
Golden Parameter Search
Exploiting Structure toQuickly Configure Parameters in Parallel

Yasha Pushak
Department of Computer Science
The University of British Columbia

Vancouver, Canada
ypushak@cs.ubc.ca

Holger H. Hoos
LIACS, Universiteit Leiden
Leiden, The Netherlands

hh@liacs.nl

ABSTRACT
Automated algorithm configuration procedures such as SMAC,
GGA++ and irace can often find parameter configurations that sub-
stantially improve the performance of state-of-the-art algorithms
for difficult problems – e.g., a three-fold speedup in the running
time required by EAX, a genetic algorithm, to find optimal solu-
tions to a set of widely studied TSP instances. However, it is usually
recommended to provide these methods with running time budgets
of one or two days of wall-clock time as well as dozens of CPU
cores. Most general-purpose algorithm configuration methods are
based on powerful meta-heuristics that are designed for challenging
and complex search landscapes; however, recent work has shown
that many algorithms appear to have parameter configuration land-
scapes with a relatively simple structure. We introduce the golden
parameter search (GPS) algorithm, an automatic configuration pro-
cedure designed to exploit this structure while optimizing each
parameter semi-independently in parallel. We compare GPS to sev-
eral state-of-the-art algorithm configurators and show that it often
finds similar or better parameter configurations using a fraction
of the computing time budget across a broad range of scenarios
spanning TSP, SAT and MIP.
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1 INTRODUCTION
Automated algorithm configuration procedures seek to find pa-
rameter settings that optimize the performance of an algorithm
on a particular distribution of problem instances. Several exist-
ing state-of-the-art methods have been shown to obtain substan-
tial speedups over default parameter settings (see, e.g., Ansótegui
et al. [1, 2], Balaprakash et al. [3], Cáceres et al. [8], Hutter et al.
[13, 16, 17], López-Ibáñez et al. [21]). However, it is typically rec-
ommended to provide algorithm configuration procedures with
time budgets of one or two wall-clock days [18] and dozens of CPU
cores. Many prominent algorithm configuration procedures are
based on powerful meta-heuristics, e.g., ParamILS [16], an iterated
local search procedure; GGA[2], a gender-based genetic algorithm;
or SMAC [13], a Bayesian optimization procedure. However, we
recently showed that many prominent algorithms appear to have
much simpler configuration landscapes than suggested by the use
of these sophisticated methods [24]. In particular, all but one of the
parameters we studied appeared to have uni-modal responses when
varied individually. We introduce the golden parameter search al-
gorithm (GPS), which is designed to exploit this recent discovery.
GPS combines (and in some cases improves upon) several of the
essential ingredients of existing algorithm configurators, such as
intensification mechanisms [15], adaptive capping [8, 16] and rac-
ing procedures [6, 26], with a novel, parallel version of golden
section search [19], a simple bracketing procedure with optimal
performance for one-dimensional uni-modal functions [23].

We demonstrate that GPS is often able to find better configu-
rations when provided with smaller running time budgets than
several other state-of-the-art algorithm configuration procedures
(see Section 5), even though it is based on two strong assumptions:
First, that numerical parameters are uni-modal, and second, that
most parameters do not strongly interact and can therefore be opti-
mized semi-independently in parallel. After formally defining the
algorithm configuration problem and introducing some notation
(Section 2), we introduce GPS (Section 3). We describe how we
evaluated GPS (Section 4) and report the results (Section 5). Finally,
after discussing related work (Section 6), we provide some conclud-
ing remarks and briefly outline possible future improvements to
GPS (Section 7).

2 PRELIMINARIES
Formally, let P be the set of configurable parameters for target
algorithm A and letmI be the performance metric for which we
wish to optimize A on a set I of instances; we will writem rather
thenmI in some cases where I is clear in a given context. Let p ∈ P
be a parameter with values v ∈ Vp . We denote by c = (v1, ...,vn ) ∈
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C ⊆ Vp1×...×Vpn a configuration for algorithmA. The goal is to find
c∗ ∈ C such thatmI (c

∗) ≤ mI (c) for all c ∈ C . Furthermore, we will
use the following notation related to configurations and parameter
settings: c[p] denotes the value of parameter p in configuration c;
c[p] := v modifies c by setting parameter p to value v; and c |p=v
denotes configuration c with parameter p (temporarily) set to v .

3 GOLDEN PARAMETER SEARCH
GPS conducts an efficient search process on each parameter semi-
independently. It begins with a bracket Bp for each parameterp ∈ P ,
where a bracket corresponds to a set of parameter values believed
to contain the optimum parameter value. Each bracket is evaluated
in parallel and shrunk around the optimum value. A bracket may be
expanded if there is evidence that it no longer contains the optimum
(due to, e.g., parameter interactions). For numerical parameters, this
search procedure is based on the golden section search algorithm [19],
which has the optimal worst-case bound for one dimensional, uni-
modal functions [23]. To save on computational resources, GPS
uses a racing procedure based on a permutation test. Once a better
value for a parameter is found, the search procedure for each of
the other parameters is updated to use this value. Since parameter
interactions may cause old target algorithm runs to become stale,
these old runs are slowly forgotten (down-weighted), and then
eventually re-run. When GPS terminates, the incumbents for each
parameter value are returned as the final incumbent configuration.

Many algorithms contain conditional parameters, whose values
are only used when their “parent” parameters are set to certain
values. GPS optimizes the values of all such child parameters in
parallel by appropriately modifying their ancestors’ parameter val-
ues to enable the child parameters when they are being evaluated.
This avoids incorrectly discarding parent parameter values because
their children were sub-optimally configured.

