
Manual for SMAC version v2.06.00b-development

Frank Hutter & Steve Ramage
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, Canada
{hutter,seramage}@cs.ubc.ca

August 9, 2013

Contents

1 Introduction 3
1.1 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Differences Between SMAC and ParamILS 4

3 Commonly Used Options 5
3.1 Running SMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Testing the Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 ROAR Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Adaptive Capping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Wall-Clock Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 Change Initial Incumbent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.7 State Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.8 Named Rungroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.9 More Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.10 Offline Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.10.1 Limiting the Number of Instances Used in a Validation Run . . . . . . . . . . . . . 7
3.10.2 Disabling Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.10.3 Standalone Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 File Format Reference 8
4.1 Option Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.1.1 Scenario File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Instance File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Feature File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Algorithm Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.5 Parameter Declaration Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



4.5.1 Categorical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5.2 Numerical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.6 Conditional Parameter Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.7 Forbidden Parameter Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.8 Algorithm executable / wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.8.1 Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.8.2 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.8.3 Wrappers & Native Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Interpreting SMAC’s Output 16
5.1 Logging Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Interpreting the Log File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 State Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Trajectory File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Validation Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Developer Reference 20
6.1 Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Class Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Target Algorithm Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.4 Plugin Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.5 Run Hash Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Acknowledgements 26

8 References 26

9 Appendix 26
9.1 Return Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.2 Version History of Java SMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.3 Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.4 Basic Options Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9.4.1 SMAC Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.4.2 Scenario Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.4.3 Scenario Configuration Limit Options . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.4.4 Algorithm Execution Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9.5 Complete Options Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.5.1 SMAC Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.5.2 Random Forest Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.5.3 Scenario Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.5.4 Scenario Configuration Limit Options . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.5.5 Algorithm Execution Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.5.6 Target Algorithm Evaluator Options . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.5.7 Validation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.5.8 Analytic Target Algorithm Evaluator Options . . . . . . . . . . . . . . . . . . . . . 47
9.5.9 Command Line Target Algorithm Evaluator Options . . . . . . . . . . . . . . . . . 48

2



9.5.10 Constant Target Algorithm Evaluator Options . . . . . . . . . . . . . . . . . . . . . 49
9.5.11 Preloaded Response Target Algorithm Evaluator . . . . . . . . . . . . . . . . . . . 50
9.5.12 Random Target Algorithm Evaluator Options . . . . . . . . . . . . . . . . . . . . . 50

1 Introduction

This document is the manual for SMAC [2] (an acronym for Sequential Model-based Algorithm Configura-
tion). SMAC aims to solve the following algorithm configuration problem: Given a binary of a parameterized
algorithm A, a set of instances S of the problem A solves, and a performance metric m, find parameter
settings of A optimizing m across S.

In slightly more detail, users of SMAC must provide:

• a parametric algorithm A (an executable to be called from the command line),

• a description of A’s parameters θ1, . . . , θn and their domains Θ1, . . . ,Θn,

• a set of benchmark instances, Π, and

• the objective function with which to measure and aggregate algorithm preformance results.

SMAC then executes algorithm A with different parameter configurations (combinations of parameters
〈θ1, . . . , θn〉 ∈ Θ1 × · · · ×Θn, on instances π ∈ Π), searching for the configuration that yields overall best
performance across the benchmark instances under the supplied objective. For more details please see [2]; if
you use SMAC in your research, please cite that article. It would also be nice if you sent us an email – we are
always interested in additional application domains.

1.1 License

SMAC will be released under a dual usage license. Academic & non-commercial usage is permitted free of
charge. Please contact us to discuss commercial usage.

1.2 System Requirements

SMAC itself requires only Java 6 1 or newer to run.
SMAC is primarily intended to run on Unix like platforms, but now includes start up scripts so that it can

run on Windows. In all the examples below you should add .bat to the end of every executable, for instance
./smac --scenario-file scen.txt --seed 1 becomes smac.bat --scenario-file scen.txt
--seed 1.

Most of the included scenarios (in ./example scenarios/ require ruby and Linux 32-bit li-
braries to run. The scenarios in ./example scenarios/analytic/ use optimize functions inter-
nal to smac and are completely cross platform. There is one scenario for windows available currently
inexample scenarios\saps\SAPS-scenario-windows.txt.

1Sun Java version 1.6.0 23 or later recommended

3



1.3 Version

This version of the manual is for SMAC v2.06.00b-development-576.

Project Version Commit Dirty Flag
ACLib v2.06.00-development-601 2bbd40257ba8b063394df2be73a9e9228fdc5126 1
SMAC v2.06.00b-development-576 36d82f8d09c0cf04b87214f09b430b4bb6bb8bf2 0

NOTE: For non-master builds these commits may not contain everything in the build. (i.e.,non-master
builds can be built with uncommitted changes). If the dirty flag is 0 that means the commit contains this exact
copy, 1 means there were some uncommitted changes, and something else means some other error occurred
when we tried to generate this.

2 Differences Between SMAC and ParamILS

There are a number of differences between SMAC and ParamILS, including the following.

• Support for continuous parameters: While ParamILS was limited to categorical parameters, SMAC
also natively handles continuous and integer parameters. See Section 4.5 for details.

• Run objectives: Not all of ParamILS’s run objectives are supported at this time. If you require an
unsupported objective please let us know.

• Order of instances: In contrast to ParamILS, the order of instances in the instance file does not matter
in SMAC.

• Configuration time budget and runtime overheads: Both ParamILS and SMAC accept a time
budget as an input parameter. ParamILS only keeps track of the CPU time the target algorithm reports
and terminates once the sum of these runtimes exceeds the time budget; it does not take into account
overheads due to e.g. command line calls of the target algorithm. In cases where the reported CPU
time of each target algorithm run was very small (e.g. milliseconds), these unaccounted overheads
could actually dominate ParamILS’s wall-clock time. SMAC offers a more flexible management of
its runtime overheads through the options --use-cpu-time-in-tunertime and --wallclock-limit. See
Section 3.5 for details on the wall clock time limit.

• Resuming previous runs: While this was not possible in ParamILS, in SMAC you can resume
previous runs from a saved state. Please refer to Section 3.7 for how to use the state restoration feature.
Section 5.2 describes the file format for saved states.

• Feature files: SMAC accepts as an optional input a feature file providing additional information about
the instances in the training set; see Section 4.3.

• Algorithm wrappers: The wrapper syntax has been extended in SMAC to support additional results in
the “solved” field. Specifically, there is a new result ABORT signalling that the configuration process
should be aborted (e.g. because the wrapper is in an inconsistent state that should never be reached).
A similar behaviour is triggered if option - -abort-on-first-run-crash is set and the first run returns
CRASHED. Additionally, the wrapper can also return additional data to SMAC that is associated with
the run 2. For more information see Section 4.8.2.

2This data will be saved in the run and results file (Section 5.2) that is used in state saving

4



• Instance files vs. instance/seed files: The instance file parameter now auto-detects whether the file
conforms to ParamILS’s instance file or instance seed file format. SMAC treats the latter option
as an alias for the former. See Section 4.2 for details. While SMAC is backwards compatible with
previous (space-separated) files, the preferred format is now .csv.

3 Commonly Used Options

3.1 Running SMAC

To get started with an existing configuration scenario you simply need to execute smac as follows:

./smac --scenario-file <file> --seed 1

This will execute SMAC with the default options on the scenario specified in the file. Some commonly-
used non-default options of SMAC are described in this section. The --seed argument controls the seed and
names of output files (to support parallel independent runs). The --seed-offset argument lets you keep the
output folders names simple while varying the actual seed of SMAC.

3.2 Testing the Wrapper

SMAC includes a method of Testing Algorithm Execution, via the algotest utility. It takes the required
scenario options 3

For example:

./algotest --scenario-file <scenario> --instance <instance>
--config <config string> -P[name]=[value] -P[name]=[value]...

Some parameters deserve special mention:

1. The config string syntax is a single string with “-name=‘value’ ” ... you can also specify RANDOM
which will generate a random configuration or DEFAULT which will generate the default configuration.

2. The -P parameters are optional and allow overriding specific values in the configuration (this is useful
primarily for RANDOM and DEFAULT, to allow you to set certain values). To set the sortalgo
parameter to merge you would specify Psortalgo=merge.

3.3 ROAR Mode

./smac --scenarioFile <file> --exec-mode ROAR --seed 1

This will execute the ROAR algorithm, a special case of SMAC that uses an empty model and random
selection of configurations. See [2] for details on ROAR.

3Unfortunately it cannot read scenario files currently

5



3.4 Adaptive Capping

./smac --scenarioFile <file> --adaptive-capping true --seed 1

Adaptive Capping (originally introduced for ParamILS [3], but also applicable in SMAC [1]) will cause
SMAC to only schedule algorithm runs for as long as is needed to determine whether they are better than
the current incumbent. Without this option, each target algorithm runs up to the runtime specified in the
configuration scenario file --algo-cutoff-time.
NOTE: Adaptive Capping should only be used when the - -run-obj is RUNTIME. Adaptive capping can
drastically improve SMAC’s performance for scenarios with a large difference between --algo-cutoff-time
and the runtime of the best-performing configurations.

3.5 Wall-Clock Limit

./smac --scenario-file <file> --wallclock-limit <seconds> --seed 1

SMAC offers the option to terminate after using up a given amount of wall-clock time. This option is useful
to limit the overheads of starting target algorithm runs, which are otherwise unaccounted for. This option does
not override --tunertime-limit or other options that limit the duration of the configuration run; whichever
termination criterion is reached first triggers termination.

3.6 Change Initial Incumbent

./smac --scenario-file <file> --seed 1 --initial-incumbent <config string>

SMAC offers the option to specify the initial incumbent, and by default uses the default configuration
specified in the parameter file. The argument to - -initial-incumbent follows the same conventions as in
Section 3.2.

3.7 State Restoration

./smac --scenario-file <file> --restore-scenario <dir>
--seed 0

SMAC will read the files in the specified directory and restore its state to that of the saved SMAC run at the
specified iteration. Provided the remaining options (e.g. --seed, --overall obj) are set identicially, SMAC
should continue along the same trajectory.

This option can also be used to restore runs from SMAC v1.xx (although due to the lossy nature of Matlab
files and differences in random calls you will not get the same resulting trajectory). By default the state
can be restored to iterations that are powers of 2, as well as the 2 iterations prior to the original SMAC run
stopping. If the original run crashed, additional information is saved, often allowing you to replay the crash.

NOTE: When you restore a SMAC state, you are in essence preloading a set of runs and then running the
scenario. In certain cases, if the scenario has been changed in the meantime, this may result in undefined
behaivor. Changing something like - -tunertime-limit is usually a safe bet, however changing something
central (such as --run-obj) would not be.

To check the available iterations that can be restored from a saved directory, use:

./smac-possible-restores <dir>

6



3.8 Named Rungroups

./smac --scenario-file <file> --rungroup <foldername> --seed 1

All output is written to the folder <foldername>; runs differing in --seed will yield different output files
in that folder.

3.9 More Options

By default SMAC only displays BASIC usage options, other options are INTERMEDIATE, ADVANCED,
and DEVELOPER. Be warned that there are a bunch of options and some of the more advanced and developer
options may cause SMAC to perform very poorly.

./smac --help-level INTERMEDIATE

3.10 Offline Validation

SMAC includes a tool for the offline assessment of incumbents selected during the configuration process. By
default, given a test instance file with N instances, SMAC performs ≈ 1 000 target algorithm validation runs
per configuration (rounded up to the nearest multiple of N).

