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1 Introduction

Empirical studies often observe that the performance of
different algorithms across problem instance distribu-
tions can be quite uncorrelated. When this occurs, there
is an incentive to investigate the use of portfolio-based
approaches that draw on the strengths of multiple algo-
rithms. SATzilla is such a portfolio-based approach for
SAT; it was first deployed in the 2003 and 2004 SAT
competitions [5], and later versions won a number of
prizes in the 2007 and 2009 SAT competitions [10, 8, 11],
including gold medals in the random, crafted and appli-
cation categories in 2009.

Different from previous versions of SATzilla, which
utilized empirical hardness models [4, 6] for estimating
each candidate algorithm’s performance on a given SAT
instance, SATzilla2012 is based on cost-sensitive clas-
sification models [7]. We also introduced a new proce-
dure that generates a stand-alone SATzilla executable
based on models learned within Matlab. Finally, we used
new component algorithms and training instances.

Overall, SATzilla2012 makes use of the same
methodology as described in [9].

Offline, as part of algorithm development:

1. Identify a target distribution of problem instances.
2. Select a set of candidate solvers that are known or

expected to perform well on at least a subset of the
instances in the target distribution.

3. Use domain knowledge to identify features that
characterize problem instances. To be usable effec-
tively for automated algorithm selection, these fea-
tures must be related to instance hardness and rela-
tively cheap to compute.

4. On a training set of problem instances, compute
these features and run each solver to determine its
running times. We use the term performance score
to refer to the quantity we aim to optimize.

5. Automatically determine the best-scoring combina-
tion of pre-solvers and their corresponding perfor-
mance score. Pre-solvers will later be run for a short
amount of time before features are computed (Step
2 below), in order to ensure good performance on

very easy instances and to allow the predictive mod-
els to focus exclusively on harder instances.

6. Using a validation data set, determine which solver
achieves the best performance for all instances that
are not solved by the pre-solvers and on which the
feature computation times out. We refer to this
solver as the backup solver.

7. New: Construct a classification model (decision
forest, DF) for predicting whether the cost of com-
puting feature is too expensive, given the number of
variables and clauses in an instance.

8. New: Construct a cost-sensitive classification
model (DF) for every pair of solvers in the portfolio,
predicting which solver performs better on a given
instance based on instance features.

9. Automatically choose the best-scoring subset of
solvers to use in the final portfolio.

Then, online, to solve a given problem instance, the
following steps are performed:

1. Predict whether the feature computation time is
above 90 CPU seconds. If the feature computa-
tion is too costly, run the backup solver identified in
Step 6 above; otherwise continue with the following
steps.

2. Run the presolvers in the predetermined order for
up to their predetermined fixed cutoff times.

3. Compute feature values. If feature computation can-
not be completed due to an error, select the backup
solver identified in Step 6 above; otherwise continue
with the following steps.

4. For every pair of solvers, predict which solver per-
forms better using the DF trained in Step 8 above,
and cast a vote for it.

5. Run the solver that received the highest number of
votes. If a solver fails to complete its run (e.g.,
it crashes), run the solver with the second-highest
number of votes. If that solver also fails, run the
backup solver.
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2 SATzilla2012 vs SATzilla2009
SATzilla2012 implements a number of improvements
over SATzilla2009.

New algorithm selector. Our new selection procedure
uses an explicit cost-sensitive loss function—punishing
misclassifications in direct proportion to their impact on
portfolio performance—without predicting runtime. We
introduced this approach in [12, 9]. To the best of our
knowledge, this is the first time this approach is applied
to algorithm selection: all other existing classification ap-
proaches use a simple 0–1 loss function that penalizes
all misclassifications equally, whereas previous versions
of SATzilla used regression-based runtime predictions.
We construct cost-sensitive DFs as collections of 99 cost-
sensitive decision trees [7], following standard random
forest methodology [2].

New SATzilla executable. Our SATzilla version
used in [9] was based on classification models built in
Matlab, and its execution required the installation of
the free Matlab runtime environment (MRE). In order
to avoid the need for installing MRE, we now con-
verted our Matlab-built models to Java and provide Java
code to make predictions using them. Thus, running
SATzilla2012 now only requires the scripting lan-
guage Ruby (which is used for running the SATzilla

pipeline).

New component algorithms and training in-
stances. We updated the component solvers used
in SATzilla2009 with the 31 newest publicly-available
SAT solvers. These include 28 solvers from [9], the
two versions of Spear optimized for software and
hardware verification in [3], and MXC 0.99 [1] (the list
of solvers can also be found in the execution script of
SATzilla2012).

Our training set is based on a collection of SAT
instances that includes all instances from all three
SAT competitions and three SAT Races since 2006:
1362 instances for Random SAT, 767 instances for
Crafted SAT+UNSAT, and 1167 instances for Applica-
tion SAT+UNSAT. We droppped instances that could not
be solved by any of our 31 solvers within 900 CPU sec-
onds. For training a general version of SATzilla2012
that works well across categories, we used 1614 in-
stances: 538 randomly sampled instances from each of
Crafted, Application, and Random (SAT+UNSAT).

3 Running SATzilla2012
We submit a package containing one main executable for
SATzilla2012 that can be customized for each of the
four categories in the 2012 SAT challenge by an input

parameter. The callstring for SATzilla2012 is:
ruby SATzilla12.rb <type> <cnf file>,
where <type> should be chosen as INDU for
target category Application SAT+UNSAT, HAND
for Hard Combinatorial SAT+UNSAT, RAND for
Random SAT, and ALL for the Special Track for
Sequential Portfolio Solvers. The source code
of SATzilla2012 is available online at http:

//www.cs.ubc.ca/labs/beta/Projects/SATzilla.
In order to run properly, subdirectory bin should
contain all binaries for SATzilla’s component solvers
and its feature computation; subdirectory models

should contain all models for algorithm selection and
predicting the cost of feature computation. We note that
SATzilla2012 has an optional 3rd input parameter
<seed> that will be forwarded to any randomized
component solver it runs; by default, that seed is set to
1234.
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