To avoid wasting time evaluating poor configurations on a large
number of instances, GPS uses an intensificationmechanism that de-
termines how many runs are performed for each value, and slowly
introduces more instances into the set I ′ ⊆ I used to evaluate
parameter values. A crucial component of many algorithm configu-
ration procedures are capping mechanisms [8, 16], which limit the
running time cutoffs for each target algorithm run. GPS employs a
novel capping mechanism that avoids being overly aggressive.

The primary bottleneck in algorithm configuration is running
many configurations on sets of problem instances; therefore, GPS
uses a master-worker process design, whereby the master process
loops through each parameter p ∈ P to check for newly completed
target algorithm runs, updates the bracket Bp and incumbent value
c∗[p], and then queues new runs. We show high-level pseudo-code
for the master process in Algorithm 1. The worker processes repeat-
edly query a queue in a database to obtain new runs to perform.
GPS queues an exponentially increasing number of instances on
which each parameter will be evaluated each time new instances
are queued for a given parameter. For some highly-parameterized
algorithms, only a small fraction of parameters affect the perfor-
mance of the algorithm [10, 24]. GPS therefore uses a multi-armed
bandit procedure to prioritize parameters believed to be important.

For some scenarios, GPS may be unable to keep the target algo-
rithm run queue sufficiently populated. Hence, GPS dynamically

adjusts an instance increment parameter, instIncr , such that the
intensification and queuing mechanisms operate on batches of
instIncr instances (target algorithm runs).

Algorithm 1 The main algorithm for Golden Parameter Search.
1: input
2: A, the algorithm to be optimized
3: I , the training instance set
4: m, the metric with respect to which A is optimized
5: P , the set of configurable parameters of A
6: C , the configuration space (ranges and constraints)
7: c0, the default configuration
8: numInitInst , an integer in [1,∞) (default: 1)
9: decayRate , a real number in [0,1] (default: 0.2)
10: α , a real number in (0, 1) (default: 0.05)
11: instIncr , a positive Fibonacci number (default: 1).
12: output
13: c∗, the best configuration found so far
14: procedure GPS
15: # Initialization
16: Initialize the incumbent c∗ := c0
17: for each parameter p ∈ P , do
18: Initialize a bracket Bp
19: Initialize Ip with numInitInst random instances
20: Queue a run for the default value c0[p]
21: Initialize empty arrays R and Q
22: # Main Procedure
23: while budget not exhausted, do
24: # See Section 3.9 for the bandit queue
25: Sample a parameter p ∈ P using the bandit queue
26: # R and Q are used to update the instIncr to help
27: # make use of all workers (See Section 3.10)
28: Append values to R and Q
29: if sufficient time has elapsed, then
30: Update instIncr , if needed
31: Re-initialize R and Q as empty arrays
32: # Compare performances (see Section 3.1)
33: for each pair v1,v2 ∈ Bp , do
34: Perform permutation test with significance level α
35: # Incumbent update (see Section 3.6)
36: if there exists v such thatm(c∗ |p=v ) ≺α m(c∗), then
37: Update the incumbent c∗[p] := v
38: # Bracket Update (see Section 3.2)
39: if there is sufficient evidence for improvement, then
40: Expand/shrink the bracket, Bp
41: # Intensification (see Section 3.8)
42: Add instIncr random instances to Ip
43: else if each v ∈ Bp has been run on each i ∈ Ip , then
44: Add instIncr random instances to Ip
45: Append values to R and Q
46: # Offload tasks to the workers (see Section 3.8)
47: Queue new target algorithm runs as needed
48: return c∗
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3.1 Test for Significance (Permutation Test)
Algorithm performance measures are typically noisy, randomized
objective functions [15, 24]. Therefore, a core component of GPS is
a permutation test, which is used to determine, in a distribution-free
way, whether or not there is sufficient evidence at a given signifi-
cance level α to conclude that one parameter value is worse than
another. Letm(c∗ |p=v1 ) ≺α m(c∗ |p=v2 ) denote a significant differ-
ence, letm(c∗ |p=v1 ) ≈α m(c∗ |p=v2 ) denote a statistical tie, and let
m(c∗ |p=v1 ) ⪯α m(c∗ |p=v2 ) denote thatm(c∗ |p=v1 ) ≺α m(c∗ |p=v2 )

orm(c∗ |p=v1 ) ≈α m(c∗ |p=v2 ). Note thatm(c∗ |p=v ) is an estimate of
the performance on a subset of I . If the intersection of completed
runs (technically: run equivalents – see Section 3.4) form(c∗ |p=v1 )

andm(c∗ |p=v2 ) is less than numInitInst , we skip the test and record
m(c∗ |p=v1 ) ≈α m(c∗ |p=v2 ).

3.2 Expanding/Shrinking the Bracket
For a parameter p ∈ P , the bracket Bp is simply a set of values that
are believed to contain or bound the optimal value for p.

Real-Valued Parameters. For real-valued parameters, the bracket
updating procedure is inspired by the golden section search algo-
rithm [19], which provides optimal worst-case performance for one-
dimensional, uni-modal functions (an assumption which we assume
is true for most algorithms’ parameters [24]). The bracket contains
two end pointsva andvb (believed to bound the optimal value) and
two interior points vc and vd , such that va < vc < vd < vb and
vb−va
vd−va

=
vb−va
vb−vc

=
vd−va
vc−va =

vb−vc
vb−vd

=
√
5+1
2 ≡ ϕ, the golden ratio.