By default, SMAC limits the number of seeds used in validation runs to 1 000 seeds per instance. This
number can be changed as in the following example:

./smac --scenario-file <file> --num-seeds-per-test-instance 50

(This parameter does not have any effect in the case of instance/seed files.)

3.10.1 Limiting the Number of Instances Used in a Validation Run

To use only some of the instances or instance seeds specified you can limit them with the - -num-test-
instances parameter. When this parameter is specified, SMAC will only use the specified number of lines
from the top of the file, and will keep repeating them until enough seeds are used:

./smac --scenario-file <file> --num-test-instances 10

For instance files containing seeds, this option will only use the specified number of instance seeds in the file.

3.10.2 Disabling Validation

Validation can be skipped alltogether as follows:

./smac --scenario-file <file> --seed 1 --validation false

3.10.3 Standalone Validation

SMAC also includes a method of validating configurations outside of a smac run. You can supply a
configuration using the - -configuration option. All scenario options are applicable to the standalone
validator, but check the usage screen to see all the options available NOTE: Some options while present are
not applicable for validation but are presented anyway.

Here is an example call:

7



./smac-validate --scenario-file <file> --num-validation-runs 100
--configuration <config string> --cli-cores 8 --seed 1

Usage notes for the offline validation tool:

1. This validates against the test set only; the training instance set is not used.

2. By default this outputs into the current directory; you can change the output directory with the option
--rungroup.

3. You can also validate against a trajectory file issued by --trajectory-file option.

4 File Format Reference

4.1 Option Files

Option Files are a way of saving a different set of values frequently used with SMAC without having to
specify them on every execution. The general format for an option file is the name of the configuration option
(without the two dashes), an equal sign, and then the value (for booleans it should be true or false, lowercase).
Currently options that take multiple arguments are not supported. Additionally you can not use aliases that
are single dashed (e.g. to override the Experiment Directory, you must use --experiment-dir and not -e)

When using Option Files it is important that no two files (including the Scenario File), specify the same
option, the resulting configuration is undefined, and in general this will not throw an error.

4.1.1 Scenario File

The Scenario Option File, or Scenario File, is the recommended way of configuring SMAC 4. The Scenario
Files used in SMAC are backwards compatible with ParamILS and the name of option names here reflect
that5. NOTE: cutoff length is not currently supported.

algo An algorithm executable or wrapper script around an algorithm that conforms with the input/output
format specified in section 4.8. The string here should be invokable via the system shell.

execdir Directory to execute <algo> from: (i.e. “cd <execdir>; <algo>” )

deterministic A boolean that governs whether or not the algorithm should be treated as deterministic.
For backwards compatibility with ParamILS, this option also supports using 0 for false, and 1 for
true. SMAC will never invoke the target algorithm more than once for any given instance, seed and
configuration. If this is set to true, SMAC will never invoke the target algorithm more than once for
any given instance and configuration.

run obj Determines how to convert the resulting output line into a scalar quantifying how “good” a single
algorithm execution is, (e.g. how long it took to execute, how good of a solution it found, etc...). SMAC
will attempt to minimize this objective. Currently implemented objectives are the following:

4Nothing in general prevents you from specifying non-scenario options in these files, but in general you should restrict your files
to these.

5Every option name listed here is in fact an alias for an existing option listed in the section 9.5 and it is entirely possible to use
SMAC without using Scenario Files.

8



Name Description
RUNTIME The reported runtime of the algorithm.
QUALITY The reported quality of the algorithm.

overall obj While run obj defines the objective function for a single algorithm run, overall obj defines
how those single objectives are combined to reach a single scalar value to compare two parameter
configurations. Implemented examples for this are as follows:

Name Description
MEAN The mean of the values

MEAN1000 Unsuccessful runs are counted as 1000 × cutoff time
MEAN10 Unsuccessful runs are counted as 10 × cutoff time

cutoff time The CPU time after which a single algorithm execution will be terminated as unsuccess (and
treated as a TIMEOUT). This is an important parameter: If chosen too high, lots of time will be
wasted with unsuccessful runs. If chosen too low the optimization is biased to perform well on easy
instances only.

tunerTimeout The limit of the CPU time allowed for configuration (i.e.The sum of all algorithm runtimes,
and by default the sum of the CPU time of SMAC itself).

paramfile Specifies the file with the parameters of the algorithm. The format of this file is covered in Section
4.4.

outdir Specifies the directory SMAC should write its results to.

instance file Specifies the file containing the list of problem instances (and possibly seeds) for SMAC to use
during the Automatic Configuration Phase. The ParamILS parameter instance seed file aliases this
one and the format is auto-detected. The format of these files is covered in section 4.2.

test instance file Specifies the file containing the list of problem instances (and possibly seeds) for SMAC
to use during Validation Phase. The ParamILS parameter test instance seed file aliases this one and
the format is auto-detected. The format of these files is covered in section 4.2.

feature file Specifies the a file with the features for the instances in the instance file and possibly the
test instance file 6. The format of this file is covered in section 4.3.

4.2 Instance File Format

The files used by the instance file & test instance file options come in four potential formats, all of which
are CSV based7. Before specifying the formats it is important to note the three kinds of information that are
specified with instances 8.

Instance Name The name of the instance that was selected. This should be meaningful to the target algorithm
we are configuring 9.

6The Validator will load features into memory for test instances if they exist.
7Specifically each cell should be double-quoted (i.e.”), and use a comma as a cell delimiter. SMAC also supports the old method

of reading files that use space as a cell delimiter and do not enclose values. However these files cannot handle Instance Name’s that
contain spaces.

8Features which are required for SMAC but not ParamILS are specified in a seperate file see section 4.3.
9Generally Instance Names reference specific files on disk.

9



Instance Specific Information A free form text string (with no spaces or line breaks) that will be passed to
the Target Algorithm whenever executed.

Seed A specific seed to use when executing the target algorithm.

The possible formats are as follows, and depend on what information you’d like to specify.

1. Each line specifies only a unique Instance Name. No Instance Specific Information will be used,
and Seed’s will be automatically generated.

2. Each line specifies a Seed followed by the Instance Name. Every line must be unique, but for each
Instance Name additional seeds will be used in order, when that instance is selected.

3. Each line specifies a Instance Name followed by the Instance Specific Information. Every Instance
Name must be unique, Seed’s will be automatically generated.

4. Each line specifies a Seed followed by the Instance Name followed by the Instance Specific Infor-
mation. Every line must be unique, and furthermore, for all Instance Name’s the Instance Specific
Information must be the same for all Seed values (i.e.You cannot specify different instance specific
information that is a function of the seed used).

4.3 Feature File Format

The feature file specifies features that are to be used for instances. Feature Files are specified in CSV format,
the first column of every row should list an Instance Name as it appears in the instance file. The subsequent
columns should list double values specifying a computed continuous feature. By convention the value
−512, and −1024 are used to signify that a feature value is missing or not applicable. All instances must
have the same number of features.

At the top of the file there MUST appear a header row, the cell that appears above the instance names is
unimportant, but for each feature a unique and non-numeric (i.e. it must contain atleast one letter) feature
name must be specified.

4.4 Algorithm Parameter File

The PCS format requires each line to contain one of the following 3 clauses, or only whitespace/comments.

• Parameter Declaration Clauses specify the names of parameters, their domains, and default values.

• Conditional Parameter Clauses specify when a parameter is active/inactive.

• Forbidden Parameter Clauses specify when a combination of parameter settings is illegal.

Comments are allowed throughout the file; they begin with a #, and run to the end of a line.

4.5 Parameter Declaration Clauses

The PCS format supports two types of parameters: categorical and numeric.

10



4.5.1 Categorical parameters

Categorical parameters take one of a finite set of values. Each line specifying a categorical parameter should
be of the form:

<parameter_name> {<value 1>, ..., <value N>} [<default value>]

where ‘<default value>’ has to be one of the set of possible values.

Example 1:

decision-heuristic {1,2,3} [1]

This means that the parameter ‘decision-heuristic’ can be given one of three possible values, with
the default assignment being ‘1’.

Example 2:

@1:loops {common,distinct,shared,no}[no]

In this example, the somewhat cryptic parameter name ‘@1:loops’ is perfectly legal; the only forbidden
characters in parameter names are spaces, commas, quotes, and parentheses. Categorical parameter values
are also strings with the same restrictions; in particular, there is no restriction for categorical parameter values
to be numbers.

Example 3:

DS {TinyDataStructure, FastDataStructure}[TinyDataStructure]

As this example shows, the parameter values can even be Java class names (to be used, e.g., via reflection).

Example 4:

random-variable-frequency {0, 0.05, 0.1, 0.2} [0.05]

Finally, as this example shows, numerical parameters can trivially be treated as categorical ones by simply
discretizing their domain (selecting a subset of reasonable values).

4.5.2 Numerical parameters

Numerical parameters (both real and integer) are specified as follows:

<parameter_name> [<min value>, <max value>] [<default value>] [i] [l]

The trailing ‘i’ and/or trailing ‘l’ are optional. The ‘i’ means the parameter is an integer parameter, and
the ‘l’ means that the parameter domain should be log-transformed for optimization (see Examples 3 and 4
below).

11



Example 1:

sp-rand-var-dec-scaling [0.3, 1.1] [1]

Parameter sp-rand-var-dec-scaling is real-valued with a default value of 1, and we can choose
values for it from the (closed) interval [0.3, 1.1]. Note that there may be other parameter values outside
this interval that are in principle legal values for the parameter (e.g., your solver might accept any positive
floating point value for the parameter). What you specify here is the range that automated configuration
procedures should search (i.e., a range you expect a priori to contain good values); of course, every value in
the specified range must be legal. There is a tradeoff in choosing the best range size; see Section ?? for some
tips on defining a ‘good’ parameter space.

Example 2:

mult-factor [2, 15] [5]i

Parameter mult-factor is integer-valued, takes any integer value between 2 and 15 (inclusive), and has
a default value of 5. Technically, one could also specify this as a categorical parameter with possible values
{2,3,4,5,6,7,8,9,10,11,12,13,14,15}. However, categorical parameters are not ordered, and
using an integer parameter allows the configuration procedure to make use of the natural order relation (this
is useful since, a priori, we expect close-by values to yield similar performance).

Example 3:

DLSc [0.00001, 0.1] [0.01]l

Parameter DLSc is real-valued with a default value of 0.01, and we can choose values for it from the
(closed) interval [0.00001, 0.1]. The trailing ‘l’ denotes that this parameter naturally varies on a log
scale. If we were to discretize the parameter, a natural choice would be {0.00001, 0.0001, 0.001,
0.01, 0.1}. That means, a priori the distance between parameter values 0.001 and 0.01 is identical to
that between 0.01 and 0.1 (after a log10 transformation, 0.001, 0.01, and 0.1 become -3, -2, and -1,
respectively). We express this natural variation on a log scale by the ‘l’ flag. See Section ?? for further tips
on transformations.

Example 4:

first-restart [10, 1000] [100]il

Parameter first-restart is integer-valued with a default value of 100, and we can choose values for it
from the (closed) interval [10, 1000]. It also varies naturally on a logarithmic scale. For example, due to
this logarithmic scale, after the transformation drawing a uniform random value of first-restart will
yield a number below 100 half the time.

