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Abstract
The time complexity of problems and algorithms,
i.e., the scaling of the time required for solving a
problem instance as a function of instance size, is
of key interest in theoretical computer science and
practical applications. In this context, propositional
satisfiability (SAT) is one of the most intensely
studied problems, and it is generally believed that
solving SAT requires exponential time in the worst
case. For more than two decades, random 3-SAT at
the solubility phase transition has played a pivotal
role in the theoretical and empirical investigation
of SAT solving, and to this day, it is arguably the
most prominent model for difficult SAT instances.
Here, we study the empirical scaling of the running
time of several prominent, high-performance SAT
solvers on random 3-SAT instances from the phase
transition region. After introducing a refined model
for the location of the phase transition point, we
show that the median running time of three incom-
plete, SLS-based solvers – WalkSAT/SKC, Bal-
ancedZ and probSAT – scales polynomially with
instance size. An analogous analysis of three com-
plete, DPLL-based solvers – kcnfs, march_hi and
march_br – clearly indicates exponential scaling
of median running time. Moreover, exponential
scaling is witnessed for these DPLL-based solvers
when solving only satisfiable and only unsatisfi-
able instances, and the respective scaling models
for each solver differ mostly by a constant factor.

1 Introduction
The propositional satisfiability problem (SAT) was the first
problem proven to be NP-complete [Cook, 1971], and no
known algorithm solves the problem efficiently in the sense
of better-than-exponential scaling of running time with in-
stance size in the worst case. SAT also has a broad range of
practical applications, and despite its discouraging worst-case
time complexity, many SAT solvers have been constructed
that perform well on theoretically and practically interest-
ing sets of benchmark instances. The performance of SAT
solvers are regularly assessed in SAT competitions [SatCom-
petition.org, 2014] , which feature benchmark instances from

various applications, instances that are hand-crafted to chal-
lenge solvers, and randomly generated instances.

Following seminal work by [Cheeseman et al., 1991] and
[Mitchell et al., 1992], randomly generated 3-SAT instances
at the so-called solubility phase transition, where 50% of the
instances generated at a given size are satisfiable, have been
widely studied; to this day, they are regarded as a model for
the difficulty of theNP-complete 3-SAT problem and repre-
sent one of the most prominent benchmarks for SAT solvers.
It is conjectured, yet unproven, that the location of the solubil-
ity phase transition for uniform random 3-SAT, in terms of the
ratio of the number of clauses and variables, m/n, converges
towards a limiting value as n approaches infinity. [Crawford
and Auton, 1996] studied the location of the phase transition
for random 3-SAT as a function of n and provided a widely
used formula, based on empirical data for n = 20 . . . 300.

Here, we consider the question how the performance of
prominent, high-performance SAT solvers on uniform ran-
dom 3-SAT at the solubility phase transition scales with
n. Prompted in part by earlier, inconclusive results sug-
gesting polynomial scaling of incomplete SAT solvers based
on stochastic local search (SLS) [Gent and Walsh, 1993;
Parkes and Walser, 1996; Gent et al., 1997], we characterise
the empirical scaling of the performance of prominent incom-
plete, SLS-based and complete, DPLL-based SAT solvers.
We are interested in determining whether there are qualita-
tive differences in the scaling behaviour of SLS-based and
DPLL-based solvers, in the scaling of DPLL-based solvers
on satisfiable and unsatisfiable instances, and in the scaling
of different solvers within the two major groups (SLS-based
and DPLL-based). Our investigation leverages and extends a
recent approach for empirical scaling analysis by [Hoos and
Stützle, 2014] that uses resampling techniques to statistically
assess the degree to which observed algorithm behaviour is
consistent with given scaling models (see Sec. 3).

To avoid ‘falling off’ the phase transition, which could bias
our scaling results towards easier instances, we re-examine
the model in [Crawford and Auton, 1996] for the location of
the phase transition point, and derive a new model that agrees
better with observed data for n > 300 and with recent results
from statistical physics (see Sec. 4). Using sets of random
3-SAT instances generated according to this model, our main
findings are as follows (see Sec. 5):

• The median running times of the three prominent SLS-



based solvers we studied, WalkSAT/SKC [Selman et al.,
1994], BalancedZ [Li et al., 2014] and probSAT [Balint
and Schöning, 2014; 2012], scale polynomially (with an
exponent of about 3), and exponential scaling models are
rejected with 95% confidence. Furthermore, we found
no evidence that higher percentiles of the distributions
of running times over sets of instances for fixed n may
scale exponentially.