Both an expand and shrink operation corresponds to replacing one
parameter value in the set {va ,vb ,vc ,vd } with a new value. For
example, we expand the bracket in the direction ofva if we observe
m(c∗ |p=va ) ≺α m(c∗ |p=vc ) ⪯α m(c∗ |p=vd ) ⪯α m(c∗ |p=vb ), where
an expand operation corresponds to updatingvd := vc andvc := va
followed by va := vc · (ϕ + 1) − vd · ϕ. The value vb remains un-
changed. Similarly, we shrink the bracket around vc if we observe
m(c∗ |p=va ) ⪰α m(c∗ |p=vc ) ≺α m(c∗ |p=vd ) ⪯α m(c∗ |p=vb ), where
a shrink operation corresponds to updating vb := vd and vd := vc
followed by vc := vb −

vb−va
ϕ . Note that GPS does not require that

parameter values stay within the maximum and minimum values
specified in the parameter configuration space file. While this may
lead GPS to evaluate configurations that cause the algorithm to
crash, it also allows GPS to recover from situations where the user
chose a poor maximum or minimum value.

Integer-Valued Parameters. We use the same procedure as for
real-valued parameters; however, parameter values are rounded
to the nearest integer value not already contained in the bracket.
Technically, this is similar to the Fibonacci search algorithm [19]
with a custom bracket initialization strategy (see Section 3.3).

Categorical Parameters. The bracket Bp may contain any subset
of the parameter values available for p. When a bracket is shrunk,
a value is simply removed from the set. We perform this update
as soon as we have seen sufficient evidence that one value vbad ∈

Bp performs worse than the current incumbent (i.e., m(c∗) ≺α
m(c∗ |p=vbad )). Parameter values may be re-added to the bracket
if we lose confidence in the target algorithm runs upon which we
based this decision due to parameter interactions (see Section 3.4).

3.3 Bracket Initialization
Real-Valued Parameters. Existing algorithm configurators [1, 8,

13, 16] require that a default, maximum and minimum value are
provided. Our bracket initialization procedure guarantees that at
least one ofva ,vb ,vc andvd are the default value, while making the
bracket as large as possible, without exceeding the maximum and
minimum range. We further require that the golden ratio properties
between va ,vb ,vc and vd are satisfied (see Section 3.2).

Integer-Valued Parameters. These brackets are initialized using
the same procedure as for real-valued parameters, with rounding.

Categorical Parameters. All parameter values are initially added
to the bracket, i.e. Bp = Vp .

3.4 Parameter Interactions (Decaying Memory)
Each time one of the concurrent search processes updates its in-
cumbent parameter value, the algorithm now contains stale per-
formance measurements for the other parameters. Instead of com-
pletely trusting or discarding this information, GPS uses a heuristic
to slowly forget stale information. For a target algorithm run per-
formed on instance i with configuration ci , we compute a weight,
wi ∈ [0, 1], which encodes the amount of trust we have in the
corresponding performance measurement. Let c∗ be the current
incumbent configuration and let ci be the configuration that was
the incumbent when the target algorithm run on i was performed.
Then,

wi = decayRate
∆(ci ,c∗), (1)

where ∆(ci , c∗) denotes the difference between the previous incum-
bent ci and the current incumbent c∗, and decayRate ∈ [0, 1] is
a parameter that controls how quickly information is forgotten.
Specifically,

∆(ci , c
∗) =

√ ∑
p∈Pi∩P ∗

δ (ci [p], c∗[p])2, (2)

where Pi and P∗ denote the set of active parameters (see Section 3.5)
in ci and c∗, respectively and where δ (ci [p], c∗[p]) measures the
difference in parameter values ci [p] and c∗[p]. For numerical pa-
rameters,

δ (ci [p], c
∗[p]) =

|ci [p] − c∗[p]|

|vmax −vmin |
, (3)

where vmax and vmin correspond to the maximum and minimum
values for parameter p, respectively. For categorical parameters,

δ (ci [p], c
∗[p]) =

{
0 if ci [p] = c∗[p],
1 otherwise.

(4)

When performing permutation tests, we use multiplication to
combine the weightswi andw ′

i for the target algorithm runs that
approximately measurem {i }(c

∗ |p=v ) andm {i }(c
∗ |p=v ′); this intu-

itively corresponds to adding the uncertainties associated with the
respective performance estimates.

Throughout the following, we refer to the number of run equiv-
alents performed for a particular parameter value, which is simply
the sum of the weights for the target algorithm runs performed
for that parameter value. Intuitively, this approximates the total
number of reliable target algorithm runs for that parameter value.
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3.5 Evaluating Conditional Parameters
Some parameters, known as conditional (or child) parameters, are
only active if their parent parameter is set to a certain value or
set of values. With GPS, we only allow parameters that have a
single parent value that activates them (this only affected one of
the algorithms we studied, see Section 4). To optimize a conditional
parameter pc , with parent (or ancestor) pa , the value of pa must be
set to a specific valuevon. If c∗[pa ] , von, then GPSwill temporarily
set c∗[pa ] to von when evaluating values of pc . An improvement
to c∗[pc ] will not immediately improvem(c∗) when c∗[pa ] , von.
However, it will decrease the confidence in the old target algorithm
runs form(c∗ |pa=von ) (see Section 3.4), which may eventually lead
to setting c∗[pa ] := von.

