
Holger H. Hoos: Programming by Optimization

Appendix:

Generic PbO programming language extension

As explained in the main text, we propose three fundamental mechanisms to be covered by a generic PbO
programming language extension; these provide light-weight support for exposing parameters, for specifying
alternative blocks of code and for flexibly exposing information collected at run-time. While the precise
syntax and realization of the mechanisms may undergo changes in the future, we believe that what is
described in the following forms a solid basis for design space specifications in the context of PbO-based
software development. After outlining the three mechanisms that form the generic language extension and
illustrating their use by means of brief examples, we explain the design objectives underlying our proposal
and discuss potential drawbacks.

A.1 Support for exposing parameters

We propose the following light-weight construct for declaring parameters that are to be exposed as command-
line arguments (where the part in square brackets is optional):

##PARAM(type name [= value])

type indicates the type of the parameter and can take one of the following values:

bool = boolean
int = integer
float = real
char = character
str = string

where the two literals shown in each row are synonyms. Furthermore, to support ranges and sets of allowable
values, complex type specifiers of the following forms can be used:

int[a,b] = int[a..b]
int{i1,i2, · · ·,in}
float[a,b]
float{x1,x2, · · ·,xn}
char{c1,c2, · · ·,cn}
str{s1,s2, · · ·,sn}

where a, b, ik, xk, ck, sk are valid literals of the respective types and bracket symbols, ‘,’ and ‘..’ are
used as shown.1 name indicates the name of the parameter and needs to be a legal variable name in the
programming language under consideration. value is an optional default value assigned to the parameter
when the program is called; if a different value is assigned on the command line or configuration file, that
value overrides the default. For Boolean parameters, values can be specified as false and true, f and t,

1Further extensions of this syntax – e.g., to include hints on potential discretization of real-valued parameters or preferred values –
can be easily imagined; however, we believe that it would be preferable to specify this type of information, possibly along with more
complex constraints on allowable values, in a separate input file to the PbO weaver.

or as 0 and 1. Character and string values are delimited by single or double quotes. An error is generated
when the specified default value does not have the correct type.

Examples:

##PARAM(int numIterations)

– integer parameter numIterations gets exposed; there is no default value, and an error will be
generated when calling the executable without assigning a value to this parameter.

##PARAM(int numIterations=10)

– integer parameter numIterations gets exposed, and its default value is set to 10.

##PARAM(int[0..1000] numIterations=10)

– integer parameter numIterations with possible values between 0 and 1000 gets exposed, and
its default value is set to 10.

Parameter declarations can occur at any place in the source code, but we suggest that they should be located
consistently either at the beginning of the source for the main procedure, function, object or class of the
program, or just before their first occurrence (i.e., the place where the parameter value is first accessed). We
also suggest to use one separate line for each parameter declaration.

Throughout the program, parameter values are accessed using the following syntax:

##name

Parameters can be read arbitrarily often and at arbitrary places throughout the program, wherever it would
be legal for a literal representing the parameter value to occur. Access to parameters declared via this
mechanism is read-only, i.e., their values cannot be changed other than via a command-line argument or an
entry in the configuration file.

Example:

##numIterations

– the value of parameter numIterations (read-only)

Resolution by the PbO weaver

To process source code using these constructs for declaring and accessing parameters, the PbO weaver
collects all parameter declarations from a software project. It checks for validity of parameter names and
types, as well as for agreements between types and default values (where those have been specifies). It also
ensures that all declarations use different parameter names.

In its parametric mode, the weaver generates source code for

• creating a distinct global variable for each parameter;

• parsing and processing command-line arguments and configuration files;

• generating error messages, if invalid values are being assigned to parameters via the command line or
configuration file, or if no value is assigned to a default-less parameter;

• accessing parameter values where needed.

This code is integrated into the given source(s), replacing or removing the original parameter references and
declarations (##name and ##PARAM statements) as needed.

In instantiation mode, the weaver replaces some or all exposed parameters with literal values. This is done
by replacing the parameter wherever its value is read with the respective literal. Instantiated parameters are
thus ‘hard-wired’ into the source code of the program under consideration and cannot be changed. Attempts
to set them via the command line or configuration file produce the same error message as an attempt to set
an undeclared parameter. The parameters to be instantiated and their respective values are given as an input
to the weaver via its user interface (GUI or command line / specific instantiation file). Any uninstantiated
parameters are treated as in parametric mode and thus exposed to be set at run time via the command line or
configuration file.

