset, called MAPA, was extracted directly from a
digital map at the scale of 1:25,000 and was made by the
Mapa Corp.

The estimated area of a hotel is 40 × 40 meters. In SOI,
hotels are represented by polygons, and we took the center
of mass of each polygon as its point location. In MUNI and
MAPA, location are given as points, but it is not known
which point in the area of each hotel was taken as the loca-
tion. Hence, we assumed that σ = 20 (i.e., m = 50 meters)
in all three datasets.

The MUNI dataset has 73 objects, the SOI dataset has 18
objects and the MAPA dataset has 28 objects. A total of
79 real-world entities are represented in these datasets. A
fragment of these datasets is depicted in Figure 7.

The results of the test are presented in Figure 8. As
shown, all our methods provided a higher recall-precision
rating than the sequential nearest-neighbor join.

5.3 Applicability
Integration of large geographic databases can be carried

out in several steps. First, in many cases, spatial data is
divided into layers. In such cases, each layer can be in-
tegrated separately. Second, in each layer, the integration



can be done in one small area at a time (e.g., a municipal
region), because geo-spatial datasets typically do not cover
large continuous areas. Each small area is expected to in-
clude no more than a few hundred objects.

In our tests, when joining three datasets of two hundred
objects each, the methods s-nn, s-mn and h-mn completed
the computation in about three seconds. For swijk, about
36 seconds were required. The holistic methods h-w, h-ww

and h-wr completed the task in approximately 2.5 minutes.
Since efficiency was not the focus of this work, our al-

gorithms were implemented without any efficiency consid-
erations. However, with simple techniques, such as using
an efficient sparse-matrix implementation, it is possible to
significantly decrease the computation time.

6. RELATED WORK AND CONCLUSION
The need for integration of heterogeneous data sources

arises in many different cases. One example is interoper-
ability of information systems [5, 10, 14]. Another example
is mediator systems [2, 21, 22].

For geo-spatial information systems, the data integration
problem has two important sub-problems. In map con-
flation, two digital maps are integrated to produce a new
map [4, 6, 7, 15, 16, 17]. In data fusion, raster data, which
is received from sensors, is processed, by means of image-
processing techniques, and then integrated [11]. Algorithms
for discovering corresponding objects can be part of the so-
lution to these problems.

In this work, we have investigated location-based join of
three geo-spatial datasets. Two join approaches, namely,
the sequential and the holistic approaches, are presented
and compared. The novelty of our work is in developing, for
each of the two approaches, effective join algorithms that
use only locations of objects.

We showed that the sequential normalized-weights method
is effective, that is, the result has a high recall-precision com-
bination when the “right” order of joins is being applied. In
the “right” order, we join first the pair of datasets that have
the largest overlap and the smallest errors. For the holistic
approach, we presented several novel methods. One version
of the holistic normalized-weights method provides high re-
call and precision, under all circumstances.

Comparing the two approaches, the time complexity and
the space complexity of the sequential normalized-weights
method are lower than those of the holistic normalized-
weights method. The holistic approach, however, is capable
of providing higher precision than the sequential approach
(at the cost of lower recall). Another advantage of the holis-
tic approach is that each join set is given a confidence value.
So, if additional information is provided, we can combine
this information with the result of the location-based join.

All the methods that are proposed in this paper can be
easily applied to a join of any number of sources. In the
sequential approach, we simply extend the sequence of joins
according to the given number of sources. In the holistic
normalized-weights version for n sources, we need to cre-
ate and normalize an n-dimensional matrix using the same
principles as in the case of the 3-dimensional matrix.

Several problems remain for future work. One problem is
to optimize the runtime of our algorithms. This is partic-
ularly important if we want our algorithms to be included
in real-time applications. A second problem is how to uti-

lize most effectively locations that are given as polygons or
lines, rather than just points. A third research direction
is to combine our approach with other approaches, such
as the feature-based approach of [17], topological similar-
ity (e.g., [3]) or ontologies (e.g., [8, 9, 20]).
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