3.6 Updating the Incumbent
GPS uses a conservative incumbent updating procedure, whereby
an incumbent parameter value is only updated if it is believed it
improves the performance of the incumbent configuration. This
helps avoid over-fitting, losing confidence in old target algorithm
runs (see Section 3.4) and breaking things (on unseen instances) that
do not need fixing (on seen instances). GPS picks the incumbent
for each parameter using a 7-step process. Steps 1–2 make sure
that each candidate has been run on a sufficient instance set and
3 checks to see if any challengers are better than the incumbent.
Steps 4–7 are a series of tie-breakers. The process begins with all of
the values in the bracket as candidates, and in each, a filter is used
to reject some of the candidates. Unless otherwise specified, if no
candidate remains at the end of a round, the previous incumbent is
returned, and if only one candidate remains, it becomes the new
incumbent. Specifically, the steps are as follows:

(1) Admit candidates v with ≥ numInitInst run equivalents.
(2) Admit candidates v that have been run on a (non-strict)

super-set of the instances upon which the last incumbent
was run when it was chosen as the incumbent.

(3) Admit candidates v with statistically sufficient evidence of
improved performance compared to the previous incumbent,
according to a permutation test, i.e.,m(c∗ |p=v ) ≺α m(c∗).

(4) Admit candidates v that are not worse than any of the other
candidates according to the permutation test. If every can-
didate is eliminated (e.g., a triangle where m(c∗ |p=va ) ≺α
m(c∗ |p=vb ) ≺α m(c∗ |p=vc ) ≺α m(c∗ |p=va )), then skip this
filter.

(5) Admit candidates v with the best performancem(c∗ |p=v ).
(6) Admit candidates v with the most run equivalents.
(7) Select one of the remaining candidates uniformly at random.

3.7 “Adaptive” Adaptive Capping
An important component of many algorithm configurators, such as
SMAC [13], ParamILS [16] and irace [8], is a so-called “adaptive
capping mechanism” that selects running time cutoffs for individ-
ual target algorithm runs. This mechanism is designed to avoid
running a very poor configuration for a very long time on a single
instance. All three previously mentioned configurators use a simple
heuristic for their adaptive capping mechanism, which is based on
the performance of (one of) the best-known configuration(s) found
so far. This mechanism can be easily modified for use in GPS; e.g.,

ifm(·) = PAR10(·), then the adaptive cap is calculated as
AC = PAR10(I ∗∩Inew)∪{i′ }(c

∗) · (|I∗ ∩ Inew | + 1) · BM
− PAR10I ∗∩Inew (c

∗ |p=vnew ) · |I
∗ ∩ Inew |,

(5)

where |I∗ | and |Inew | denote the number of instances upon which
c∗ and c∗ |p=vnew have each been evaluated so far, respectively; BM
(the bound multiplier) is a constant (typically set to 2); and where
PAR10(·) denotes mean running time with censored runs replaced
by 10 times their running time cutoff.

Unfortunately, this is overly aggressive, which causes high-quality
challengers to be rejected before the permutation test used by GPS
(see Section 3.6). In fact, it often takes only a single unlucky target
algorithm run for a challenger to be prematurely rejected with
this cap. Since GPS eliminates entire regions of the configuration
space after observing a poorly performing parameter value, such a
mistake can lead to a very large performance penalty for GPS’s fi-
nal incumbent (preliminary experiments indicated that slow-down
factors of up to 10 were not uncommon). We therefore chose to
modify the capping mechanism to make it even more adaptive, by
using a bound multiplier that depends on |I∗ ∩ Inew |. Specifically,

BM(x) = max(exp(7.21 · x−0.63), 2). (6)

We chose this function for BM(x) by simulating the effects of vary-
ing x when comparing two hypothetical algorithm configurations
simulated using identical exponential distributions.

To incorporate the effects of the decaying memory (see Sec-
tion 3.4), everywhere in Equation 5 we use the number of run
equivalents instead of the size of the instance sets (where we multi-
ply the weights fromm(c∗) andm(c∗ |p=vnew ) to obtain a combined
level of trust, as for permutation tests).

Finally, as soon as a run with a parameter value has exhausted an
adaptive cap for a single instance, we stop evaluating that value on
new instances. Furthermore, for the purposes of the permutation
test (see Section 3.1), it is considered worse than all other parameter
values in its bracket which have not been capped.

3.8 Intensification & Queuing Runs
One of the most important components of algorithm configuration
procedures are intensification mechanisms [13, 15], which control
the number of target algorithm runs performed to evaluate each
candidate configuration. Poorly performing configurations can typ-
ically be eliminated using only a small number of runs, whereas
high-quality configurations require many more. It is also advanta-
geous to use only a small number of benchmark instances when
comparing configurations at early stages of the process (when the
goal is to quickly distinguish between good and very bad regions of
the configuration space), and to increase this number slowly as the
search progresses. This is especially important in a parallel setting,
where a large number of target algorithm runs could otherwise be
queued all at once for an extremely bad configuration.

GPS addresses this with a two-part intensification mechanism:
First, for each parameter p, GPS starts with a very small set of
numInitInst random instances, Ip . Each timeBp is updated, or when
each v ∈ Bp has been evaluated on each i ∈ Ip , the mechanism
adds one randomly chosen instance (without replacement) to Ip .
If there are no more new instances to add to Ip , then GPS starts
adding instances it has already used with new random seeds.
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The second component of the intensification mechanism is cap-
tured by how many target algorithm runs GPS queues to be per-
formed for each candidate. GPS only queues target algorithm runs
in powers of 2; that is, for parameter value v ∈ Bp , we find the
largest power q for which c∗ |p=v has been run on at least 2q in-
stances, and then we queue all of the first 2q+1 instances in Ip that
have not yet been queued. If an old target algorithm run has be-
come stale (w ≤ 0.05), then we also re-queue that run. GPS does not
queue any target algorithm runs for parameter values for which
there is sufficient information to reject those values as worse than
the current incumbent (unless it detects that the response for a
given parameter is not uni-modal, in which case it assumes that it
does not yet have enough data to correctly determine the ordering
of the values and continues to queue runs for all of them). Sets of
target algorithm runs are pushed into the queue in a random order.

