Quick start guide for ParamILS

Frank Hutter
Department of Computer Science

University of British Columbia
Vancouver, BC V6T 174, Canada. hutter@cs.ubc.ca

May 22, 2007

1 Introduction

ParamlILS is a tool for parameter optimization. It works for any parameterized
algorithm whose parameters can be discretized. ParamILS searches through the
space of possible parameter configurations, evaluating configurations by running
the algorithm to be optimized on a set of benchmark instances.

Users provide

e a parametric algorithm A4 (executable to be called from the command
line),

e all parameters and their possible values (parameters need to be config-
urable from the command line), and

e a set of benchmark problems, S.

Users can also choose from a multitude of optimization objectives, reaching
from minimizing average runtime to maximizing median approximation quali-
ties.

ParamlILS then executes algorithm A with different combinations of param-
eters on instances sampled from S, searching for the configuration that yields
overall best performance across the benchmark problems. For details, see Frank
Hutter, Holger Hoos, and Thomas Stitzle. Automatic Algorithm Configuration
based on Local Search. In Proceedings of the Twenty-Second Conference on Ar-
tificial Intelligence (AAAI-07). If you use ParamILS in your research, please
cite this article.

2 Download and Configuration

Download the file ParamILS.tar.bz2 from the ParamILS website, move it to a
new folder and extract (tar jxvf paramils.tar.bz2).

The version of ParamILS being distributed is a simple collection of Ruby
scripts (Ruby is a scripting language similar to Perl, but object-oriented and
a lot easier to read — Ruby can be freely downloaded for all platforms from
http://www.ruby-lang.org/en/, and there is also extensive documentation
available). The ParamlILS scripts are research code, not very clean and also
containing some dead code.

In order to help Ruby find the ParamILS scripts, you will need to edit the
environment variable RUBYLIB. For example, if you extracted ParamILS to
the folder /tools/paramils and you are running a csh shell, add the following
line to ./csh_init/cshre:

setenv RUBYLIB $HOME/tools/paramils

3 Running a simple example

The zip file contains two sample applications, in which the local search algorithm
SAPS is optimized for a quasigroup with holes instance, and for a small number
of morphed graph colouring instances.

Go to the directory example_saps and type
ruby ../param_ils_1 O_run.rb -algo "ruby saps_wrapper.rb" -numRun O
-instance_seed file QWH-single-instance/instance_seed _file 0.txt -db
0

This starts FocusedILS, one version of ParamILS, optimizing SAPS perfor-
mance for a single QWH instance. (You probably want to cancel this optimiza-
tion after a while by pressing CTRL-C.) The parameters in the above command
have the following meaning:

algo An executable of the algorithm to optimize (here a ruby script wrapping
the SAPS algorithm). The input/output specification for this executable
is given in Section 6.2.

instance_seed_file The name of the file containing seeds and instances to use
for the optimization. (In the terminology of our ParamILS paper, these
specify which samples of the cost distribution should be used — e.g., if
N = 100 the seeds and instances in the first 100 lines of this file will be
used. The same seeds and instances are used for evaluating each parameter
configuration.) The syntax of this file is defined in Section 5.1.

numRun enables multiple independent executions of the same optimization;
numRun is used to compute the internal seed used by ParamILS (ParamILS
is itself a randomized algorithm). In combination with instance_seed file,
using different values for numRun enables parallel optimizations of the same
algorithm with different seeds and different instances sampled from the
same benchmark set.

db For my own research, I use a MySQL database to store algorithm results,
such that I can quickly repeat previous runs of ParamlILS. However, for

most end users, this would be way too much overhead, so I do not support
this component. Thus, any settings other than -db 0 will result in an
error.

ParamILS writes output about its progress to stdout and also writes to two
files in the directory of the instance_seed_file, in the above case directory
QWH-single-instance/. These two files have quite long filenames, containing
information about the particular call of ParamILS. The file with -1log in its name
logs ParamILS behaviour, whereas the file with -traj only keeps track of its tra-
jectory, giving the best configuration found at each time, the so-called incumbent
configuration. Note that for FocusedILS, the quality of the incumbent solution
does not improve monotonically because the number of runs it is based on varies.
Solution quality starts at the worst possible value, 1000000000000000000. It
then typically quickly improves to a very low value because in the beginning
each evaluation is only based on a single algorithm execution (leading to ini-
tial over-tuning); as more runs become available the performance estimates get
more realistic. Detailed information about the incumbent configurations found
is written to the log file (the trajectory file is merely a summary file to track
progress).