A.2 Support for specifying alternative blocks of code

The mechanism used for the specification of design alternatives in the form of alternative blocks of code
is based on so-called choices and choice points. A choice is a set of interchangeable blocks of code that
represent design alternatives (where one alternative might be an empty block); those blocks are called
instances of the choice. A choice point is a location in a program at which a choice is available. During
execution, an instance of a choice is called active if it has been explicitly selected as such (via a command-line
argument, configuration file or instantiation by the weaver).

Choices are declared using the following syntax (where the part in square brackets is optional):

##BEGIN CHOICE name [= id])
code
##END CHOICE name

name is the name of the choice and needs to be a valid variable name in the programming language under
consideration; it also needs to be different from any parameter exposed via the mechanism described
previously. id is an (optional) identifier given to the instance of the choice represented by code fragment
code (which can be empty); this identifier can be an arbitrary sequence of letters and digits.

Examples:

##BEGIN CHOICE preProcessing
block1

##END CHOICE preProcessing

– the code in block1 is marked up as a choice named preProcessing, and will only be executed if
preProcessing is active at run time.

##BEGIN CHOICE preProcessing=standard
blocks

##END CHOICE preProcessing

##BEGIN CHOICE preProcessing=enhanced
blocke

##END CHOICE preProcessing

– a choice named preProcessing with two alternative instances, named standard and
enhanced, which correspond to the code fragments blocks and blocke, respectively.

As a shorthand for declaring choices with multiple instances, the syntax demonstrated in the following
example can be used:

##BEGIN CHOICE preProcessing=standard
blocks

##CHOICE preProcessing=enhanced
blocke

##END CHOICE preProcessing

– semantically equivalent shorthand form of the previous example.

The same choice name (and instances) can appear in multiple places within a program. At each of these
choice points, the fragments of code specified for the respective choice declared at that point are available.
Choices of this kind are called distributed choices.

Example:

##BEGIN CHOICE preProcessing
block1

##END CHOICE preProcessing

. . .

##BEGIN CHOICE preProcessing
block2

##END CHOICE preProcessing

– two occurrences (choice points) of the same choice; the code fragments block1 and block2 (which
may be different, of course), will only be executed if choice preProcessing is active at run time.

For distributed choices, the set of instances available at each choice point may differ, as in the following
example:

##BEGIN CHOICE preProcessing=standard
blocks

##CHOICE preProcessing=enhanced
blocke

##END CHOICE preProcessing

. . .

##BEGIN CHOICE preProcessing=enhanced
blockf

##END CHOICE preProcessing

– if instance standard of choice preProcessing is active at run time, at the first choice point,
blocks is executed, while at the second choice point, an empty choice is made (since no code was
specified for choice preProcessing=standard).

Choices can be nested, as in the following example:

##BEGIN CHOICE stepType=1
block1

##BEGIN CHOICE stepPostOptimization
block2
##END CHOICE stepPostOptimization

block3

##END CHOICE stepType

– block1 and block3 are executed if choice stepType=1 is active; block2 is executed (between
block1 and block3) if stepType=1 and stepPostOptimization are active at the same time.

Choices nested within instances of other choices are only available if all the enclosing instances are active
(in the example above, choice stepPostOptimization, and therefore, block2, is only available if
choice stepType=1 is active). Such nested choices are therefore said to be conditional with respect to the
enclosing (higher-level) choices.

Resolution by the PbO weaver

To handle choices, the PbO weaver, in its parametric mode, checks the validity of choice names and instance
identifiers; it then introduces new, exposed parameters that allow for the control of choices at run time and
transforms the choice declarations as required to facilitate this control.

In instantiation mode, the weaver replaces the respective choice declarations with the code fragment
corresponding to a specific instance for that choice. Instantiated choices are thus ‘hard-wired’ into the source
code of the program under consideration and cannot be controlled at run time, exactly like instantiated
parameters. The choices to be instantiated and their respective instances are given as an input to the weaver
via its user interface (GUI or command line / specific instantiation file). Any uninstantiated choices are treated
as in parametric mode and thus exposed to be controlled at run time via the command line or configuration
file.