3.9 Bandit Queue
Some evidence suggests that only a small fraction of parameters
for highly-parameterized algorithms affect the algorithm’s perfor-
mance [10, 24]. To avoid spending a large amount of time evaluating
parameters that are unimportant, GPS uses a multi-armed-bandit-
style mechanism to determine the order in which parameters are
considered for queuing runs. GPS approximates the relative impor-
tance of each parameter p by counting the number of times kp that
p has been updated in c∗. Since most parameters are unlikely to be
updated more than a small handful of times, we need a mechanism
that increases the probability of choosing a parameter very quickly
(e.g., exponentially). We therefore start with a set P ′ = P , and when
we are picking a new parameter to evaluate, we sample parameter
pnext with probability

Fib(kpnext )∑
p∈P ′ Fib(kpnext )

, (7)

where Fib(k) is the kth Fibonacci number. If we sample a parameter
that has not been updated, then we remove it from P ′ and pick
a new sample. Once a parameter has been picked that has been
updated, or once P ′ is empty, we reinitialize P ′ = P .

3.10 Instance Increment
When algorithm runs can be performed very quickly (e.g. ≤ 10
CPU seconds per run) or when there are lots of parallel resources
available, then GPS may be unable to keep the queue sufficiently
populated to keep all of the workers busy. To compensate, GPS
dynamically updates the value for an instance increment, instIncr .
This is amultiplier used tomake the operations in the intensification
mechanism (see Section 3.8) operate on batches of I instances.

To dynamically update instIncr , GPS periodically records the
number of worker processes, r , that are currently performing tar-
get algorithm runs and the number of tasks, q, that are waiting
in the queue. Let R and Q denote the sequences of these recently
recorded values. If median(Q) < max(R)

2 or median(Q) ≤ 4, then
instIncr is increased. If median(Q) ≥ 2 · max(R), then instIncr is
decreased. Otherwise, instIncr is left unchanged. To allow instIncr
to quickly respond to changes, the value is always set to a posi-
tive Fibonacci number. We use max(R) to approximate the number

of available workers, since GPS can operate with a dynamically
changing amount of parallel resources.

3.11 The Worker Process
The worker processes query a database for new target algorithm
runs (i.e., a parameter p, a value v and an instance i). For each
run, the worker calculates an adaptive cap (see Section 3.7), creates
a temporary entry in the database that is set to expire in twice
that run’s cutoff time, and then begins the target algorithm run to
obtainm {i }(c

∗ |p=v ). Once the run is complete, the worker pushes
the result to the database and removes the temporary entry. The
temporary entry is a back-up designed to prevent GPS from stalling
in the event of an unexpected crash occurring for a worker process.
Once the temporary entry expires, if the result has not been pushed
to the database, the master process will re-queue the run.

4 EXPERIMENTAL SETUP
We compared GPS to the latest versions of three other state-of-
the-art general-purpose algorithm configurators: SMAC 3.01 [13],
GGA++ [1] and irace 3.3 [8]. Due to time constraints, we did
not compare GPS to earlier versions of these configurators, nor to
ParamILS, since the authors of ParamILS and SMAC recommend to
use SMAC, unless there is sufficient budget available to use both.2
GPS, irace and GGA++ all support parallel execution; for each run
of these configurators we used 8 CPU cores. Unfortunately, to the
best of our knowledge, the parallel version of SMAC [14] was never
made publicly available; however, the quality of the configurations
found between independent runs of SMAC can vary substantially,
and it is typically recommended to exploit this via multiple indepen-
dent parallel runs of SMAC [14, 26]. The so-called standard protocol
is to evaluate all of the final incumbents on the entire training set
and return the one with the best performance [26]. We applied
SMAC in precisely this way by performing 8 independent runs of
SMAC per scenario.

However, one may wonder whether the quality of the configura-
tions obtained by GPS also varies substantially, and if the standard
protocol might also benefit GPS. To answer this question, we per-
formed 5 independent runs of each parallel algorithm configurator
(and 40 independent runs of SMAC) for each scenario. From this
single set of results, we then performed an analysis that simulates
two experiments: One small parallel budget experiment, where each
parallel configurator was run only once and SMAC was run 8 times
in parallel; and a second large parallel budget experiment, where
each parallel configurator was run 3 times independently in par-
allel (using a total of 24 cores each) and SMAC was run 24 times
in parallel. We then used bootstrap sub-sampling to simulate 1 001
independent trials of each type of experiment to obtain median
speedups and 95% bootstrap percentile confidence intervals.

We evaluated the performance of the configuration procedures
on six ACLib [18] scenarios, which we summarize in Table 1. Four of
these scenarios (LKH [11] and EAX [22] on TSP RUE 1000-3000 in-
stances, CaDiCaL [5] on circuit fuzz SAT instances and CPLEX [9]
on Regions200 MIP instances) were chosen, because they were

1We chose to use SMAC 3 after checking with the authors and in light of the fact that
all recent publications regarding SMAC also use SMAC 3.
2Personal communication with the authors.
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Table 1: The ACLib benchmark scenarios studied.

Problem Algorithm Instance Set # of Params.
Num. Cat.