In order to get reasonable performance estimates, ParamILS performs mul-
tiple runs for each configuration. These runs can differ in the input instance
and the algorithm seed. In this first example, there is only a single instance,
so the algorithm runs only differ in their random seeds. Conversely, for deter-
ministic algorithms, the runs only differ in their input instances (the seed for
deterministic algorithms should always be fixed to -1).

The file QWH-single-instance/instance_seed _file_0.txt contains the in-
formation which seeds and instances (only one in this example) should be used
for the optimization. Different input instances and seeds will lead to different
results, or the same final result being found faster or slower. If multiple CPUs
are available for the optimization, one can, e.g., execute
ruby ../param_ils_1_0_run.rb -algo "ruby saps_wrapper.rb" -numRun 1
-instance_seed file QWH-single-instance/instance_seed_file_1.txt -db
0
on another machine to perform a second, independent optimization — one exe-
cution may find good parameter settings much faster than the other, even if the
two will tend to find the same one in the limit of an infinite number of runs.
Different output files are used for different values of numRun.

4 Configurable parameters

There are a number of configurable parameters the user can set:

tunerTimeout The time after which the optimization is terminated.

maxEvals The number of algorithm executions after which the optimization
is terminated.

run_obj A scalar quantifying how “good” a single algorithm execution is, such
as its required runtime. Implemented examples for this include runtime,
runlength, approx (approximation quality, i.e., 1-(optimal quality di-
vided by found quality)), speedup (speedup over a reference runtime for
this instance — note that for this option the reference needs to be defined
in the instance_seed_file as covered in Section 5.1). Additional objec-
tives for single algorithm executions can be defined by modifying function
single_run_objective in file algo_specifics.rb.

overall obj While run_obj defines the objective function for a single algo-
rithm run, overall obj defines how those single objectives are combined
to reach a single scalar value to compare two parameter configurations.
Implemented examples include mean, median, q90 (the 90% quantile),
adj mean (a version of the mean accounting for unsuccesful runs: total
runtime divided by number of succesful runs), mean1000 (another version
of the mean accounting for unsuccessful runs: (total runtime of succesful
runs + 1000x runtime of unsuccesful runs) divided by number of runs —
this effetively maximizes the number of successful runs, breaking ties by
the runtime of successful runs; it is the criterion I use in most of my ex-
periments), and geomean (geometric mean, primarily used in combination
with run_obj=speedup. The empirical statistic of the cost distribution
(across multiple instances and seeds) to be minimized, such as the mean
(of the single run_objectives).

approach Use basic for BasicILLS and focused for FocusedILS.

N For BasicILS, N is the number of runs to perform to evaluate each param-
eter configuration. For FocusedILS, it is the maximal number of runs to
perform to evaluate a parameter configuration.

cutoff_time The time after which a single algorithm execution will be termi-
nated unsuccesfully. This is an important parameter: if choosen too high,
lots of time will be wasted with unsuccessful runs. If chosen too low the
optimization is biased to perform well on easy instances only.

cutoff_length The runlength after which a single algorithm execution will be
terminated unsuccesfully. This length can, e.g. be defined in flips for an
SLS algorithm or decisions for a tree search.

R ParamlILS internal parameter: The number of random configurations evalu-
ated at the start of ParamILS.

pertubation_strength_basic ParamILS internal parameter: The pertubation
strength of ParamILS.

pertubation_strength_scaling ParamlILS internal parameter: If set to 1, the
pertubation strength is the maximum of the basic pertubation strength
and the basic pertubation strength multiplied by the number of parameters
divided by 10.

p-_restart ParamILS internal parameter: The probability of restarting from a
random configuration at the end of an iteration of ParamlILS.

maxbonus ParamlILS internal parameter: The maximal number of bonus runs
in FocusedILS.

Each of these parametesr is set as —~param name param value. For example,
ruby ../param_ils_1 0_run.rb -algo "ruby saps_wrapper.rb" -numRun O
-instance_seed_file QWH-single-instance/instance_seed_file 0.txt -db
0 -approach basic -N 100 -run_obj runlength -overall obj mean
operates on the same instances as above, but applies BasicILS(100) to find the
parameter configuration with the lowest mean runlength.

5 Multiple instances and the instance_seed file

Let’s assume we want to optimize SAPS for satisfiable morphed graph colouring
instances based on small world graphs. 10 such instances are available in direc-
tory example_saps/SWGCP-satisfiable-instances. We will use 5 instances
for training and 5 for test of the learned parameter settings (note that 5 in-
stances for training is much too low in practice, I just didn’t want to include
hundreds of instances in the distribution).

