
Quick start guide for ParamILS, version 2.2

Frank Hutter
Department of Computer Science
University of British Columbia

Vancouver, BC V6T 1Z4, Canada. hutter at cs dot ubc dot ca

October 23, 2007

1 Introduction

ParamILS [1, 3] is a tool for parameter optimization. It works for any param-
eterized algorithm whose parameters can be discretized. ParamILS searches
through the space of possible parameter configurations, evaluating configura-
tions by running the algorithm to be optimized on a set of benchmark instances.

Users provide

• a parametric algorithm A (executable to be called from the command
line),

• all parameters and their possible values (parameters need to be config-
urable from the command line), and

• a set of benchmark problems, S.

Users can also choose from a multitude of optimization objectives, reaching from
minimizing average runtime to maximizing median approximation qualities.

ParamILS then executes algorithm A with different combinations of param-
eters on instances sampled from S, searching for the configuration that yields
overall best performance across the benchmark problems. For details, see [3].
If you use ParamILS in your research, please cite that article. It would also be
nice if you sent us an email – we are always interested in additional application
domains.

2 Download and Configuration

This quick start guide is for version 2.2 of ParamILS. There is also an older
quick start guide for version 1.0. Compared to that version, the user interface
has been much improved.

Download the zip file paramils2.2.zip from http://www.cs.ubc.ca/labs/beta/Projects/ParamILS
and unzip it in a new directory. The version in this zip file is a Linux executable,

1



and currently such an executable is only available for Linux. If you wish to use
ParamILS for other platforms, you can do so, but you will have to download
the source code version (paramils2.2-source.zip), and probably fiddle with path
issues etc. (see the quick start guide for version 1.0)

ParamILS is written in Ruby. Ruby is a scripting language similar to Perl,
but object-oriented and a lot easier to read – Ruby can be freely downloaded
for all platforms from http://www.ruby-lang.org/en/. The executable above
has been generated with RubyScript2Exe1.

3 Example tuning scenarios

The zip file contains examples for three algorithms: SAPS [4], a local search
algorithm for SAT; Spear2, a tree search algorithm for SAT (and satisfiability
modulo theories) developed by Domagoj Babic; and the commercial optimiza-
tion tool ILOG CPLEX 3. Executables for Saps and Spear are included in the
zip file, but CPLEX needs to be purchased to run the CPLEX example.

We include two tuning scenarios for Saps, one for Spear and one for CPLEX.
In the Spear example, the instance collection is the same as in one of the SAPS
examples: the algorithm is optimized on 5 graph colouring problem instances
and tested on five other ones. (Note that our examples are toy examples with
very small training and test data sets; we recommend substantially larger data
sets for real applications!) The second tuning scenario for Saps optimizes Saps
performance for a single instance, and tests on the same one, but of course
with different seeds – this is useful to study peak performance of an algorithm.
For CPLEX, we include a tuning scenario for mixed integer programs from
combinatorial auctions (see [5] for details).

Type bin/paramils to see the syntax for starting these four examples. (You
may run an example if you wish - these toy scenarios should take less than a
minute.) For example, the call for the first scenario is paramils -numRun 0
-scenariofile example saps/scenario-Saps-SWGCP-sat-small-train-small-test.txt
-validN 100.

4 Tuning scenario files

Note that most information in the above example call is not given on the com-
mand line, but hidden in a text file description of the tuning scenario, in this
case example saps/scenario-Saps-SWGCP-sat-small-train-small-test.txt. Tun-
ing scenario files such as this define a tuning scenario completely, and also
contain some information about where ParamILS should write its results etc.
They can contain the following information:

1http://www.erikveen.dds.nl/rubyscript2exe/index.html
2http://www.cs.ubc.ca/˜babic/index spear.htm, described in some more detail in [2]
3http://www.ilog.com/products/cplex/

2



algo An algorithm executable or a call to a wrapper script around an algorithm
that conforms with the input/output format of ParamILS.

execdir Directory to execute <algo> from: “cd <execdir>; <algo>”

deterministic Set to 0 for randomized algorithms, 1 for deterministic

run obj A scalar quantifying how “good” a single algorithm execution is, such
as its required runtime. Implemented examples for this include runtime,
runlength, approx (approximation quality, i.e., 1-(optimal quality di-
vided by found quality)), speedup (speedup over a reference runtime for
this instance – note that for this option the reference needs to be defined
in the instance seed file as covered in Section 6). Additional objec-
tives for single algorithm executions can be defined by modifying function
single run objective in file algo specifics.rb.