TSP LKH TSP RUE 1000-3000 12 11
EAX 2 0

SAT CaDiCaL Circuit Fuzz 40 22
probSAT 7SAT90 4 5

MIP CPLEX Regions200 22 63RCW2

among the scenarios that we identified as having “interesting” pa-
rameter responses in the landscape analysis [24] that inspired GPS.
However, since we found that the EAX scenario had only a very
minor possible speedup available over the default configuration,
we modified the default parameter values to make this scenario
more interesting. In particular, we changed the default for the pop-
ulation size from 100 to 418 and the number of children from 30 to
36. In this landscape work we also found that one of the parame-
ters for LKH, the number of backbone trials, had a non-unimodal
response; we hypothesize that this was because the value 0 had
a special meaning (that a particular heuristic should be disabled).
Between the scenarios, there were 10 other parameters (1 other
for LKH, 9 for CPLEX) where the algorithm’s documentation indi-
cated that a similar special meaning was encoded in a particular
value of a numerical parameter. GPS makes strong assumptions
about the structure of algorithm configuration landscapes, there-
fore, when using GPS, parameters should not be encoded in this
way. We therefore modified these two scenarios to introduce addi-
tional categorical parent parameters that control whether or not
the special value for the numerical child parameter is used, or if
the child parameter is otherwise used as normal. Finally, since GPS
is also only able to handle conditional parameters that are active
when their parents take on a single value (rather than a set or range
of values), we further modified two of the parameters of CPLEX
by creating multiple copies of the child parameter (this causes the
number of parameters for LKH and CPLEX in Table 1 to differ from
the respective AClib scenarios [18]).

To compare the performance of each configurator for different
overall configuration budgets, we performed the previously de-
scribed analysis for the anytime incumbent configurations after 30
minutes, 1 hour, 3 hours, 6 hours, 12 hours and 24 hours. We note
that for most of these scenarios, ACLib recommends to use 48 hours
for each configurator run; however, we shortened this to 24 hours
to keep the total CPU time required for our experiments within
our available budget. Even with this reduced budget, for all but the
final scenario (CPLEX on RCW2), at least one of the configurators
was still able to find a configuration with a significant speedup
over the default with high probability. However, for CPLEX on
RCW2, only SMAC and GPS returned configurations better than
the default, and most of these were found within ca. 3 minutes, i.e.,
when the configurators had not yet evaluated the configurations
on enough instances to have any kind of statistical confidence of
an improvement. Since this scenario was more challenging than

the others, we turned it into a stretch test for GPS by increasing
the total degree of parallelism from 8 cores per run to 32 cores per
run for the parallel configurators (and increased the total SMAC
runs from 40 to 160). In the following, we report the results for this
more challenging setting.

All experiments were run on a cluster of 20 nodes, each equipped
with 32 2.10 GHz Intel Xeon E5-2683 v4 CPUs with 40 960 KB cache
and 96 GB RAM each, running openSUSE Leap 42.1 (x86_64). We
allotted 3 GB of RAM to each core used by an algorithm configurator,
and further restricted each target algorithm run to a maximum of 3
GB of RAM.Wemeasured the performance of each target algorithm
using penalized average running time 10 (PAR10), where censored
runs (runs unable to complete within their running time cutoff or
within the 3 GB RAM limit) are replaced with 10 times their running
time cutoff. When evaluating the configurations on the test set, we
ran each configuration on each instance in random order, to ensure
that background environmental noise effects (e.g., cache effects or
dynamic CPU clock speed changes, which are designed to avoid
over-heating) were independently and identically distributed.

5 RESULTS
We encountered varying degrees of difficulty with each of the con-
figurators we used as baselines. For SMAC, 2.5% of the runs we
performed terminated early after raising an uncaught exception.
We treated these runs as if the final incumbent found remained
unchanged for all time budgets after the runs crashed. For all of
GGA++’s runs on the CPLEX scenarios, we provided 52 hour job
allocations on our cluster (which should provide ample slack for
the 24-hour configuration budget). However, GGA++ was unable to
complete any of these runs within the 52 hours. Since GGA++ does
not output any information about its anytime configurations until
the very end of its runs, we were unable evaluate its performance
on these scenarios. We suspect GGA++ did not respect its configu-
ration budgets on these scenarios because the running time cutoffs
for CPLEX are 10 000 seconds, which is much larger than all the
other scenarios and it does not use adaptive capping or intensifica-
tion mechanisms. When we gave irace a wall-clock budget of 24
hours we quickly observed that it used only a small fraction of the
available budget before terminating. Initially, irace estimates the
performance of the default configuration and uses this to convert
the remaining time budget into a target algorithm run budget, a
number which it consistently under-estimated. Since we still had
most of irace’s computational budget remaining, we repeated all
of these runs with a configuration budget of 48 hours of wall-clock
time and report the anytime results for these instead. Nevertheless,
80% of irace’s runs terminated after using between 25-75% of the
available budget (and the rest used less – as little as 3%); however,
we had exhausted the computational resources we had available to
evaluate irace, therefore, we treat these runs similarly to SMAC’s
crashed runs.

In Table 2 we show selected results using the large parallel bud-
get analysis method as described in Section 4. In particular, we
compare the 24 hour configuration budget results (which is on the
small end of a typical algorithm configuration budget) with the
6 hour budget results (a time for which the best configurator for
each scenario has typically found a high-quality solution). While



Golden Parameter Search GECCO ’20, July 8–12, 2020, Cancún, Mexico

Table 2: Large parallel budget analysis speedups (medians and 95% confidence intervals). Median speedups not worse than the
best speedup for each time budget according to a permutation test with a 5% signifance level are shown in boldface.