Restrictions

• Numerical integer parameters must have their lower and upper bounds specified as integers, and the
default must also be an integer.

• The bounds for parameters with a log scale must be strictly positive.

12



4.6 Conditional Parameter Clause

Depending on the instantiation of some ‘higher-level’ parameters, certain ‘lower-level’ parameters may not
be active. For example, the subparameters of a heuristic are not important (i.e., active) if the heuristic is not
selected. All parameters are considered to be active by default, and conditional parameter clauses express
under which conditions a parameter is not active. The syntax for conditional parameter clauses is as follows:

<child name> | <parent name> in {<parent val1>, ..., <parent valK>}

This can be read as “The child parameter <child name> is only active if the parent parameter <parent
name> takes one of the K specified values.” Parameters that are not listed as a child parameter in any
conditional parameter clause are always active. A parameter can also be listed as a child in multiple
conditional parameter clauses, and it is only active if the conditions of each such clause are met.

Example:

sort-algo{quick,insertion,merge,heap,stooge,bogo} [bogo]
quick-revert-to-insertion{1,2,4,8,16,32,64} [16]
quick-revert-to-insertion|sort-algo in {quick}

In this example, quick-revert-to-insertion is conditional on the sort-algo parameter being
set to quick, and will be ignored otherwise.

4.7 Forbidden Parameter Clauses

Forbidden Parameters are combinations of parameter values which are invalid (e.g., a certain data structure
may be incompatible with a lazy heuristic that does not update the data structure, resulting in incorrect
algorithm behaviour). Configuration methods should never try to run an algorithm with a forbidden parameter
configuration. The syntax for forbidden parameter combinations is as follows:

{<parameter name 1>=<value 1>, ..., <parameter name N>=<value N>}

Example:

DSF {DataStructure1, DataStructure2, DataStructure3}[DataStructure1]
PreProc {NoPreProc, SimplePreproc, ComplexPreproc}[ComplexPreproc]
{DSF=DataStructure2, PreProc=ComplexPreproc}
{DSF=DataStructure3, PreProc=SimplePreproc}
{DSF=DataStructure3, PreProc=ComplexPreproc}

In this example, there are different data structures and different simplifications. DataStructure2 is in-
compatible with ComplexPreproc, and DataStructure2 is incompatible with both SimplePreproc
and ComplexPreproc. Note that the default parameter setting is not allowed to contain a forbidden com-
bination of parameter values.

4.8 Algorithm executable / wrapper

The target algorithm as specified by the algo parameter must obey the following general contracts. While
modifying your own code to directly achieve this is one option there are other methods outlined in section
4.8.3.

13



4.8.1 Invocation

The algorithm must be invokable via the system command-line using the following command with arguments:
<algo executable> <instance name> <instance specific information> <cutoff time>

<cutoff length> <seed> <param> <param> <param>...

algo executable Exactly what is specified in the algo argument in the scenario file.

instance name The name of the problem instance we are executing against.

instance specific information An arbitrary string associated with this instance as specified in the in-
stance file . If no information is present then a “0” is always passed here.

cutoff time The amount of time in seconds that the target algorithm is permitted to run. It is the responsibility
of the callee to ensure that this is obeyed. It is not necessary that that the actual algorithm execution
time (wall clock time) be below this value (e.g.If the algorithm needs to cleanup, or it’s only possible
to terminate the algorithm at certain stages).

cutoff length A domain specific measure of when the algorithm should consider itself done.

seed A positive integer that the algorithm should use to seed itself (for reproducibility). “-1” is used when
the algorithm is deterministic

param A setting of an active parameter for the selected configuration as specified in the Algorithm Parameter
File. SMAC will only pass parameters that are active. Additionally SMAC is not guaranteed to pass
the parameters in any particular order. The exact format for each parameter is:
-name ’value’

All of the arguments above will always be passed, even if they are inapplicable, in which case a dummy
value will be passed.

4.8.2 Output

The Target Algorithm is free to output anything, which will be ignored but must at some point output a line
(only once) in the following format10:

Result for ParamILS: <solved>, <runtime>, <runlength>, <quality>, <seed>,
<additional rundata>

solved Must be one of SAT (signifying a successful run that was satisfiable), UNSAT (signifying a suc-
cessful run that was unsatisfiable), TIMEOUT if the algorithm didn’t finish within the allotted time,
CRASHED if something untoward happened during the algorithm run, or ABORT if something
prevents the target algorithm for successfully executing and it is believed that further attempts would
be futile.

SMAC does not differentiate between SAT and UNSAT responses, and the primary use of these is
historical and serves as a check that the algorithm is executing correctly by outputting whether the

10ParamILS in not a typo. While other values are possible including SMAC, HAL. ParamILS is probably the most portable. The ex-
act Regex that is used in this version is: ˆ\s*(Final)?\s*[Rr]esult\s+(?:(for)—(of))\s+(?:(HAL)—(ParamILS)—(SMAC)—(this
wrapper))

14



instance in question is satisfiable or not. See the --verify-sat option for information on how to utilize
this feature.
NOTE: SMAC by default crashes if the wrapper ever reports SAT and UNSAT for the same instance
across runs. Occasionally edge cases in exposed parameters are tripped and turn a solver buggy,
and so this safe guard exists to help detect if this is occurring. To change this behaviour use the
--check-sat-consistency and --check-sat-consistency-exception options.

SMAC also supports reporting SATISFIABLE for SAT and UNSATISFIABLE for UNSAT.
NOTE: These are only aliases and SMAC will not preserve which alias was used in the log or state
files.

ABORT can be useful in cases where the target algorithm cannot find required files, or a permission
problem prevents access to them. This will cause SMAC to stop running immediately. Use this option
with care, it should only be reported when the algorithm knows for CERTAIN that subsequent results
may fail. For things like sporadic network failures, and other cosmic-ray induced failures, one should
consider using CRASHED in combination with the - -retry-crashed-count and --abort-on-crash
options, to mitigate these.

In other files or the log you may see the following following additional types used. RUNNING which
signifies a result that is currently in the middle of being run, and KILLED which signifies that SMAC
internally decided to terminate the run before it finished. These are internal values only, and wrappers
are NOT permitted to output these values. If these values are reported by the wrapper, it will be treated
as if the run had status CRASHED.

runtime The amount of CPU time used during this algorithm run. SMAC does not measure the CPU time
directly, and this is the amount that is used with respect to tunerTimeout. You may get unexpected
performance degradation when this amount is heavily under reported 11.

NOTE:The runtime should always be strictly less than the requested cutoff time when reporting SAT
or UNSAT. The runtime must be strictly greater than zero (and not NaN).

If an algorithm reports TIMEOUT or CRASHED the algorithm can report the actual CPU time used,
and SMAC will treat it correctly as a timeout for optimization purposes, but count the actual time for
--tunertime-limit purposes.

runlength A domain specific measure of how far the algorithm progressed. This value must be from the set:
−1 ∪ [0,+∞].

quality A domain specific measure of the quality of the solution. This value needs to be from the set:
(−∞,+∞).

NOTE: In certain cases, such as when using log transforms in the model, this value must be: (0,+∞).

seed The seed value that was used in this target algorithm execution. NOTE: This seed MUST match the
seed that the algorithm was called with. This is used as fail-safe check to ensure that the output we are
parsing really matches the call we requested.

additional rundata A string (not containing commas, or newline characters) that will be associated with the
run as far as SMAC is concerned. This string will be saved in run and results file (Section 5.2).
NOTE:additional rundata is not compatible with ParamILS at time of writing, and so wrappers should
not include this or the preceding comma if they wish to be compatible.

11This typically happens when targeting very short algorithm runs with large overheads that aren’t accounted for.

15



All fields except for additional rundata are mandatory. If the field is not applicable for your scenario a 0
can be substituted.

4.8.3 Wrappers & Native Libraries

In order to optimize an algorithm, SMAC needs a method of invoking it. While modifying the code to manage
the timing and input mechanisms manually is possible, this can sometimes be invasive and difficult to manage.
There exist three other methods that one could consider using.

Wrappers Executable Scripts that manage the resource limits automatically and format the specified string
into something usable by the actual target algorithm. This approach is probably the most common,
but among its drawbacks are the fact that they often rely on third party scripting languages, and for
smaller execution times have a large amount of overhead that may not be accounted for as far as the
tunerTimeout limit is concerned. Most of the examples included in SMAC use this approach, and the
wrappers included can be adapted for your own projects.

NOTE: When writing wrappers it is important not to poll the output stream of the target algorithm,
especially if there is lots of output. Doing so often results in lock-contention and significantly modifies
the runtime performance of the algorithm enough that the resulting configuration is not well tuned to
the real algorithm’s performance.

Native Libraries Augmentation Libraries exist (See: TBD) for C and Java currently that facilitate adding
the required functionality directly to the code. While parsing the arguments into the necessary data
structures is still required, they do manage the timing and output requirements in most cases. Unlike
the previous approach however, certain crashes may not allow the the values to be outputted (e.g. a
segmentation fault occurs).

Target Algorithm Evaluators This is probably the most powerful, but also the most complicated approach.
SMAC is architected in a way that makes it fairly simple to replace the mechanism for execution with
something completely custom. This can be done without even recompiling SMAC by creating a new
implementation of the TargetAlgorithmEvalutor interface, which is responsible for converting
run requests (RunConfig objects) into run results (AlgorithmRun objects). Both the input and
output objects are simple Value Objects so the coupling between SMAC and the rest of your code is
almost zero with this approach. For more information see 6.3

5 Interpreting SMAC’s Output

SMAC outputs a variety of information to log files, trajectory files, and state files. Most of the files are human
readable, and this section describes these files.
NOTE: All output is written to the outdir in the --rungroup sub-directory.

5.1 Logging Output

SMAC uses slf4j (http://www.slf4j.org/), a library that allows for abstracting and replacing the logging system
with ease, and uses logback (http://logback.qos.ch/) as the default logging system. While there is limited ability
to change logging options via the command line (e.g.,--logLevel,--consoleLogLevel,--logAllCallStrings,--
logAllProcessOutput), one can edit conf/logback.xml, to get much more control over the logging of
SMAC. For more details of how to edit this file consult the logback documentation.

16



NOTE: If you replace the logger in SMAC or modify the configuration file, the logging command line
options may no longer work.

By default SMAC writes the following logging files out to disk (NOTE: The N represents the - -seed
setting):

log-runN .txt A log file that contains a full dump of all the information logged, and where it was logged
from.

log-warnN .txt Contains the same information as the above file, except only from warning and higher level
messages.

log-errN .txt Contains the same information as the above file, except only from error messages.

5.1.1 Interpreting the Log File

SMAC basically goes through three phases when executing:

• Setup Phase Input files are read, and their arguments validated. Everything necessary to execute the
Automatic Configuration Phase is constructed. This phase ends (baring anything that must be lazily
loaded), once the message Automatic Configurator Started is logged.