• The median running times of the three DPLL-based
solvers we considered, kcnfs [Dequen and Dubois,
2004], march_hi [Heule and van Maaren, 2009] and
march_br [Heule, 2013], exhibit exponential scaling
(with a base of about 1.03), and polynomial models are
rejected with 95% confidence.

• For all three DPLL-based solvers, the median running
times when solving only satisfiable and only unsatisfi-
able instances, respectively, clearly exhibit exponential
running time scaling, and the respective scaling models
differ mainly by a constant factor.

• While the scaling models for the SLS-based solvers are
very similar to each other, the two march-variants scale
significantly better than kcnfs.

As we will discuss in the final part of this paper (Sec. 6),
these results shed new light on random 3-SAT at the phase
transition and on the fundamental differences in the behaviour
of SLS- and DPLL-based solvers; they also invite thorough
empirical scaling studies for other problems and solvers.

2 Background and Related Work
SAT is one of the most intensely studied problems in the com-
puter science literature and beyond, and 3-SAT is arguably
the most prominent NP-complete decision problem [Cook,
1971]. Interest in phase transition phenomena in combinato-
rial problems and in uniform random 3-SAT specifically rose
sharply when [Cheeseman et al., 1991] demonstrated that the
hardest instances are found around a critical value of an order
parameter, where a transition from predominantly soluble to
mostly insoluble instances occurs. Uniform random k-SAT
instances are generated by constructing uniformly and inde-
pendently at random m clauses, each of which is obtained
by sampling, again uniformly and independently at random,
3 of n variables, and negating each of them with probability
1/2 [Mitchell et al., 1992] (duplicate clauses are eliminated);
the order parameter is the clauses/variables ratio, m/n. It
is believed, but not yet proven, that for k ≥ 3, the loca-
tion of the phase transition point of uniform random k-SAT
converges to a fixed threshold value as n approaches infinity
(it is known, however, that the phase transition is provably
sharp for n → ∞ [Friedgut and Bourgain, 1999]). Assum-
ing threshold values exist for small k, an accurate theoreti-
cal upper bound was proven by [Franco and Paull, 1983] and
was later improved to 2k log 2 − (1 + log 2) /2 + ok (1) by
[Kirousis et al., 1998]. [Achlioptas and Peres, 2004] achieved
a major breakthrough in proving a lower bound, which was
recently improved to 2k log 2−(1 + log 2) /2−ok (1) [Coja-
Oghlan, 2014].

In a prominent study on the empirical difficulty of SAT in-
stances, [Mitchell et al., 1992] demonstrated that instances
drawn from the phase transition region of uniform random 3-
SAT instances tend to be the most difficult for a simple DPLL
solver. Similar results were shown by [Yokoo, 1997] for an
SLS-based solver on the satisfiable phase of uniform random
3-SAT. [Crawford and Auton, 1996] studied the phase transi-
tion region of uniform random 3-SAT empirically, developed
a model for the location of the phase transition point and pre-
sented additional evidence for the difficulty of the SAT in-
stances found there.

[Gent and Walsh, 1993] studied the empirical behaviour
of GSAT, one of the earliest and most prominent SLS-based
SAT solvers [Selman et al., 1992], and its two variants, DSAT
and HSAT. They noted that the scaling of the average number
of variable flips required by these solvers for solving phase
transition random 3-SAT instances was consistent with less-
than-linear exponential scaling with n and did not rule out a
polynomial scaling model with degree ≈ 3. Later, [Parkes
and Walser, 1996] presented empirical evidence that the scal-
ing of the average number of flips required by a more recent,
prominent SLS-based SAT solver, WalkSAT/SKC [Selman et
al., 1994], on the same class of instances might scale either
as a power function with a slowly growing exponent, or as
a sub-exponential function. Furthermore, [Gent et al., 1997]
found that the 90th percentile of the number of flips of GSAT
for random 3-SAT appears to grow no faster than n4. How-
ever, in all cases, performance was measured in variable flips
(which become more expensive as n increases) and the re-
sults are based on limited curve fitting only, with a vaguely
defined notion of ‘good fit’. [Coarfa et al., 2003] used simple
curve fitting to study the empirical scaling of median run-
ning time for three complete solvers on random 3-SAT and
observed exponential scaling above certain solver-dependent
density thresholds. In contrast, in this work, we use a more
advanced and statistically sound approach for assessing scal-
ing models. Unlike these earlier studies, we also challenge
our scaling models by assessing their predictions on larger
instances sizes than those used for fitting the models.