TSP SAT MIP

LKH EAX CaDiCaL probSAT CPLEX
TSP RUE 1000-3000 Circuit Fuzz 7SAT90 Regions200 RCW2

Configuration budget (excluding validation) = 6.0 wall-clock hours

GPS 1.20 [0.95, 1.20] 3.05 [2.82, 3.21] 1.41 [1.12, 1.41] 3.76 [1.93, 4.73] 1.16 [1.00, 1.31] 1.01 [1.00, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.62 [2.53, 3.55] 1.25 [1.09, 1.36] 4.90 [4.28, 13.41] 0.96 [0.77, 1.18] 1.26 [1.22, 1.27]
irace3.3 0.94 [0.92, 1.11] 2.48 [1.85, 3.38] 0.87 [0.83, 0.95] 4.90 [4.90, 13.06] 0.01 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 0.66 [0.58, 1.05] 0.61 [0.61, 0.61] 0.92 [0.89, 1.02] 7.14 [5.38, 8.58] – –

Configuration budget (excluding validation) = 24.0 wall-clock hours

GPS 1.21 [1.18, 1.28] 3.22 [2.36, 3.46] 1.44 [1.16, 1.55] 3.03 [1.93, 5.52] 0.68 [0.01, 1.12] 1.41 [1.09, 1.41]
SMAC3.0 1.00 [1.00, 1.00] 2.73 [2.62, 3.08] 1.36 [1.16, 1.60] 5.76 [4.28, 13.41] 1.18 [0.77, 1.23] 1.26 [1.22, 1.27]
irace3.3 1.03 [0.79, 1.14] 2.72 [2.33, 3.00] 0.90 [0.84, 1.01] 5.86 [4.97, 12.92] 0.01 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 1.02 [0.77, 1.11] 0.61 [0.61, 0.61] 1.02 [0.84, 1.02] 8.87 [6.73, 8.89] – –

the absolute and relative performance of each configurator varies
a little between configuration budgets, the results presented here
nevertheless reflect the main trends for each scenario. The remain-
der of the results are available as supplementary material. We mark
the median speedups in boldface if they are not statistically worse
than the best speedup within each configuration budget according
to a permutation test with a 5% significance level.

When we compare the small parallel budget analysis results
(available in the supplementarymaterial) to the large parallel budget
analysis results, we can see that all procedures tend to perform
better using the large budget analysis and that GPS performs best
(relative to the other configurators) in the large budget results. We
therefore refer the reader to the supplementary material for the
complete results, and discuss the 6 and 24 hour large budget analysis
results in the remainder of this section.

Overall, we can see that GPS consistently obtained the greatest
median speedup for three of the five scenarios with 8 cores per
configurator run: LKH and EAX on TSP RUE 1000-3000 instances,
and CaDiCaL on circuit fuzz instances, with SMAC finding similar-
performing configurations for EAX at 6 hours and for CaDiCaL at
24 hours. The only 8 core scenario for which GPS did not perform
competitively with all (in fact any) of the other configurators was
probSAT on the 7SAT90 instance set. GPS did find configurations
with speedups greater than 3 for both time budgets; however, the
other procedures obtained even greater speedups. For CPLEX on
Regions200, GPS initially obtains the best speedup, but then suf-
fers from some performance degradation, so that SMAC ends up
winning for the 24-hour configuration budget.

For CPLEX on the RCW2 instance set (the stretch test, for which
we provided the parallel configurators with 32 cores per run instead
of 8), we see that SMAC initially finds the greatest speedup, but that
GPS’s median speedup eventually surpasses SMAC. Surprisingly,
we actually see that SMAC obtains exactly the same speedups for
all configuration budgets (see supplementary material). In fact, only
17.5% of the runs of SMAC updated the incumbent after the first
three minutes; however, 100% of the runs updated the incumbent
within the first three minutes. This indicates that SMAC may be

getting lucky by finding better-than-default configurations prior to
having any statistical confidence of their improvement. Therefore,
these improvements are likely due to the standard protocol when
applied to mostly-random configurations.

Overall, GPS appears to be the top-performing configuration
procedure, followed by SMAC. However, one advantage shared
by GPS, GGA++ and irace is that they are all able to make use
of parallel resources within individual configurator runs, whereas
SMAC must be run multiple times independently in parallel. The
time to validate all of SMAC’s configurations is sometimes very
large. The most extreme example is for the 6-hour configuration
budget for CPLEX on Regions200, where GPS required 1.64 hours
for validation and SMAC required 139.79 hours. While there are also
some less extreme examples – e.g., the 0.08 vs 0.63 hours required to
validate the 24-hour configuration budget runs on LKH – SMAC still
always required more validation time overall. This becomes even
more pronounced for scenarios with large and difficult instance
sets. An alternative is to perform fewer independent runs of SMAC;
this gives it less total parallel resources, but a fair chance during
validation. However, for challenging scenarios, this typically yields
worse performance for SMAC.

6 RELATEDWORK
Birattari et al. [6] proposed racing procedures for general purpose
algorithm configuration. The key idea is to begin with an initial
set of candidate configurations and then iteratively evaluate them
on new instances interleaved with statistical tests to determine
as quickly as possible when challengers can be discarded with
confidence. Specifically, Birattari et al. [6] recommended to use
the Friedman test. However, the initial version of F-Race is often
prohibitively expensive to apply in practice, since they began the
race by evaluating all possible configurations of an algorithm. A
family of methods known as iterated racing procedures overcomes
this limitation, whereby racing procedures are iteratively applied
to a set of randomly generated configurations. In these methods,
the winners of each race are used to bias the random sampling
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procedure towards high-quality regions of the configuration space.
Balaprakash et al. [3] introduce such a method for numerical param-
eters, which Birattari et al. [7] later extended to handle categorical
and conditional parameters. By their nature, racing procedures are
an embarrassingly parallel method. This fact was first exploited
in an implementation by López-Ibáñez et al. [21], which was later
improved to include an adaptive capping procedure [8] (the variant
we studied here). In a separate line of work, Styles and Hoos [25]
proposed a permutation test to determine the outcome of individual
races, arguing that the rank-based F-Test only indirectly optimizes
mean running time. It was this work that inspired the permutation
test used in GPS (see Sections 3.1, 3.2 and 3.6).