• Automatic Configuration Phase: SMAC is now actively configuring the target algorithm. SMAC will
spend most of it’s time here, and outputs it’s progress. The most important output is the Runtime
Statistics which will appear like:

*****Runtime Statistics*****
Count: 15
Incumbent ID: 11 (0x1D8A2)
Number of Runs for Incumbent: 33
Number of Instances for Incumbent: 5
Number of Configurations Run: 30
Performance of the Incumbent: 0.04219047619047619
Configuration Time Budget used: 30.038589432000038 s (100%)
Configuration Time Budget remaining: -0.038589432000037505 s
Wall-clock Time Budget used: 36.816 s (0%)
Wall-clock Time Budget remaining: 2.147483610184E9 s
Algorithm Runs used: 104.0 (0%)
Algorithm Runs remaining: 9.223372036854776E18
Model/Iteration used: 14.0 (0%)
Model/Iteration remaining: 2.147483633E9
Configuration Space Searched 0.0 %
Sum of Target Algorithm Execution Times \
(treating minimum value as 0.1): 27.20000000000004 s
CPU time of Configurator: 2.838245764 s
User time of Configurator: 2.8384146279999998 s
Total Reported Algorithm Runtime: 21.05999999999998 s
Sum of Measured Wallclock Runtime: 30.20900000000001 s
Max Memory: 910.25 MB
Total Java Memory: 226.8125 MB
Free Java Memory: 199.03646850585938 MB

While most of the fields are self-explanatory some deserve special attention:

Incumbent ID

The second ID (0x18824F) is a hex-code that represents the configuration anywhere / everywhere it is
logged. The first ID, 64, occurs in context where we know the configuration is intended to be run. This

17



ID will corresponding to the ID in the state files. The second ID will always associate with a unique
first ID, but not conversely. The second ID roughly represents the specific configuration in memory 12.

Performance of the Incumbent

This represents the performance of the incumbent under the given run obj and overall obj on the runs
so far.

Configuration Time Budget used

The tuner time that has been used so far.

Sum of Target Algorithm Execution Times

This represents the contribution of the algorithm runs to the Tuner Time (if applicable), in general each
run contributes the minimum of 0.1 and it’s reported runtime. This parameter differs from Sum of
Measurement Wallclock Runtime in that the latter is a direct sum. If you are only running
on algorithms with large runtime, this difference may be 0.

• Validation Phase, depending on the options used this can also take a large fraction of SMAC’s runtime.
The logic here is actually quite simple, as it largely only requires running many algorithm runs and
computing the objectives from them.

At the end of Validation the Runtime Statistics (from the Automatic Configuration Phase) are displayed
again, as is the following information

1. The performance of the incumbent on both the training and test set.

2. A sample call of the final incumbent (selected configuration)

3. The complete configuration selected (without inactive conditionals)

4. The complete configuration selected (with inactive conditionals)

5. The Return value of SMAC (generally 0 if successful)

5.2 State Files

State files allow you to examine and potentially restore the state of SMAC at a specific point of it’s execution.
The files are written to the state-runN / sub-directory, where N is the value of --seed option.

All files have the following convention as a suffix either it or CRASH followed by either the iteration
number M , or in some cases quick or quick-bak.

The state is saved for every iteration m, where m = 2n n ∈ N, additionally it is saved when SMAC
completes whether successfully or due to crash.

The following files are saved in this state directory (ignoring the suffix):

java obj dump Stores (Java) serialized versions of the the incumbent and the random object state. In general
there is no need to look at this file, and it is not human readable.

paramstrings Stores a human readable setting of each configuration ran, with a prefix of the numeric id of
the configuration (as used in the logs, and other state files).

12Specifically every time a configuration is modified, this number is incremented. In cases where the configuration space is
small,or we are examining a small part of it, SMAC may end up back at the same configuration again. As far as the behaviour of
SMAC is concerned these are identical, the ID is only ever used for logging.

18



uniq configurations Stores the configurations ran in a more concise but effectively un-human readable form.
The first column again is the numeric id of the configuration (as used in the logs, and other state files).

run and results Stores the result of every run of the target algorithm that SMAC has done. The first 13
columns (after the header row are designed to be backwards compatible with SMAC versions 1.xx.
Each column is labelled with what data it contains, the following columns deserve some description.

Instance ID This is the instance used, and is the nth Instance Name specified in the instance file option.

Response Value(y) This is the value determined by the run obj on the run.

Censored Indicates whether the Cutoff Time Used field is less than the cutoff time in the original
run. 0 means false, 1 means true.

Run Result Code This is a mapping from the Run Result to an integer for use with previous versions.

param-file If --save-context is enabled, a copy of the paramfile will be in the state folder

instances If --save-context is enabled, a copy of the instance file will be in the state folder

instance-features If - -save-context is enabled, and SMAC is running with features, then a copy of the
feature file will be in the state folder.

scenario If --save-context is enabled, and SMAC is using a scenario file, then a copy of the --scenario-file
will be in the state folder.

5.3 Trajectory File

SMAC also outputs a trajectory file into identical files traj-run-N.txt 13 and traj-run-N.csv.
These files outline the incumbent (by id) over the course of execution and it’s performance. The first line
gives the --rungroup, and then the --seed.

The rest of the file follows the following format:
Column Name Description

Total Time Sum of all execution times
and CPU time of SMAC

Incumbents Mean Performance Performance of the Incumbent under the given
–run-obj and –overall-obj

Wallclock Time σ Time of entry with respect to wallclock time.
Incumbent ID The ID of the incumbent

as listed in the param strings file 5.2.
acTime CPU Time of SMAC

Remaining Columns Give a name value mapping for the
configuration value as given by the Incumbent ID column

5.4 Validation Output

When Validation is completed four files are outputted, (again N is the value of the --seed argument):
13This file is outputted for backwards compatibility with existing scripts.

19



1. rawValidationExecutionResults-runN.csv:

CSV File containing a list of the configuration, seeds & instance run and the corresponding result and
the result of the target algorithm execution. This file is mainly for debugging.

2. validationInstanceSeedResult-runN.csv:

CSV File containing a list of seeds & instances and the resulting response value. Again this file is
mainly for debugging, but is easier to parse than the previous.

3. validationResultsMatrix-runN.csv:

CSV File containing the list of instances on each line, the next column is the aggregation of the
remaining columns under the overall obj. Finally there is one additional row that gives the aggregation
of all the individual overall obj, aggregated in the same way.

validationResults-runN.csv
CSV File containing the result of the validation. The columns are defined as follows:

Column Name Description
Tuner Time The tuner time when validation occurred

Emperical Performance The incumbent’s performance on the training set
Test Set Performance The incumbent’s performance on the test set
AC Overhead Time Total CPU Time Used by the Automatic Configurator
Sample Call String

6 Developer Reference

This section is meant as a guide to those who need to modify the SMAC code base for whatever reason.

6.1 Design Overview

The SMAC Application is broken up into three distinct projects as follows:

SMAC Contains all of the logic that is specific to SMAC, (e.g.Validation, the SMAC algorithm, construction
of SMAC Objects). In essence it stitches together components of the Automatic Configurator Library.
The sources are included in smac-src.jar.

Automatic Configurator Library Contains all of the primary abstractions/models used by SMAC (e.g.Object
representations for Instances, Target Algorithm Configurations & methods for executing algorithms,...).
90% of the code that SMAC uses lives in this library. It also contains code for converting the data
from these abstractions into input needed to build the model. These are shipped with SMAC in the
aclib-src.jar file.

Random Forests The Random Forest model code. The sources are included in fastrf-src.jar.

The scope of this document governs only the first two projects. At the time of writing the Automatic
Configurator Library code base is in good shape, while the SMAC code base suffers from two key
problems:

20



• The bulk of the code necessary to run SMAC lives in four classes
AbstractAlgorithmFramework,
SequentialModelBasedAlgorithmConfiguration, SMACBuilder and finally,
SMACExecutor.

6.2 Class Overview

The most important classes to SMAC are as follows:

21



Automatic Configurator Library Classes
Name Description

AbstractOptions Base class for creating new options for SMAC. While not important in
and of itself, you will generally be implementing or modifying one of
it’s subtypes to implement options.

AlgorithmRun Interface that represents the results of a target algorithm run. These
are created by a TargetAlgorithmEvaluator. Outside of
the TargetAlgorithmEvaluator these classes are generally im-
mutable.

AlgorithmExecutionConfig Immutable object containing the information required to invoke a target
algorithm.

InstanceSeedGenerator Interface that gets seeds for a ProblemInstance. These objects are
constructed by ProblemInstanceHelper

ModelBuilder Interface whose implementations should result in a constructed model.
OverallObjective Aggregates many RunObjective values under some statistic

(e.g.mean), to produce a value to be optimized.
ParamConfiguration Class that represents a specific setting of the target algorithm’s param-

eters. This class also implements the Map interface, though does not
support all the required operations. The ID associated with is object, is
used only for logging and should not be used in the code. Finally al-
though this class is not immutable the general life cycle is that the object
is created, given specific values, and then never changed again. In future
this may be augmented with the ability to prevent writes. These objects
are always constructed via the ParamConfigurationSpace.

ParamConfigurationSpace (Almost immutable) class that represents the entire configuration space
of a target algorithm. This class is constructed with the Algorithm
Parameter File described in section 4.4. This class also contains the
specifics of each parameter (e.g.domains, defaults, etc...). Currently the
Random object used is the only portion that is mutable, and this will
change in the future.

ProblemInstance Immutable class that represents a specific problem instance, constructed
by ProblemInstanceHelper.

ProblemInstanceSeedPair Immutable class that represents a problem instance and seed. Decisions
of which seed to use when scheduling a run are made in RunHistory.

RunConfig Immutable class that represents a problem instance seed pair, and config-
uration to execute.

RunHistory Interface that saves all the runs performed, and allows various queries
against this information.

RunObjective Converts an AlgorithmRun into a scalar value for optimization
SanitizedModelData Converts the run data into a format to use when building the model.

Other things such as PCA, and other data filtering are done here. This
interface and mechanism will likely be refactored in the future as it is
brittle at the moment.

SeedableRandomSingleton A global random object whose existence is a convincing case that Sin-
gleton’s are Anti-Patterns. This will, thankfully, go the way of the dodo
bird at some point.

StateFactory Interface that constructs StateSerializer &
StateDeserializer to manage saving and restoring state
respectively.

TargetAlgorithmEvaluator Interface whose implementations should be able to run the algo-
rithm (i.e. Implementations should convert RunConfig objects to
AlgorithmRun objects). See section 6.3 for more information.

22



SMAC Library Classes
Name Description

AbstractAlgorithmFramework Non-abstract class that provides a default
Automatic Configurator (ROAR)

SequentialModelBasedAlgorithmConfiguration Class that subtypes
AbstractAlgorithmFramework
and implements the methods required for
SMAC

SMACExecutor Parses command line options and creates
some of the objects SMAC needs to execute
(SMAC entrypoint)

SMACBuilder Takes the options parsed by SMACExecu-
tor or some other utility, and builds ev-
erything necessary to create an instance
of AbstractAlgorithmFramework.
If you want to plug smac into your ap-
plication, you generally want to mimic
what SMACExecutor does to invoke
SMACBuilder.

Validator Performs Validation of selected configura-
tions

ValidatorExecutor Entry point to stand alone validation utility

6.3 Target Algorithm Evaluator

WARNING: The Target Algorithm Evaluator API has changed a bit since this
section was written, you are encouraged to look in the code for an example of
how it now works. Much of this is still relevant, and this section will be fixed for
v2.06.00, but for v2.05.00 it may contain some inaccuracies.

The Target Algorithm Evaluator subsystem is the part of the code you will be modifying if you would
like to change how target algorithms are run. On the next page is a UML class diagram showing most of how
this part of the code works.