5.1 The instance_seed_file

The instance_seed_file defines which samples of the cost distribution to use
for the optimization. One sample is defined in each line of the file, in the form
seed filename of_instance optimal_solution_quality. Omnly some objec-
tive functions use optimal_solution_quality, but it has to be defined has to
be defined, at least to a dummy numerical value; for SAT, just use 0 (the op-
timal solution has 0 clauses unsatisfied). Each line can also contain a fourth
value, namely a reference runtime (or runlength, or whatever) for the instance.
This is very useful if the objective is to beat a competing algorithm, or a pre-
vious version of the same algorithm (In my opinion, this objective is used way
too much in computer science research, but since the demand is there I provide
the option). The single run objective speedup is currently the only objective
function using this reference value, but as mentioned above, you are welcome
to implemente additional objective functions.

5.2 Creating instance_seed files

In order to ease the generation of instance_seed files, I provide a simple
script, create-instance-seeds-files.rb. Given a file listing names of in-
stances (complete absolute or relative path), this performs a simple stratified
sampling of instances, i.e. it never picks an instance twice before all the instances
have been picked at least once. (Stratified sampling is a lot like standard uniform
sampling but leads to lower variance.) If you don’t want stratified sampling,

call it with -stratified O; if you have a deterministic algorithm, call it with
—-deterministic 1 and it will use a constant seed -1.

Let’s build 10 training instance_seed_files for parallel optimization on
multiple machines by running the following command from directory example_saps:
ruby ../create-instance-seeds-files.rb -instanceFile SWGCP-5-train-instances.txt
-numRepetitions 10.
This creates a new subdirectory SWGCP-5-train-instances-strat containing
10 instance lists. Let’s also create one instance_seed _file for testing:
ruby ../create-instance-seeds-files.rb -instanceFile SWGCP-5-test-instances.txt
-numRepetitions 1.

5.3 A complete optimization run

Now let’s do a short complete optimization run for SAPS on SWGCP. Call
ruby ../param_ils_1 O_run.rb -algo "ruby saps_wrapper.rb" -numRun O
-instance_seed file SWGCP-5-train-instances-strat/instance_seed_file 0.txt
-test-instance_seed_file SWGCP-5-test-instances-strat/instance_seed_file 0.txt
-db 0 -overall_obj median -cutoff_time 1 -tunerTimeout 100

This will run an optimization run for 100 seconds, cutting off each single
algorithm run if unsuccesful in the first second (this is very aggressive since I
want this example to run quickly ;-). At the end of the 100 seconds, validation
runs are performed on the test set, completing the execution of ParamlILS.

6 Running ParamlILS for your own code

In order to employ ParamILS to optimize your own code, you need to provide
instance lists in the same format as in the above example, provide a file listing
your algorithm’s parameters in a predefined format, and match the required
input/output format. These two latter points are covered in this section.

6.1 Algorithm parameter file

I recommend you create a separate subdirectory for each algorithm you want to
optimize. The parameters of your algorithm need to be defined in a file called
params.txt.

This file consists of three parts: basic parameters, specification of condi-
tional parameters, and forbidden parameter combinations, where each of the
the latter two can be empty. Examples for such files can be found in directory
example_params/.

In the first part, each line lists one parameter, in curly parentheses the
possible values considered, and in square parentheses the default value.

In the second part, conditional parameters that are only active when some
higher-level parameters take on certain values are specified as follows: condi-

tional_param — higher_level param in values for higher_level_param that allow
conditional_param to be active, separated by commas.

In the third part, forbidden combinations of parameters may be listed. These
forbidden combinations are listed one per line, in curly parentheses in the form:
{paraml=valuel,param2=value?2,...}.

6.2 Algorithm executable / wrapper

The algorithm executable must comply with the following input/output criteria.
It is called as:

algo_exectuable instance_name run_obj cutoff_time cutoff_length seed
params

and outputs (possibly amongst others) a line

Result for ParamILS: solved, runtime, runlength, best_sol, seed
containing information about the algorithm execution. solved can be either
SAT, UNSAT, or TIMEOUT; best_sol is the best solution found (for SAT,
the lowest number of unsatisfied clauses), and the other fields should be self-
explanatory. It is important to output a value for each of these fields, even if
they don’t make sense for your algorithm (just output e.g. -1 in that case). If
you don’t want to change your algorithm output, you can write a simple wrap-
per around it; I did this for the SAPS example above. In fact, a wrapper could
reuse most parts of that SAPS wrapper. If you want to write a simple ruby
wrapper around your algorithm executable, have a look at saps_wrapper.rb in
directory example_saps.

