
Manual for SMAC version v2.08.00-master

Frank Hutter & Steve Ramage
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, Canada
{hutter,seramage}@cs.ubc.ca

August 4, 2014

Contents

1 Introduction 3
1.1 License . 3
1.2 System Requirements . 3
1.3 Version . 4

2 Differences Between SMAC and ParamILS 4

3 Commonly Used Options 5
3.1 Running SMAC . 5
3.2 Testing the Wrapper . 5
3.3 Verifying the Scenario . 5
3.4 Wall-Clock Limit . 6
3.5 Change Initial Incumbent . 6
3.6 State Restoration . 6
3.7 Warm-Starting the Model . 6
3.8 Named Rungroups . 7
3.9 More Options . 7
3.10 Shared Model Mode (Experimental) . 7
3.11 Offline Validation . 9

3.11.1 Limiting the Number of Instances Used in a Validation Run 9
3.11.2 Disabling Validation . 9
3.11.3 Standalone Validation . 9

4 File Format Reference 10
4.1 Option Files . 10

4.1.1 Scenario File . 10
4.2 Instance File Format . 11
4.3 Feature File Format . 12
4.4 Parameter Configuration Space Format . 12

1

4.4.1 Parameter Declaration Clauses . 12
4.4.2 Conditional Parameter Clauses . 14
4.4.3 Forbidden Parameter Clauses . 15

5 Wrappers 15
5.1 Algorithm executable / wrapper . 15

5.1.1 Invocation . 15
5.1.2 Output . 17

5.2 Wrapper Output Semantics . 19
5.3 Wrappers & Native Libraries . 19

6 Interpreting SMAC’s Output 20
6.1 Logging Output . 20

6.1.1 Interpreting the Log File . 21
6.2 State Files . 22
6.3 Trajectory File . 23
6.4 Validation Output . 23
6.5 JSON Output . 24

7 Developer Reference 24
7.1 Design Overview . 24
7.2 Class Overview . 25
7.3 Algorithm Execution & Abstraction Toolkit . 27
7.4 Running SMAC in Eclipse . 27

8 Acknowledgements 28

9 References 28

10 Appendix 29
10.1 Return Codes . 29
10.2 Version History of Java SMAC . 29
10.3 Known Issues . 33
10.4 Basic Options Reference . 35

10.4.1 SMAC Options . 35
10.4.2 Scenario Options . 35
10.4.3 Scenario Configuration Limit Options . 36
10.4.4 Algorithm Execution Options . 36

10.5 Complete Options Reference . 38
10.5.1 SMAC Options . 38
10.5.2 Random Forest Options . 44
10.5.3 Scenario Options . 46
10.5.4 Scenario Configuration Limit Options . 48
10.5.5 Algorithm Execution Options . 49
10.5.6 Target Algorithm Evaluator Options . 50
10.5.7 Transform Target Algorithm Evaluator Decorator Options 55

2

10.5.8 Forking Target Algorithm Evaluator Decorator Options 57
10.5.9 Validation Options . 58
10.5.10 Analytic Target Algorithm Evaluator Options . 60
10.5.11 Blackhole Target Algorithm Evaluator Options . 60
10.5.12 Command Line Target Algorithm Evaluator Options 61
10.5.13 Constant Target Algorithm Evaluator Options . 63
10.5.14 Inter-Process Communication Target Algorithm Evaluator Options 63
10.5.15 Preloaded Response Target Algorithm Evaluator 65
10.5.16 Random Target Algorithm Evaluator Options . 65

1 Introduction

This document is the manual for SMAC [2] (an acronym for Sequential Model-based Algorithm Configura-
tion). SMAC aims to solve the following algorithm configuration problem: Given a binary of a parameterized
algorithm A, a set of instances S of the problem A solves, and a performance metric m, find parameter
settings of A optimizing m across S.

In slightly more detail, users of SMAC must provide:

• a parametric algorithm A (an executable to be called from the command line),

• a description of A’s parameters θ1, . . . , θn and their domains Θ1, . . . ,Θn,

• a set of benchmark instances, Π, and

• the objective function with which to measure and aggregate algorithm preformance results.

SMAC then executes algorithm A with different parameter configurations (combinations of parameters
〈θ1, . . . , θn〉 ∈ Θ1 × · · · ×Θn, on instances π ∈ Π), searching for the configuration that yields overall best
performance across the benchmark instances under the supplied objective. For more details please see [2]; if
you use SMAC in your research, please cite that article. It would also be nice if you sent us an email – we are
always interested in additional application domains.

1.1 License

SMAC will be released under a dual usage license. Academic & non-commercial usage is permitted free of
charge. Please contact us to discuss commercial usage.

1.2 System Requirements

SMAC itself requires only Java 7 or newer to run.
SMAC is primarily intended to run on Unix like platforms, but now includes start up scripts so that it can

run on Windows. In all the examples below you should add .bat to the end of every executable, for instance
./smac --scenario-file scen.txt --seed 1 becomes smac.bat --scenario-file scen.txt
--seed 1.

Most of the included scenarios (in ./example scenarios/ require ruby and Linux 32-bit li-
braries to run. The scenarios in ./example scenarios/analytic/ use optimize functions internal
to SMAC and are completely cross platform. There is one scenario for windows available currently in
example scenarios\saps\SAPS-scenario-windows.txt.

3

1.3 Version

This version of the manual is for SMAC v2.08.00-master-731.

Project Version Commit Dirty Flag
aeatk v2.08.00-master-766 85fc099c674a3d2cab86870ff0f731cb3b01c1e9 0
smac v2.08.00-master-731 0e43c26c3d1fff66f2038054c98abd897e9949d1 0

NOTE: For non-master builds these commits may not contain everything in the build. (i.e.,non-master
builds can be built with uncommitted changes). If the dirty flag is 0 that means the commit contains this exact
copy, 1 means there were some uncommitted changes, and something else means some other error occurred
when we tried to generate this.

2 Differences Between SMAC and ParamILS

There are a number of differences between SMAC and ParamILS, including the following.

• Support for continuous parameters: While ParamILS was limited to categorical parameters, SMAC
also natively handles continuous and integer parameters. See Section 4.4.1 for details.

• Run objectives: Not all of ParamILS’s run objectives are supported at this time. If you require an
unsupported objective please let us know.

• Order of instances: In contrast to ParamILS, the order of instances in the instance file does not matter
in SMAC.

• Configuration time budget and runtime overheads: Both ParamILS and SMAC accept a time
budget as an input parameter. ParamILS only keeps track of the CPU time the target algorithm reports
and terminates once the sum of these runtimes exceeds the time budget; it does not take into account
overheads due to e.g. command line calls of the target algorithm. In cases where the reported CPU
time of each target algorithm run was very small (e.g. milliseconds), these unaccounted overheads
could actually dominate ParamILS’s wall-clock time. SMAC offers a more flexible management of
its runtime overheads through the options --use-cpu-time-in-tunertime and --wallclock-limit. See
Section 3.4 for details on the wall clock time limit.

• Resuming previous runs: While this was not possible in ParamILS, in SMAC you can resume
previous runs from a saved state. Please refer to Section 3.6 for how to use the state restoration feature.
Section 6.2 describes the file format for saved states.

• Feature files: SMAC accepts as an optional input a feature file providing additional information about
the instances in the training set; see Section 4.3.

• Algorithm wrappers: The wrapper syntax has been extended in SMAC to support additional results in
the “solved” field. Specifically, there is a new result ABORT signalling that the configuration process
should be aborted (e.g. because the wrapper is in an inconsistent state that should never be reached).
A similar behaviour is triggered if option - -abort-on-first-run-crash is set and the first run returns
CRASHED. Additionally, the wrapper can also return additional data to SMAC that is associated with
the run 1. For more information see Section 5.1.2.

1This data will be saved in the run and results file (Section 6.2) that is used in state saving

4

• Instance files vs. instance/seed files: The instance file parameter now auto-detects whether the file
conforms to ParamILS’s instance file or instance seed file format. SMAC treats the latter option
as an alias for the former. See Section 4.2 for details. While SMAC is backwards compatible with
previous (space-separated) files, the preferred format is now .csv.

3 Commonly Used Options

3.1 Running SMAC

To get started with an existing configuration scenario you simply need to execute smac as follows:

./smac --scenario-file <file> --seed 1

This will execute SMAC with the default options on the scenario specified in the file. Some commonly-
used non-default options of SMAC are described in this section. The --seed argument controls the seed and
names of output files (to support parallel independent runs). The --seed-offset argument lets you keep the
output folders names simple while varying the actual seed of SMAC. The seed argument is also optional and
will automatically be chosen if not set.

3.2 Testing the Wrapper

SMAC includes a method of Testing Algorithm Execution, via the algotest utility. It takes the required
scenario options 2

For example:

./algotest --scenario-file <scenario> --instance <instance>
--config <config string> -P[name]=[value] -P[name]=[value]...

Some parameters deserve special mention:

1. The config string syntax is a single string with “-name=‘value’ ” ... you can also specify RANDOM
which will generate a random configuration or DEFAULT which will generate the default configuration.

2. The -P parameters are optional and allow overriding specific values in the configuration (this is useful
primarily for RANDOM and DEFAULT, to allow you to set certain values). To set the sortalgo
parameter to merge you would specify Psortalgo=merge.

3.3 Verifying the Scenario

SMAC includes a utility that allows you to test the scenario. It is currently BETA but does a bit more sanity
checks than SMAC will normally do.

For example:

./verify-scenario --scenarios ./scenarios/*.txt --verify-instances true

The utility has some limitations however:

1. It currently does not check test instances

2. Scenario files can specify non-scenario options in SMAC (and some of the example scenarios in fact
do), this utility is not aware of them, and will report an error.

2Unfortunately it cannot read scenario files currently

5

3.4 Wall-Clock Limit

./smac --scenario-file <file> --wallclock-limit <seconds> --seed 1

SMAC offers the option to terminate after using up a given amount of wall-clock time. This option is useful
to limit the overheads of starting target algorithm runs, which are otherwise unaccounted for. This option does
not override --tunertime-limit or other options that limit the duration of the configuration run; whichever
termination criterion is reached first triggers termination.

3.5 Change Initial Incumbent

./smac --scenario-file <file> --initial-incumbent <config string>

SMAC offers the option to specify the initial incumbent, and by default uses the default configuration
specified in the parameter file. The argument to - -initial-incumbent follows the same conventions as in
Section 3.2.

3.6 State Restoration

./smac --scenario-file <file> --restore-scenario <dir>

SMAC will read the files in the specified directory and restore its state to that of the saved SMAC run at the
specified iteration. Provided the remaining options (e.g. --seed, --overall obj) are set identicially, SMAC
should continue along the same trajectory.

This option can also be used to restore runs from SMAC v1.xx (although due to the lossy nature of Matlab
files and differences in random calls you will not get the same resulting trajectory). By default the state
can be restored to iterations that are powers of 2, as well as the 2 iterations prior to the original SMAC run
stopping. If the original run crashed, additional information is saved, often allowing you to replay the crash.

NOTE: When you restore a SMAC state, you are in essence preloading a set of runs and then running the
scenario. In certain cases, if the scenario has been changed in the meantime, this may result in undefined
behaivor. Changing something like - -tunertime-limit is usually a safe bet, however changing something
central (such as --run-obj) would not be.

To check the available iterations that can be restored from a saved directory, use:

./smac-possible-restores <dir>

3.7 Warm-Starting the Model

./smac --scenario-file <file> --warmstart <foldername>

Using the same state data as in Section 3.6, you can also just choose to warm-up the model with previous
runs. Instead of the --restore-scenario option use --warmstart instead. SMAC will operate normally, but
when building the model the above data will also be used. Please keep in mind the following.

NOTE: If the execution mode is ROAR, this option has no effect.

6

WARNING: Due to design limitations of the state restoration format in this version of SMAC you cannot
/ should not have any differences between the instance distribution used to warmstart the model, and the
instance distribution we are configuring against. In the best case you will simply get a random exception at
some point (perhaps a NullPointerException), and in the worst case it will just load the model with
junk.

TIP: The included state-merge utility allows you to easily merge a bunch of different runs of SMAC into
one state that you can use for a warm start.

3.8 Named Rungroups

./smac --scenario-file <file> --rungroup <foldername>

All output is written to the folder <foldername>; runs differing in --seed will yield different output files
in that folder.

3.9 More Options

By default SMAC only displays BASIC usage options, other options are INTERMEDIATE, ADVANCED,
and DEVELOPER. Be warned that there are a bunch of options and some of the more advanced and developer
options may cause SMAC to perform very poorly.

./smac --help-level INTERMEDIATE

3.10 Shared Model Mode (Experimental)

NOTE: Please read this full section before deciding to use this option

SMAC has an experimental option that essentially allows multiple runs of SMAC to share data and
construct better models quickly.

./smac --scenario-file <file> --shared-model-mode true

There are a couple of things to keep in mind when running with this option:

1. The first is that the different SMAC runs need to be using the exact same scenario, that MUST have
different seeds. Even small inconsequential differences may cause this to fail (for instance if the
location on different machines and the path to execute the target algorithm is different). SMAC should
in most cases recover gracefully and just ignore the incompatible run data, but it is possible that the
SMAC run may be corrupted.

2. The shared file system between clusters needs to allow a file that is being written on one machine to be
read on another machine. We’ve had reports that on some file systems (AFS) with some locking policies
you cannot do this. In this case you can still benefit from this mode but it might need to be a little more
coarse. After doing a first set of runs, you can then do a second batch with the –share-run-data, they
won’t be able to read the second batches data, but they should be able to read the first batches.

7

3. The frequency with which runs are re-read is controlled via the - -shared-model-mode-frequency
which defaults to 5 minutes, depending on your scenario and the amount of data you need you may
want to set it lower. If your runs take considerably longer than 5 minutes there is no need to increase
this, the data is only re-read at most once for every local algorithm run, and the above is designed to
prevent hitting the file system too frequently

4. You probably will need to increase the amount of memory you give to SMAC, using the SMAC MEMORY
environment variable. In your bash shell script this can be accomplished via export SMAC MEMORY=2048,
and in Windows SET SMAC MEMORY=2048.

5. This mode turns N independent SMAC runs into N dependent runs of SMAC. This mode is designed to
help get better performing configurations, it be inappropriate to treat these runs as independent samples
from the same distribution for experimental purposes. What may be appropriate is to compare the
experimental protocols, selecting the best performing run of independent SMAC on the training set,
versus the best performing run of dependent SMAC on the training set, and reporting their values on
the testing set.

6. This mode does not require that different runs of SMAC execute concurrently at all. At one other
extreme case runs could happen sequentially, this mode would just be an easier way of running SMAC,
flushing the run data, but warm starting the model with the previous. At the other extreme case, and
the case we have some preliminary experiments for, all the runs are started at the exact same time.
In this case, there was a substantial boost in median performance (but see previous point why this is
misleading), but also selecting the run with the best training instance over time generally resulted in
as good or better performance. Another possibility is to have some runs not use this mode and have
other runs with this enabled. Depending on the scenario, this might allow the models to maintain more
diversity. Unfortunately the benefits and best practices of this option is unexplored at this time.