A significant advance in the methodology for studying the
empirical scaling of algorithm performance with input size
was achieved by [Hoos, 2009]. Their method uses standard
numerical optimisation approaches to automatically fit scal-
ing models, which are then challenged by extrapolation to
larger input sizes. Most importantly, it uses a resampling ap-
proach [Efron and Tibshirani, 1993] to assess the models and
their predictions in a statistically meaningful way. [Hoos and
Stützle, 2014] used this approach to characterise the scaling
behaviour of Concorde, a state-of-the-art complete algorithm
for the travelling salesperson problem (TSP), demonstrating
that the scaling of Concorde’s performance on 2D Euclidean
TSP instances with n cities agrees well with a model of the
form a · b

√
n. In this work, we apply the same empirical

methodology to SAT, and extends it in two useful ways.

3 Experimental Setup and Methodology
For our study, we selected three SLS-based solvers, Walk-
SAT/SKC [Selman et al., 1994] (UBCSAT version 1.2



[Tompkins and Hoos, 2005]), BalancedZ [Li et al., 2014]
(V2014.05.07) and probSAT [Balint and Schöning, 2014]
(version sc14), and three DPLL-based solvers, kcnfs [De-
quen and Dubois, 2004] (V2004), march_hi [Heule and
van Maaren, 2009] and march_br [Heule, 2013] (version
sat+unsat). We chose these, because WalkSAT/SKC and
kcnfs are two classical solvers that are widely known in the
community, and the others showed excellent performance in
recent SAT competitions.

All sets of uniform random 3-SAT instances used in our
study were obtained using the generator which produced SAT
competition instances [Balint et al., 2012]. To separate satis-
fiable from unsatisfiable instances with n ≤ 500, we used
CSHCrandMC [Malitsky et al., 2013], the winner of Ran-
dom SAT+UNSAT Track in the 2013 SAT Competition. For
larger instances, for which the use of complete solvers is im-
practical, we performed long runs (43 200 CPU sec) of Bal-
ancedZ and treated those instances not solved in those runs
as unsatisfiable. Since BalancedZ never failed to solve any of
our instances known to be satisfiable, and because the cut-off
time we used for these long runs was at least 20 times of the
maximum running time observed on any satisfiable instance
of the same size, we have high confidence that we did not
miss any satisfiable instances. We note that, even if we had
misclassified some satisfiable instances, the quantile perfor-
mance measures would not be much affected (if at all).

For collecting running time data for our solvers, we used
the Compute Canada / Westgrid cluster orcinus (DDR), each
equipped with two Intel Xeon E5450 quad-core CPUs at 3.0
GHz with 16GB of RAM running 64-bit Red Hat Enterprise
Linux Server 5.3. To avoid measurement noise caused by
memory bottlenecks, we used only one core per CPU to run
our solvers and imposed a memory limit of 1GB per run.

After observing floor effects for WalkSAT/SKC due to
small CPU times required for solving small instances, we cal-
culated running times based on the number of variable flips
performed, and on estimates of CPU time per variable flip
for each problem size obtained from long runs on unsatisfi-
able instances. The CPU time estimates thus obtained closely
agreed with measured CPU times for short and long runs, but
are considerably more accurate. For all other solvers, which
were less affected by such floor effects, we used runsolver
[Roussel, 2011] to record CPU times (and to enforce CPU
time limits).

For our scaling analysis, we considered two parametric
models:

• Exp [a, b] (n) := a · bn (2-parameter exponential);

• Poly [a, b] (n) := a · nb (2-parameter polynomial).

Our approach could be easily extended to other scaling mod-
els, but, as we will show in the following, these two mod-
els jointly characterise the scaling observed in all our experi-
ments, and thus we saw no need to consider different or more
complex models. For fitting parametric scaling models to ob-
served data, we used the non-linear least-squares Levenberg-
Marquardt algorithm.

