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1 Introduction
This is the automatically generated report on the empirical scaling of the running time of Lingeling
for solving the csmacdp0neg HWMCC08 circuit bounded model checking SAT instances.

2 Methodology
For our scaling analysis, we considered the following parametric models:

• Exp [a, b] (n) = a× bn (2-parameter Exp)

• Poly [a, b] (n) = a× nb (2-parameter Poly)

Note that the approach could be easily extended to other scaling models. For fitting parametric
scaling models to observed data, we used iteratively re-weighted linear least squres to perform quantile
regression. Since this method works best for linear models, we used log transformations to convert
non-linear models into linear models. This transformation biases the fitted models to more heavily
favour the smaller training instance sizes, so we used a heuristic error correction term to compensate.
Preliminary studies using this fitting method when applied to simulated running time datasets with
known scaling properties show that using the heuristic error correction term improves the quality of
the fitted models and allows the procedure to fit scaling models consistent with the true, underlying
scaling of the data.

The fitted models correspond to performance predictions for the empirical scaling of the median
of the distribution of running times. Since Lingeling is a randomized algorithm, we analyzed the
per-instance median of 10 independent runs for each instance. This means that the model predic-
tions correspond to medians of per-instance medians. Similarly, the running time statistics reported
throughout this report are statistics of per-instance medians. To assess the fit of a given scaling model
to observed data, we used the mean absolute error as a loss function.

Closely following [1], we computed 95.0% bootstrap confidence intervals for the performance pre-
dictions obtained from our scaling models, based on 51 bootstrap samples per instance set and 51
automatically fitted variants of each scaling model. To extend this idea, we calculated training and
challenge losses for each of the fitted models’ predictions and the corresponding bootstrap samples of
the observed data. We used these bootstrap sample losses to calculate median and 95% confidence
intervals of the support and challenge losses for each model. Since this analysis was performed on
per-instance medians, we also computed these statistics on nested, per-instance bootstrap samples, by
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n 221109 451076 681043
# instances 65.66 67.77 48.65

mean 17.99 57.15 151.4
Q(0.1) 12.11 34.48 97.23
Q(0.25) 14.06 41.24 111.5
median 16.89 54.75 135.7
Q(0.75) 20.53 68.99 177.9
Q(0.9) 26.52 87.85 208.7

Table 1: Details of the running time dataset used as support data for model fitting. The reported
statistics are of the per-instance median running times. The “# of instances” is the sum of the weights
of the instances used to calculate these statistics.

first computing medians for 21 bootstrap samples for each instance and then randomly selecting one
of the per-instance medians when needed.

We calculated the observed point estimates for the medians of the data by fitting a linear model
to local data with Guassian weights, and then recording the observed statistic as the prediction from
the linear model as the mid-point of the local data. In the following, we say that a scaling model
prediction is in-consistent with observed data if the bootstrap confidence interval for the observed
data is disjoint from the bootstrap confidence interval for the predicted median of per-instance median
running times; we say that a scaling model prediction is weakly consistent with the observed data if
the bootstrap confidence interval for the prediction overlaps with the bootstrap confidence interval for
the observed data; and, we say that a scaling model is strongly consistent with observed data, if the
bootstrap confidence interval for the observed median of per-instance medians is fully contained within
the bootstrap confidence interval for predicted running times. Also, we define the residue of a model
at a given size as the observed point estimate less the predicted value using the fitted running time
scaling model (fitted to the set of training data).

3 Dataset Description
The dataset contains running times of the Lingeling algorithm solving 500 instances of different sizes
with 10 independent runs per instance. We split the running times into two categories, support or
training instances (n ≤ 757881) and challenge or test instances (n > 757881) with 151 and 349
instances, respectively. The details of the dataset can be found in Tables 1 and 2.

4 Empirical Scaling of Solver Performance
We first fitted our parametric scaling models to the medians of the per-instance median running times
of Lingeling, as described in Section 2. The models were fitted using the training instance data and
later challenged with the test instance data. This resulted in the models, shown along with losses on
support and challenge data, shown in Table 3. In addition, we illustrate the fitted models of Lingeling
in Figure 1, and the residues for the models in Figure 2.