One advantage of this approach is that if you only care about getting a good configuration quickly (with-
out worrying about reproducibility), you can schedule the runs of SMAC to the cluster independently,
which should make them quicker to dispatch and yet still benefit from the shared data.

7. While SMAC is running in shared model mode, you may see sporadic errors about corrupted files,
etc. These are generally safe to ignore and are likely caused by writing and reading happening
simultaneously. Upon reading an error, SMAC will continue trying to read the file. Until the file is
successfully read, no further errors or warnings will be presented.

8. At the end of a run you will see a line like:

[INFO] At shutdown: ./smac-output/branin-scenario/live-rundata-3.json
had 15 runs added to it
[INFO] At shutdown: we retrieved atleast 20 runs and added them to
our current data set [live-rundata-1.json=>11, live-rundata-2.json=>17]

This output indicates that this run of SMAC (with seed 3) completed 15 runs locally. It also read in 11
runs from run 1, and 17 runs from run 2.

8

3.11 Offline Validation

SMAC includes a tool for the offline assessment of incumbents selected during the configuration process. By
default, given a test instance file with N instances, SMAC performs ≈ 1 000 target algorithm validation runs
per configuration (rounded up to the nearest multiple of N).

By default, SMAC limits the number of seeds used in validation runs to 1 000 seeds per instance. This
number can be changed as in the following example:

./smac --scenario-file <file> --num-seeds-per-test-instance 50

(This parameter does not have any effect in the case of instance/seed files.)

3.11.1 Limiting the Number of Instances Used in a Validation Run

To use only some of the instances or instance seeds specified you can limit them with the - -num-test-
instances parameter. When this parameter is specified, SMAC will only use the specified number of lines
from the top of the file, and will keep repeating them until enough seeds are used:

./smac --scenario-file <file> --num-test-instances 10

For instance files containing seeds, this option will only use the specified number of instance seeds in the file.

3.11.2 Disabling Validation

Validation can be skipped alltogether as follows:

./smac --scenario-file <file> --seed 1 --validation false

3.11.3 Standalone Validation

SMAC also includes a method of validating configurations outside of a smac run. You can supply a
configuration using the - -configuration option. All scenario options are applicable to the standalone
validator, but check the usage screen to see all the options available NOTE: Some options while present are
not applicable for validation but are presented anyway.

Here is an example call:

./smac-validate --scenario-file <file> --num-validation-runs 100
--configuration <config string> --cli-cores 8 --seed 1

Usage notes for the offline validation tool:

1. This validates against the test set only; the training instance set is not used.

2. By default this outputs into the current directory; you can change the output directory with the option
--rungroup.

3. You can also validate against a trajectory file issued by --trajectory-file option.

9

4 File Format Reference

4.1 Option Files

Option Files are a way of saving a different set of values frequently used with SMAC without having to
specify them on every execution. The general format for an option file is the name of the configuration option
(without the two dashes), an equal sign, and then the value (for booleans it should be true or false, lowercase).
Currently options that take multiple arguments are not supported. Additionally you can not use aliases that
are single dashed (e.g. to override the Experiment Directory, you must use --experiment-dir and not -e)

When using Option Files it is important that no two files (including the Scenario File), specify the same
option, the resulting configuration is undefined, and in general this will not throw an error.

4.1.1 Scenario File

The Scenario Option File, or Scenario File, is the recommended way of configuring SMAC 3. The Scenario
Files used in SMAC are backwards compatible with ParamILS and the name of option names here reflect
that4. NOTE: cutoff length is not currently supported.

algo An algorithm executable or wrapper script around an algorithm that conforms with the input/output
format specified in section 5.1. The string here should be invokable via the system shell.

execdir Directory to execute <algo> from: (i.e. “cd <execdir>; <algo>”)

deterministic A boolean that governs whether or not the algorithm should be treated as deterministic.
For backwards compatibility with ParamILS, this option also supports using 0 for false, and 1 for
true. SMAC will never invoke the target algorithm more than once for any given instance, seed and
configuration. If this is set to true, SMAC will never invoke the target algorithm more than once for
any given instance and configuration.

run obj Determines how to convert the resulting output line (as defined in Section 5.1.2) into a scalar
quantifying how “good” a single algorithm execution is, (e.g. how long it took to execute, how good of
a solution it found, etc...). SMAC will attempt to minimize this objective.

Currently implemented objectives are the following:

Name Description
RUNTIME Minimize the reported runtime of the algorithm.
QUALITY Minimize the reported quality of the algorithm.

overall obj While run obj defines the objective function for a single algorithm run, overall obj defines
how those single objectives are combined to reach a single scalar value to compare two parameter
configurations. Implemented examples for this are as follows:

3Nothing in general prevents you from specifying non-scenario options in these files, but in general you should restrict your files
to these.

4Every option name listed here is in fact an alias for an existing option listed in the section 10.5 and it is entirely possible to use
SMAC without using Scenario Files.

10

Name Description
MEAN The mean of the values

MEAN1000 Unsuccessful runs are counted as 1000 × target run cputime limit
MEAN10 Unsuccessful runs are counted as 10 × target run cputime limit

target run cputime limit The CPU time after which a single algorithm execution will be terminated as
unsuccess (and treated as a TIMEOUT). This is an important parameter: If chosen too high, lots of
time will be wasted with unsuccessful runs. If chosen too low the optimization is biased to perform
well on easy instances only.

cputime limit The limit of the CPU time allowed for configuration (i.e.The sum of all algorithm runtimes,
and by default the sum of the CPU time of SMAC itself).

wallclock limit The limit of the amount of wallclock (or real) time allowed for configuration.

paramfile Specifies the file with the parameters of the algorithm. The format of this file is covered in Section
4.4.

outdir Specifies the directory SMAC should write its results to.

instance file Specifies the file containing the list of problem instances (and possibly seeds) for SMAC to use
during the Automatic Configuration Phase. The ParamILS parameter instance seed file aliases this
one and the format is auto-detected. The format of these files is covered in section 4.2.

test instance file Specifies the file containing the list of problem instances (and possibly seeds) for SMAC
to use during Validation Phase. The ParamILS parameter test instance seed file aliases this one and
the format is auto-detected. The format of these files is covered in section 4.2.

feature file Specifies the a file with the features for the instances in the instance file and possibly the
test instance file 5. The format of this file is covered in section 4.3.

4.2 Instance File Format

The files used by the instance file & test instance file options come in four potential formats, all of which
are CSV based6. Before specifying the formats it is important to note the three kinds of information that are
specified with instances 7.

Instance Name The name of the instance that was selected. This should be meaningful to the target algorithm
we are configuring 8.

Instance Specific Information A free form text string (with no spaces or line breaks) that will be passed to
the Target Algorithm whenever executed.

Seed A specific seed to use when executing the target algorithm.
5The Validator will load features into memory for test instances if they exist.
6Specifically each cell should be double-quoted (i.e.”), and use a comma as a cell delimiter. SMAC also supports the old method

of reading files that use space as a cell delimiter and do not enclose values. However these files cannot handle Instance Name’s that
contain spaces.

7Features which are required for SMAC but not ParamILS are specified in a seperate file see section 4.3.
8Generally Instance Names reference specific files on disk.

11

The possible formats are as follows, and depend on what information you’d like to specify.

1. Each line specifies only a unique Instance Name. No Instance Specific Information will be used,
and Seed’s will be automatically generated.

2. Each line specifies a Seed followed by the Instance Name. Every line must be unique, but for each
Instance Name additional seeds will be used in order, when that instance is selected.

3. Each line specifies a Instance Name followed by the Instance Specific Information. Every Instance
Name must be unique, Seed’s will be automatically generated.

4. Each line specifies a Seed followed by the Instance Name followed by the Instance Specific Infor-
mation. Every line must be unique, and furthermore, for all Instance Name’s the Instance Specific
Information must be the same for all Seed values (i.e.You cannot specify different instance specific
information that is a function of the seed used).

4.3 Feature File Format

The feature file specifies features that are to be used for instances. Feature Files are specified in CSV format,
the first column of every row should list an Instance Name as it appears in the instance file. The subsequent
columns should list double values specifying a computed continuous feature. By convention the value
−512, and −1024 are used to signify that a feature value is missing or not applicable. All instances must
have the same number of features.

At the top of the file there MUST appear a header row, the cell that appears above the instance names is
unimportant, but for each feature a unique and non-numeric (i.e. it must contain atleast one letter) feature
name must be specified.

4.4 Parameter Configuration Space Format

The PCS format requires each line to contain one of the following 3 clauses, or only whitespace/comments.

• Parameter Declaration Clauses specify the names of parameters, their domains, and default values.

• Conditional Parameter Clauses specify when a parameter is active/inactive.

• Forbidden Parameter Clauses specify when a combination of parameter settings is illegal.

Comments are allowed throughout the file; they begin with a #, and run to the end of a line.

4.4.1 Parameter Declaration Clauses

The PCS format supports two types of parameters: categorical and numeric.

Categorical parameters

Categorical parameters take one of a finite set of values. Each line specifying a categorical parameter should
be of the form:

<parameter_name> {<value 1>, ..., <value N>} [<default value>]

where ‘<default value>’ has to be one of the set of possible values.

12

Example 1:

decision-heuristic {1,2,3} [1]

This means that the parameter ‘decision-heuristic’ can be given one of three possible values, with
the default assignment being ‘1’.

Example 2:

@1:loops {common,distinct,shared,no}[no]

In this example, the somewhat cryptic parameter name ‘@1:loops’ is perfectly legal; the only forbidden
characters in parameter names are spaces, commas, quotes, and parentheses. Categorical parameter values
are also strings with the same restrictions; in particular, there is no restriction for categorical parameter values
to be numbers.

Example 3:

DS {TinyDataStructure, FastDataStructure}[TinyDataStructure]

As this example shows, the parameter values can even be Java class names (to be used, e.g., via reflection).

Example 4:

random-variable-frequency {0, 0.05, 0.1, 0.2} [0.05]

Finally, as this example shows, numerical parameters can trivially be treated as categorical ones by simply
discretizing their domain (selecting a subset of reasonable values).

Numerical parameters

Numerical parameters (both real and integer) are specified as follows:

<parameter_name> [<min value>, <max value>] [<default value>] [i] [l]

The trailing ‘i’ and/or trailing ‘l’ are optional. The ‘i’ means the parameter is an integer parameter, and
the ‘l’ means that the parameter domain should be log-transformed for optimization (see Examples 3 and 4
below).

Example 1:

sp-rand-var-dec-scaling [0.3, 1.1] [1]

Parameter sp-rand-var-dec-scaling is real-valued with a default value of 1, and we can choose
values for it from the (closed) interval [0.3, 1.1]. Note that there may be other parameter values outside
this interval that are in principle legal values for the parameter (e.g., your solver might accept any positive
floating point value for the parameter). What you specify here is the range that automated configuration
procedures should search (i.e., a range you expect a priori to contain good values); of course, every value in
the specified range must be legal. There is a tradeoff in choosing the best range size.

13

Example 2:

mult-factor [2, 15] [5]i

Parameter mult-factor is integer-valued, takes any integer value between 2 and 15 (inclusive), and has
a default value of 5. Technically, one could also specify this as a categorical parameter with possible values
{2,3,4,5,6,7,8,9,10,11,12,13,14,15}. However, categorical parameters are not ordered, and
using an integer parameter allows the configuration procedure to make use of the natural order relation (this
is useful since, a priori, we expect close-by values to yield similar performance).

Example 3:

DLSc [0.00001, 0.1] [0.01]l

Parameter DLSc is real-valued with a default value of 0.01, and we can choose values for it from the
(closed) interval [0.00001, 0.1]. The trailing ‘l’ denotes that this parameter naturally varies on a log
scale. If we were to discretize the parameter, a natural choice would be {0.00001, 0.0001, 0.001,
0.01, 0.1}. That means, a priori the distance between parameter values 0.001 and 0.01 is identical to
that between 0.01 and 0.1 (after a log10 transformation, 0.001, 0.01, and 0.1 become -3, -2, and -1,
respectively). We express this natural variation on a log scale by the ‘l’ flag.

Example 4:

first-restart [10, 1000] [100]il

Parameter first-restart is integer-valued with a default value of 100, and we can choose values for it
from the (closed) interval [10, 1000]. It also varies naturally on a logarithmic scale. For example, due to
this logarithmic scale, after the transformation drawing a uniform random value of first-restart will
yield a number below 100 half the time.

Restrictions

• Numerical integer parameters must have their lower and upper bounds specified as integers, and the
default must also be an integer.

• The bounds for parameters with a log scale must be strictly positive.

4.4.2 Conditional Parameter Clauses

Depending on the instantiation of some ‘higher-level’ parameters, certain ‘lower-level’ parameters may not
be active. For example, the subparameters of a heuristic are not important (i.e., active) if the heuristic is not
selected. All parameters are considered to be active by default, and conditional parameter clauses express
under which conditions a parameter is not active. The syntax for conditional parameter clauses is as follows:

<child name> | <parent name> in {<parent val1>, ..., <parent valK>}

This can be read as “The child parameter <child name> is only active if the parent parameter <parent
name> takes one of the K specified values.” Parameters that are not listed as a child parameter in any
conditional parameter clause are always active. A parameter can also be listed as a child in multiple
conditional parameter clauses, and it is only active if the conditions of each such clause are met.

14

Example:

sort-algo {quick,insertion,merge,heap,stooge,bogo} [bogo]
quick-selection-method {first, random, median-of-medians} [random]
quick-selection-method | sort-algo in {quick}

In this example, quick-selection-method is conditional on the sort-algo parameter being set to
quick, and will be ignored otherwise.

4.4.3 Forbidden Parameter Clauses

Forbidden Parameters are combinations of parameter values which are invalid (e.g., a certain data structure
may be incompatible with a lazy heuristic that does not update the data structure, resulting in incorrect
algorithm behaviour). Configuration methods should never try to run an algorithm with a forbidden parameter
configuration. The syntax for forbidden parameter combinations is as follows:

{<parameter name 1>=<value 1>, ..., <parameter name N>=<value N>}

Example:

DSF {DataStructure1, DataStructure2, DataStructure3}[DataStructure1]
PreProc {NoPreProc, SimplePreproc, ComplexPreproc}[ComplexPreproc]
{DSF=DataStructure2, PreProc=ComplexPreproc}
{DSF=DataStructure2, PreProc=SimplePreproc}
{DSF=DataStructure3, PreProc=ComplexPreproc}

In this example, there are different data structures and different simplifications. DataStructure2 is in-
compatible with ComplexPreproc, and DataStructure2 is incompatible with both SimplePreproc
and ComplexPreproc. Note that the default parameter setting is not allowed to contain a forbidden com-
bination of parameter values.

5 Wrappers

5.1 Algorithm executable / wrapper

The target algorithm as specified by the algo parameter must obey the following general contracts. While
modifying your own code to directly achieve this is one option there are other methods outlined in section
5.3.

5.1.1 Invocation

The algorithm must be invokable via the system command-line using the following command with arguments:
<algo executable> <instance name> <instance specific information> <cutoff time>

<cutoff length> <seed> <param> <param> <param>...

algo executable Exactly what is specified in the algo argument in the scenario file.

instance name The name of the problem instance we are executing against.