23



24



Once constructed, the TargetAlgorithmEvaluator interface is simple, it simply needs to return
a new AlgorithmRun object, for each RunConfig object passed as input, and in the same order, via
the TargetAlgorithmEvaluator.evaluateRun() method. The construction of these objects is
where the complexity lies and so here is a run through of the construction.

1. When the code starts up, SMAC requests a specific Target Algorithm Evaluator (using some globally
unique String as a key), from TargetAlgorithmEvaluatorBuilder.getTargetAlgorithmEvaluator()

2. This invokes the similarly named method in TargetAlgorithmEvaluatorLoader, which uses
SPI (see 6.4 for more information on SPI) to find the TargetAlgorithmEvaluatorFactory
whose getName() method returns the matching string. The name MUST NOT have any white space.
For reference, the
CommandLineTargetAlgoirthmEvaluatorFactory returns CLI.

3. When an match is found, a no argument constructor (in the diagram this is shown under the CommandLineTargetAlgorithmEvaluatorFactory
class) is invoked.

4. Next the getTargetAlgorithmEvaluator() method is invoked which in the above diagram
would return a CommandLineTargetAlgorithmEvaluator

5. With this new instance in hand, the TargetAlgorithmEvaluatorBuilder then wraps this
object with various decorators (e.g.RetryCrashedRunTargetAlgorithmEvaluator) depending on the
options supplied (not-shown).

The use of SPI allows new implementations to be created without modifying the existing SMAC code,
and requires less mantinence to update to newer versions of SMAC. Unfortunately at the time of writing there
are two limitations to keep in mind with this approach.

1. You cannot supply options to the user to configure your TargetAlgorithmEvaluator.

2. You cannot use this method to add new decorators.

Neither of these seems significant at the current time. If a new decorator is needed, you can hard code the
base implementation and return a wrapped instance of it (i.e.Create a new TargetAlgorithmEvaluatorFactory
that returns a wrapped instance of an existing TargetAlgorithmEvaluator). Configuration of the
TargetAlgorithmEvaluator can be done via files at this point.

When using the SPI approach you are strongly encouraged to also implement Plugin Versioning; see
Section 6.4.

6.4 Plugin Versioning

Any plug-ins or changes to SMAC should contain an implementation of VersionInfo, and the implementor
should be labelled as a provider of VersionInfo via SPI 14.

In essence this interface simply has two getter methods getProductName() and getVersion().
If everything is done correctly when SMAC starts up you should see the product name and version printed in
the logs.

Example:
14SPI is the Service Provider Interface, see SPI on Wikipedia (http://en.wikipedia.org/wiki/Service provider interface) as

well as this utility which simplifies the process drastically (http://code.google.com/p/spi/)

25



[INFO ] Version of Automatic Configurator Library is v2.06.00-development-583 (2e12acc92f41)
[INFO ] Version of Random Forest Library is v1.05.01-development-95 (4a8077e95b21)
[INFO ] Version of SMAC is v2.06.00b-development-561 (abb03ff41e82)

This can make debugging and managing reproducibility much easier. Most projects include the first 12
characters of the git commit hash to make it easy to find that commit.

6.5 Run Hash Codes

A Run Hash Code is a sequence of hashes that represent which runs were scheduled by SMAC. When calling
SMAC using
./smac --scenarioFile <file> --runHashCodeFile <logfile>,
SMAC logs all Run Hash Codes to <logfile>. This option allows reading of that log file for subsequent runs
to ensure that the exact same set of runs is scheduled. This is primarily of use for developers.

7 Acknowledgements

We are indebted to Jonathan Shen for porting our random forest code from C to Java in preparation for a
Java port of all of SMAC. Alexandre Fréchette and Chris Thornton for their constant feedback and patches to
SMAC. We would also like to thank Marius Schneider for many valuable early bug reports and suggestions
for improvements.

8 References

[1] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011a). Bayesian optimization with censored response
data. In 2011 NIPS workshop on Bayesian Optimization, Sequential Experimental Design, and Bandits.
Published online.

[2] Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011b). Sequential model-based optimization for general
algorithm configuration. In Proc. of LION-5, LNCS, pages 507–523.

[3] Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009). ParamILS: an automatic algorithm
configuration framework. Journal of Artificial Intelligence Research, 36:267–306.

9 Appendix

9.1 Return Codes

NOTE: All error conditions besides 255 are fixed. However in future some exceptions that previously
reported 255 may be changed to a non 255 value as needed / requested

26



Value Error Name Description
0 Success Everything completed successfully
1 Parameter Error There was a problem with the input arguments or files
2 Trajectory Divergence For some reason SMAC has taken a unexpected path

(e.g. SMAC executes a run that does not match a run
in the --runHashCodeFile)

3 Serialization Exception A problem occurred when saving or restoring state
255 Other Exceptions Some other error occurred

9.2 Version History of Java SMAC

Version 2.00 (Aug-2012) First Internal Release of Java SMAC (this is a port and extension of the original
Matlab version).

Version 2.02 (Oct-2012) First Public Release of SMAC v2 and contained many fixes from the previous
release.

Version 2.04 (Dec-2012) Second Release of Java SMAC including the following improvements:

1. Validation file output times consistent with Tuner Times

2. Some INFO log statements have been moved to DEBUG and some DEBUG to TRACE
3. Added support for verifying whether responses of SAT and UNSAT are consistent with Instance

Specific Information see --verifySAT option for more information

4. Added support for the SMAC MEMORY environment variable to control how much RAM (in
MB) SMAC will use when executed via the supplied shell scripts.

5. Context is now added to the state folders to make it easier to debug issues later, to disable consult
the --saveContext option.

6. Greatly improved memory usage in State Serialization code, and now we free the existing model
prior to building a new one, so for some JVMs this may improve memory usage.

Version 2.04.01 (Feb-2013) Minor Bug Fix of Java SMAC

1. Added option to validate over training set instances

2. Can now use <DEFAULT> as a configuration to validate against

3. Fixed bug where TIMEOUT runs below our requested cutoff time are not counted properly when
considering incumbent changes

4. Can now specify the initial incumbent with the --initialIncumbent option.

5. Wallclock time is now saved in the trajectory file instead of -1

6. FAQ Improvements

7. Git commit hash is now documented in Manual, FAQ, and Version strings

8. (BETA) Support for bash auto-completion of arguments for smac and smac-validate. You
can load the file by running:

. ./util/bash_autocomplete.sh

27



Version 2.04.02 (Aug-2013) Minor Bug Fix of Java SMAC

1. Incumbent Performance now displayed when validation is turned off.

2. --runtimeLimit option is no longer just for show.

Version 2.06.00b (Aug-2013) Preview Release of SMAC v2.06

1. Scenario now ends if the configuration space is exhausted

2. SMAC now lets you search only a subspace for good configurations

3. Validation output formats improved with headers

4. Option to always compare with the initial incumbent (to prevent an early poor choice from
derailing the run) (See --always-run-initial-config)

5. SMAC reports an error if runs give different answers for SAT and UNSAT now

6. New --restore-scenario option to make restoring scenarios easier

7. Can now set seeds to different parts of SMAC using -S
8. Runtime Statistics and Termination Reasons now rewritten

9. New validation options --validate-all, --validate-only-if-tunertime-reached (See the validation
options for all of them)

10. SMAC now checks limits before scheduling a run, rather than immediately after the run as in
previous versions. (This means that if the last run went over, but changed the incumbent it will be
logged.)

11. Instances can now be ordered deterministically (that is in the order they are declared in the
instance file via --determinstic-instance-ordering.

12. Usage improved via new help levels which are displayed with --help-level and new usage screens.

13. Improvements to bash auto completion.

14. Target Algorithm Evaluators now take options.

15. Fixes for CPU Time calculation in SMAC.

16. Example scenarios cleaned up, new ones provided.

17. SMAC should be more forgiving with relative paths in a scenario file.

18. Default option files now supported (SMAC will read from /.aclib/smac.opt, /.aclib/tae.opt
and /.aclib/help.opt. It will also read from defaults for plugins that are available.

19. Rungroup name is now configurable.

20. Logging of some objects is cleaned up.

21. Windows Startup scripts, and improved Unix start up scripts.

22. Fixed lock-up issue with wrappers launching unterminating subprocesses.

23. Fixed ConvergenceException error message.

24. Options now have a primary non-camel case format.

25. Manual now has a basic options section, before listing all the options.

26. Significant API changes to the Target Algorithm Evaluators so previous plugins will need to be
refactored (and another change will come either in v2.06 or v2.08).

28



9.3 Known Issues

1. Using any alias for --showHiddenParameters, --help, or --version as values to other arguments (e.g.
Setting --runGroupName --help) does not parse correctly (This is unlikely to be fixed until someone
complains).

2. Using large parameter values in continuous integral parameters, may cause loss of precision, and or
crashes if the values are too big.

3. On older versions of Java (<1.6.0 23), SMAC may get an IOException with Out Of Memory when
trying to execute the target algorithms

9.4 Basic Options Reference

The following sections outline only the basic options

9.4.1 SMAC Options

General Options for Running SMAC

BASIC OPTIONS

--experiment-dir root directory for experiments Folder

Default Value: <current working directory>

--help show help
--help-level Show options at this level or lower

Default Value: BASIC
Domain: {BASIC, INTERMEDIATE,ADVANCED,DEVELOPER}

--num-run number of this run (also used as part of seed)

REQUIRED
Default Value: 0
Domain: [0, 2147483647]

--restore-scenario Restore the scenario & state in the state folder

Default Value: null
Domain: FILES

--rungroup name of subfolder of outputdir to save all the output files of this run to

Default Value:

--validation perform validation when SMAC completes

Default Value: true
Domain: {true, false}

-v print version and exit

29



9.4.2 Scenario Options

Standard Scenario Options for use with SMAC. In general consider using the –scenarioFile directive to
specify these parameters and Algorithm Execution Options

BASIC OPTIONS

--feature-file file that contains the all the instances features
--instance-file file containing a list of instances to use during the automatic configuration phase (see Instance

File Format section of the manual)

REQUIRED
Default Value: null

--intra-obj objective function used to aggregate multiple runs for a single instance

Default Value: MEAN10
Domain: {MEAN,MEAN1000,MEAN10}

--output-dir Output Directory

Default Value: <current working directory>/smac-output

--run-obj per target algorithm run objective type that we are optimizing for

Default Value: RUNTIME
Domain: {RUNTIME,QUALITY}

--scenario-file scenario file

Domain: FILES

--test-instance-file file containing a list of instances to use during the validation phase (see Instance File
Format section of the manual)

Default Value: null

9.4.3 Scenario Configuration Limit Options

Options that control how long the scenario will run for

BASIC OPTIONS

--tunertime-limit limits the total cpu time allowed between SMAC and the target algorithm runs during the
automatic configuration phase

Default Value: 2147483647
Domain: [0, 2147483647]

--wallclock-limit limits the total wall-clock time allowed during the automatic configuration phase

Default Value: 2147483647
Domain: (0, 2147483647]

30



9.4.4 Algorithm Execution Options

Options related to invoking the target algorithm

BASIC OPTIONS

--algo-cutoff-time CPU time limit for an individual target algorithm run

REQUIRED
Default Value: 0.0
Domain: (0,∞)

--algo-deterministic treat the target algorithm as deterministic

Default Value: false
Domain: {true, false}

--algo-exec command string to execute algorithm with

REQUIRED
Default Value: null

--algo-exec-dir working directory to execute algorithm in

REQUIRED
Default Value: null

--param-file File containing algorithm parameter space information (see Algorithm Parameter File in the
Manual). You can specify ”SINGLETON” to get a singleton configuration space or ”NULL” to get a
null one.

