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ABSTRACT
The time complexity of problems and algorithms, i.e., the
scaling of the time required for solving a problem instance
as a function of instance size, is of key interest in theoreti-
cal computer science and practical applications. This paper
presents an automated tool – Empirical Scaling Analyser
(ESA) – that is designed to perform empirical scaling anal-
ysis. The methodological approach underlying ESA was in-
troduced by Hoos [1], then applied to analysing a complete
TSP solver [2] and later extended and applied to analysing
several prominent SAT solvers [3]. ESA is broadly applicable
to analysing different kinds of algorithms as long as running
time data can be collected on sets of problem instances of
various sizes. It is particularly well suited for the analysis
of the empirical time complexity of evolutionary algorithms
and other heuristic procedures for solving NP-hard prob-
lems.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity
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1. INTRODUCTION & METHODOLOGY
In theoretical computer science, time complexity is arguably
the most important aspect in analysing and understanding
problems and algorithms. The time complexity of an algo-
rithm describes the time required for solving a problem in-
stance as a function of instance size and is traditionally stud-
ied mostly by means of theoretical analysis. For instance,
the Boolean satisfiability problem (SAT) and the travelling
salesman problem (TSP) are two NP-hard problems, for
which the best algorithms have exponential time-complexity
in the worst case. Empirical analysis of time complexity has
seen increasing interest, because it permits predicting the
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running times of high-performance algorithms in practice
and may also provide useful insights into their behaviour.
A significant advance in the methodology for studying the
empirical scaling of algorithm performance with input size
was realised by Hoos [1]. His method uses standard nu-
merical optimisation approaches to automatically fit scal-
ing models, which are then challenged by extrapolation to
larger input sizes. Most importantly, it uses a bootstrap
resampling approach to assess the models and their predic-
tions in a statistically meaningful way. Hoos & Stützle used
this approach to characterise the scaling behaviour of Con-
corde, a state-of-the-art complete algorithm for the trav-
elling salesperson problem (TSP), demonstrating that the
scaling of Concorde’s performance on 2D Euclidean TSP in-
stances with n cities agrees well with a square-root-exponen-

tial model of the form a · b
√

n [2].
Recently, we applied the same empirical methodology to
study the scaling behaviour of prominent high-performance
SAT solvers [3]. Moreover, we proposed a useful extension to
the methodology: Noting that observed running time statis-
tics are also based on measurements on sets of instances,
we calculate bootstrap percentile intervals for those, in ad-
dition to the point estimates used in the original approach.
This way, we capture dependency of these statistics on the
underlying sample of instances.
In this work, we present an automated tool – the Empiri-
cal Scaling Analyser (ESA) – that can perform the analy-
sis described above. To perform the scaling analysis, ESA
needs input data containing the sizes of the instances stud-
ied and the running times a given algorithm requires for
solving these instances. From further information about the
algorithm and instance distributions and a given LATEX tem-
plate, ESA automatically generates a technical report with
detailed empirical scaling analysis results and interpretation.
This report contains tables and figures that users can easily
read (see Section 2 for examples). ESA is not limited to fit-
ting and assessing a single scaling model, but can deal with
multiple models simultaneously.

2. EXAMPLE USE CASE & OUTPUT
In this section, we use the scaling of the median running time
of WalkSAT/SKC [4] as an example to illustrate the use of
ESA. WalkSAT/SKC is one of the most widely known high-
performance SAT solvers based on stochastic local search
(SLS). The target problem instances we consider are uni-
form random 3-SAT instances from the phase transition re-
gion, which are widely believed to represent one of the most
challenging benchmarks for SAT.



Solver Model n
Predicted confidence intervals Observed median running time (sec)
Poly. model Exp. model Point estimates Confidence intervals

WalkSAT/SKC

600 [0.054,0.081] [0.067, 0.104] 0.056 [0.050, 0.070]
Poly[a, b] 700 [0.083,0.146]* [0.137, 0.264] 0.121 [0.105, 0.145]

a ∈
[
2.58600× 10−12, 8.63869× 10−10

]
800 [0.122,0.238]* [0.277, 0.664] 0.180 [0.132, 0.209]

b ∈ [2.80816, 3.76751] 900 [0.170,0.373]* [0.565, 1.676] 0.267 [0.222, 0.323]
1000 [0.229,0.557]* [1.151, 4.200] 0.385 [0.327, 0.461]