15

instance specific information An arbitrary string associated with this instance as specified in the in-
stance file . If no information is present then a “0” is always passed here.

cutoff time The amount of time in seconds that the target algorithm is permitted to run. It is the responsibility
of the callee to ensure that this is obeyed. It is not necessary that that the actual algorithm execution
time (wall clock time) be below this value (e.g.If the algorithm needs to cleanup, or it’s only possible
to terminate the algorithm at certain stages).

cutoff length A domain specific measure of when the algorithm should consider itself done.

seed A positive integer that the algorithm should use to seed itself (for reproducibility). “-1” is used when
the algorithm is deterministic

param A setting of an active parameter for the selected configuration as specified in the Algorithm Parameter
File. SMAC will only pass parameters that are active. Additionally SMAC is not guaranteed to pass
the parameters in any particular order. The exact format for each parameter is:
-name value9

All of the arguments above will always be passed, even if they are inapplicable, in which case a dummy
value will be passed.

Environment Variables

Recent versions of SMAC also set the following environment variables, which shouldn’t be considered input
to the solver but relate to the execution in some way. When implementing your wrapper you can entirely
disregard this section unless you need some advanced features.

9The target algorithm will see the value as a single argument, even if it contains spaces or should otherwise be treated as more
than one argument, i.e. to execute this in a shell you would see -name ’value’, to ensure that the value is passed as a single argument.
Older versions also passed the single quote

16

Environment Variable Purpose
AEATK CONCURRENT TASK ID A zero indexed value of which concurrent run SMAC is executing.

No two concurrent runs will see the same value, but subsequent
runs will see the same value. This is mainly intended to allow the
wrapper to manage CPU affinities.

AEATK SET TASK AFFINITY This environment variable is NOT set by SMAC, or used by
SMAC but is used internally by some wrappers to ensure that
AEATK CONCURRENT TASK ID is read and the task is tied to
a specific core. It is strongly recommended that you set this value
to “1” which your wrapper then reads to know to set the affinity
properly. This isn’t enabled by default, because some clusters,
notably SGE do not set job affinities properly and so parallel jobs
will get tied to the same core.

AEATK PORT The wrapper can send in progress up dates to SMAC to the lo-
calhost via UDP on this port. The message format is a single
double value. While SMAC doesn’t directly use this presently,
other utilities such as algo-test do, and future versions may,
and some advanced options may preform better with this set.

AEATK CPU TIME FREQUENCY Signifies how often updates to the runtime should be sent. This is
only a hint, and roughly should be treated as: there is no point in
sending updates more frequently than this value in seconds.

AEATK EXECUTION UUID A UUID associated with the particular invocation of the wrapper.
The primary purpose of this is facilitate identify every process
associated with a specific invocation of a wrapper on a particular
computer. This is primarily used in conjunction with the --cli-kill-
by-environment-cmd option. If this environment variable already
exists, then another one will be chosen, so do not rely on this
particular variable being set. You should ensure that environment
variables are passed to all sub processes however, so that they can
be killed accordingly.

5.1.2 Output

The Target Algorithm is free to output anything, which will be ignored but must at some point output a line
(only once) in the following format10:

Result of this algorithm run: <status>, <runtime>, <runlength>, <quality>,
<seed>, <additional rundata>

status Must be one of SAT (signifying a successful run that was satisfiable), UNSAT (signifying a successful
run that was unsatisfiable), TIMEOUT if the algorithm didn’t finish within the allotted time, CRASHED
if something untoward happened during the algorithm run, or ABORT if something prevents the target
algorithm for successfully executing and it is believed that further attempts would be futile.

SMAC does not differentiate between SAT and UNSAT responses, and the primary use of these is
historical and serves as a check that the algorithm is executing correctly by outputting whether the

10Other strings are also permissible, but will one day be replaced. Most notably “Result for ParamILS:”

17

instance in question is satisfiable or not. See the --verify-sat option for information on how to utilize
this feature.
NOTE: SMAC by default crashes if the wrapper ever reports SAT and UNSAT for the same instance
across runs. Occasionally edge cases in exposed parameters are tripped and turn a solver buggy,
and so this safe guard exists to help detect if this is occurring. To change this behaviour use the
--check-sat-consistency and --check-sat-consistency-exception options.

SMAC also supports reporting SATISFIABLE and SUCCESS for SAT and UNSATISFIABLE for
UNSAT.
NOTE: These are only aliases and SMAC will not preserve which alias was used in the log or state
files.

ABORT can be useful in cases where the target algorithm cannot find required files, or a permission
problem prevents access to them. This will cause SMAC to stop running immediately. Use this
option with care, it should only be reported when the algorithm knows for CERTAIN that subsequent
results may fail. For things like sporadic network failures, and other cosmic-ray induced failures, one
should consider using CRASHED in combination with the --retry-crashed-count and --abort-on-crash
options, to mitigate these.

In other files or the log you may see the following following additional types used. RUNNING which
signifies a result that is currently in the middle of being run, and KILLED which signifies that SMAC
internally decided to terminate the run before it finished. These are internal values only, and wrappers
are NOT permitted to output these values. If these values are reported by the wrapper, it will be treated
as if the run had status CRASHED.

runtime The amount of CPU time used during this algorithm run. SMAC does not measure the CPU time
directly, and this is the amount that is used with respect to tunerTimeout. You may get unexpected
performance degradation when this amount is heavily under reported 11.

NOTE:The runtime should always be strictly less than the requested cutoff time when reporting
SATor UNSAT. The runtime must be strictly greater than zero (and not NaN).

If an algorithm reports TIMEOUT or CRASHED the algorithm can report the actual CPU time used,
and SMAC will treat it correctly as a timeout for optimization purposes, but count the actual time for
--tunertime-limit purposes.

runlength A domain specific measure of how far the algorithm progressed. This value must be from the set:
−1 ∪ [0,+∞].

quality A domain specific measure of the quality of the solution. This value needs to be from the set:
(−∞,+∞).

NOTE: Keep in mind that SMAC will attempt to minimize this value. If you would like to maximize
this value, your wrapper should subtract your quantity from some constant known to be larger than any
value.

NOTE: In certain cases, such as when using log transforms in the model, this value must be: (0,+∞).

seed The seed value that was used in this target algorithm execution.
11This typically happens when targeting very short algorithm runs with large overheads that aren’t accounted for.

18

NOTE: This seed argument is ignored by SMAC as of version 2.06.02. SMAC will always use
the requested seed internally and so you can ignore this output. Note previous versions, as well as
ParamILS and other applications may still require that this matches.

additional rundata A string (not containing commas, or newline characters) that will be associated with the
run as far as SMAC is concerned. This string will be saved in run and results file (Section 6.2).
NOTE:additional rundata is not compatible with ParamILS at time of writing, and so wrappers should
not include this or the preceding comma if they wish to be compatible.

All fields except for additional rundata are mandatory. If the field is not applicable for your scenario a 0
can be substituted.

5.2 Wrapper Output Semantics

As SMAC is entirely insulated from the target algorithm execution by the wrapper it is up to the wrapper to
ensure that constraints with respect to the cutoff and runlength are enforced. Occasionally wrappers may not
properly enforce these constraints and SMAC will need to somehow handle these cases. The following table
outlines how SMAC transforms these values and details what value is used in various parts of SMAC. In
future versions some parts of this table may in fact change, and so it is best to ensure that your wrapper is
well behaved.

NOTE: The cutoff time in the table is the amount of time SMAC schedules the run for, the scenario cutoff
time is denoted as κmax.

status cutoff (κ) runtime (r) Tuner Time PAR10 Score Model
* * (−∞, 0) EXCEPTION THROWN
ABORT * [0,∞) EXCEPTION THROWN
CRASHED * [0,∞) r 10 · κmax 10 · κmax

SAT, UNSAT κ ≤ κmax [0, 0.1] 0.1 r r

SAT, UNSAT κ ≤ κmax [0.1, κ) r r r

SAT, UNSAT κ ≤ κmax [κ, κmax) r r r

SAT, UNSAT κ ≤ κmax [κmax,∞) r 10 · κmax 10 · κmax

TIMEOUT κ < κmax [0,∞) r κ κ

TIMEOUT κ = κmax [0,∞) r 10 · κmax 10 · κmax

A description of the locations is as follows:

Tuner Time The amount of time that will be subtracted from the remaining tuner time limit given in the
scenario.

PAR10 Score The value that will be used for empirical comparisons between configurations.

Model The value that will be used to build the model.

5.3 Wrappers & Native Libraries

In order to optimize an algorithm, SMAC needs a method of invoking it. While modifying the code to manage
the timing and input mechanisms manually is possible, this can sometimes be invasive and difficult to manage.
There exist three other methods that one could consider using.

19

Wrappers Executable Scripts that manage the resource limits automatically and format the specified string
into something usable by the actual target algorithm. This approach is probably the most common,
but among its drawbacks are the fact that they often rely on third party scripting languages, and for
smaller execution times have a large amount of overhead that may not be accounted for as far as the
tunerTimeout limit is concerned. Most of the examples included in SMAC use this approach, and the
wrappers included can be adapted for your own projects.

NOTE: When writing wrappers it is important not to poll the output stream of the target algorithm,
especially if there is lots of output. Doing so often results in lock-contention and significantly modifies
the runtime performance of the algorithm enough that the resulting configuration is not well tuned to
the real algorithm’s performance.

Inter Process Communication Introduced in SMAC v2.06.02, the IPC TAE can be selected via the --tae
option. It will essentially use various forms of interprocess communication to notify some other process
about the run to do, and will wait for it to respond. Presently the only existing mechanism is over UDP,
but other methods are possible. For example:

./smac --scenario-file <file> --seed 1 --tae IPC
--ipc-mechanism UDP --ipc-remote-port 5050
--ipc-remote-host localhost

Will use sent the required information to localhost on port 5050. It will then wait for a response, and
parse that response as a string. For more details see the section ”Inter-Process Communication Target
Algorithm Evaluator Options”, in the Appendix.

Target Algorithm Evaluators This is probably the most powerful, but also the most complicated approach.
SMAC is architected in a way that makes it fairly simple to replace the mechanism for execution with
something completely custom. This can be done without even recompiling SMAC by creating a new
implementation of the TargetAlgorithmEvalutor interface, which is responsible for converting
run requests (RunConfig objects) into run results (AlgorithmRun objects). Both the input and
output objects are simple Value Objects so the coupling between SMAC and the rest of your code is
almost zero with this approach. For more information see ??

6 Interpreting SMAC’s Output

SMAC outputs a variety of information to log files, trajectory files, and state files. Most of the files are human
readable, and this section describes these files.
NOTE: All output is written to the outdir in the --rungroup sub-directory.

6.1 Logging Output

SMAC uses slf4j (http://www.slf4j.org/), a library that allows for abstracting and replacing the logging system
with ease, and uses logback (http://logback.qos.ch/) as the default logging system. While there is limited ability
to change logging options via the command line (e.g., --log-level, --console-log-level, --log-all-call-strings,-
-log-all-process-output). It is possible that by setting a system property12 you can override the configuration
by using -Dlogback.configurationFile=/path/to/config.xml

12You’d have to edit the start up script smac or smac.bat

20

NOTE: If you replace the logger in SMAC or modify the configuration file, the logging command line
options may no longer work.

By default SMAC writes the following logging files out to disk (NOTE: The N represents the - -seed
setting):

log-runN .txt A log file that contains a full dump of all the information logged, and where it was logged
from.

log-warnN .txt Contains the same information as the above file, except only from warning and higher level
messages.

log-errN .txt Contains the same information as the above file, except only from error messages.

6.1.1 Interpreting the Log File

SMAC basically goes through three phases when executing:

• Setup Phase Input files are read, and their arguments validated. Everything necessary to execute the
Automatic Configuration Phase is constructed. This phase ends, once the following message appears:

SMAC started at: 10-Apr-2014 10:01:40 AM. Minimizing penalized average runtime (PAR10)

• Automatic Configuration Phase: SMAC is now actively configuring the target algorithm. SMAC will
spend most of it’s time here, and outputs it’s progress.

There are two types of messages you will see here:

1) Incumbent changed to: config 2 (internal ID: 0x7), with penalized average runtime (PAR10): 7.1;
estimate based on 2 runs.
Sample call for new incumbent config 2 (internal ID: 0x7):
cd saps; ruby saps_wrapper.rb instances/train/SWlin2006.19724.cnf 0 10.0 2147483647 -1
-alpha ’1.1’ -ps ’0.1’ -rho ’0.84’ -wp ’0.06’

This signifies that the incumbent (the best configuration found so far), has been changed to configuration
2 (this ID is used in some files that SMAC will output). It also gives a sample estimate of the
performance of this configuration on the instances we have seen already.

Next a sample call is given for this configuration so that you can test it yourself. From this you can
determine the actual configuration selected, in this example it is:

-alpha ’1.1’ -ps ’0.1’ -rho ’0.84’ -wp ’0.06’

2) Updated estimated penalized average runtime (PAR10) of the same incumbent: 3.86;
estimate now based on 4 runs.

As SMAC continues to run it will continue refining the estimate by making more samples of the
incumbents configuration, and it will occasionally provide you with an update. This number can vary
wildly as SMAC learns more about your instance distribution.

• Once SMAC is completed, it will output some summary statistics:

21

===
SMAC has finished. Reason: total CPU time limit (600.0 s) has been reached.
SMAC’s final incumbent: config 45 (internal ID: 0xBB),
with estimated penalized average runtime (PAR10): 0.12 ,
based on 5 run(s) on 5 training instance(s).

Total number of runs performed: 171, total CPU time used: 604 s,
total wallclock time used: 607 s, total configurations tried: 113.
===

The first line indicates why SMAC terminated, in this case the CPU time limit was exceeded. It
provides an updated estimate of the objective, in this case 0.12.

• Offline Validation Phase, depending on the options used this can also take a large fraction of SMAC’s
runtime. The logic here is actually quite simple, as it largely only requires running many algorithm
runs and computing the objectives from them.

Minimized penalized average runtime (PAR10):
Final time: 607 config 45 (internal ID: 0xBB): 0.14 on the test set

Sample call for the final incumbent:
cd saps; ruby saps_wrapper.rb instances/train/SWlin2006.19724.cnf 0 10.0 2147483647 -1
-alpha ’1.1’ -ps ’0.1’ -rho ’0.84’ -wp ’0.06’

Additional information about run 1 in: smac-output/run1/

6.2 State Files

State files allow you to examine and potentially restore the state of SMAC at a specific point of it’s execution.
The files are written to the state-runN / sub-directory, where N is the value of --seed option.

All files have the following convention as a suffix either it or CRASH followed by either the iteration
number M , or in some cases quick or quick-bak.

The state is saved for every iteration m, where m = 2n n ∈ N, additionally it is saved when SMAC
completes whether successfully or due to crash.