Default Value: null

31



9.5 Complete Options Reference

9.5.1 SMAC Options

General Options for Running SMAC

BASIC OPTIONS

--experiment-dir root directory for experiments Folder

Aliases: --experiment-dir, --experimentDir, -e
Default Value: <current working directory>

--help show help

Aliases: --help, -?, /?, -h

--help-level Show options at this level or lower

Aliases: --help-level
Default Value: BASIC
Domain: {BASIC, INTERMEDIATE,ADVANCED,DEVELOPER}

--num-run number of this run (also used as part of seed)

REQUIRED
Aliases: --num-run, --numrun, --numRun, --seed
Default Value: 0
Domain: [0, 2147483647]

--restore-scenario Restore the scenario & state in the state folder

Aliases: --restore-scenario, --restoreScenario
Default Value: null
Domain: FILES

--rungroup name of subfolder of outputdir to save all the output files of this run to

Aliases: --rungroup, --rungroup-name, --runGroupName
Default Value:

--validation perform validation when SMAC completes

Aliases: --validation, --doValidation
Default Value: true
Domain: {true, false}

-v print version and exit

Aliases: -v, --version

INTERMEDIATE OPTIONS

--adaptive-capping Use Adaptive Capping

Aliases: --adaptive-capping, --ac, --adaptiveCapping
Default Value: Defaults to true when –runObj is RUNTIME, false otherwise
Domain: {true, false}

32



--always-run-initial-config if true we will always run the default and switch back to it if it is better than
the incumbent

Aliases: --always-run-initial-config, --alwaysRunInitialConfiguration
Default Value: false
Domain: {true, false}

--console-log-level default log level of console output (this cannot be more verbose than the logLevel)

Aliases: --console-log-level, --consoleLogLevel
Default Value: INFO
Domain: {TRACE,DEBUG, INFO,WARN,ERROR,OFF}

--deterministic-instance-ordering If true, instances will be selected from the instance list file in the
specified order

Aliases: --deterministic-instance-ordering, --deterministicInstanceOrdering
Default Value: false
Domain: {true, false}

--exec-mode execution mode of the automatic configurator

Aliases: --exec-mode, --execution-mode, --executionMode
Default Value: SMAC
Domain: {SMAC,ROAR}

--initial-challenger-runs initial amount of runs to request when intensifying on a challenger

Aliases: --initial-challenger-runs, --initialN, --initialChallenge
Default Value: 1
Domain: (0, 2147483647]

--initial-incumbent Initial Incumbent to use for configuration (you can use RANDOM, or DEFAULT as a
special string to get a RANDOM or the DEFAULT configuration as needed). Other configurations are
specified as: -name ’value’ -name ’value’ ... For instance: --quick-sort ’on’

Aliases: --initial-incumbent, --initialIncumbent
Default Value: DEFAULT

--initial-incumbent-runs initial amount of runs to schedule against for the default configuration

Aliases: --initial-incumbent-runs, --initialIncumbentRuns, --defaultConfigRuns
Default Value: 1
Domain: (0, 2147483647]

--log-level messages will only be logged if they are of this severity or higher.

Aliases: --log-level, --logLevel
Default Value: DEBUG
Domain: {TRACE,DEBUG, INFO,WARN,ERROR,OFF}

--num-challengers number of challengers needed for local search

Aliases: --num-challengers, --numChallengers, --numberOfChallengers
Default Value: 10

33



Domain: (0, 2147483647]

--num-ei-random number of random configurations to evaluate during EI search

Aliases: --num-ei-random, --numEIRandomConfigs, --numberOfRandomConfigsInEI, --numRandomConfigsInEI,
--numberOfEIRandomConfigs

Default Value: 10000
Domain: [0, 2147483647]

--num-pca number of principal components features to use when building the model

Aliases: --num-pca, --numPCA
Default Value: 7
Domain: (0, 2147483647]

--seed-offset offset of numRun to use from seed (this plus --numRun should be less than INTEGER MAX)

Aliases: --seed-offset, --seedOffset
Default Value: 0

--show-hidden show hidden parameters that no one has use for, and probably just break SMAC (no-
arguments)

Aliases: --show-hidden, --showHiddenParameters

ADVANCED OPTIONS

--ac-add-slack amount to increase computed adaptive capping value of challengers by (post scaling)

Aliases: --ac-add-slack, --capAddSlack
Default Value: 1.0
Domain: (0,∞)

--ac-mult-slack amount to scale computed adaptive capping value of challengers by

Aliases: --ac-mult-slack, --capSlack
Default Value: 1.3
Domain: (0,∞)

--clean-old-state-on-success will clean up much of the useless state files if smac completes successfully

Aliases: --clean-old-state-on-success, --cleanOldStateOnSuccess
Default Value: true
Domain: {true, false}

--config-tracking Take measurements of configuration as it goes through it’s lifecycle and write to file (in
state folder)

Aliases: --config-tracking
Domain: {true, false}

--ei-func expected improvement function to use during local search

Aliases: --ei-func, --expected-improvement-function, --expectedImprovementFunction
Default Value: EXPONENTIAL
Domain: {EXPONENTIAL, SIMPLE, LCB}

34



--help-default-file file that contains default settings for SMAC
Aliases: --help-default-file, --helpDefaultsFile
Default Value: /.aclib/help.opt
Domain: FILES

--imputation-iterations amount of times to impute censored data when building model
Aliases: --imputation-iterations, --imputationIterations
Default Value: 2
Domain: [0, 2147483647]

--init-mode Initialization Mode
Aliases: --init-mode, --initialization-mode, --initMode, --initializationMode
Default Value: CLASSIC
Domain: {CLASSIC, ITERATIVE CAPPING}

--intensification-percentage percent of time to spend intensifying versus model learning
Aliases: --intensification-percentage, --intensificationPercentage, --frac rawruntime
Default Value: 0.5
Domain: (0, 1)

--iterativeCappingBreakOnFirstCompletion In Phase 2 of the initialization phase, we will abort the first
time something completes and not look at anything else with the same kappa limits
Aliases: --iterativeCappingBreakOnFirstCompletion
Default Value: false
Domain: {true, false}

--iterativeCappingK Iterative Capping K
Aliases: --iterativeCappingK
Default Value: 1

--mask-censored-data-as-kappa-max Mask censored data as kappa Max
Aliases: --mask-censored-data-as-kappa-max, --maskCensoredDataAsKappaMax
Default Value: false
Domain: {true, false}

--mask-inactive-conditional-parameters-as-default-value build the model treating inactive conditional
values as the default value
Aliases: --mask-inactive-conditional-parameters-as-default-value, --maskInactiveConditionalParametersAsDefaultValue
Default Value: true
Domain: {true, false}

--max-incumbent-runs maximum number of incumbent runs allowed
Aliases: --max-incumbent-runs, --maxIncumbentRuns, --maxRunsForIncumbent
Default Value: 2000
Domain: (0, 2147483647]

--option-file read options from file

35



Aliases: --option-file, --optionFile
Domain: FILES

--option-file2 read options from file

Aliases: --option-file2, --optionFile2, --secondaryOptionsFile
Domain: FILES

--print-rungroup-replacement-and-exit print all the possible replacements in the rungroup and then exit

Aliases: --print-rungroup-replacement-and-exit
Default Value: false
Domain: {true, false}

--restore-iteration iteration of the state to restore, use ”AUTO” to automatically pick the last iteration

Aliases: --restore-iteration, --restoreStateIteration, --restoreIteration
Default Value: N/A (No state is being restored)

--restore-state-from location of state to restore

Aliases: --restore-state-from, --restoreStateFrom
Default Value: N/A (No state is being restored)

--save-context saves some context with the state folder so that the data is mostly self-describing (Scenario,
Instance File, Feature File, Param File are saved)

Aliases: --save-context, --saveContext, --saveContextWithState
Default Value: true
Domain: {true, false}

--smac-default-file file that contains default settings for SMAC

Aliases: --smac-default-file, --smacDefaultsFile
Default Value: /.aclib/smac.opt
Domain: FILES

--state-deserializer determines the format of the files that store the saved state to restore

Aliases: --state-deserializer, --stateDeserializer
Default Value: LEGACY
Domain: {NULL, LEGACY}

--state-serializer determines the format of the files to save the state in

Aliases: --state-serializer, --stateSerializer
Default Value: LEGACY
Domain: {NULL, LEGACY}

--treat-censored-data-as-uncensored builds the model as-if the response values observed for cap values,
were the correct ones [NOT RECOMMENDED]

Aliases: --treat-censored-data-as-uncensored, --treatCensoredDataAsUncensored
Default Value: false
Domain: {true, false}

36



-S Sets specific seeds (by name) in the random pool (e.g. -SCONFIG=2 -SINSTANCE=4). To determine the
actual names that will be used you should run the program with debug logging enabled, it should be
output at the end.

Aliases: -S

9.5.2 Random Forest Options

Options used when building the Random Forests

INTERMEDIATE OPTIONS

--rf-log-model store response values in log-normal form

Aliases: --rf-log-model, --log-model, --logModel
Default Value: true if optimizing runtime, false if optimizing quality
Domain: {true, false}

--rf-num-trees number of trees to create in random forest

Aliases: --rf-num-trees, --num-trees, --numTrees, --nTrees, --numberOfTrees
Default Value: 10
Domain: (0, 2147483647]

--rf-ratio-features ratio of the number of features to consider when splitting a node

Aliases: --rf-ratio-features, --ratioFeatures
Default Value: 0.8333333333333334
Domain: (0, 1]

ADVANCED OPTIONS

--rf-full-tree-bootstrap bootstrap all data points into trees

Aliases: --rf-full-tree-bootstrap, --fullTreeBootstrap
Default Value: false
Domain: {true, false}

--rf-ignore-conditionality ignore conditionality for building the model

Aliases: --rf-ignore-conditionality, --ignoreConditionality
Default Value: false
Domain: {true, false}

--rf-impute-mean impute the mean value for the all censored data points

Aliases: --rf-impute-mean, --imputeMean
Default Value: false
Domain: {true, false}

--rf-min-variance minimum allowed variance

Aliases: --rf-min-variance, --minVariance
Default Value: 1.0E-14
Domain: (0,∞)

37



--rf-penalize-imputed-values treat imputed values that fall above the cutoff time, and below the penalized
max time, as the penalized max time

Aliases: --rf-penalize-imputed-values, --penalizeImputedValues
Default Value: false
Domain: {true, false}

--rf-shuffle-imputed-values shuffle imputed value predictions between trees

Aliases: --rf-shuffle-imputed-values, --shuffleImputedValues
Default Value: false
Domain: {true, false}

--rf-split-min minimum number of elements needed to split a node

Aliases: --rf-split-min, --split-min, --splitMin
Default Value: 10
Domain: [0, 2147483647]

DEVELOPER OPTIONS

--rf-preprocess-marginal build random forest with preprocessed marginal

Aliases: --rf-preprocess-marginal, preprocessMarginal
Default Value: true
Domain: {true, false}

--rf-store-data store full data in leaves of trees

Aliases: --rf-store-data, --rf-store-data-in-leaves, --storeDataInLeaves
Default Value: false
Domain: {true, false}