Models were fitted to performance observations in the form
of quantiles, chiefly the median of the distributions of run-
ning times over sets of instances for given n. Compared to

the mean, the median has two advantages: it is statistically
more stable and immune to the presence of a certain amount
of timed-out runs. Considering the stochastic nature of the
SLS-based solvers, we performed 5 independent runs per in-
stance and used the median over those 5 running times as the
running time for the respective instance. To assess the fit of
a given scaling model to observed data, we used root-mean-
square error (RMSE).

Closely following [Hoos, 2009; Hoos and Stützle, 2014],
we computed 95% bootstrap confidence intervals for the
performance predictions obtained from our scaling models,
based on 1000 bootstrap samples per instance set and 1000
automatically fitted variants of each scaling model. We ex-
tended their approach in two ways. Firstly, noting that ob-
served running time statistics are also based on measurements
on sets of instances, we calculate bootstrap percentile inter-
vals for those, in addition to the point estimates used in the
original approach. This way, we capture dependency of these
statistics on the underlying sample of instances. Secondly,
we determine to which extent a solver A1 shows scaling be-
haviour different from another solver A2, by comparing the
observed running time statistics of A1 to the bootstrap con-
fidence intervals obtained from the scaling model of A2. If
the latter do not contain the former, we can reject the hypo-
thesis that the performance of A1 is consistent with the scal-
ing model of A2. Both extensions can obviously be used in
the scaling analysis of solvers for problems other than SAT.

4 Location of Phase Transition
[Crawford and Auton, 1996] modelled the location of the
phase transition point based on extensive experiments on uni-
form random 3-SAT instances with up to 300 variables as:

mc = 4.258 · n+ 58.26 · n−2/3, (1)
where n is the number of variables and mc the critical num-
ber of clauses, at which about 50% satisfiable instances are
obtained. The parametric form of this model was derived
by [Kirkpatrick and Selman, 1994], using finite-size scaling.
While this model does provide a good fit for n ≤ 300, in pre-
liminary experiments, we found that for n > 300, it increas-
ingly underestimates mc. Furthermore, the model in Eq. 1
predicts that, as n grows, mc/n approaches 4.258, which
is in contradiction with a more recent result by [Mertens et
al., 2006], who used the heuristic one-step replica symmetry
breaking cavity method from statistical physics to estimate
the value of mc/n as 4.26675± 0.00015.

Because in the empirical scaling study that follows, we
wanted to be sure to not drift off the phase transition point
(which could bias the scaling models, especially, as the phase
transition, in terms of mc/n, is known to become increas-
ingly steep as n grows), we decided to revisit and improve
the Crawford & Auton’s model.

We first chose several m/n ratios for each n ∈
{300, 400, . . . , 1400}, around the predictions from Eq. 1,
loosely adjusted based on results from preliminary experi-
ments. Next, we generated sets of 600 uniform random 3-
SAT instances for each m/n ratio. We separated out the
satisfiable instances using a hybrid complete solver, CSHC-
randMC [Malitsky et al., 2013], with a cutoff of 3600 CPU



n Lower bound Upper bound
Prediction

Eq. 1 Eq. 3

300 4.2600 (3600) 4.2667 (3600) 4.2623 4.2638
400 4.2575 (4800) 4.2650 (600) 4.2607 4.2626
500 4.2580 (2400) 4.2660 (600) 4.2598 4.2622
600 4.2567 (600) 4.2667 (4800) 4.2594 4.2622
700 4.2600 (1200) 4.2657 (4800) 4.2591* 4.2623
800 4.2575 (2400) 4.2638 (2400) 4.2588 4.2624
900 4.2600 (2400) 4.2667 (3600) 4.2587* 4.2626
1000 4.2600 (600) 4.2670 (2400) 4.2586* 4.2627
1100 4.2609 (1200) 4.2655 (600) 4.2585* 4.2629
1200 4.2600 (2400) 4.2650 (3600) 4.2584* 4.2630
1300 4.2608 (600) 4.2646 (600) 4.2584* 4.2631
1400 4.2600 (1200) 4.2664 (2400) 4.2583* 4.2633