The following files are saved in this state directory (ignoring the suffix):

java obj dump-v2-itM .obj Stores (Java) serialized versions of the the incumbent and the random object
state. In general there is no need to look at this file, and it is not human readable.

paramstrings-itM .txt Stores a human readable setting of each configuration ran, with a prefix of the
numeric id of the configuration (as used in the logs, and other state files).

uniq configurations-M .csv Stores the configurations ran in a more concise but effectively un-human
readable form. The first column again is the numeric id of the configuration (as used in the logs, and
other state files).

runs and results-itM .csv Stores the result of every run of the target algorithm that SMAC has done. The
first 13 columns (after the header row are designed to be backwards compatible with SMAC versions
1.xx. Each column is labelled with what data it contains, the following columns deserve some
description.

Instance ID This is the instance used, and is the nth Instance Name specified in the instance file option.

22

Response Value(y) This is the value determined by the run obj on the run.

Censored Indicates whether the Cutoff Time Used field is less than the cutoff time in the original
run. 0 means false, 1 means true.

Run Result Code This is a mapping from the Run Result to an integer for use with previous versions.

param-file If --save-context is enabled, a copy of the paramfile will be in the state folder

instances If --save-context is enabled, a copy of the instance file will be in the state folder

instance-features If - -save-context is enabled, and SMAC is running with features, then a copy of the
feature file will be in the state folder.

scenario If --save-context is enabled, and SMAC is using a scenario file, then a copy of the --scenario-file
will be in the state folder.

6.3 Trajectory File

SMAC also outputs a trajectory file into the detailed-traj-run-N.csv and outline the incumbent
(by id) over the course of execution and it’s performance. The first line gives the --rungroup, and then the
--seed.

The rest of the file follows the following format:
Column Name Description

CPU Time Used Sum of all execution times
and CPU time of SMAC

Estimated Training Performance Performance of the Incumbent under the given
--run-obj and --overall-obj

Wallclock Time Time of entry with respect to wallclock time.
Incumbent ID The ID of the incumbent

as listed in the param strings file in §6.2, and the logs
Automatic Configurator (CPU) Time CPU Time used of SMAC

Full Configuration The full configuration of this incumbent
NOTE: SMAC also outputs traj-run-N.txt the first five columns are the same, but the remaining
columns represent the configuration, with each cell being a key and value. This is identical the trajectory file
outputted by ParamILS.

6.4 Validation Output

When Validation is completed four files are outputted, (again N is the value of the --seed argument). Finally
depending on which options are used the, especially with smac-validate, the actual file name outputted
may vary.

1. validationResults-traj-run-N-walltime.csv: A CSV file that contains a summary
of the results of validation, the Validation Configuration ID maps to a line in the next file

2. validationCallStrings-traj-run-N-walltime.csv: A CSV file containing a map-
ping between Validation Configuration ID to the actual configuration, and a sample call string.

23

3. validationPerformanceDebug-traj-run-N-walltime.csv: A CSV file that contains
a detailed breakdown of how the final validation score was obtained. This file is meant for human
consumption, and not for parsing.

4. validationObjectiveMatrix-traj-run-N-walltime.csv: A CSV file that contains
a table, for each row (configuration) the objective for the problem instance seed pair as given in the
column.

5. validationRunMatrix-traj-run-N-walltime.csv: A CSV file that contains a table,
for each row (configuration) the response from the wrapper (ignoring the prefix).

6.5 JSON Output

For each run of SMAC, SMAC will also output a file live-rundata-N.json. The format of the file
consists of an array representation of all of the problem instances. Then the individual runs are reported one
after the other. The actual JSON representation is meant to be a mostly semantic view of the objects and is
enough to construct all of the runs data.

7 Developer Reference

This section is meant as a guide to those who need to modify the SMAC code base for whatever reason.

7.1 Design Overview

The SMAC Application is broken up into three distinct projects as follows:

SMAC Contains all of the logic that is specific to SMAC, (e.g.Validation, the SMAC algorithm, construction
of SMAC Objects). In essence it stitches together components of the Automatic Configurator Library.
The sources are included in smac-src.jar.

Algorithm Execution & Abstraction Toolkit Contains all of the primary abstractions/models used by
SMAC (e.g.Object representations for Instances, Target Algorithm Configurations & methods for
executing algorithms,...). 90% of the code that SMAC uses lives in this library. It also contains code
for converting the data from these abstractions into input needed to build the model. These are shipped
with SMAC in the aclib-src.jar file. Note: Historically this was called ”aclib”, and in this
version of SMAC internally the code still referred to it as aclib. The next version of SMAC will likely
rename it.

Random Forests The Random Forest model code. The sources are included in fastrf-src.jar.

The scope of this document governs only the first two projects. At the time of writing the Algorithm
Execution & Abstraction Toolkit has no published documentation, but if you e-mail the above a draft
version is available.

• The bulk of the code necessary to run SMAC lives in four classes
AbstractAlgorithmFramework,
SequentialModelBasedAlgorithmConfiguration, SMACBuilder and finally,
SMACExecutor.

24

7.2 Class Overview

The most important classes to SMAC are as follows:

25

Algorithm Execution & Abstraction Toolkit
Name Description

AbstractOptions Base class for creating new options for SMAC. While not important in
and of itself, you will generally be implementing or modifying one of
it’s subtypes to implement options.

AlgorithmRun Interface that represents the results of a target algorithm run. These
are created by a TargetAlgorithmEvaluator. Outside of
the TargetAlgorithmEvaluator these classes are generally im-
mutable.

AlgorithmExecutionConfig Immutable object containing the information required to invoke a target
algorithm.

InstanceSeedGenerator Interface that gets seeds for a ProblemInstance. These objects are
constructed by ProblemInstanceHelper

ModelBuilder Interface whose implementations should result in a constructed model.
OverallObjective Aggregates many RunObjective values under some statistic

(e.g.mean), to produce a value to be optimized.
ParamConfiguration Class that represents a specific setting of the target algorithm’s param-

eters. This class also implements the Map interface, though does not
support all the required operations. The ID associated with is object, is
used only for logging and should not be used in the code. Finally al-
though this class is not immutable the general life cycle is that the object
is created, given specific values, and then never changed again. In future
this may be augmented with the ability to prevent writes. These objects
are always constructed via the ParamConfigurationSpace.

ParamConfigurationSpace (Almost immutable) class that represents the entire configuration space
of a target algorithm. This class is constructed with the Algorithm
Parameter File described in section 4.4. This class also contains the
specifics of each parameter (e.g.domains, defaults, etc...). Currently the
Random object used is the only portion that is mutable, and this will
change in the future.

ProblemInstance Immutable class that represents a specific problem instance, constructed
by ProblemInstanceHelper.

ProblemInstanceSeedPair Immutable class that represents a problem instance and seed. Decisions
of which seed to use when scheduling a run are made in RunHistory.

RunConfig Immutable class that represents a problem instance seed pair, and config-
uration to execute.

RunHistory Interface that saves all the runs performed, and allows various queries
against this information.

RunObjective Converts an AlgorithmRun into a scalar value for optimization
SanitizedModelData Converts the run data into a format to use when building the model.

Other things such as PCA, and other data filtering are done here. This
interface and mechanism will likely be refactored in the future as it is
brittle at the moment.

SeedableRandomSingleton A global random object whose existence is a convincing case that Sin-
gleton’s are Anti-Patterns. This will, thankfully, go the way of the dodo
bird at some point.

StateFactory Interface that constructs StateSerializer &
StateDeserializer to manage saving and restoring state
respectively.

TargetAlgorithmEvaluator Interface whose implementations should be able to run the algo-
rithm (i.e. Implementations should convert RunConfig objects to
AlgorithmRun objects). See section ?? for more information.

26

SMAC Library Classes
Name Description

AbstractAlgorithmFramework Non-abstract class that provides a default
Automatic Configurator (ROAR)

SequentialModelBasedAlgorithmConfiguration Class that subtypes
AbstractAlgorithmFramework
and implements the methods required for
SMAC

SMACExecutor Parses command line options and creates
some of the objects SMAC needs to execute
(SMAC entrypoint)

SMACBuilder Takes the options parsed by SMACExecu-
tor or some other utility, and builds ev-
erything necessary to create an instance
of AbstractAlgorithmFramework.
If you want to plug smac into your ap-
plication, you generally want to mimic
what SMACExecutor does to invoke
SMACBuilder.

Validator Performs Validation of selected configura-
tions

ValidatorExecutor Entry point to stand alone validation utility

7.3 Algorithm Execution & Abstraction Toolkit

At some future point a better guide will be available, in the interim please e-mail the authors above for a draft.

7.4 Running SMAC in Eclipse

Depending on what you would like to do it might be better to ask for git repository access, which contains
ant build scripts and an existing eclipse project. The following procedure however will get you a working
installation in eclipse.

NOTE: This guide is pretty straight forward except for step 10 & 11, so if you are comfortable with
Eclipse you should just skip to those steps.

To start the smac project project in eclipse do the following:

1. Create a new project in Eclipse, ensure that the JDK is 1.7 or higher.

2. Create a new source folder: aeatk

3. Create a new source folder: smac

4. Create a new source folder: fastrf

5. Create a new folder: lib

6. Copy all the jar files from the lib folder of the SMAC release into the lib folder of the eclipse
project, except for smac.jar, smac-src.jar, aeatk.jar, aeatk-src.jar, fastrf.jar
and fastrf-src.jar.

7. Unzip the smac-src.jar into the smac source folder

27

8. Unzip the aeatk-src.jar into the aeatk source folder

9. Unzip the fastrf-src.jar into the fastrf source folder.

10. Right click on the project and go to Properties→ Java Compiler→ Annotation Processing and check
the Enable project specific settings and Enable annotation processing.

11. Then in the project properties navigate to Java Compiler→ Annotation Processing→ Factory Path
and hit Add Jars then select lib/spi-0.2.4.jar and hit OK.

The entry point of any application can be retrieved from the shell script folder, for instance by opening
the smac file we can see that the entry point is: ca.ubc.cs.beta.smac.executors.SMACExecutor
and smac-validate is : ca.ubc.cs.beta.smac.executors.ValidatorExecutor

Many of the helper utilities are contained in the ca.ubc.cs.beta.aeatk.example. subpack-
ages.

NOTE: If you try and run existing scenarios packaged with SMAC they contain paths relative to the root
of the smac dir. So in your Run Configuration you should set the Working Directory to the root of some smac
release to run it as you would on the command line.

If when running SMAC you see either of the following errors:
WARNING: I could not find ANY Target Algorithm Evaluators on the classpath. If you made this JAR

yourself chances are you did not setup SPI correctly. See the AEATK Manual / Developer Reference for
more information

No Target Algorithm Evalutor found for name: CLI

This means you did not follow steps 10 & 11 properly.

8 Acknowledgements

We are indebted to Jonathan Shen for porting our random forest code from C to Java in preparation for a
Java port of all of SMAC. Alexandre Fréchette and Chris Thornton for their constant feedback and patches to
SMAC. We would also like to thank Marius Schneider for many valuable early bug reports and suggestions
for improvements.

9 References

[1] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011a). Bayesian optimization with censored response
data. In 2011 NIPS workshop on Bayesian Optimization, Sequential Experimental Design, and Bandits.
Published online.

[2] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011b). Sequential model-based optimization for general
algorithm configuration. In Proc. of LION-5, LNCS, pages 507–523.

[3] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). ParamILS: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306.

28

10 Appendix

10.1 Return Codes

Value Error Name Description
0 Success Everything completed successfully
1 Parameter Error There was a problem with the input arguments or files
2 Trajectory Divergence For some reason SMAC has taken a unexpected path

(e.g. SMAC executes a run that does not match a run
in the --runHashCodeFile)

3 Serialization Exception A problem occurred when saving or restoring state
255 Other Exceptions Some other error occurred

NOTE: All error conditions besides 255 are fixed. However in future some exceptions that previously
reported 255 may be changed to a non 255 value as needed / requested

10.2 Version History of Java SMAC

Version 2.00 (Aug-2012) First Internal Release of Java SMAC (this is a port and extension of the original
Matlab version).

Version 2.02 (Oct-2012) First Public Release of SMAC v2 and contained many fixes from the previous
release.

Version 2.04 (Dec-2012) Second Release of Java SMAC including the following improvements:

1. Validation file output times consistent with Tuner Times

2. Some INFO log statements have been moved to DEBUG and some DEBUG to TRACE
3. Added support for verifying whether responses of SAT and UNSAT are consistent with Instance

Specific Information see --verifySAT option for more information

4. Added support for the SMAC MEMORY environment variable to control how much RAM (in
MB) SMAC will use when executed via the supplied shell scripts.

5. Context is now added to the state folders to make it easier to debug issues later, to disable consult
the --saveContext option.

6. Greatly improved memory usage in State Serialization code, and now we free the existing model
prior to building a new one, so for some JVMs this may improve memory usage.

Version 2.04.01 (Feb-2013) Minor Bug Fix of Java SMAC

1. Added option to validate over training set instances

29

2. Can now use <DEFAULT> as a configuration to validate against

3. Fixed bug where TIMEOUT runs below our requested cutoff time are not counted properly when
considering incumbent changes

4. Can now specify the initial incumbent with the --initialIncumbent option.

5. Wallclock time is now saved in the trajectory file instead of -1

6. FAQ Improvements

7. Git commit hash is now documented in Manual, FAQ, and Version strings

8. (BETA) Support for bash auto-completion of arguments for smac and smac-validate. You
can load the file by running:

. ./util/bash_autocomplete.sh

Version 2.04.02 (Aug-2013) Minor Bug Fix of Java SMAC

1. Incumbent Performance now displayed when validation is turned off.

2. --runtimeLimit option is no longer just for show.

Version 2.06.00 (Aug-2013) Significant Feature Enhancements

1. New algo-test utility allows easy invocation of wrappers.

2. New verify-scenario utility preforms extra validation on scenario files.

3. Scenario now ends if the configuration space is exhausted

4. SMAC now lets you search only a subspace for good configurations

5. Validation output formats improved with headers

6. Option to always compare with the initial incumbent (to prevent an early poor choice from
derailing the run) (See --always-run-initial-config)

7. SMAC reports an error if runs give different answers for SAT and UNSAT now

8. New --restore-scenario option to make restoring scenarios easier

9. New --warmstart option makes it possible to preload the model with additional SMAC runs.

10. Can now set seeds to different parts of SMAC using -S
11. Runtime Statistics and Termination Reasons now rewritten

12. New validation options --validate-all, --validate-only-if-tunertime-reached (See the validation
options for all of them)

13. SMAC now checks limits before scheduling a run, rather than immediately after the run as in
previous versions. (This means that if the last run went over, but changed the incumbent it will be
logged.)

14. Instances can now be ordered deterministically (that is in the order they are declared in the
instance file via --determinstic-instance-ordering.

15. Usage improved via new help levels which are displayed with --help-level and new usage screens.

16. Improvements to bash auto completion.

17. Target Algorithm Evaluators now take options.

30

18. Fixes for CPU Time calculation in SMAC.

19. Example scenarios cleaned up, new ones provided.

20. SMAC should be more forgiving with relative paths in a scenario file.

21. Default option files now supported (SMAC will read from ˜/.aclib/smac.opt, ˜/.aclib/tae.opt
and ˜/.aclib/help.opt. It will also read from defaults for plugins that are available.
NOTE: A future version changed the files to ˜/.aeatk/.