--rf-subsample-memory-percentage when free memory percentage drops below this percent we will
apply the subsample percentage

Aliases: --rf-subsample-memory-percentage, --freeMemoryPecentageToSubsample
Default Value: 0.25
Domain: (0, 1]

--rf-subsample-percentage multiply the number of points used when building model by this value

Aliases: --rf-subsample-percentage, --subsamplePercentage
Default Value: 0.9
Domain: (0, 1]

--rf-subsample-values-when-low-on-memory subsample model input values when the amount of mem-
ory available drops below a certain threshold (see --subsampleValuesWhenLowMemory) (Not Tested)

Aliases: --rf-subsample-values-when-low-on-memory, --subsampleValuesWhenLowOnMemory, --
subsampleValuesWhenLowMemory

Default Value: false
Domain: {true, false}

38



9.5.3 Scenario Options

Standard Scenario Options for use with SMAC. In general consider using the –scenarioFile directive to
specify these parameters and Algorithm Execution Options

BASIC OPTIONS

--feature-file file that contains the all the instances features

Aliases: --feature-file, --instanceFeatureFile, --feature file

--instance-file file containing a list of instances to use during the automatic configuration phase (see Instance
File Format section of the manual)

REQUIRED
Aliases: --instance-file, --instanceFile, -i, --instance file, --instance seed file
Default Value: null

--intra-obj objective function used to aggregate multiple runs for a single instance

Aliases: --intra-obj, --intra-instance-obj, --overall-obj, --intraInstanceObj, --overallObj, --overall obj,
--intra instance obj

Default Value: MEAN10
Domain: {MEAN,MEAN1000,MEAN10}

--output-dir Output Directory

Aliases: --output-dir, --outputDirectory, --outdir
Default Value: <current working directory>/smac-output

--run-obj per target algorithm run objective type that we are optimizing for

Aliases: --run-obj, --runObj, --run obj
Default Value: RUNTIME
Domain: {RUNTIME,QUALITY}

--scenario-file scenario file

Aliases: --scenario-file, --scenarioFile
Domain: FILES

--test-instance-file file containing a list of instances to use during the validation phase (see Instance File
Format section of the manual)

Aliases: --test-instance-file, --testInstanceFile, --test instance file, --test instance seed file
Default Value: null

ADVANCED OPTIONS

--check-instances-exist check if instances files exist on disk

Aliases: --check-instances-exist, --checkInstanceFilesExist
Default Value: false
Domain: {true, false}

--inter-obj objective function used to aggregate over multiple instances (that have already been aggregated
under the Intra-Instance Objective)

39



Aliases: --inter-obj, --inter-instance-obj, --interInstanceObj, --inter instance obj
Default Value: MEAN
Domain: {MEAN,MEAN1000,MEAN10}

9.5.4 Scenario Configuration Limit Options

Options that control how long the scenario will run for

BASIC OPTIONS

--tunertime-limit limits the total cpu time allowed between SMAC and the target algorithm runs during the
automatic configuration phase

Aliases: --tunertime-limit, --tuner-timeout, --tunerTimeout
Default Value: 2147483647
Domain: [0, 2147483647]

--wallclock-limit limits the total wall-clock time allowed during the automatic configuration phase

Aliases: --wallclock-limit, --runtime-limit, --runtimeLimit, --wallClockLimit
Default Value: 2147483647
Domain: (0, 2147483647]

INTERMEDIATE OPTIONS

--iteration-limit limits the number of iterations allowed during automatic configuration phase

Aliases: --iteration-limit, --numIterations, --numberOfIterations
Default Value: 2147483647
Domain: (0, 2147483647]

--runcount-limit limits the total number of target algorithm runs allowed during the automatic configuration
phase

Aliases: --runcount-limit, --totalNumRunsLimit, --numRunsLimit, --numberOfRunsLimit
Default Value: 9223372036854775807
Domain: (0, 9223372036854775807]

ADVANCED OPTIONS

--max-norun-challenge-limit if the parameter space is too small we may get to a point where we can make
no new runs, detecting this condition is prohibitively expensive, and this heuristic controls the number
of times we need to try a challenger and get no new runs before we give up

Aliases: --max-norun-challenge-limit, --maxConsecutiveFailedChallengeIncumbent
Default Value: 1000

--use-cpu-time-in-tunertime include the CPU Time of SMAC as part of the tunerTimeout

Aliases: --use-cpu-time-in-tunertime, --countSMACTimeAsTunerTime
Default Value: true
Domain: {true, false}

40



9.5.5 Algorithm Execution Options

Options related to invoking the target algorithm

BASIC OPTIONS

--algo-cutoff-time CPU time limit for an individual target algorithm run
REQUIRED
Aliases: --algo-cutoff-time, --cutoff-time, --cutoffTime, --cutoff time
Default Value: 0.0
Domain: (0,∞)

--algo-deterministic treat the target algorithm as deterministic
Aliases: --algo-deterministic, --deterministic
Default Value: false
Domain: {true, false}

--algo-exec command string to execute algorithm with
REQUIRED
Aliases: --algo-exec, --algoExec, --algo
Default Value: null

--algo-exec-dir working directory to execute algorithm in
REQUIRED
Aliases: --algo-exec-dir, --exec-dir, --execDir, --execdir
Default Value: null

--param-file File containing algorithm parameter space information (see Algorithm Parameter File in the
Manual). You can specify ”SINGLETON” to get a singleton configuration space or ”NULL” to get a
null one.
Aliases: --param-file, -p, --paramFile, --paramfile
Default Value: null

ADVANCED OPTIONS

--continous-neighbours Number of neighbours for continuous parameters
Aliases: --continous-neighbours, --continuous-neighbors, --continuousNeighbours
Default Value: 4

DEVELOPER OPTIONS

--search-subspace Only generate random and neighbouring configurations with these values. Specified in a
”name=value,name=value,...” format (Overrides those set in file)
Aliases: --search-subspace, --searchSubspace
Default Value: null

--search-subspace-file Only generate random and neighbouring configurations with these values. Specified
each parameter on each own line with individual value
Aliases: --search-subspace-file, --searchSubspaceFile
Default Value: null
Domain: FILES

41



9.5.6 Target Algorithm Evaluator Options

Options that describe and control the policy and mechanisms for algorithm execution

INTERMEDIATE OPTIONS

--abort-on-crash treat algorithm crashes as an ABORT (Useful if algorithm should never CRASH). NOTE:
This only aborts if all retries fail.
Aliases: --abort-on-crash, --abortOnCrash
Default Value: false
Domain: {true, false}

--abort-on-first-run-crash if the first run of the algorithm CRASHED treat it as an ABORT, otherwise
allow crashes.
Aliases: --abort-on-first-run-crash, --abortOnFirstRunCrash
Default Value: true
Domain: {true, false}

--bound-runs [DEPRECATED] (Use the option on the TAE instead if available) if true, permit only --cores
number of runs to be evaluated concurrently.
Aliases: --bound-runs, --boundRuns
Default Value: false
Domain: {true, false}

--check-sat-consistency Ensure that runs on the same problem instance always return the same SAT/UNSAT
result
Aliases: --check-sat-consistency, --checkSATConsistency
Default Value: true
Domain: {true, false}

--check-sat-consistency-exception Throw an exception if runs on the same problem instance disagree with
respect to SAT/UNSAT
Aliases: --check-sat-consistency-exception, --checkSATConsistencyException
Default Value: true
Domain: {true, false}

--cores [DEPRECATED] (Use the TAE option instead if available) maximum number of concurrent target
algorithm executions
Aliases: --cores, --numConcurrentAlgoExecs, --maxConcurrentAlgoExecs, --numberOfConcurrentAlgoExecs
Default Value: 1

--kill-run-exceeding-captime Attempt to kill runs that exceed their captime by some amount
Aliases: --kill-run-exceeding-captime
Default Value: true
Domain: {true, false}

--kill-run-exceeding-captime-factor Attempt to kill the run that exceed their captime by this factor
Aliases: --kill-run-exceeding-captime-factor

42



Default Value: 10.0
Domain: (1,∞)

--retry-crashed-count number of times to retry an algorithm run before reporting crashed (NOTE: The
original crashes DO NOT count towards any time limits, they are in effect lost). Additionally this only
retries CRASHED runs, not ABORT runs, this is by design as ABORT is only for cases when we
shouldn’t bother further runs
Aliases: --retry-crashed-count, --retryCrashedRunCount, --retryTargetAlgorithmRunCount
Default Value: 0
Domain: [0, 2147483647]

--tae Target Algorithm Evaluator to use when making target algorithm calls
Aliases: --tae, --targetAlgorithmEvaluator
Default Value: CLI
Domain: {ANALYTIC,CLI,CONSTANT,PRELOADED,RANDOM}

--track-scheduled-runs If true outputs a file in the output directory that outlines how many runs were being
evaluated at any given time
Aliases: --track-scheduled-runs
Default Value: false
Domain: {true, false}

--verify-sat Check SAT/UNSAT/UNKNOWN responses against Instance specific information (if null then
performs check if every instance has specific information in the following domain SAT, UNSAT,
UNKNOWN, SATISFIABLE, UNSATISFIABLE
Aliases: --verify-sat, --verify-SAT, --verifySAT
Default Value: null
Domain: {true, false}

ADVANCED OPTIONS

--log-requests-responses If set to true all evaluation requests will be logged as they are submitted and
completed
Aliases: --log-requests-responses
Default Value: false
Domain: {true, false}

--log-requests-responses-rc-only If set to true we will only log the run configuration when a run completes
Aliases: --log-requests-responses-rc-only, --log-requests-responses-rc
Default Value: false
Domain: {true, false}

--observer-walltime-delay How long to wait for an update with runtime information, before we use the
walltime. With the 5 seconds and an scale of 0.95, it means we will see 0,0,0,0...,4.95...
Aliases: --observer-walltime-delay
Default Value: 5.0
Domain: (0,∞)

43



--observer-walltime-if-no-runtime If true and the target algorithm doesn’t update us with runtime infor-
mation we report wallclock time
Aliases: --observer-walltime-if-no-runtime
Default Value: true
Domain: {true, false}

--observer-walltime-scale What factor of the walltime should we use as the runtime (generally recom-
mended is the 0.95 times the number of cores)
Aliases: --observer-walltime-scale
Default Value: 0.95
Domain: (0,∞)

--tae-default-file file that contains default settings for Target Algorithm Evaluators
Aliases: --tae-default-file
Default Value: /.aclib/tae.opt
Domain: FILES

DEVELOPER OPTIONS

--check-for-unclean-shutdown If true, we will try and detect an unclean shutdown of the Target Algorithm
Evaluator
Aliases: --check-for-unclean-shutdown
Default Value: true
Domain: {true, false}

--check-for-unique-runconfigs Checks that all submitted Run Configs in a batch are unique
Aliases: --check-for-unique-runconfigs
Default Value: true
Domain: {true, false}

--check-for-unique-runconfigs-exception If true, we will throw an exception if duplicate run configura-
tions are detected
Aliases: --check-for-unique-runconfigs-exception
Default Value: true
Domain: {true, false}

--check-result-order-consistent Check that the TAE is returning responses in the correct order
Aliases: --check-result-order-consistent, --checkResultOrderConsistent
Default Value: false
Domain: {true, false}

--exception-on-prepost-command Throw an abort
Aliases: --exception-on-prepost-command, --exceptionOnPrePostCommand
Domain: {true, false}