Table 1: Lower and upper bounds on the location of the phase
transition (mc/n) determined with 95% confidence, and predictions
from the two models discussed in the text. In parentheses: num-
ber of instances used for determining the bound. Model predictions
inconsistent with our lower bounds are marked with asterisks (*).

seconds per run. Up to n = 500, we solved all instances
within that cutoff. Beyond, it would have been impractical
to run any complete solver sufficiently long to prove unsatis-
fiability, and we therefore heuristically assumed that the in-
stances not solved by CSHCrandMC are unsatisfiable. As
mentioned earlier, we later used much longer runs of Bal-
ancedZ to challenge these putative unsatisfiable instances fur-
ther, and among the thousands of instances for which this was
done, only one was found to be satisfiable. Nevertheless, in
what follows, we are well aware of the fact that we may un-
derestimate the fraction of satisfiable instances in our sets.

We note that, even at large numbers of instances sampled
at the correct (unknown) value of mc/n, we should expect
to get sets with a fraction of satisfiable instances varying ac-
cording to a binomial distribution. Based on this observation,
we determined 95% confidence intervals for the fraction of
satisfiable instances observed. We then rejected the m/n val-
ues for which we empirically observed fractions of satisfiable
instances outside of the respective 95% confidence interval
as valid estimates of mc/n. In this way, we obtained bounds
on the location of the phase transition point, mc/n. In many
cases, the confidence intervals for our initial sets of 600 in-
stances were too wide to yield bounds, and we subsequently
increased the number of instances in those sets until for every
n, we obtained an upper and lower bound on mc/n. Those
bounds and the respective set sizes are shown in Table 1.

These results provide further evidence for our earlier obser-
vation that for larger n, Crawford & Auton’s model becomes
inaccurate, as the respective predictions are below the lower
bounds from our analysis. We note that our lower bounds are
valid, as they could only increase if some of our putatively
unsatisfiable instances were in fact satisfiable. For the same
reason, the upper bounds may be inaccurate.

Interestingly, and notably different from Crawford & Au-
ton’s model, our results suggest that mc/n as a function of
n is not monotonic, but first drops, before slowly increasing
again, possibly towards a threshold value. This observation,
in combination with the limiting value found by [Mertens et
al., 2006] led us to choose a model of the form

mc = 4.26675 · n+ a · nb + c · nd, (2)
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Figure 1: Empirical bounds on the location of the phase transition
points, mc/n for different n, data used for fitting our model and
model predictions. Data for n > 500 is based on heuristic estimates
of the fraction of satisfiable instances and may underestimate the
true mc/n.

where a · c < 0, b < 0 and d < 0.1
Finally, taking the data points from [Crawford and Auton,

1996] up to n = 300 (which we believe to be of high qual-
ity) and the mid-points between our bounds from Table 1, we
fitted this 4-parameter model, resulting in:

mc = 4.26675 ·n+447.884 ·n−0.0350967− 430.232 ·n−0.0276188

(3)
Figure 1 shows the predictions obtained from this model,
along with the bounds and mid-points between them from
Table 1. This model was subsequently used to generate the
instance sets used in the scaling analysis described in the fol-
lowing. While it is possible that our model is biased by the
fact that we may have missed satisfiable instances for larger
n, it provides a better basis than previously available for gen-
erating instances at or very near the solubility phase transition
of uniform random 3-SAT.

5 Empirical Scaling of Solver Performance
We first fitted our two parametric scaling models to the
median running times of the six solvers we considered, as
described in Section 3. For each SLS-based solver, both
models were fitted using median running times for n =
200, 250, . . . 500 (support) and later challenged with median
running times for n = 600, 700, . . . 1000. For each DPLL-
based solver, we used support data for n = 200, 250, . . . 400
and challenge data for n = 450, . . . 550, as for even larger n
we could no longer complete sufficiently many runs to esti-
mate even median running times. This resulted in the mod-
els, shown along with RMSEs on support and challenge data,
shown in Table 2.

We note that the RMSEs on support data, i.e., the data used
for fitting the models, often, but not always provide a good
indication of their predictive power. Based on the latter, in
the form of RMSEs on challenge data, we see clear indica-
tions that the median running times of all three SLS-based

1This type of model is consistent with current theoretical think-
ing that, for small n, second-order terms may cause non-monotonic
behaviour of the function mc(n). (Dimitris Achlioptas, personal
communication.)