22. Rungroup name is now configurable.

23. Logging of some objects is cleaned up.

24. Windows Startup scripts, and improved Unix start up scripts.

25. Fixed lock-up issue with wrappers launching unterminating subprocesses.

26. Fixed ConvergenceException error message.

27. Options now have a primary non-camel case format.

28. Manual now has a basic options section, before listing all the options.

29. Significant API changes to the Target Algorithm Evaluators so previous plugins will need to be
refactored (and another change will come either in v2.06 or v2.08).

30. SMAC will now match capitalization of words in the Result String of wrappers.

31. New - -validation-seed option should cause the validation at the end of SMAC to behave the
same as the stand-alone utility.

Version 2.06.01 (Oct-2013) Minor Bug Fix Release of Java SMAC

1. Fixed a bug introduced in 2.06.00 that caused validation to be performed against the training
instance distribution instead of the test instance distribution.

2. Default acquisition function for solution quality optimization is now Expected Improvement
(instead of Exponential Expected Improvement).

3. Fixed exception if Scenario file doesn’t have extension.

4. New option --terminate-on-delete will cause SMAC to abort the procedure before the next set
of runs (as if it had hit it’s CPU time limit) if the file specified is deleted.

5. New option --kill-runs-on-file-delete will cause SMAC to kill any runs in progress . This option
should be used with care, as it may cause SMAC to select the wrong incumbent, and it should
always be used with --terminate-on-delete.

6. New option - -save-runs-every-iteration will cause SMAC to output the runs and results file
necessary to restore state every run. This is useful if your cluster or environment is particularly
unreliable. It should NOT be used when runtimes in the scenario can grow very small as the
amount of time SMAC will spend writing to disk loosely 13 changes from O(n) to O(n2), where
n is the number of runs it performs.

7. If SMAC is shutting down for an unexpected reason (e.g. OutOfMemoryError ,or it received a
SIGTERM), SMAC will now try its best to write a final batch of state data with the ”SHUTDOWN”
prefix.
NOTE: This state may be corrupted for a variety of reasons, and even if it is written correctly you
may not be able to restore it properly as the snap shot may be from the middle of an iteration.

13Assuming the number of iterations scales linearly with the number of runs.

31

8. Fixed typo in error message that mistakenly reported that instances where missing, when in fact
it was the test instances that were missing.

Version 2.08.00 (Aug-2014) Usability and Validation Changes

1. SMAC is now more picky about instance names and feature names matching.

2. New sat-check utility allows determination of the satisfiability for each instance of a instance
file.

3. Environment variable AEATK CONCURRENT TASK ID is now set when executing the wrap-
per, containing an index into the number of concurrent jobs. This is primarily used to allow the
wrapper to determine CPU affinities correctly. See the wrapper section for more information.-

4. SMAC has been made drastically less verbose. The default level INFO now only contains the
final information, and information about changes to the incumbent. DEBUG contains most of the
old info level, TRACE contains most of the old DEBUG levels. The old TRACE level was never
used and has been removed.

5. Instances can now be specified by folder using the --instances and --test-instances option. You
can restrict which instances are used via the --instance-suffix and --test-instance-suffix

6. --exec-dir option now defaults to current working directory.

7. New option - -use-instances will use a dummy instance instead of the instance file (useful for
black box optimization).

8. New advanced option - -shared-model-mode may improve performance in some cases, see
Section 3.10.

9. [BETA] Target Algorithm Evaluator implementation allows integrating with a TAE using
UDP/TCP (more to come).

10. Implemented a work around to a bug where configurations with censored early runs could become
the incumbent erroneously. It’s still suboptimal, but in fact it probably would never happen. See
Known Issue #1 in section 10.3.

11. Validation rounding mode now changes the number of runs on deterministic runs, or runs with
set problem instance seed pairs.

12. New option --cli-kill-by-environment-cmd allows terminating all processes by an environment
variable. See section 5.1.1 for more information.

13. Target algorithms no longer see quoted arguments for parameter values. The option --cli-call-
params-with-quotes can be used to get the old behaviour back, this option will likely be removed
in future.

14. New option --quick-saves controls whether to make any quick save states or not.

15. New option --intermediary-saves controls whether to many any save states at all while SMAC
is running (if false SMAC will still save information at the end)

16. Revamped Quickstart guide

17. After validation SMAC prints correct termination reason message.

18. SMAC will now terminate all outstanding runs when exiting prematurely (for instance due to
CTRL+C)

32

19. Standardized scenario options (no new ones), but scenario options can be used in ParamILS
versions 2.3.7 and later.

20. Mitigated bug that caused deterministic instances to take forever to load from file. This may still
happen in some cases, if feature file names and instance file names do not perfectly match up.

21. Auto detect restore scenario option now made more robust in case files are missing

22. The state merge utility no longer crashes if merging runs that don’t have a run for every instance

23. Renamed many references of ACLib to AEAToolkit to reflect change of name of the toolkit
SMAC is built with.

24. Default options are now read from ˜/.aeatk instead of ˜/.aclib.

25. Fixed an issue with absolute paths on windows not being handled correctly.

26. Validation now performs 1 run per instance by default instead of next multiple after 1000.

27. Can now specify the number of cores that SMAC validate will use (only when using the local
command line), using the --validation-cores option.

28. Previous state folder is now renamed to something that preserves the run name and is no longer a
warning.

29. Emphasized in many places that SMAC is minimizing the objective functions.

30. SMAC now ignores the seed output in the response of wrappers entirely (it automatically sub-
stitutes the requested value. If your wrapper doesn’t set this value correctly, you may notice
discrepancies in SMAC.

31. A few validation options have been deprecated and removed

32. Can now validate multiple trajectory files in one pass using the --trajectory-files option.

33. Output format of validation has been completely changed to be more useful.

34. traj-run-N.csv is now detailed-traj-run-N.csv and has a slightly different for-
mat.

35. SMAC now requires Java version 7 to run.

36. conf/logback.xml is no longer used, and the file is stored internally. To override the configu-
ration, set the java system property logback.configurationFile=/path/to/config.xml

37. Some columns in the trajectory file have been renamed for clarity. The order is still the same.

38. Changed default wrapper string to “Result of this algorithm run:”.

10.3 Known Issues

1. In a rare case, configurations that are reinspected by SMAC after initially being rejected may continue
their challenge when they otherwise shouldn’t. If the configuration continues it’s challenges success-
fully, prior to being the incumbent we will presently check all the runs, which is strictly more expensive
than necessary.

2. Using any alias for --showHiddenParameters, --help, or --version as values to other arguments (e.g.
Setting --runGroupName --help) does not parse correctly (This is unlikely to be fixed until someone
complains).

33

3. Using large parameter values in continuous integral parameters, may cause loss of precision, and or
crashes if the values are too big.

4. ArrayOutOfBoundsException occurs if not all instances have features

5. --num-seeds-per-test-instance and --num-test-instances are both broken currently and will probably
be removed in the future.

34

10.4 Basic Options Reference

The following sections outline only the basic options

10.4.1 SMAC Options

General Options for Running SMAC

BASIC OPTIONS

--help show help
--help-level Show options at this level or lower

Default Value: BASIC
Domain: {BASIC, INTERMEDIATE,ADVANCED,DEVELOPER}

--validation perform validation when SMAC completes

Default Value: true
Domain: {true, false}

-v print version and exit

10.4.2 Scenario Options

Standard Scenario Options for use with SMAC. In general consider using the –scenarioFile directive to
specify these parameters and Algorithm Execution Options

BASIC OPTIONS

--feature-file file that contains the all the instances features
--instances File or directory containing the instances to use for the scenario. If it’s a file it must coform a

specific format (see Instance File Format section of the manual), if it’s a directory it you must also
use the --instance-suffix option to restrict the match (unless all files have the same extension), and the
instance list will be in sorted order.

REQUIRED
Default Value: null

--run-obj per target algorithm run objective type that we are minimizing

REQUIRED
Default Value: null
Domain: {RUNTIME,QUALITY}

--scenario-file scenario file

Domain: FILES

--skip-features If true the feature file will be ignored (if the feature file is required, this will cause an error,
as if it was not supplied

Default Value: false
Domain: {true, false}

35

--test-instances File or directory containing the instances to use for the scenario. If it’s a file it must coform
a specific format (see Instance File Format section of the manual), if it’s directory you must also use
the --test-instance-suffix option to restrict the match (unless all files have the same extension), , and the
instance list will be in sorted order
Default Value: null

10.4.3 Scenario Configuration Limit Options

Options that control how long the scenario will run for

BASIC OPTIONS

--cputime-limit limits the total cpu time allowed between SMAC and the target algorithm runs during the
automatic configuration phase
Default Value: 2147483647
Domain: [0, 2147483647]

--runcount-limit limits the total number of target algorithm runs allowed during the automatic configuration
phase
Default Value: 9223372036854775807
Domain: (0, 9223372036854775807]

--wallclock-limit limits the total wall-clock time allowed during the automatic configuration phase
Default Value: 2147483647
Domain: (0, 2147483647]

10.4.4 Algorithm Execution Options

Options related to invoking the target algorithm

BASIC OPTIONS

--algo-cutoff-time CPU time limit for an individual target algorithm run
Default Value: 1.7976931348623157E308
Domain: (0,∞)

--algo-deterministic treat the target algorithm as deterministic
Default Value: true
Domain: {true, false}

--algo-exec command string to execute algorithm with
REQUIRED
Default Value: null

--pcs-file File containing algorithm parameter space information in PCS format (see Algorithm Parameter
File in the Manual). You can specify ”SINGLETON” to get a singleton configuration space or ”NULL”
to get a null one.
REQUIRED
Default Value: null

36

-T additional context needed for target algorithm execution (see TAE documentation for possible values,
generally rare)

Default Value:

37

10.5 Complete Options Reference

10.5.1 SMAC Options

General Options for Running SMAC

BASIC OPTIONS

--help show help
Aliases: --help, -?, /?, -h

--help-level Show options at this level or lower
Aliases: --help-level
Default Value: BASIC
Domain: {BASIC, INTERMEDIATE,ADVANCED,DEVELOPER}

--validation perform validation when SMAC completes
Aliases: --validation, --doValidation
Default Value: true
Domain: {true, false}

-v print version and exit
Aliases: -v, --version

INTERMEDIATE OPTIONS

--adaptive-capping Use Adaptive Capping
Aliases: --adaptive-capping, --ac, --adaptiveCapping
Default Value: Defaults to true when –runObj is RUNTIME, false otherwise
Domain: {true, false}

--always-run-initial-config if true we will always run the default and switch back to it if it is better than
the incumbent
Aliases: --always-run-initial-config, --alwaysRunInitialConfiguration
Default Value: false
Domain: {true, false}

--console-log-level default log level of console output (this cannot be more verbose than the logLevel)
Aliases: --console-log-level, --consoleLogLevel
Default Value: INFO
Domain: {TRACE,DEBUG, INFO,WARN,ERROR,OFF}

--deterministic-instance-ordering If true, instances will be selected from the instance list file in the
specified order
Aliases: --deterministic-instance-ordering, --deterministicInstanceOrdering
Default Value: false
Domain: {true, false}

--exec-mode execution mode of the automatic configurator
Aliases: --exec-mode, --execution-mode, --executionMode

38

Default Value: SMAC
Domain: {SMAC,ROAR,PSEL}

--experiment-dir root directory for experiments Folder

Aliases: --experiment-dir, --experimentDir, -e
Default Value: <current working directory>

--initial-challenger-runs initial amount of runs to request when intensifying on a challenger

Aliases: --initial-challenger-runs, --initialN, --initialChallenge
Default Value: 1
Domain: (0, 2147483647]

--initial-incumbent Initial Incumbent to use for configuration (you can use RANDOM, or DEFAULT as a
special string to get a RANDOM or the DEFAULT configuration as needed). Other configurations are
specified as: -name ’value’ -name ’value’ ... For instance: --quick-sort ’on’

Aliases: --initial-incumbent, --initialIncumbent
Default Value: DEFAULT

--initial-incumbent-runs initial amount of runs to schedule against for the default configuration

Aliases: --initial-incumbent-runs, --initialIncumbentRuns, --defaultConfigRuns
Default Value: 1
Domain: (0, 2147483647]

--log-level messages will only be logged if they are of this severity or higher.

Aliases: --log-level, --logLevel
Default Value: INFO
Domain: {TRACE,DEBUG, INFO,WARN,ERROR,OFF}

--num-run number of this run (used for file generation, etc). This also controls the seed.

Aliases: --num-run, --numrun, --numRun, --seed
Default Value: Randomly generated
Domain: [0, 2147483647]

--restore-scenario Restore the scenario & state in the state folder

Aliases: --restore-scenario, --restoreScenario
Default Value: null
Domain: FILES

--rungroup name of subfolder of outputdir to save all the output files of this run to

Aliases: --rungroup, --rungroup-name, --runGroupName
Default Value:

--save-runs-every-iteration if true will save the runs and results file to disk every iteration. Useful if your
runs are expensive and your cluster unreliable, not recommended if your runs are short as this may add
an unacceptable amount of overhead

Aliases: --save-runs-every-iteration

39

Default Value: false
Domain: {true, false}

--show-hidden show hidden parameters that no one has use for, and probably just break SMAC (no-
arguments)

Aliases: --show-hidden, --showHiddenParameters

--validation-cores Number of cores to use when validating (only applicable when using local command
line cores). Essentially this changes the value of --cli-cores and --cores after SMAC has run. The use
of this parameter is undefined if the TargetAlgorithmEvaluator being used is not the CLI

Aliases: --validation-cores
Default Value: The value of –cores
Domain: (0, 2147483647]

--warmstart location of state to use for warm-starting

Aliases: --warmstart, --warmstart-from
Default Value: N/A (No state is being warmstarted)

ADVANCED OPTIONS

--ac-add-slack amount to increase computed adaptive capping value of challengers by (post scaling)

Aliases: --ac-add-slack, --capAddSlack
Default Value: 1.0
Domain: (0,∞)

--ac-mult-slack amount to scale computed adaptive capping value of challengers by

Aliases: --ac-mult-slack, --capSlack
Default Value: 1.3
Domain: (0,∞)

--acq-func acquisition function to use during local search

Aliases: --acq-func, --acquisition-function, --ei-func, --expected-improvement-function, --expectedImprovementFunction
Default Value: EXPONENTIAL if minimizing runtime, EI otherwise.
Domain: {EXPONENTIAL, SIMPLE, LCB,EI, LCBEIRR}

--clean-old-state-on-success will clean up much of the useless state files if smac completes successfully

Aliases: --clean-old-state-on-success, --cleanOldStateOnSuccess
Default Value: true
Domain: {true, false}

--config-tracking Take measurements of configuration as it goes through it’s lifecycle and write to file (in
state folder)

Aliases: --config-tracking
Domain: {true, false}

--doubling-capping-challengers Number of challengers to use with the doubling capping mechanism

Aliases: --doubling-capping-challengers

40

Default Value: 2
Domain: (0, 2147483647]

--doubling-capping-runs-per-challenger Number of runs each challenger will get with the doubling
capping initilization strategy
Aliases: --doubling-capping-runs-per-challenger
Default Value: 2
Domain: (0, 2147483647]