Table 3: 95% bootstrap confidence intervals for median running time predictions and observed running times
on random 3-SAT instances. The instance sizes shown here are larger than those used for fitting the models.
Bootstrap intervals on predictions that agree with the observed point estimates are shown in boldface, and
those that fully contain the confidence intervals on observations are marked with asterisks (*).

n 200 250 300 350 400 450 500
# Instances 601 589 633 558 579 572 578

mean 0.0065 0.0167 0.0479 0.0743 0.2162 0.2634 2.1713
coefficient of variation 1.9323 2.7076 7.1479 4.6358 8.1654 6.2329 17.9680

Q(0.1) 0.0006 0.0011 0.0016 0.0022 0.0035 0.0050 0.0066
Q(0.25) 0.0010 0.0019 0.0032 0.0043 0.0076 0.0101 0.0144
median 0.0021 0.0045 0.0075 0.0109 0.0182 0.0241 0.0365
Q(0.75) 0.0057 0.0121 0.0210 0.0298 0.0536 0.0867 0.1292
Q(0.9) 0.0157 0.0364 0.0599 0.0891 0.2392 0.3534 0.4375

n 600 700 800 900 1000
# Instances 572 636 584 592 593

mean 2.5027 3.3031 2.7717 15.5353 30.1594
coefficient of variation 13.3185 7.8551 5.1294 6.3333 5.4317

Q(0.1) 0.0124 0.0184 0.0268 0.0359 0.0540
Q(0.25) 0.0240 0.0395 0.0550 0.0801 0.1190
median 0.0564 0.1083 0.1797 0.2668 0.3845
Q(0.75) 0.2014 0.4775 0.7455 1.3348 1.8264
Q(0.9) 1.0791 2.0195 3.3366 8.3035 14.4725

Table 1: Details of the support data for model fitting
and the challenge data.

Model
RMSE RMSE

(support) (challenge)

WalkSAT/SKC
Exp. Model 6.89157× 10−4×1.00798n 0.0008564 0.7600

Poly. Model 8.83962× 10−11 × n3.18915 0.0007433 0.03142

Table 2: Fitted models of median running times and
RMSE values (in CPU sec). Model parameters are
shown with 6 significant digits, and RMSEs with 4
significant digits; the models yielding more accurate
predictions (as per RMSEs on challenge data) are
shown in boldface.

After collecting running times of WalkSAT/SKC on these
3-SAT instances, we fed the data into ESA, which then gen-
erated a report containing the details of the dataset and the
analysis results. Table 1 provides the details of the dataset,
as generated by ESA based on the input data. Table 2 con-
tains the fitted models and their corresponding RMSEs, and
Table 3 shows bootstrap intervals of the model parameters
and predicted running times. The fitted models and the
bootstrap intervals of the predicted running times are also
illustrated in Figure 1, which clearly shows which models
fit the given data well. From these results, ESA automati-
cally determines that a polynomial model describes our data
well, whereas an exponential model is not consistent with the
given data. In other words, the analysis yields the surpris-
ing result that the median running times of WalkSAT/SKC
scale polynomially with instance size. Using ESA, empiri-
cal scaling results like this are easy to obtain, for arbitary
algorithms and problem instance distributions.

3. CONCLUSION
In this work, we presented Empirical Scaling Analyser (ESA),
an automated tool that performs empirical scaling analy-
sis on the running time of an algorithm. The underlying
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Figure 1: Fitted models of the median running times
of WalkSAT/SKC. Both models are fitted with the
median running times of WalkSAT/SKC solving the
SAT instances from the set of 1200 random instances
of 200, 250, ..., 500 variables, and are challenged by
median running times of 600, 700, ..., 1000 variables.

methodology was first proposed by Hoos [1] and applied to
analysing prominent algorithms for the TSP [2] and SAT [3].
ESA makes it possible to carry out such analyses quickly, ef-
ficiently and automatically. We believe that the results thus
obtained are useful and interesting for research and prac-
tical applications concerning state-of-the-art algorithms for
difficult computational problems. ESA is especially useful
for the analysis of evolutionary algorithms and other heuris-
tic procedures for solving NP-hard problems. A web-based
version of ESA is available at http://www.cs.ubc.ca/labs/
beta/Projects/ESA/esa-online.html.
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