Bartz-Beielstein et al. [4] introduce using Bayesian Optimization
concepts for automated algorithm configuration. Hutter et al. [15]
argued that the large variance in the running time distributions of
many algorithms posed a unique challenge to algorithm configu-
ration procedures (a key insight that informed many components
crucial to the design of GPS, see, e.g., Sections 3.1, 3.7 and 3.8).
They proposed to address this in two ways: First, with a projected
process model that incorporated this uncertainty; and second, via
an intensification mechanism. However, all of this early work was
limited to optimizing only numerical parameters of algorithms ap-
plied to individual instances rather than instance sets. Hutter et al.
[13] later proposed a configuration procedure capable of working
with instance sets called SMAC, which uses a random forest model,
thereby extending the method to categorical parameters.

In a second line of work Hutter et al. [17] introduced ParamILS,
an iterated local search procedure for automated algorithm configu-
ration. ParamILS was later improved with a novel adaptive capping
mechanism [16]. However, since then SMAC has continued to be
refined [10, 12, 20] and is typically recommended as the method of
choice when choosing between the two3.

While neither SMAC nor ParamILS are parallel algorithms, it is
common practice to perform 10-25 independent runs of themethods
in parallel and then validate the resulting configurations on the
entire training set and return the best one (see, e.g., Styles et al.
[26]). However, a variant of SMAC was proposed by Hutter et al.
[14] that evaluated multiple candidate configurations in parallel.
Unfortunately, to the best of our knowledge this version of SMAC
has never been made publicly available and so we were only able
to compare GPS to SMAC when using the standard protocol with
multiple independent parallel runs of SMAC.

Another approach for automated algorithm configuration is the
use of a gender-based genetic algorithm, GGA, proposed by An-
sótegui et al. [2]. GGA applies a different selection pressure to each
gender of the population: For one gender only the top X% of the
population are kept, whereas the other gender is not subjected to
pressure and is instead used merely to store diversity in the popu-
lation. While this avoids the computation time needed to evaluate
half of the population, it is also a departure from classical gender-
based genetic algorithms where both populations are normally
evaluated according to a fitness criteria. Ansótegui et al. [1] later
propose a modified method, GGA++, which uses a tailor-purposed
random forest model trained on the competitive gender to pre-
dict the performance of the configurations in the non-competitive

3Personal communication with the authors.

gender. These predictions are then used to sample from the non-
competitive population when selecting mates. This random forest
model is also used when determining which genes to keep from
each parent when mating. Surprisingly, neither GGA nor GGA++
makes use of several of the crucial components commonly used by
state-of-the-art algorithm configurators, for example an adaptive
capping mechanism [8, 16], an intensification mechanism [15] or a
racing mechanism [6], which may explain why GGA++ performed
so poorly on the CPLEX scenarios (see Section 5). However, both
methods are implemented in such a way that the evaluation of
candidate configurations can be performed in parallel.

7 CONCLUSIONS AND FUTUREWORK
We introduced a powerful automated algorithm configurator, GPS,
designed to operate in parallel and exploit recent insights on al-
gorithm configuration landscapes [24]. GPS combines essential in-
gredients of state-of-the-art algorithm configuration procedures [8,
13, 16] with a simple one-dimensional bracketing procedure [19]
applied to each parameter semi-independently in parallel. Despite
strong assumptions made by GPS about algorithm configuration
landscapes – i.e., that parameter responses are uni-modal and that
most parameters do not strongly interact – GPS found the best
configurations in 5 out of 6 scenarios, often at a fraction of the
time budget required by other methods. For example, for CaDi-
CaL on the circuit fuzz SAT instance set, GPS achieved a median
speedup of 1.41 after a 6-wall-clock-hour configuration budget and
0.51 wall-clock hours for validation, compared to SMAC, which
obtained a speedup of 1.25 after a 6-wall-clock-hour configura-
tion budget and 4.79 wall-clock hours for validation. (Note that
SMAC actually obtained a slightly better speedup of 1.31 within a
1-hour configuration budget; this phenomenon might be caused by
SMAC’s incumbent updating procedure, which does not make use
of statistical tests for performance improvements.)

In two cases, GPS exhibited undesirable behaviour, i.e., prema-
ture stagnation for probSAT on the 7SAT90 instances, and returning
substantially worse configurations after more configuration time
for CPLEX on Regions200. We suspect that parameter interactions
may have caused this behaviour, since GPS can occasionally return
incumbents which have never been evaluated on any instances.
Increasing the decay rate and using the standard protocol can help
safeguard against such effects. Future work could combine multi-
ple independent parallel runs of GPS with a racing procedure that
evaluates the anytime incumbents of each GPS run as these runs
are performed. This could also be combined with a mechanism to
detect stagnation and initiate random restarts. We believe that this
could not only improve the performance of GPS, but also remove
the need for post-configuration validation. Future work should also
be done for solution quality optimization scenarios, in particular
from automated machine learning, and for configuration scenarios
involving substantially increased parallel computing resources. Fi-
nally, it may be advantageous to extend GPS to allow for both soft
and hard bounds on numerical parameter values, since exceeding
some bounds may lead GPS to finding incumbents that produce
incorrect output.
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