--help-default-file file that contains default settings for SMAC
Aliases: --help-default-file, --helpDefaultsFile
Default Value: /.aeatk/help.opt
Domain: FILES

--imputation-iterations amount of times to impute censored data when building model
Aliases: --imputation-iterations, --imputationIterations
Default Value: 2
Domain: [0, 2147483647]

--init-mode Initialization Mode
Aliases: --init-mode, --initialization-mode, --initMode, --initializationMode
Default Value: CLASSIC
Domain: {CLASSIC, ITERATIVE CAPPING,UNBIASED TABLE}

--intensification-percentage percent of time to spend intensifying versus model learning
Aliases: --intensification-percentage, --intensificationPercentage, --frac rawruntime
Default Value: 0.5
Domain: (0, 1)

--intermediary-saves determines whether to make any intermediary-saves or not (if false, no quick saves
will be made either). The state will still be saved at the end of the run however
Aliases: --intermediary-saves
Default Value: true
Domain: {true, false}

--iterativeCappingBreakOnFirstCompletion In Phase 2 of the initialization phase, we will abort the first
time something completes and not look at anything else with the same kappa limits
Aliases: --iterativeCappingBreakOnFirstCompletion
Default Value: false
Domain: {true, false}

--iterativeCappingK Iterative Capping K
Aliases: --iterativeCappingK
Default Value: 1

--mask-censored-data-as-kappa-max Mask censored data as kappa Max
Aliases: --mask-censored-data-as-kappa-max, --maskCensoredDataAsKappaMax

41

Default Value: false
Domain: {true, false}

--mask-inactive-conditional-parameters-as-default-value build the model treating inactive conditional
values as the default value

Aliases: --mask-inactive-conditional-parameters-as-default-value, --maskInactiveConditionalParametersAsDefaultValue
Default Value: true
Domain: {true, false}

--max-incumbent-runs maximum number of incumbent runs allowed

Aliases: --max-incumbent-runs, --maxIncumbentRuns, --maxRunsForIncumbent
Default Value: 2000
Domain: (0, 2147483647]

--num-challengers number of challengers needed for local search

Aliases: --num-challengers, --numChallengers, --numberOfChallengers
Default Value: 10
Domain: (0, 2147483647]

--num-ei-random number of random configurations to evaluate during EI search

Aliases: --num-ei-random, --numEIRandomConfigs, --numberOfRandomConfigsInEI, --numRandomConfigsInEI,
--numberOfEIRandomConfigs

Default Value: 10000
Domain: [0, 2147483647]

--num-pca number of principal components features to use when building the model

Aliases: --num-pca, --numPCA
Default Value: 7
Domain: (0, 2147483647]

--option-file read options from file

Aliases: --option-file, --optionFile
Domain: FILES

--option-file2 read options from file

Aliases: --option-file2, --optionFile2, --secondaryOptionsFile
Domain: FILES

--print-rungroup-replacement-and-exit print all the possible replacements in the rungroup and then exit

Aliases: --print-rungroup-replacement-and-exit
Default Value: false
Domain: {true, false}

--quick-saves determines whether to make quick saves or not

Aliases: --quick-saves
Default Value: true

42

Domain: {true, false}

--restore-iteration iteration of the state to restore, use ”AUTO” to automatically pick the last iteration

Aliases: --restore-iteration, --restoreStateIteration, --restoreIteration
Default Value: N/A (No state is being restored)

--restore-state-from location of state to restore

Aliases: --restore-state-from, --restoreStateFrom
Default Value: N/A (No state is being restored)

--save-context saves some context with the state folder so that the data is mostly self-describing (Scenario,
Instance File, Feature File, Param File are saved)

Aliases: --save-context, --saveContext, --saveContextWithState
Default Value: true
Domain: {true, false}

--shared-model-mode If true the run data will be written to a JSON file and other files matching a specific
format will be read in periodically

Aliases: --shared-model-mode, --share-model-mode, --shared-run-data, --share-run-data
Default Value: false
Domain: {true, false}

--shared-model-mode-frequency How often to poll for new run data (in seconds)

Aliases: --shared-model-mode-frequency, --share-model-mode-frequency, --shared-run-data-frequency,
--share-run-data-frequency

Default Value: 300 seconds
Domain: (0, 2147483647]

--smac-default-file file that contains default settings for SMAC

Aliases: --smac-default-file, --smacDefaultsFile
Default Value: /.aeatk/smac.opt
Domain: FILES

--state-deserializer determines the format of the files that store the saved state to restore

Aliases: --state-deserializer, --stateDeserializer
Default Value: LEGACY
Domain: {NULL, LEGACY}

--state-serializer determines the format of the files to save the state in

Aliases: --state-serializer, --stateSerializer
Default Value: LEGACY
Domain: {NULL, LEGACY}

--treat-censored-data-as-uncensored builds the model as-if the response values observed for cap values,
were the correct ones [NOT RECOMMENDED]

Aliases: --treat-censored-data-as-uncensored, --treatCensoredDataAsUncensored

43

Default Value: false
Domain: {true, false}

--unbiased-capping-challengers Number of challengers we will consider during initialization

Aliases: --unbiased-capping-challengers
Default Value: 2
Domain: (0, 2147483647]

--unbiased-capping-cpulimit Amount of CPU Time to spend constructing table in initialization phase

Aliases: --unbiased-capping-cpulimit
Default Value: 0
Domain: (0, 2147483647]

--unbiased-capping-runs-per-challenger Number of runs we will consider during initalization per chal-
lenger

Aliases: --unbiased-capping-runs-per-challenger
Default Value: 2
Domain: (0, 2147483647]

--validation-seed Seed to use for validating SMAC

Aliases: --validation-seed
Default Value: 0 which should cause it to run exactly the same as the stand-alone utility.

--warmstart-iteration iteration of the state to use for warm-starting, use ”AUTO” to automatically pick the
last iteration

Aliases: --warmstart-iteration
Default Value: AUTO (if being restored)

DEVELOPER OPTIONS

--seed-offset offset of numRun to use from seed (this plus --numRun should be less than INTEGER MAX)

Aliases: --seed-offset, --seedOffset
Default Value: 0

-S Sets specific seeds (by name) in the random pool (e.g. -SCONFIG=2 -SINSTANCE=4). To determine the
actual names that will be used you should run the program with debug logging enabled, it should be
output at the end.

Aliases: -S

10.5.2 Random Forest Options

Options used when building the Random Forests

ADVANCED OPTIONS

--rf-full-tree-bootstrap bootstrap all data points into trees

Aliases: --rf-full-tree-bootstrap, --fullTreeBootstrap
Default Value: false

44

Domain: {true, false}

--rf-ignore-conditionality ignore conditionality for building the model

Aliases: --rf-ignore-conditionality, --ignoreConditionality
Default Value: false
Domain: {true, false}

--rf-impute-mean impute the mean value for the all censored data points

Aliases: --rf-impute-mean, --imputeMean
Default Value: false
Domain: {true, false}

--rf-log-model store response values in log-normal form

Aliases: --rf-log-model, --log-model, --logModel
Default Value: true if optimizing runtime, false if optimizing quality
Domain: {true, false}

--rf-min-variance minimum allowed variance

Aliases: --rf-min-variance, --minVariance
Default Value: 1.0E-14
Domain: (0,∞)

--rf-num-trees number of trees to create in random forest

Aliases: --rf-num-trees, --num-trees, --numTrees, --nTrees, --numberOfTrees
Default Value: 10
Domain: (0, 2147483647]

--rf-penalize-imputed-values treat imputed values that fall above the cutoff time, and below the penalized
max time, as the penalized max time

Aliases: --rf-penalize-imputed-values, --penalizeImputedValues
Default Value: false
Domain: {true, false}

--rf-ratio-features ratio of the number of features to consider when splitting a node

Aliases: --rf-ratio-features, --ratioFeatures
Default Value: 0.8333333333333334
Domain: (0, 1]

--rf-shuffle-imputed-values shuffle imputed value predictions between trees

Aliases: --rf-shuffle-imputed-values, --shuffleImputedValues
Default Value: false
Domain: {true, false}

--rf-split-min minimum number of elements needed to split a node

Aliases: --rf-split-min, --split-min, --splitMin
Default Value: 10

45

Domain: [0, 2147483647]

DEVELOPER OPTIONS

--rf-preprocess-marginal build random forest with preprocessed marginal

Aliases: --rf-preprocess-marginal, preprocessMarginal
Default Value: true
Domain: {true, false}

--rf-store-data store full data in leaves of trees

Aliases: --rf-store-data, --rf-store-data-in-leaves, --storeDataInLeaves
Default Value: false
Domain: {true, false}

--rf-subsample-memory-percentage when free memory percentage drops below this percent we will
apply the subsample percentage

Aliases: --rf-subsample-memory-percentage, --freeMemoryPecentageToSubsample
Default Value: 0.25
Domain: (0, 1]

--rf-subsample-percentage multiply the number of points used when building model by this value

Aliases: --rf-subsample-percentage, --subsamplePercentage
Default Value: 0.9
Domain: (0, 1]

--rf-subsample-values-when-low-on-memory subsample model input values when the amount of mem-
ory available drops below a certain threshold (see --subsampleValuesWhenLowMemory) (Not Tested)

Aliases: --rf-subsample-values-when-low-on-memory, --subsampleValuesWhenLowOnMemory, --
subsampleValuesWhenLowMemory

Default Value: false
Domain: {true, false}

10.5.3 Scenario Options

Standard Scenario Options for use with SMAC. In general consider using the –scenarioFile directive to
specify these parameters and Algorithm Execution Options

BASIC OPTIONS

--feature-file file that contains the all the instances features

Aliases: --feature-file, --instanceFeatureFile, --feature file

--instances File or directory containing the instances to use for the scenario. If it’s a file it must coform a
specific format (see Instance File Format section of the manual), if it’s a directory it you must also
use the --instance-suffix option to restrict the match (unless all files have the same extension), and the
instance list will be in sorted order.

REQUIRED
Aliases: --instances, --instance-file, --instance-dir, --instanceFile, -i, --instance file, --instance seed file

46

Default Value: null

--run-obj per target algorithm run objective type that we are minimizing
REQUIRED
Aliases: --run-obj, --run-objective, --runObj, --run obj
Default Value: null
Domain: {RUNTIME,QUALITY}

--scenario-file scenario file
Aliases: --scenario-file, --scenarioFile, --scenario
Domain: FILES

--skip-features If true the feature file will be ignored (if the feature file is required, this will cause an error,
as if it was not supplied
Aliases: --skip-features, --ignore-features
Default Value: false
Domain: {true, false}

--test-instances File or directory containing the instances to use for the scenario. If it’s a file it must coform
a specific format (see Instance File Format section of the manual), if it’s directory you must also use
the --test-instance-suffix option to restrict the match (unless all files have the same extension), , and the
instance list will be in sorted order
Aliases: --test-instances, --test-instance-file, --test-instance-dir, --testInstanceFile, --test instance file,

--test instance seed file
Default Value: null

INTERMEDIATE OPTIONS

--instance-suffix A suffix that all instances must match when reading instances from a directory. You can
optionally specify a (java) regular expression but be aware that it is suffix matched (internally we take
this string and append a $ on it)
Aliases: --instance-suffix, --instance-regex
Default Value: null

--intra-obj objective function used to aggregate multiple runs for a single instance
Aliases: --intra-obj, --intra-instance-obj, --overall-obj, --intraInstanceObj, --overallObj, --overall obj,

--intra instance obj
Default Value: MEAN if –run-obj is QUALITY and MEAN10 if it is runtime
Domain: {MEAN,MEAN1000,MEAN10}

--output-dir Output Directory
Aliases: --output-dir, --outputDirectory, --outdir
Default Value: <current working directory>/ -output

--test-instance-suffix A suffix that all instances must match when reading instances from a directory. You
can optionally specify a (java) regular expression but be aware that it is suffix matched (internally we
take this string and append a $ on it)
Aliases: --test-instance-suffix, --test-instance-regex

47

Default Value: null

--use-instances If false skips reading the instances and just uses a dummy instance

Aliases: --use-instances
Default Value: true
Domain: {true, false}

ADVANCED OPTIONS

--check-instances-exist check if instances files exist on disk

Aliases: --check-instances-exist, --checkInstanceFilesExist
Default Value: false
Domain: {true, false}

--inter-obj objective function used to aggregate over multiple instances (that have already been aggregated
under the Intra-Instance Objective)

Aliases: --inter-obj, --inter-instance-obj, --interInstanceObj, --inter instance obj
Default Value: MEAN
Domain: {MEAN,MEAN1000,MEAN10}

10.5.4 Scenario Configuration Limit Options

Options that control how long the scenario will run for

BASIC OPTIONS

--cputime-limit limits the total cpu time allowed between SMAC and the target algorithm runs during the
automatic configuration phase

Aliases: --cputime-limit, --cputime limit, --tunertime-limit, --tuner-timeout, --tunerTimeout
Default Value: 2147483647
Domain: [0, 2147483647]

--runcount-limit limits the total number of target algorithm runs allowed during the automatic configuration
phase

Aliases: --runcount-limit, --runcount limit, --totalNumRunsLimit, --numRunsLimit, --numberOfRunsLimit
Default Value: 9223372036854775807
Domain: (0, 9223372036854775807]

--wallclock-limit limits the total wall-clock time allowed during the automatic configuration phase

Aliases: --wallclock-limit, --wallclock limit, --runtime-limit, --runtimeLimit, --wallClockLimit
Default Value: 2147483647
Domain: (0, 2147483647]

ADVANCED OPTIONS

--iteration-limit limits the number of iterations allowed during automatic configuration phase

Aliases: --iteration-limit, --numIterations, --numberOfIterations
Default Value: 2147483647
Domain: (0, 2147483647]

48

--max-norun-challenge-limit if the parameter space is too small we may get to a point where we can make
no new runs, detecting this condition is prohibitively expensive, and this heuristic controls the number
of times we need to try a challenger and get no new runs before we give up

Aliases: --max-norun-challenge-limit, --maxConsecutiveFailedChallengeIncumbent
Default Value: 1000

--terminate-on-delete Terminate the procedure if this file is deleted

Aliases: --terminate-on-delete
Default Value: null

--use-cpu-time-in-tunertime include the CPU Time of SMAC as part of the tunerTimeout

Aliases: --use-cpu-time-in-tunertime, --countSMACTimeAsTunerTime
Default Value: true
Domain: {true, false}

10.5.5 Algorithm Execution Options

Options related to invoking the target algorithm

BASIC OPTIONS

--algo-cutoff-time CPU time limit for an individual target algorithm run

Aliases: - -algo-cutoff-time, - -target-run-cputime-limit, - -target run cputime limit, - -cutoff-time,
--cutoffTime, --cutoff time

Default Value: 1.7976931348623157E308
Domain: (0,∞)

--algo-deterministic treat the target algorithm as deterministic

Aliases: --algo-deterministic, --deterministic
Default Value: true
Domain: {true, false}

--algo-exec command string to execute algorithm with

REQUIRED
Aliases: --algo-exec, --algoExec, --algo
Default Value: null

--pcs-file File containing algorithm parameter space information in PCS format (see Algorithm Parameter
File in the Manual). You can specify ”SINGLETON” to get a singleton configuration space or ”NULL”
to get a null one.