Model
RMSE RMSE

(support) (challenge)

WalkSAT/SKC Sat. Exp. Model 6.89157× 10−4×1.00798n 0.0008564 0.7598
Poly. Model 8.83962× 10−11 × n3.18915 0.0007433 0.03225

BalancedZ Sat. Exp. Model 1.32730× 10−3×1.00759n 0.001759 1.081
Poly. Model 5.14258× 10−10 × n2.97890 0.002870 0.05039

probSAT Sat. Exp. Model 8.35877× 10−4×1.00763n 0.0013867 0.6487
Poly. Model 2.92275× 10−10 × n2.99877 0.002285 0.03301

kcnfs

All Exp. Model 4.30400× 10−5×1.03411n 0.05408 143.3
Poly. Model 9.40745× 10−31 × n12.1005 0.06822 1516

Sat. Exp. Model 2.41708× 10−5×1.03205n 0.02496 83.86
Poly. Model 2.41048× 10−30 × n11.7142 0.05600 225.8

Unsat. Exp. Model 6.38367× 10−5×1.03386n 0.001466 52.19
Poly. Model 9.70804× 10−31 × n12.1448 0.1813 2291

march_hi

All Exp. Model 4.93309× 10−5×1.03295n 0.05449 460.0
Poly. Model 1.05593× 10−30 × n12.0296 0.05971 1266

Sat. Exp. Model 8.33113× 10−6×1.03119n 0.03035 3.087
Poly. Model 2.44435× 10−30 × n11.4789 0.03879 61.77

Unsat. Exp. Model 7.86081× 10−5×1.03281n 0.03336 399.7
Poly. Model 2.10794× 10−30 × n11.9828 0.16703 1912

march_br

All Exp. Model 6.17600× 10−5×1.03220n 0.05401 402.4
Poly. Model 5.56146× 10−30 × n11.7408 0.05199 1253

Sat. Exp. Model 1.02788× 10−5×1.03048n 0.02497 13.72
Poly. Model 1.25502× 10−29 × n11.1944 0.03341 67.85

Unsat. Exp. Model 6.10959× 10−5×1.03344n 0.03230 262.8
Poly. Model 5.18600× 10−31 × n12.2154 0.1586 1920

Table 2: Fitted models of median running times and RMSE values
(in CPU sec). Model parameters are shown with 6 significant dig-
its, and RMSEs with 4 significant digits; the models yielding more
accurate predictions (as per RMSEs on challenge data) are shown in
boldface.

solvers are overall more consistent with our polynomial scal-
ing model, while those of the DPLL-based solvers are more
consistent with our exponential scaling model – even when
only considering performance on satisfiable instances. We
also studied Lingeling [Biere, 2014] (version ayv) and found
that its median running time for n = 400 is more than 1000
times larger than that of kcnfs, and that this performance gap
increases with n.

But how much confidence should we have in these mod-
els? Are the RMSEs small enough that we should accept
them? 2 To answer this question, we assessed the fitted mod-
els using the bootstrap approach outlined in Section 3. The
results of this analysis, shown in Table 3, clearly show that
observed median running times for the SLS-based solvers are
consistent with our polynomial scaling model and inconsis-
tent with the exponential model (as illustrated in Figure 2
for WalkSAT/SKC), while the opposite holds for the DPLL-
based solvers. This is especially striking for the larger chal-
lenge instances sizes. Limited experiments for even larger
instances sizes (up to n = 2000) produced further evidence
consistent with the polynomial scaling models for all three
SLS-based solvers (data not shown). Although the running
time of the SLS-based solvers are still quite moderate even at
these instances sizes, the much longer runs required to filter
out satisfiable instances with high confidence make it difficult
to further increase n.

