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1 Overview

For the propositional satisfiability (SAT) problem we used the 138 features listed
in Figure 1. Since a preprocessing step can significantly reduce the size of the
CNF formula (especially for industrial-like instances), we chose to apply the
preprocessing procedure SATElite [1] on all instances first, and then to compute
instance features on the preprocessed instances. The first 90 features, except
Features 22–31, were introduced by [5]. They can be categorized as problem size
features (1–7), graph-based features (8–21), balance features (37–49), proximity to
horn formula features (50–55), DPLL probing features (56–62), and local search
probing features (69–90).

2 Features for Propositional Satisfiability (SAT)

We incrementally introduced additional features in our work on SATzilla [6, 7]
over the last five years, but describe them here for the first time. Features 22–26
are related to the graph diameter [2]. For each node in the variable graph, we
computed the longest shortest path between it and any other node and report
statistics across all nodes. Features 32–36 are related to the clustering coefficient,
a measure of local graph cliqueyness. For each node in the clause graph, let p
denote the number of edges present between the node and its neighbors, and
let m denote the maximum possible number of such edges; we report statistics
of p/m across all nodes. Our new clause learning features (91–108) are based
on statistics gathered in 2-second runs of Zchaff rand [4]. We measured the
number of learned clauses (Features 91–99) and the length of the learned clauses
(Features 100–108) after every 1000 search steps, computing statistics over the
resulting vectors.

Our survey propagation features (109–126) are derived from estimates of vari-
able bias in a SAT formula based on probabilistic inference [3]. We used VARSAT’s
implementation to estimate the probability that each variable is required to
be true or false, or is unconstrained. Features 109–117 measure the confidence
of survey propagation (that is, max(P (true)/P (false), P (false)/P (true)) for all
variables) and Features 118–126 compute the statistics of P (unconstrained).

Finally, our timing features (127–138) measure the time taken by 12 different
blocks of feature computation code: instance preprocessing by SATElite; prob-
lem size, variable-clause graph and balance features (1–17, 37–49); variable graph



Problem Size Features:
1–2. Number of variables and clauses in origi-

nal formula: denoted v and c, respectively
3–4. Number of variables and clauses after

simplification with SATElite: denoted v’
and c’, respectively

5–6. Reduction of variables and clauses by
simplification: (v-v’)/v’ and (c-c’)/c’

7. Ratio of variables to clauses: v’/c’

Variable-Clause Graph Features:
8–12. Variable node degree statistics: mean,

variation coefficient, min, max, and en-
tropy

13–17. Clause node degree statistics: mean,
variation coefficient, min, max, and en-
tropy

Variable Graph Features:
18–21. Node degree statistics: mean, variation

coefficient, min, and max
22–26. Diameter: mean, variation coefficient,

min, max, and entropy

Clause Graph Features:
27–31. Node degree statistics: mean, variation

coefficient, min, max, and entropy
32–36. Clustering Coefficient: mean, variation

coefficient, min, max, and entropy

Balance Features:
37–41. Ratio of positive to negative literals in

each clause: mean, variation coefficient,
min, max, and entropy

42–46. Ratio of positive to negative occur-
rences of each variable: mean, variation
coefficient, min, max, and entropy

47–49. Fraction of unary, binary, and ternary
clauses

Proximity to Horn Formula:
50. Fraction of Horn clauses

51–55. Number of occurrences in a Horn clause
for each variable: mean, variation coeffi-
cient, min, max, and entropy

DPLL Probing Features:
56–60. Number of unit propagations: computed

at depths 1, 4, 16, 64 and 256
61–62. Search space size estimate: mean depth

to contradiction, estimate of the log of
number of nodes

LP-Based Features:

63–66. Integer slack vector: mean, variation co-
efficient, min, and max

67. Ratio of integer vars in LP solution
68. Objective value of LP solution

Local Search Probing Features, based on 2
seconds of running each of SAPS and GSAT:

69–78. Number of steps to the best local min-
imum in a run: mean, median, variation
coefficient, 10th and 90th percentiles

79–82. Average improvement to best in a run:
mean and coefficient of variation of im-
provement per step to best solution

83–86. Fraction of improvement due to first lo-
cal minimum: mean and variation coeffi-
cient

87–90. Coefficient of variation of the number
of unsatisfied clauses in each local min-
imum: mean and variation coefficient

Clause Learning Features (based on 2 sec-
onds of running Zchaff rand):

91–99. Number of learned clauses: mean, vari-
ation coefficient, min, max, 10%, 25%,
50%, 75%, and 90% quantiles

100–108. Length of learned clauses: mean, vari-
ation coefficient, min, max, 10%, 25%,
50%, 75%, and 90% quantiles

Survey Propagation Features

109–117. Confidence of survey propaga-
tion: For each variable, compute
the higher of P (true)/P (false) or
P (false)/P (true). Then compute statis-
tics across variables: mean, variation co-
efficient, min, max, 10%, 25%, 50%,
75%, and 90% quantiles

118–126. Unconstrained variables: For each vari-
able, compute P (unconstrained). Then
compute statistics across variables: mean,
variation coefficient, min, max, 10%,
25%, 50%, 75%, and 90% quantiles

Timing Features

127–138. CPU time required for feature computa-
tion: one feature for each of 12 computa-
tional subtasks

Fig. 1. 12 groups of SAT features



and proximity to horn formula features (18–21, 50–55); diameter-based features
(22–26); clause graph features (27–36); unit propagation features (56 –60); search
space size estimation (61–62); LP-based features (63–68); local search probing
features (69–90) with SAPS and GSAT; clause learning features (91–108); and
survey propagation features (109–126).
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