But how much confidence should we have in these models? Are the losses small enough that
we should accept them? To answer this question, we assessed the fitted models using the bootstrap
approach outlined in Section 2. Table 4 shows the bootstrap intervals of the model parameters, Table 5
shows the bootstrap intervals of the model prediction losses, and Table 6 contains the bootstrap
intervals for the support data. Challenging the models with extrapolation, as shown in Table 7, it
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n 911010 1140977 1370944 1600911
# instances 58.78 67.77 67.77 67.91

mean 301.4 479.7 692.1 958.5
Q(0.1) 188 237.7 434.7 676.4
Q(0.25) 218.3 336.3 543.2 755.1
median 305.5 509 704.4 990.1
Q(0.75) 374.8 632.4 879.8 1123
Q(0.9) 425.1 661.2 986.7 1398

n 1830878 2060845 2290812 2520779
# instances 67.91 67.91 66.73 39.14

mean 1356 2157 2837 3297
Q(0.1) 1356 1649 2198 2745
Q(0.25) 1356 2118 2574 3023
median 1356 2166 2897 3420
Q(0.75) 1356 2568 3152 3597
Q(0.9) 1356 2771 3355 3731

Table 2: Details of the running time dataset used as challenge data for model fitting. The reported
statistics are of the per-instance median running times. The “# of instances” is the sum of the weights
of the instances used to calculate these statistics.

Model Support Challenge
loss loss

Lingeling Exp. Model 4.120941× 1.000005n 1047.5 4.9353× 107

Poly. Model 8.185079× 10−11 × n2.089114 1099.6 98958

Table 3: Fitted models of the medians of the per-instance median running times and loss values (in
CPU sec). The models yielding the most accurate predictions (as per losses on challenge data) are
shown in boldface.

is concluded that the Exp model over-estimates the data, and the Poly model fits the data very well
(as also illustrated in Figure 1). We base these statements on an analysis of the fraction of predicted
bootstrap intervals that are strongly consistent, weakly consistent and disjoint from the observed
bootstrap intervals for the challenge data. To provide stronger emphasis for the largest instance sizes,
we also consider these fractions for the largest half of the challenge instance sizes. To be precise, we say
a model over-estimates the data if ≥ 70% of the confidence intervals for predictions on all challenge
instance sizes or ≥ 70% of those on the larger half of the challenge sizes are above the observed
intervals; and we say a model predicts very well if ≥ 90% of the predictions for challenge sizes are
strongly consistent, or ≥ 90% of the predictions for the larger half of the challenge sizes are strongly
consistent and ≥ 90% of all of the predictions for all challenge sizes are weakly consistent.

5 Conclusion
In this report, we presented an empirical analysis of the scaling behaviour of Lingeling on the csmacdp0neg
HWMCC08 circuit bounded model checking SAT instances. We found the Exp model over-estimates
the data, and the Poly model fits the data very well.
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Figure 1: Fitted models of the medians of the per-instance median running times. The models cor-
respond to predictions for the medians of the per-instance median running times of Lingeling solv-
ing the set of the csmacdp0neg HWMCC08 circuit bounded model checking SAT instances with
200 ≤ n ≤ 757881 variables, and are challenged by the medians of the per-instance median running
times of 757881 < n ≤ 2545110 variables.
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Figure 2: Residues of the fitted models of the medians of the per-instance median running times.

Solver Model Confidence interval of a Confidence interval of b

Lingeling Exp. [3.12817, 5.190065] [1.000005, 1.000006]
Poly.

[
5.115846× 10−14, 1.421538× 10−9

]
[1.871049, 2.648697]

Table 4: 95% bootstrap intervals of model parameters for the medians of the per-instance median
running times

Solver Model Support Loss Challenge Loss

Lingeling Exp. [991.01, 1496.7]
[
1.9639× 107, 1.9835× 108

]
Poly. [1018.5,1612.4]

[
1.0986× 105,1.6995× 105

]
:

Table 5: 95% bootstrap confidence intervals of model prediction losses for the medians of the per-
instance median running times.The model with the smallest lower bound is shown in boldface, as well
as any models with overlapping intervals.
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Solver n
Predicted confidence intervals Observed median run-time

Exp. model Point estimates Confidence intervals
Lingeling 221109 [10.87, 15.22] 16.89 [15.49, 18.84]

313095 [18.26, 24.33] 27.81 [25.52, 30.01]
405081 [31.56,38.81] 42.86 [37.74, 50.95]
497067 [51.48,62.24] 66.91 [57.08, 75.93]
589053 [82.54,104] 96.2 [88.51, 115.5]
681039 [129.9,176.6] 135.7 [117.7, 173.8]