Next, we used the same bootstrap confidence intervals to
investigate the significance of differences observed between
the scaling models for different solvers. Using this approach,
we cannot reject the hypothesis that the differences reflected
in the constants for the polynomial models of our three SLS-
based solvers seen in Table 2 are insignificant. Furthermore,

2We note that RMSE values are sensitive to the absolute magni-
tude of the differences in the given data. It is therefore difficult to
judge different models solely based on absolute RMSE.
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Figure 2: Fitted models of the median running times of Walk-
SAT/SKC. Both models are fitted with the median running times of
walksat solving the SAT instances from the set of 1200 random in-
stances of 200, 250, ..., 500 variables, and are challenged by median
running times of 600, 700, ..., 1000 variables.

we observed that the median running times of CCASat [Cai
and Su, 2012] (V2014), another prominent SLS-based solver,
are consistent with the same polynomial models. Likewise,
the bootstrap confidence intervals for march_hi and march_br
largely overlap with each other, and we cannot detect suffi-
cient evidence for statistically significant differences in scal-
ing behaviour. On the other hand, the observed running
times for kcnfs are inconsistent with the scaling models for
march_hi and march_br, confirming that the performance of
the march solvers indeed scales significantly better than that
of kcnfs. Examining these results in detail, we believe that
by substantially increasing the number of instances for each
value of n, the bootstrap confidence intervals can likely be
narrowed to also demonstrate significant scaling differences
between all pairs of SLS-based solvers.

Using the same approach, we investigated the significance
of the differences in scaling for each DPLL-based solver
when applied to satisfiable and unsatisfiable instances only,
respectively. Intuitively, we would expect unsatisfiable in-
stances to be harder, and the differences between the respec-
tive scaling models are significant, in that the observed run-
ning times for solving unsatisfiable instances are generally in-
consistent with the scaling model for the same solver on only
satisfiable instances (as illustrated in Figure 3 for march_hi).
To further investigate whether the performance difference can
be attributed to the constant factor a in the exponential mod-
els, we fitted a model of the form a · bnsat of the median run-
ning times for solving unsatisfiable instances, where a is a
free parameter and bsat is the value of parameter b from the
scaling model for satisfiable instances. For all three DPLL-
based solvers, the observed running times for solving unsat-
isfiable instances is consistent with these constrained models,
suggesting that, indeed, the scaling on satisfiable and unsatis-
fiable instances differs only by a constant factor.

Finally, we investigated the question whether our observa-
tions regarding the qualitative differences in the scaling of
median running times of SLS- and DPLL-based solvers also
hold when considering higher quantiles of the distribution of
running times. For the DPLL-based solvers, we found no
evidence for a substantial change in the ratios between the



Solver Model n
Predicted confidence intervals of median running time (sec) Observed median running time (sec)

Poly. model Exp. model Point estimates Confidence intervals

WalkSAT/SKC

600 [0.054,0.081] [0.067, 0.104] 0.056 [0.050, 0.070]
Poly[a, b] 700 [0.083,0.146]* [0.137, 0.264] 0.121 [0.105, 0.145]

a ∈
[
2.58600× 10−12, 8.63869× 10−10

]
800 [0.122,0.238]* [0.277, 0.664] 0.180 [0.132, 0.209]

b ∈ [2.80816, 3.76751] 900 [0.170,0.373]* [0.565, 1.676] 0.267 [0.222, 0.323]
1000 [0.229,0.557]* [1.151, 4.200] 0.385 [0.327, 0.461]

BalancedZ

600 [0.082,0.116]* [0.103, 0.149] 0.095 [0.085, 0.102]
Poly[a, b] 700 [0.124,0.195]* [0.204, 0.348] 0.142 [0.131, 0.154]

a ∈
[
3.65984× 10−11, 4.53094× 10−9

]
800 [0.177,0.308]* [0.400, 0.816] 0.194 [0.177, 0.212]

b ∈ [2.60985, 3.41689] 900 [0.240,0.462] [0.782, 1.915] 0.270 [0.231, 0.324]
1000 [0.316,0.663] [1.531, 4.493] 0.353 [0.307, 0.398]

probSAT

600 [0.050,0.085] [0.063, 0.110] 0.050 [0.043, 0.059]
Poly[a, b] 700 [0.073,0.149]* [0.119, 0.271] 0.089 [0.077, 0.105]

a ∈
[
5.00843× 10−12, 1.02411× 10−8

]
800 [0.101,0.245]* [0.222, 0.664] 0.151 [0.133, 0.197]

b ∈ [2.40567, 3.66266] 900 [0.135,0.379]* [0.413, 1.640] 0.237 [0.209, 0.295]
1000 [0.174,0.559]* [0.771, 4.050] 0.357 [0.304, 0.438]

kcnfs
Exp[a, b] 450 [98.326, 122.115] [120.078,161.444] 156.480 [143.340, 166.770]