REQUIRED
Aliases: --pcs-file, --param-file, -p, --paramFile, --paramfile
Default Value: null

-T additional context needed for target algorithm execution (see TAE documentation for possible values,
generally rare)

Aliases: -T

49

Default Value:

INTERMEDIATE OPTIONS

--algo-exec-dir working directory to execute algorithm in

Aliases: --algo-exec-dir, --exec-dir, --execDir, --execdir
Default Value: current working directory

ADVANCED OPTIONS

--continous-neighbours Number of neighbours for continuous parameters

Aliases: --continous-neighbours, --continuous-neighbors, --continuousNeighbours
Default Value: 4

DEVELOPER OPTIONS

--search-subspace Only generate random and neighbouring configurations with these values. Specified in a
”name=value,name=value,...” format (Overrides those set in file)

Aliases: --search-subspace, --searchSubspace
Default Value: null

--search-subspace-file Only generate random and neighbouring configurations with these values. Specified
each parameter on each own line with individual value

Aliases: --search-subspace-file, --searchSubspaceFile
Default Value: null
Domain: FILES

10.5.6 Target Algorithm Evaluator Options

Options that describe and control the policy and mechanisms for algorithm execution

INTERMEDIATE OPTIONS

--abort-on-crash treat algorithm crashes as an ABORT (Useful if algorithm should never CRASH). NOTE:
This only aborts if all retries fail.

Aliases: --abort-on-crash, --abortOnCrash
Default Value: false
Domain: {true, false}

--abort-on-first-run-crash if the first run of the algorithm CRASHED treat it as an ABORT, otherwise
allow crashes.

Aliases: --abort-on-first-run-crash, --abortOnFirstRunCrash
Default Value: true
Domain: {true, false}

--bound-runs [DEPRECATED] (Use the option on the TAE instead if available) if true, permit only --cores
number of runs to be evaluated concurrently.

Aliases: --bound-runs, --boundRuns
Default Value: false
Domain: {true, false}

50

--check-sat-consistency Ensure that runs on the same problem instance always return the same SAT/UNSAT
result

Aliases: --check-sat-consistency, --checkSATConsistency
Default Value: true
Domain: {true, false}

--check-sat-consistency-exception Throw an exception if runs on the same problem instance disagree with
respect to SAT/UNSAT

Aliases: --check-sat-consistency-exception, --checkSATConsistencyException
Default Value: true
Domain: {true, false}

--cores [DEPRECATED] (Use the TAE option instead if available) maximum number of concurrent target
algorithm executions

Aliases: --cores, --numConcurrentAlgoExecs, --maxConcurrentAlgoExecs, --numberOfConcurrentAlgoExecs
Default Value: 1

--kill-run-exceeding-captime Attempt to kill runs that exceed their captime by some amount

Aliases: --kill-run-exceeding-captime
Default Value: true
Domain: {true, false}

--kill-run-exceeding-captime-factor Attempt to kill the run that exceed their captime by this factor

Aliases: --kill-run-exceeding-captime-factor
Default Value: 10.0
Domain: (1,∞)

--retry-crashed-count number of times to retry an algorithm run before reporting crashed (NOTE: The
original crashes DO NOT count towards any time limits, they are in effect lost). Additionally this only
retries CRASHED runs, not ABORT runs, this is by design as ABORT is only for cases when we
shouldn’t bother further runs

Aliases: --retry-crashed-count, --retryCrashedRunCount, --retryTargetAlgorithmRunCount
Default Value: 0
Domain: [0, 2147483647]

--tae Target Algorithm Evaluator to use when making target algorithm calls

Aliases: --tae, --targetAlgorithmEvaluator
Default Value: CLI
Domain: {ANALYTIC,BLACKHOLE,CLI,CONSTANT, IPC,PRELOADED,RANDOM}

--track-scheduled-runs If true outputs a file in the output directory that outlines how many runs were being
evaluated at any given time

Aliases: --track-scheduled-runs
Default Value: false
Domain: {true, false}

51

--verify-sat Checks SAT/UNSAT/UNKNOWN responses of algorithm with the value stored as instance
specific information, logging an error if there is a discrepancy. The default value is auto-detected
based on the value of the instance specific information of every problem instance. If every instance
has an instance specific information in the following set SAT, UNSAT, UNKNOWN, SATISFIABLE,
UNSATISFIABLE, this will be set to true, otherwise it will be false.
Aliases: --verify-sat, --verify-SAT, --verifySAT
Default Value: Auto detected (see description)
Domain: {true, false}

ADVANCED OPTIONS

--call-observer-before-completion Ensure that the TAE observer is called on runs before completion
Aliases: --call-observer-before-completion
Default Value: true
Domain: {true, false}

--file-cache If true runs will be either written or read from the specified input and output files. If directories
are specified, then input will be from all files in the directory, and output will be to a new random file
in the directory. Note: This cache is static, we do not re-read from the cache over time
Aliases: --file-cache
Default Value: false
Domain: {true, false}

--file-cache-output Where to write files from
Aliases: --file-cache-output
Default Value: null

--file-cache-source Where to read files from
Aliases: --file-cache-source
Default Value: null

--log-requests-responses If set to true all evaluation requests will be logged as they are submitted and
completed
Aliases: --log-requests-responses
Default Value: false
Domain: {true, false}

--log-requests-responses-rc-only If set to true we will only log the run configuration when a run completes
Aliases: --log-requests-responses-rc-only, --log-requests-responses-rc
Default Value: false
Domain: {true, false}

--observer-walltime-delay How long to wait for an update with runtime information, before we use the
walltime. With the 5 seconds and an scale of 0.95, it means we will see 0,0,0,0...,4.95...
Aliases: --observer-walltime-delay
Default Value: 5.0
Domain: (0,∞)

52

--observer-walltime-if-no-runtime If true and the target algorithm doesn’t update us with runtime infor-
mation we report wallclock time
Aliases: --observer-walltime-if-no-runtime
Default Value: true
Domain: {true, false}

--observer-walltime-scale What factor of the walltime should we use as the runtime (generally recom-
mended is the 0.95 times the number of cores)
Aliases: --observer-walltime-scale
Default Value: 0.95
Domain: (0,∞)

--tae-default-file file that contains default settings for Target Algorithm Evaluators
Aliases: --tae-default-file
Default Value: /.aeatk/tae.opt
Domain: FILES

--track-scheduled-runs-resolution We will bucket changes into this size
Aliases: --track-scheduled-runs-resolution
Default Value: 1.0
Domain: (0,∞)

DEVELOPER OPTIONS

--cache-runs If true we will cache runs internally, so that subsequent requests are not re-executed [EXPER-
IMENTAL]
Aliases: --cache-runs
Default Value: false
Domain: {true, false}

--cache-runs-debug If true we will print the state of the cache every so often for debug purposes.
Aliases: --cache-runs-debug
Default Value: false
Domain: {true, false}

--cache-runs-strictly-increasing-observer If true then we will enforce that all runtimes seen externally
always have strictly increasing times. (Internally if the run is restarted for some reason, the observed
time may in fact go down).
Aliases: --cache-runs-strictly-increasing-observer
Default Value: false
Domain: {true, false}

--check-for-unclean-shutdown If true, we will try and detect an unclean shutdown of the Target Algorithm
Evaluator
Aliases: --check-for-unclean-shutdown
Default Value: true
Domain: {true, false}

53

--check-for-unique-runconfigs Checks that all submitted Run Configs in a batch are unique

Aliases: --check-for-unique-runconfigs
Default Value: true
Domain: {true, false}

--check-for-unique-runconfigs-exception If true, we will throw an exception if duplicate run configura-
tions are detected

Aliases: --check-for-unique-runconfigs-exception
Default Value: true
Domain: {true, false}

--check-result-order-consistent Check that the TAE is returning responses in the correct order

Aliases: --check-result-order-consistent, --checkResultOrderConsistent
Default Value: false
Domain: {true, false}

--exception-on-prepost-command Throw an abort

Aliases: --exception-on-prepost-command, --exceptionOnPrePostCommand
Domain: {true, false}

--exit-on-failure If true, when a failure is detected the process will try its best to shutdown, potentially not
cleanly

Aliases: --exit-on-failure
Default Value: false
Domain: {true, false}

--file-cache-crash-on-cache-miss Application will crash on cache miss, this is for debugging

Aliases: --file-cache-crash-on-cache-miss, --file-cache-crash-on-miss
Default Value: false
Domain: {true, false}

--kill-runs-on-file-delete All runs will be forcibly killed if the file is deleted. This option may cause the
application to enter an infinite loop if the file is deleted, so care is needed. As a rule, you need to set
this and some other option to point to the same file, if there is another option, then the application will
probably shutdown nicely, if not, then it will probably infinite loop.

Aliases: --kill-runs-on-file-delete
Default Value: null

--post-scenario-command Command that will run on shutdown

Aliases: --post-scenario-command, --postScenarioCommand, --post cmd

--pre-scenario-command Command that will run on startup

Aliases: --pre-scenario-command, --preScenarioCommand, --pre cmd

--prepost-exec-dir Execution Directory for Pre/Post commands

Aliases: --prepost-exec-dir, --prePostExecDir

54

Default Value: Current Working Directory
Domain: {readabledirectories}

--prepost-log-output Log all the output from the pre and post commands

Aliases: --prepost-log-output, --logOutput
Domain: {true, false}

--run-hashcode-file file containing a list of run hashes one per line: Each line should be: ”Run Hash Codes:
(Hash Code) After (n) runs”. The number of runs in this file need not match the number of runs that we
execute, this file only ensures that the sequences never diverge. Note the n is completely ignored so the
order they are specified in is the order we expect the hash codes in this version. Finally note you can
simply point this at a previous log and other lines will be disregarded

Aliases: --run-hashcode-file, --runHashCodeFile
Domain: FILES

--skip-outstanding-eval-tae If set to true code, the TAE will not be wrapped by a decorator to support
waiting for outstanding runs

Aliases: --skip-outstanding-eval-tae
Default Value: false
Domain: {true, false}

--tae-stop-processing-on-shutdown If true, then once JVM Shutdown is triggered either within the appli-
cation or externally all further requests will be silently dropped. This is recommended since otherwise
applications may see unexpected results as the TAE may be unable to continue processing.

Aliases: --tae-stop-processing-on-shutdown
Default Value: true
Domain: {true, false}

--tae-warn-if-no-response-from-tae If greater than 0, it is the number of seconds to wait for the TAE to
respond before issuing a warning

Aliases: --tae-warn-if-no-response-from-tae
Default Value: 120
Domain: [0, 2147483647]

-use-dynamic-cutoffs If true then we change all cutoffs to the maximum cutoff time and dynamically kill
runs that exceed there cutoff time. This is useful because cache hits require the cutoff time to match

Aliases: -use-dynamic-cutoffs
Default Value: false
Domain: {true, false}

10.5.7 Transform Target Algorithm Evaluator Decorator Options

This Target Algorithm Evaluator Decorator allows you to transform the response value of the wrapper
according to some rules. Expressions that can be used by exp4j (http://www.objecthunter.net/exp4j/), can be
specified and will cause the returned runs to be transformed accordingly. The variables in the expression
can be S which will be -1 if the run was UNSAT, 1 if SAT, and 0 otherwise, R which is the original reported

55

runtime, Q which is the original reported quality, and C which was the requested cutoff time. Care should
be taken when transforming values to obey wrapper semantics. If you don’t know what you are doing, we
recommend that SAT and UNSAT values should be kept in the range between 0 and cutoff, and the TIMEOUT
value shouldn’t be transformed at all. A very special thanks to the original author Alexandre Fréchette.

ADVANCED OPTIONS

--tae-transform Set to true if you’d like to transform the result, if false the other transforms have no effect

Aliases: --tae-transform
Default Value: false.
Domain: {true, false}

--tae-transform-SAT-quality Function to apply to an algorithm run’s quality if result is SAT.

Aliases: --tae-transform-SAT-quality
Default Value: Identity transform.
Domain: Calculable string using a run’s associated variables: S run result (SAT=1,UNSAT=-1,other=0),

R runtime, Q quality, C cutoff.

--tae-transform-SAT-runtime Function to apply to an algorithm run’s runtime if result is SAT.

Aliases: --tae-transform-SAT-runtime
Default Value: Identity transform.
Domain: Calculable string using a run’s associated variables: S run result (SAT=1,UNSAT=-1,other=0),

R runtime, Q quality, C cutoff.

--tae-transform-TIMEOUT-quality Function to apply to an algorithm run’s quality if result is TIMEOUT.

Aliases: --tae-transform-TIMEOUT-quality
Default Value: Identity transform.
Domain: Calculable string using a run’s associated variables: S run result (SAT=1,UNSAT=-1,other=0),

R runtime, Q quality, C cutoff.

--tae-transform-TIMEOUT-runtime Function to apply to an algorithm run’s runtime if result is TIME-
OUT.

Aliases: --tae-transform-TIMEOUT-runtime
Default Value: Identity transform.
Domain: Calculable string using a run’s associated variables: S run result (SAT=1,UNSAT=-1,other=0),

R runtime, Q quality, C cutoff.

--tae-transform-UNSAT-quality Function to apply to an algorithm run’s quality if result is UNSAT.

Aliases: --tae-transform-UNSAT-quality
Default Value: Identity transform.
Domain: Calculable string using a run’s associated variables: S run result (SAT=1,UNSAT=-1,other=0),

R runtime, Q quality, C cutoff.

--tae-transform-UNSAT-runtime Function to apply to an algorithm run’s runtime if result is UNSAT.

Aliases: --tae-transform-UNSAT-runtime
Default Value: Identity transform.

56

Domain: Calculable string using a run’s associated variables: S run result (SAT=1,UNSAT=-1,other=0),
R runtime, Q quality, C cutoff.

--tae-transform-other-quality Function to apply to an algorithm run’s quality if result is not SAT, UNSAT
or TIMEOUT.

Aliases: --tae-transform-other-quality
Default Value: Identity transform.
Domain: Calculable string using a run’s associated variables: S run result (SAT=1,UNSAT=-1,other=0),

R runtime, Q quality, C cutoff.

--tae-transform-other-runtime Function to apply to an algorithm run’s runtime if result is not SAT,
UNSAT or TIMEOUT.

Aliases: --tae-transform-other-runtime
Default Value: Identity transform.
Domain: Calculable string using a run’s associated variables: S run result (SAT=1,UNSAT=-1,other=0),

R runtime, Q quality, C cutoff.

DEVELOPER OPTIONS

--tae-transform-valid-values-only If the transformation of runtime results in a value that is too large, the
cutoff time will be returned, and the result changed to TIMEOUT. If the result is too small it will be set
to 0

Aliases: --tae-transform-valid-values-only
Default Value: true
Domain: {true, false}

10.5.8 Forking Target Algorithm Evaluator Decorator Options

This Target Algorithm Evaluator Decorator allows you to delegate some runs to another TAE, denoted the
slave TAE. Several policies are implemented (or will be upon request/need). The first two duplicate the run
on the slave, and the primary motivation is performance of very short runs, where overhead of dispatch to the
primary might be surprisingly high. The next two (to be implemented), would allow some runs to simply
done by the slave, either before the master or after the master.