overall obj While run obj defines the objective function for a single algo-
rithm run, overall obj defines how those single objectives are combined
to reach a single scalar value to compare two parameter configurations.
Implemented examples include mean, median, q90 (the 90% quantile),
adj mean (a version of the mean accounting for unsuccesful runs: total
runtime divided by number of succesful runs), mean1000 (another version
of the mean accounting for unsuccessful runs: (total runtime of succesful
runs + 1000× runtime of unsuccesful runs) divided by number of runs –
this effetively maximizes the number of successful runs, breaking ties by
the runtime of successful runs; it is the criterion I use in most of my ex-
periments), and geomean (geometric mean, primarily used in combination
with run obj=speedup. The empirical statistic of the cost distribution
(across multiple instances and seeds) to be minimized, such as the mean
(of the single run objectives).

cutoff time The time after which a single algorithm execution will be termi-
nated unsuccesfully. This is an important parameter: if choosen too high,
lots of time will be wasted with unsuccessful runs. If chosen too low the
optimization is biased to perform well on easy instances only.

cutoff length The runlength after which a single algorithm execution will be
terminated unsuccesfully. This length can, e.g. be defined in flips for an
SLS algorithm or decisions for a tree search.

tunerTimeout The timeout of the tuner. Validation of the final best found
parameter configuration starts after the timeout.

paramfile Specifies the file with the parameters of the algorithms.

outdir Specifies the directory ParamILS should write its results to.

instance file Specifies the file with a list of training instances.

test instance file Specifies the file with a list of test instances.

3



instance seed file Specifies the file with a list of training instance/seed pairs
– this and instance file are mutually exclusive.

test instance seed file Specifies the file with a list of training instance/seed
pairs – this and test instance file are mutually exclusive.

ParamILS writes output about its progress to stdout and also writes to
files in the specified directory <outdir>. The file with -log in its name logs
ParamILS behaviour, the file with -traj only keeps track of its current best
solution trajectory, and the -result file summarizes the final result. Note
that for FocusedILS, the quality of the incumbent solution does not improve
monotonically because the number of runs it is based on varies. Solution quality
starts at the worst possible value, 1000000000000000000. It then typically
quickly improves to a very low value because in the beginning each evaluation
is only based on a single algorithm execution (leading to initial over-tuning);
as more runs become available the performance estimates get more realistic.
Detailed information about the incumbent configurations found is written to
the log file.

In order to get reasonable performance estimates, ParamILS performs mul-
tiple runs for each configuration. These runs can differ in the input instance and
the algorithm seed. For deterministic algorithms, the runs only differ in their
input instances (the seed for deterministic algorithms should always be fixed to
-1). Different input instances and seeds will lead to different results, or the same
final result being found faster or slower. Thus, if multiple CPUs are available for
the optimization, we recommend to start several copies of ParamILS, differing
only in the parameter -numRun. This is especially important for FocusedILS,
whose performance depends quite strongly on the order of training instances
(and the seeds) used.

5 Configurable parameters

There are a number of configurable parameters the user can set:

maxEvals The number of algorithm executions after which the optimization
is terminated.

maxIts The number of ILS iterations after which the optimization is termi-
nated.

approach Use basic for BasicILS, focused for FocusedILS, and random for
random search.

N For BasicILS, N is the number of runs to perform to evaluate each param-
eter configuration. For FocusedILS, it is the maximal number of runs to
perform to evaluate a parameter configuration.

There is also a number of internal parameters that control the heuristics in
ParamILS.