Solver n
Predicted confidence intervals Observed median run-time

Poly. model Point estimates Confidence intervals
Lingeling 221109 [7.331, 14.72] 16.89 [15.49, 18.84]

313095 [18.42,28.82] 27.81 [25.52, 30.01]
405081 [35.98,49.01] 42.86 [37.74, 50.95]
497067 [58.88,75.58] 66.91 [57.08, 75.93]
589053 [87.05,113.5] 96.2 [88.51, 115.5]
681039 [115.1,165.7] 135.7 [117.7, 173.8]

Table 6: 95% bootstrap confidence intervals for the medians of the per-instance median running
time predictions and observed running times on the csmacdp0neg HWMCC08 circuit bounded model
checking SAT instances. The instance sizes shown here are those used for fitting the models. Bootstrap
intervals on predictions that are weakly consistent with the observed point estimates are shown in
boldface and those that are strongly consistent are marked by asterisks (*).
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Solver n
Predicted confidence intervals Observed median run-time

Exp. model Point estimates Confidence intervals
Lingeling 773025 [203.7, 299.7] 159.9 [129.6, 202.9]

865011 [315.3, 523.1] 253 [229.5, 292.9]
956997 [487.9, 917.3] 354.8 [308.9, 396.7]
1048983 [755.2, 1608] 435.3 [378.1, 480.7]
1140969 [1169, 2764] 509 [439.8, 565.7]
1232955 [1809, 4746] 566.8 [516.9, 633.1]
1324941 [2800, 8150] 657.3 [577.9, 747.9]
1416927

[
4333, 1.4× 104

]
766.8 [686.5, 859.4]

1508913
[
6707, 2.404× 104

]
890.5 [768.6, 968.4]

1600899
[
1.038× 104, 4.128× 104

]
990.1 [867.2, 1089]

1692885
[
1.607× 104, 7.088× 104

]
1103 [958.3, 1205]

1784871
[
2.486× 104, 1.217× 105

]
1243 [1115, 1452]

1876857
[
3.848× 104, 2.09× 105

]
1522 [1325, 1648]

1968843
[
5.956× 104, 3.59× 105

]
1814 [1629, 1934]

2060829
[
9.218× 104, 6.165× 105

]
2166 [2056, 2287]

2152815
[
1.427× 105, 1.059× 106

]
2534 [2382, 2642]

2244801
[
2.208× 105, 1.818× 106

]
2785 [2624, 2889]

2336787
[
3.418× 105, 3.122× 106

]
3005 [2782, 3130]

2428773
[
5.289× 105, 5.361× 106

]
3221 [2937, 3311]

2520759
[
8.186× 105, 9.207× 106

]
3420 [3026, 3486]

Solver n
Predicted confidence intervals Observed median run-time

Poly. model Point estimates Confidence intervals
Lingeling 773025 [146,230.6] 159.9 [129.6, 202.9]

865011 [180.3,309.2]* 253 [229.5, 292.9]
956997 [217.9,402.5]* 354.8 [308.9, 396.7]
1048983 [258.8,511.4]* 435.3 [378.1, 480.7]
1140969 [303,636.8]* 509 [439.8, 565.7]
1232955 [350.4,779.6]* 566.8 [516.9, 633.1]
1324941 [401,940.5]* 657.3 [577.9, 747.9]
1416927 [454.8,1121]* 766.8 [686.5, 859.4]
1508913 [511.7,1320]* 890.5 [768.6, 968.4]
1600899 [571.7,1541]* 990.1 [867.2, 1089]
1692885 [634.9,1783]* 1103 [958.3, 1205]
1784871 [701.1,2046]* 1243 [1115, 1452]
1876857 [770.3,2333]* 1522 [1325, 1648]
1968843 [842.6,2643]* 1814 [1629, 1934]
2060829 [918,2978]* 2166 [2056, 2287]
2152815 [996.3,3337]* 2534 [2382, 2642]
2244801 [1078,3722]* 2785 [2624, 2889]
2336787 [1162,4133]* 3005 [2782, 3130]
2428773 [1249,4571]* 3221 [2937, 3311]
2520759 [1339,5036]* 3420 [3026, 3486]

Table 7: 95% bootstrap confidence intervals for the medians of the per-instance median running
time predictions and observed running times on the csmacdp0neg HWMCC08 circuit bounded model
checking SAT instances. The instance sizes shown here are larger than those used for fitting the
models. Bootstrap intervals on predictions that are weakly consistent with the observed data are
shown in boldface and those that are strongly consistent are marked by asterisks (*).
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