--post-scenario-command Command that will run on shutdown
Aliases: --post-scenario-command, --postScenarioCommand, --post cmd

44



--pre-scenario-command Command that will run on startup

Aliases: --pre-scenario-command, --preScenarioCommand, --pre cmd

--prepost-exec-dir Execution Directory for Pre/Post commands

Aliases: --prepost-exec-dir, --prePostExecDir
Default Value: Current Working Directory
Domain: {readabledirectories}

--prepost-log-output Log all the output from the pre and post commands

Aliases: --prepost-log-output, --logOutput
Domain: {true, false}

--run-hashcode-file file containing a list of run hashes one per line: Each line should be: ”Run Hash Codes:
(Hash Code) After (n) runs”. The number of runs in this file need not match the number of runs that we
execute, this file only ensures that the sequences never diverge. Note the n is completely ignored so the
order they are specified in is the order we expect the hash codes in this version. Finally note you can
simply point this at a previous log and other lines will be disregarded

Aliases: --run-hashcode-file, --runHashCodeFile
Domain: FILES

--skip-outstanding-eval-tae If set to true code, the TAE will not be wrapped by a decorator to support
waiting for outstanding runs

Aliases: --skip-outstanding-eval-tae
Default Value: false
Domain: {true, false}

--track-scheduled-runs-resolution We will bucket changes into this size

Aliases: --track-scheduled-runs-resolution
Default Value: 10.0
Domain: (0,∞)

9.5.7 Validation Options

Options that control validation

INTERMEDIATE OPTIONS

--max-timestamp maximimum relative timestamp in the trajectory file to configure against. -1 means
auto-detect

Aliases: --max-timestamp, --maxTimestamp
Default Value: Auto Detect
Domain: [0,∞)

⋃
{−1}

--min-timestamp minimum relative timestamp in the trajectory file to configure against.

Aliases: --min-timestamp, --minTimestamp
Default Value: 0.0
Domain: [0,∞)

45



--num-validation-runs approximate number of validation runs to do

Aliases: --num-validation-runs, --numValidationRuns, --numberOfValidationRuns
Default Value: 1000
Domain: [0, 2147483647]

--save-state-file Save a state file consisting of all the runs we did

Aliases: --save-state-file, --saveStateFile
Default Value: false
Domain: {true, false}

--validate-by-wallclock-time Use wallclock times

Aliases: --validate-by-wallclock-time, --validateByWallClockTime
Default Value: false
Domain: {true, false}

--validate-only-if-tunertime-reached If the walltime in the trajectory file hasn’t hit this entry we won’t
bother validating

Aliases: --validate-only-if-tunertime-reached, --validateOnlyIfTunerTimeReached
Default Value: 0.0
Domain: [0,∞)

--validate-only-if-walltime-reached If the walltime in the trajectory file hasn’t hit this entry we won’t
bother validating

Aliases: --validate-only-if-walltime-reached, --validateOnlyIfWallTimeReached
Default Value: 0.0
Domain: [0,∞)

--validate-only-last-incumbent validate only the last incumbent found

Aliases: --validate-only-last-incumbent, --validateOnlyLastIncumbent
Default Value: true
Domain: {true, false}

ADVANCED OPTIONS

--mult-factor base of the geometric progression of timestamps to validate (timestamps selected are:
maxTime×multFactor−n where n is {1, 2, 3, 4...} while timestamp ≥ minTimestamp )

Aliases: --mult-factor, --multFactor
Default Value: 2.0
Domain: (0,∞)

--num-seeds-per-test-instance number of test seeds to use per instance during validation

Aliases: --num-seeds-per-test-instance, --numSeedsPerTestInstance, --numberOfSeedsPerTestInstance
Default Value: 1000
Domain: (0, 2147483647]

--num-test-instances number of instances to test against (will execute min of this, and number of instances
in test instance file). To disable validation in SMAC see the --doValidation option

46



Aliases: --num-test-instances, --numTestInstances, --numberOfTestInstances
Default Value: 2147483647
Domain: (0, 2147483647]

--output-file-suffix Suffix to add to validation run files (for grouping)

Aliases: --output-file-suffix, --outputFileSuffix

--validate-all Validate every entry in the trajectory file (overrides other validation options)

Aliases: --validate-all, --validateAll
Default Value: false
Domain: {true, false}

--validation-rounding-mode selects whether to round the number of validation (to next multiple of
numTestInstances

Aliases: --validation-rounding-mode, --validationRoundingMode
Default Value: UP
Domain: {UP,NONE}

--write-configuration-matrix Write the configuration matrix

Aliases: --write-configuration-matrix, --writeConfigurationMatrix, --writeThetaMatrix
Default Value: false
Domain: {true, false}

DEVELOPER OPTIONS

--validation-headers put headers on output CSV files for validation

Aliases: --validation-headers, --validationHeaders
Default Value: true
Domain: {true, false}

9.5.8 Analytic Target Algorithm Evaluator Options

This Target Algorithm Evaluator uses an analytic function to generate a runtime. Most of the func-
tion definitions come from Test functions for optimization needs, by Marcin Molga, Czesaw Smutnicki
(http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf). NOTE: Some functions have been shifted vertically
so that there response values are always positive.

INTERMEDIATE OPTIONS

--analytic-function Which analytic function to use

Aliases: --analytic-function
Default Value: CAMELBACK
Domain: {ZERO,ADD,CAMELBACK,BRANINS}

DEVELOPER OPTIONS

--analytic-observer-frequency How often to notify observer of updates (in milli-seconds)

Aliases: --analytic-observer-frequency
Default Value: 100

47



Domain: (0, 2147483647]

--analytic-scale-simulate-delay Divide the simulated delay by this value

Aliases: --analytic-scale-simulate-delay
Default Value: 1.0
Domain: (0,∞)

--analytic-simulate-cores If set to greater than 0, the TAE will serialize requests so that no more than these
number will execute concurrently.

Aliases: --analytic-simulate-cores
Default Value: 0
Domain: [0, 2147483647]

--analytic-simulate-delay If set to true the TAE will simulate the wallclock delay

Aliases: --analytic-simulate-delay
Default Value: false
Domain: {true, false}

9.5.9 Command Line Target Algorithm Evaluator Options

INTERMEDIATE OPTIONS

--cli-concurrent-execution Whether to allow concurrent execution

Aliases: --cli-concurrent-execution
Default Value: true
Domain: {true, false}

--cli-cores Aliases: --cli-cores
Default Value: 1
Domain: (0, 2147483647]

--cli-log-all-call-strings log every call string

Aliases: --cli-log-all-call-strings, --log-all-call-strings, --logAllCallStrings
Default Value: false
Domain: {true, false}

--cli-log-all-process-output log all process output

Aliases: --cli-log-all-process-output, --log-all-process-output, --logAllProcessOutput
Default Value: false
Domain: {true, false}

ADVANCED OPTIONS

--cli-default-file file that contains default settings for CLI Target Algorithm Evaluator (it is recommended
that you use this file to set the kill commands)

Aliases: --cli-default-file
Default Value: /.aclib/cli-tae.opt
Domain: FILES

48



--cli-listen-for-updates If true will create a socket and set environment variables so that we can have
updates of CPU time

Aliases: --cli-listen-for-updates
Default Value: true
Domain: {true, false}

--cli-pg-force-kill-cmd Command to execute to try and ask the process group to terminate nicely (generally
a SIGKILL in Unix). Note

Aliases: --cli-pg-force-kill-cmd
Default Value: bash -c ”kill -s KILL -

--cli-pg-nice-kill-cmd Command to execute to try and ask the process group to terminate nicely (generally
a SIGTERM in Unix). Note

Aliases: --cli-pg-nice-kill-cmd
Default Value: bash -c ”kill -s TERM -

--cli-proc-force-kill-cmd Command to execute to try and ask the process to terminate nicely (generally a
SIGTERM in Unix). Note

Aliases: --cli-proc-force-kill-cmd
Default Value: kill -s KILL

--cli-proc-nice-kill-cmd Command to execute to try and ask the process to terminate nicely (generally a
SIGTERM in Unix). Note

Aliases: --cli-proc-nice-kill-cmd
Default Value: kill -s TERM

DEVELOPER OPTIONS

--cli-observer-frequency How often to notify observer of updates (in milli-seconds)

Aliases: --cli-observer-frequency
Default Value: 750
Domain: (0, 2147483647]

9.5.10 Constant Target Algorithm Evaluator Options

Parameters for the Constant Target Algorithm Evaluator

DEVELOPER OPTIONS

--constant-additional-run-data Additional Run Data to return

Aliases: --constant-additional-run-data

--constant-run-length Runlength to return

Aliases: --constant-run-length
Default Value: 0.0

--constant-run-quality Quality to return

Aliases: --constant-run-quality

49



Default Value: 0.0

--constant-run-result Run Result To return

Aliases: --constant-run-result
Default Value: SAT
Domain: {TIMEOUT, SAT,UNSAT,CRASHED,ABORT,RUNNING,KILLED}

--constant-runtime Runtime to return

Aliases: --constant-runtime
Default Value: 1.0

9.5.11 Preloaded Response Target Algorithm Evaluator

Target Algorithm Evaluator that provides preloaded responses

DEVELOPER OPTIONS

--preload-additional-run-data Additional Run Data to return

Aliases: --preload-additional-run-data

--preload-quality Quality to return on all values

Aliases: --preload-quality
Default Value: 0.0

--preload-response-data Preloaded Response Values in the format [SAT,UNSAT,...=x], where x is a
runtime (e.g. [SAT=1],[UNSAT=1.1]...

Aliases: --preload-response-data, --preload-responseData

--preload-run-length Runlength to return on all values

Aliases: --preload-run-length, --preload-runLength
Default Value: -1.0

9.5.12 Random Target Algorithm Evaluator Options

This Target Algorithm Evaluator randomly generates responses from a uniform distribution

DEVELOPER OPTIONS

--random-additional-run-data Additional Run Data to return

Aliases: --random-additional-run-data

--random-max-response The maximum runtime we will generate

Aliases: --random-max-response
Default Value: 10.0
Domain: [0,∞)

--random-min-response The minimum runtime we will generate (values less than 0.01 will be rounded up
to 0.01)

Aliases: --random-min-response

50



Default Value: 0.0
Domain: [0,∞)

--random-observer-frequency How often to notify observer of updates (in milli-seconds)

Aliases: --random-observer-frequency
Default Value: 100
Domain: (0, 2147483647]

--random-sample-seed Seed to use when generate random responses

Aliases: --random-sample-seed
Default Value: Current Time in Milliseconds

--random-scale-simulate-delay Divide the simulated delay by this value

Aliases: --random-scale-simulate-delay
Default Value: 1.0
Domain: (0,∞)

--random-simulate-cores If set to greater than 0, the TAE will serialize requests so that no more than these
number will execute concurrently.

Aliases: --random-simulate-cores
Default Value: 0
Domain: [0, 2147483647]

--random-simulate-delay If set to true the TAE will simulate the wallclock delay

Aliases: --random-simulate-delay
Default Value: false
Domain: {true, false}

--random-trend-coefficient The Nth sample will be drawn from Max(0,Uniform(min,max) + N×(trend-
coefficient)) distribution. This allows you to have the response values increase or decrease over
time.

Aliases: --random-trend-coefficient
Default Value: 0.0

51