ADVANCED OPTIONS

--fork-to-tae If not null, runs will also be submitted to this other TAE at the same time. The first TAE that
returns an answer is used.

Aliases: --fork-to-tae
Default Value: Forking of requests is disabled
Domain: {ANALYTIC,BLACKHOLE,CLI,CONSTANT, IPC,PRELOADED,RANDOM}

--fork-to-tae-duplicate-on-slave-quick-timeout What timeout to use when the DUPLICATE ON SLAVE QUICK
policy.

Aliases: --fork-to-tae-duplicate-on-slave-quick-timeout
Default Value: 5 seconds
Domain: (0, 2147483647]

57

--fork-to-tae-policy Selects the policy that we will fork with. For instance DUPLICATE ON SLAVE will
simply submit runs to the slave as well. DUPLICATE ON SLAVE QUICK will submit the runs to the
slave, but with a reduced cutoff time

Aliases: --fork-to-tae-policy
Default Value: Must be explicitly set if the forkToTAE is not null
Domain: {DUPLICATE ON SLAVE,DUPLICATE ON SLAVE QUICK}

10.5.9 Validation Options

Options that control validation

INTERMEDIATE OPTIONS

--max-timestamp maximimum relative timestamp in the trajectory file to configure against. -1 means
auto-detect

Aliases: --max-timestamp, --maxTimestamp
Default Value: Auto Detect
Domain: [0,∞)

⋃
{−1}

--min-timestamp minimum relative timestamp in the trajectory file to configure against.

Aliases: --min-timestamp, --minTimestamp
Default Value: 0.0
Domain: [0,∞)

--num-validation-runs approximate number of validation runs to do

Aliases: --num-validation-runs, --numValidationRuns, --numberOfValidationRuns
Default Value: 1
Domain: [0, 2147483647]

--save-state-file Save a state file consisting of all the runs we did

Aliases: --save-state-file, --saveStateFile
Default Value: false
Domain: {true, false}

--validate-by-wallclock-time Validate runs by wall-clock time

Aliases: --validate-by-wallclock-time, --validateByWallClockTime
Default Value: true
Domain: {true, false}

--validate-only-if-tunertime-reached If the walltime in the trajectory file hasn’t hit this entry we won’t
bother validating

Aliases: --validate-only-if-tunertime-reached, --validateOnlyIfTunerTimeReached
Default Value: 0.0
Domain: [0,∞)

--validate-only-if-walltime-reached If the walltime in the trajectory file hasn’t hit this entry we won’t
bother validating

58

Aliases: --validate-only-if-walltime-reached, --validateOnlyIfWallTimeReached
Default Value: 0.0
Domain: [0,∞)

--validate-only-last-incumbent validate only the last incumbent found
Aliases: --validate-only-last-incumbent, --validateOnlyLastIncumbent
Default Value: true
Domain: {true, false}

ADVANCED OPTIONS

--mult-factor base of the geometric progression of timestamps to validate (for instance by default it is
maxTimestamp, maxTimestamp/2, maxTimestamp/4,... whiletimestamp ≥ minTimestamp)
Aliases: --mult-factor, --multFactor
Default Value: 2.0
Domain: (0,∞)

--output-file-suffix Suffix to add to validation run files (for grouping)
Aliases: --output-file-suffix, --outputFileSuffix

--validate-all Validate every entry in the trajectory file (overrides other validation options)
Aliases: --validate-all, --validateAll
Default Value: false
Domain: {true, false}

--validation-rounding-mode selects whether to round the number of validation (to next multiple of
numTestInstances
Aliases: --validation-rounding-mode, --validationRoundingMode
Default Value: UP
Domain: {UP,NONE}

DEVELOPER OPTIONS

--num-seeds-per-test-instance Deprecated/Broken: number of test seeds to use per instance during valida-
tion
Aliases: --num-seeds-per-test-instance, --numSeedsPerTestInstance, --numberOfSeedsPerTestInstance
Default Value: 1000
Domain: (0, 2147483647]

--num-test-instances Deprecated/Broken: Check results carefully: number of instances to test against (will
execute min of this, and number of instances in test instance file). To disable validation in SMAC see
the --doValidation option
Aliases: --num-test-instances, --numTestInstances, --numberOfTestInstances
Default Value: 2147483647
Domain: (0, 2147483647]

--validation-headers put headers on output CSV files for validation
Aliases: --validation-headers, --validationHeaders
Default Value: true
Domain: {true, false}

59

10.5.10 Analytic Target Algorithm Evaluator Options

This Target Algorithm Evaluator uses an analytic function to generate a runtime. Most of the func-
tion definitions come from Test functions for optimization needs, by Marcin Molga, Czesaw Smutnicki
(http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf). NOTE: Some functions have been shifted vertically
so that there response values are always positive.

ADVANCED OPTIONS

--analytic-function Which analytic function to use

Aliases: --analytic-function
Default Value: CAMELBACK
Domain: {ZERO,ADD,CAMELBACK,BRANINS}

DEVELOPER OPTIONS

--analytic-observer-frequency How often to notify observer of updates (in milli-seconds)

Aliases: --analytic-observer-frequency
Default Value: 100
Domain: (0, 2147483647]

--analytic-scale-simulate-delay Divide the simulated delay by this value

Aliases: --analytic-scale-simulate-delay
Default Value: 1.0
Domain: (0,∞)

--analytic-simulate-cores If set to greater than 0, the TAE will serialize requests so that no more than these
number will execute concurrently.

Aliases: --analytic-simulate-cores
Default Value: 0
Domain: [0, 2147483647]

--analytic-simulate-delay If set to true the TAE will simulate the wallclock delay

Aliases: --analytic-simulate-delay
Default Value: false
Domain: {true, false}

10.5.11 Blackhole Target Algorithm Evaluator Options

This Target Algorithm Evaluator simply never returns any runs

DEVELOPER OPTIONS

--blackhole-warnings Suppress warning that is generated

Aliases: --blackhole-warnings
Default Value: true
Domain: {true, false}

60

10.5.12 Command Line Target Algorithm Evaluator Options

This Target Algorithm Evaluator executes commands via the command line and the standard wrapper
interface.

INTERMEDIATE OPTIONS

--cli-concurrent-execution Whether to allow concurrent execution

Aliases: --cli-concurrent-execution
Default Value: true
Domain: {true, false}

--cli-cores Number of cores to use to execute runs. In other words the number of requests to run at a given
time.

Aliases: --cli-cores
Default Value: 1
Domain: (0, 2147483647]

--cli-log-all-call-strings log every call string

Aliases: --cli-log-all-call-strings, --log-all-call-strings, --logAllCallStrings
Default Value: false
Domain: {true, false}

--cli-log-all-calls log all the call strings and result lines

Aliases: --cli-log-all-calls, --cli-log-all-call-strings-and-results, --log-all-calls, --log-all-call-strings-
and-results

Default Value: false
Domain: {true, false}

--cli-log-all-process-output log all process output

Aliases: --cli-log-all-process-output, --log-all-process-output, --logAllProcessOutput
Default Value: false
Domain: {true, false}

--cli-log-all-results log all the result lines

Aliases: --cli-log-all-results, --cli-log-all-call-results, --log-all-call-results, --log-all-results
Default Value: false
Domain: {true, false}

ADVANCED OPTIONS

--cli-call-params-with-quotes If true calls to the target algorithm will have parameters that are quoted
”’3’” instead of ”3”. Older versions of the code passed arguments with ’. This has been removed and
will be deprecated in the future

Aliases: --cli-call-params-with-quotes
Default Value: false
Domain: {true, false}

61

--cli-default-file file that contains default settings for CLI Target Algorithm Evaluator (it is recommended
that you use this file to set the kill commands)

Aliases: --cli-default-file
Default Value: /.aeatk/cli-tae.opt
Domain: FILES

--cli-kill-by-environment-cmd If not null, this script will be executed with three arguments, the first a key,
the second a value, the third our best guess at a pid (-1 means we couldn’t guess). They represent
environment name and value, and the script should find every process with that name and value set
and terminate it. Do not assume that the key is static as it may change based on existing environment
variables. Example scripts may be available in example scripts/env kill/

Aliases: --cli-kill-by-environment-cmd
Default Value: null

--cli-listen-for-updates If true will create a socket and set environment variables so that we can have
updates of CPU time

Aliases: --cli-listen-for-updates
Default Value: true
Domain: {true, false}

--cli-pg-force-kill-cmd Command to execute to try and ask the process group to terminate nicely (generally
a SIGKILL in Unix). Note

Aliases: --cli-pg-force-kill-cmd
Default Value: bash -c ”kill -s KILL -

--cli-pg-nice-kill-cmd Command to execute to try and ask the process group to terminate nicely (generally
a SIGTERM in Unix). Note

Aliases: --cli-pg-nice-kill-cmd
Default Value: bash -c ”kill -s TERM -

--cli-proc-force-kill-cmd Command to execute to try and ask the process to terminate nicely (generally a
SIGTERM in Unix). Note

Aliases: --cli-proc-force-kill-cmd
Default Value: kill -s KILL

--cli-proc-nice-kill-cmd Command to execute to try and ask the process to terminate nicely (generally a
SIGTERM in Unix). Note

Aliases: --cli-proc-nice-kill-cmd
Default Value: kill -s TERM

DEVELOPER OPTIONS

--cli-observer-frequency How often to notify observer of updates (in milli-seconds)

Aliases: --cli-observer-frequency
Default Value: 500
Domain: (0, 2147483647]

62

10.5.13 Constant Target Algorithm Evaluator Options

Parameters for the Constant Target Algorithm Evaluator

DEVELOPER OPTIONS

--constant-additional-run-data Additional Run Data to return
Aliases: --constant-additional-run-data

--constant-run-length Runlength to return
Aliases: --constant-run-length
Default Value: 0.0

--constant-run-quality Quality to return
Aliases: --constant-run-quality
Default Value: 0.0

--constant-run-result Run Result To return
Aliases: --constant-run-result
Default Value: SAT
Domain: {TIMEOUT, SAT,UNSAT,CRASHED,ABORT,RUNNING,KILLED}

--constant-runtime Runtime to return
Aliases: --constant-runtime
Default Value: 1.0

10.5.14 Inter-Process Communication Target Algorithm Evaluator Options

This Target Algorithm Evaluator hands the requests off to another process. The current encoding mechanism
is the same as on the command line, except that we do not specify the algo executable field. The current
mechanism can only execute one request to the server at a time. A small code change would be required to
handle the more general case, so please contact the developers if this is required.

ADVANCED OPTIONS

--ipc-async-threads Number of asynchronous threads to use
Aliases: --ipc-async-threads
Default Value: One more than the number of available processors

--ipc-default-file file that contains default settings for IPC Target Algorithm Evaluator (it is recommended
that you use this file to set the kill commands)
Aliases: --ipc-default-file
Default Value: /.aeatk/ipc-tae.opt
Domain: FILES

--ipc-encoding How the message is encoded
Aliases: --ipc-encoding
Default Value: CALL STRING
Domain: {CALL STRING, JAVA SERIALIZATION}

63

--ipc-exec-on-start-up This script will be executed on start up of the IPC TAE. A final argument will be
appended which is the server port if our IPCMechanism is REVERSE TCP

Aliases: --ipc-exec-on-start-up, --ipc-exec
Default Value: null

--ipc-exec-output If true we will log all output from the script

Aliases: --ipc-exec-output
Default Value: false
Domain: {true, false}

--ipc-local-port Local server port for some kinds of IPC mechanisms (if 0, this will be automatically
allocated by the operating system)

Aliases: --ipc-local-port
Default Value: 0
Domain: [1,65535]

--ipc-mechanism Mechanism to use for IPC

Aliases: --ipc-mechanism
Default Value: UDP
Domain: {UDP,TCP,REVERSE TCP}

--ipc-remote-host Remote Host for some kinds of IPC mechanisms

Aliases: --ipc-remote-host
Default Value: 127.0.0.1

--ipc-remote-port Remote Port for some kinds of IPC mechanisms

Aliases: --ipc-remote-port
Default Value: 5050
Domain: [0,65535]

--ipc-report-persistent Whether the TAE should be treated as persistent, loosely a TAE is persistent if we
could ask it for the same request later and it wouldn’t have to redo the work from scratch.

Aliases: --ipc-report-persistent
Default Value: false
Domain: {true, false}

--ipc-reverse-tcp-pool-connections If true we will pool all the connections instead of closing them

Aliases: --ipc-reverse-tcp-pool-connections
Default Value: false
Domain: {true, false}

--ipc-udp-packetsize Remote Port for some kinds of IPC mechanisms

Aliases: --ipc-udp-packetsize
Default Value: 4096
Domain: [0,65535]

64

10.5.15 Preloaded Response Target Algorithm Evaluator

Target Algorithm Evaluator that provides preloaded responses

DEVELOPER OPTIONS

--preload-additional-run-data Additional Run Data to return

Aliases: --preload-additional-run-data

--preload-quality Quality to return on all values

Aliases: --preload-quality
Default Value: 0.0

--preload-response-data Preloaded Response Values in the format [SAT,UNSAT,...=x], where x is a
runtime (e.g. [SAT=1],[UNSAT=1.1]...

Aliases: --preload-response-data, --preload-responseData

--preload-run-length Runlength to return on all values

Aliases: --preload-run-length, --preload-runLength
Default Value: -1.0

10.5.16 Random Target Algorithm Evaluator Options

This Target Algorithm Evaluator randomly generates responses from a uniform distribution

DEVELOPER OPTIONS

--random-additional-run-data Additional Run Data to return

Aliases: --random-additional-run-data

--random-max-response The maximum runtime we will generate

Aliases: --random-max-response
Default Value: 10.0
Domain: [0,∞)

--random-min-response The minimum runtime we will generate (values less than 0.01 will be rounded up
to 0.01)

Aliases: --random-min-response
Default Value: 0.0
Domain: [0,∞)

--random-observer-frequency How often to notify observer of updates (in milli-seconds)

Aliases: --random-observer-frequency
Default Value: 500
Domain: (0, 2147483647]

--random-sample-seed Seed to use when generate random responses

Aliases: --random-sample-seed
Default Value: Current Time in Milliseconds

65

--random-scale-simulate-delay Divide the simulated delay by this value

Aliases: --random-scale-simulate-delay
Default Value: 1.0
Domain: (0,∞)

--random-simulate-cores If set to greater than 0, the TAE will serialize requests so that no more than these
number will execute concurrently.

Aliases: --random-simulate-cores
Default Value: 0
Domain: [0, 2147483647]

--random-simulate-delay If set to true the TAE will simulate the wallclock delay

Aliases: --random-simulate-delay
Default Value: false
Domain: {true, false}

--random-trend-coefficient The Nth sample will be drawn from Max(0,Uniform(min,max) + N×(trend-
coefficient)) distribution. This allows you to have the response values increase or decrease over
time.

Aliases: --random-trend-coefficient
Default Value: 0.0

66