A.3 Support for exposing information collected at run-time

To provide a light-weight mechanism for exposing information collected during run-time – which could
serve, for example, as input to execution controllers that adaptively control certain parameter settings at
run-time – we propose the construct

##LOG(type name = value)

where value is an expression whose value is logged (i.e., collected) at this point of the computation, name is
a user-defined name used to identify the information being collected and needs to be a legal variable name in

the programming language under consideration, and type indicates the data type of the expression being
evaluated and is one of the type indicators described in Section A.1.2

Example:

##LOG(int timeSinceLastImpr = (currIter - lastImprIter))

– the value of the expression currIter - lastImprIter (referring to two ordinary variables
in the target languague) is logged under the name timeSinceLastImpr as program execution
reaches the location where this ##LOG statement appears.

Resolution by the PbO weaver

The weaver replaces the ##LOG statements with calls to routines that perform type checking and write
the value of the given expression to a destination determined by weaver settings. The weaver can also be
instructed, via further settings, to ignore individual logging statements (these are identified by their names),
or to disable logging alltogether. In both cases, the respective ##LOG statements are simply excised from the
source. We note that logging statements intended to provide information to adaptive control mechanisms that
only apply to certain design alternatives would tyically be found within instances of the respective choices,
and would therefore only be activated along with those choices.

Specifying information to be logged via this mechanism, rather than using target language constructs,
enables transparent support for different logging mechanisms: Depending on settings of the PbO weaver,
time-stamped values logged in this way can be written to one or more files (in particular, to the standard
output); they could also be written to a database or sent directly to an execution controller, using other
mechanisms, such as remote procedure calls or network sockets.

A.4 Design objectives and potential drawbacks

The main design objective behind the generic language extensions discussed in the previous sections was to
render PbO design space specifications as straightforward as possible. This concerns in particular level 1,
which we believe is likely to be the entry point for many developers exploring the use of PbO. In this context,
the mechanisms for exposing parameters and design alternatives need to be as intuitive and light-weight
as possible, and the respective constructs have to be designed with this in mind. By allowing parameter
declarations to be made anywhere in the code, and in particular, just before the first actual use of the
respective parameter, it becomes possible to expose a magical constant (or hidden parameter) by means of
an extremely simple and, more importantly, entirely local modification of an existing source. Likewise, we
judged it important to keep the overhead involved in declaring alternative blocks of code as low as possible.
We believe that these design decisions, although motivated strongly by the needs of level 1 PbO-based
software development, also benefit higher levels of PbO.

A second, rather obvious design objective was to avoid clashes with target language constructs, and to provide
a clean and obvious separation between the constructs of the PbO language extension and the remainder of
the sources. This facilitates the construction of PbO weavers, which do not have to parse target language
syntax. (This is a useful property also found in commonly used preprocessors.) The ability to parse the
PbO constructs easily and independently of the target language also facilitates the implementation of special

2Altough types could in most cases be inferred during static program analysis, we see some benefits in forcing the programmer to
provide them explicitly; for example, explicit type information simplifies the design of the PbO weaver and can provide the basis for
additional type checking.

support for them in software development environments, such as syntax highlighting, folding and convenient
affordances for managing parameters, choices and logs.

A third goal was to allow the design space of a program to be explored without the overhead of repeated
compilation during the design optimization process, as well as the instantiation of some or all design choices.
The first part matters, because compilation, even when restricted to certain modules and using caching of
compiled code, often takes enough time to seriously slow down automated design optimization. The second
part is important, because instantiation leads to faster and leaner executables, and furthermore, because
in certain contexts, it might not be desirable to release a version of a program that gives the user access
to the full design space (examples include demo versions, restricted versions, as well as situations where
optimization for a given use context is a paid service).

One potential drawback of the generic language extension presented here stems from the fact that the names
of parameters, choices and logs are global to a software project. This raises the possibility of naming clashes,
particularly when separately developed parts of a PbO-based project are integrated or merged, and may be
seen to be at odds with established practices for modularization of name spaces. The decision to use global
names was made because they offer the most light-weight way of dealing with the fact that design choices
often cut across the structure of a program (and in particular, across module boundaries). Furthermore, we
expect that even at the highest levels of PbO, there will be orders of magnitude fewer design choices (and logs)
than other named entities (such as variables, functions or objects), and that therefore, segregation of name
spaces is much less important for the former than for the latter. Finally, naming clashes are easily detected
by the PbO weaver, and resolving them (e.g., when assembling parts of a system previously developed or
used in different contexts) will be easy. The need for such resolution can be further reduced by adopting
canonic naming schemes for parameters, choices and logs used in libraries and other parts of a project that
are designed to be reused; for example, all names introduced by PbO constructs could be prefixed with the
name of the library or module to which they belong.