a ∈
[
3.33378× 10−5, 1.07425× 10−4

]
500 [327.997, 439.089] [561.976,889.428]* 750.510 [708.290, 806.130]

b ∈ [1.03136, 1.03476] 550 [971.862, 1402.255] [2622.488,4901.661]* 3896.450 [3633.630, 4130.915]

march_hi
Exp[a, b] 450 [62.021, 91.787] [74.982,116.729] 112.553 [101.957, 121.167]

a ∈
[
2.90480× 10−5, 1.72479× 10−4

]
500 [190.395, 333.963] [317.398,628.498]* 564.821 [508.433, 614.105]

b ∈ [1.02928, 1.03433] 550 [523.034, 1074.244] [1342.438,3375.460]* 2971.450 [2660.430, 3152.570]

march_br
Exp[a, b] 450 [69.649, 91.290] [84.743,117.937] 112.812 [101.108, 121, 469]

a ∈
[
2.61030× 10−5, 1.08165× 10−4

]
500 [226.874, 332.773] [385.943,640.179]* 594.095 [542.564, 620.963]

b ∈ [1.03064, 1.03466] 550 [659.553, 1070.478] [1754.277,3492.830]* 2975.580 [2544.450, 3179.950]

Table 3: 95% bootstrap confidence intervals for median running time predictions and observed running times on random 3SAT instances.
The instance sizes shown here are larger than those used for fitting the models. Bootstrap intervals on predictions that agree with the observed
point estimates are shown in boldface, and those that fully contain the confidence intervals on observations are marked by asterisks (*).
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Figure 3: Median running time scaling of march_hi on satisfiable
vs unsatisfiable instances. We show the scaling model and bootstrap
confidence intervals for performance on satisfiable instances, along
with observations on support and challenge data for satisfiable and
unsatisfiable instances.

median and higher quantiles as n increases; thus, there is no
reason to assume any difference in the scaling models of a
higher quantile and the median other than a constant factor.
For the SLS-based solvers, we noted weak evidence that the
ratio between the higher quantiles and the median increases
with n, but the observed scaling of the 0.9-quantile is still
found to be consistent with a polynomial model and inconis-
tent with an exponential model (data not shown).

6 Conclusions
In this work, we presented an empirical analysis of the scaling
behaviour of several prominent SAT solvers on phase transi-
tion uniform random 3-SAT instances. We were surprised
to find solid support for low-degree polynomial scaling of
the performance of all SLS-based SAT solvers we studied,
which stands in stark contrast to the exponential performance

scaling of the DPLL-based solvers we considered, even when
these were run on satisfiable instances only. As expected,
we did find evidence for significant differences in the perfor-
mance scaling models of DPLL-based solvers on satisfiable
and unsatisfiable instances, but these differences could be at-
tributed to a constant factor, suggesting that they cannot be
leveraged to obtain reasonably accurate guesses on the unsat-
isfiability of instances based on long runs of those solvers.
However, the qualitative differences between the scaling of
SLS- and DPLL-based solvers can be exploited, in that for
growing n, it appears to be possible to separate satisfiable
from unsatisfiable instances with high and further increasing
accuracy based on long runs of SLS-based or hybrid solvers.
Furthermore, the polynomial scaling of even high quantiles of
the distribution of running times for SLS-based solvers across
instance sets suggests that random 3-SAT instances from the
solubility phase transition are likely not capturing the diffi-
culty we expect to encounter in the worst case when solv-
ing an NP-hard problem. We note that, considering their
sizes, these instances are still very hard, compared to almost
all types of structured SAT instances, and may therefore still
be useful as a benchmark.

To the best of our knowledge, ours is the first study that
uses a statistically sound way to assess the scaling of SAT
solver performance with instance size, and to discriminate be-
tween different scaling models. In the context of our study,
we have extended the methodology introduced by [Hoos,
2009; Hoos and Stützle, 2014] in two ways. The empirical
scaling analysis we have performed here can easily be applied
to other SAT solvers, other distributions of SAT instances (as
long as reasonably large sets of instances for each n can be
obtained), and to other problems. We believe that doing so
can and will produce interesting and useful results that can
inspire the design of algorithms and benchmark instance gen-
erators as well as, hopefully, theoretical work.
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