4



6 Using Instance-Specific information

Whether you choose to provide an instance file (i.e. a list of problem instance
filenames), or an instance seed file (i.e. a list of pairs of problem instance
filenames and seeds), you specify one instance per line. You may choose to
include additional information after the instance filename, such as the op-
timal solution quality for the instance, or the instance hardness for one or
more other algorithms. Thus, the syntax for each line of the instance file is
<instance filename> <rest>, where <rest> is an arbitrary (possibly empty)
string; when using an the instance seed file, the syntax is <seed> <instance filename>
<rest> The syntax for these files allows you to do this easily: the <rest> string
is always parsed and passed on to the objective function computation. The rest
may, for example, specify a reference runtime (or runlength, or whatever) for the
instance. This is very useful if the objective is to beat a competing algorithm,
or a previous version of the same algorithm (In my opinion, this objective is
used too much in computer science research, but since the demand is there I
provide the option). The single run objective speedup is currently the only ob-
jective function using this reference value, but you are welcome to implemente
additional objective functions (using paramils2.2-source.zip).

7 Running ParamILS for your own code

In order to employ ParamILS to optimize your own code, you need to provide
instance lists in the same format as in the above example, provide a file listing
your algorithm’s parameters in a predefined format, and match the required
input/output format. These two latter points are covered in this section.

7.1 Algorithm parameter file

I recommend you create a separate subdirectory for each algorithm you want
to optimize. The parameters of your algorithm need to be defined in a file e.g.
called params.txt.

This file consists of three parts: basic parameters, specification of conditional
parameters, and forbidden parameter combinations, where each of the the lat-
ter two can be empty. (Examples for such files can be found in the example
directories.) In the first part, each line lists one parameter, in curly parenthe-
ses the possible values considered, and in square parentheses the default value.
In the second part, conditional parameters that are only active when some
higher-level parameters take on certain values are specified as follows: condi-
tional param — higher level param in values for higher level param that allow
conditional param to be active, separated by commas. In the third part, for-
bidden combinations of parameters may be listed. These forbidden combinations
are listed one per line, in curly parentheses in the form: {param1=value1,param2=value2,...}.

5



7.2 Algorithm executable / wrapper

The algorithm executable must comply with the following input/output criteria.
It is called as:
<algo exectuable> <instance name> <instance-specific information> <cutoff time>
<cutoff length> <seed> <params>
and outputs (possibly amongst others) a line
Result for ParamILS: <solved>, <runtime>, <runlength>, <best sol>,
<seed>
containing information about the algorithm execution.

The part <instance-specific information> is a string in double quotes
containing exactly the <rest> string for the current instance that was discussed
in Section 6. Thus, for example, when no additional instance information is
provided for an instance in the instance file/instance seed file, this part is the
empty string: ””.

As for the output, <solved> can be either of the strings “SAT”, “UNSAT”,
or “TIMEOUT”; <best sol> is the best solution found (for SAT, the lowest
number of unsatisfied clauses), and the other fields should be self-explanatory.
It is important to output a value for each of these fields, even if they don’t
make sense for your algorithm (just output e.g. -1 in that case; for the seed,
please output the value that is passed as an input – everything else will lead
to an error). If you don’t want to change your algorithm output, you can
write a simple wrapper around it; I did this for the SAPS example above. In
fact, a wrapper could reuse most parts of that SAPS wrapper. If you want to
write a simple ruby wrapper around your algorithm executable, have a look at
saps wrapper.rb in directory example saps. Note that this wrapper by no
means needs to be written in Ruby – this is just the scripting language I am
most comfortable with. In fact, you do not require a Ruby installation at all to
run ParamILS when you use the Linux executable discussed above.

References
[1] F. Hutter. Stochastic local search for solving the most probable explanation problem in

Bayesian networks. Master’s thesis, Department of Computer Science, Darmstadt Univer-
sity of Technology, Darmstadt, Germany, September 2004.

[2] F. Hutter, D. Babić, H. H. Hoos, and A. J. Hu. Boosting verification by automatic tuning
of decision procedures. In Formal Methods in Computer Aided Design (FMCAD’07),
2007. To appear.

[3] F. Hutter, H. H. Hoos, and T. Stützle. Automatic algorithm configuration based on local
search. In Proc. of the Twenty-Second Conference on Artifical Intelligence (AAAI ’07),
pages 1152–1157, 2007.

[4] F. Hutter, D. A. D. Tompkins, and H. H. Hoos. Scaling and probabilistic smoothing:
Efficient dynamic local search for SAT. In Proc. of CP-02, pages 233–248, 2002.

[5] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards a universal test suite for com-
binatorial auction algorithms. In ACM Conference on Electronic Commerce (EC-00),
2000.

6


