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Abstract Developers of high-performance algorithms for hard computational
problems increasingly take advantage of automated parameter tuning and al-
gorithm configuration tools, and consequently often create solvers with many
parameters and vast configuration spaces. However, there has been very little
work to help these algorithm developers answer questions about the high-
quality configurations produced by these tools, specifically about which pa-
rameter changes contribute most to improved performance. In this work, we
present an automated technique for answering such questions by performing
ablation analysis between two algorithm configurations. We perform an exten-
sive empirical analysis of our technique on five scenarios from propositional
satisfiability, mixed-integer programming and AI planning, and show that in
all of these scenarios more than 95% of the performance gains between default
configurations and optimised configurations obtained from automated config-
uration tools can be explained by modifying the values of a small number of
parameters (1–4 in the scenarios we studied). We also investigate the use of our
ablation analysis procedure for producing configurations that generalise well
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to previously-unseen problem domains, as well as for analysing the structure of
the algorithm parameter response surface near and between high-performance
configurations.

Keywords ablation analysis · parameter importance · automated algorithm
configuration · empirical analysis

1 Introduction

High-performance solvers for hard computational problems, such as proposi-
tional satisfiability (SAT) or mixed-integer programming (MIP), are typically
run by users on classes of problem instances from different application do-
mains; for example, a SAT solver might be run on sets of random 3-sat, hard-
ware verification or software verification instances, and a MIP solver might
be used to solve MIP-formulations of logistics, routing or production planning
problems. The existence of such varied domains provides an incentive to the
developers of such solvers to parameterise aspects of their implementation in
order to be able to obtain good performance on each target problem domain.
Finding good values manually for these algorithm parameters is difficult, as
even human experts have trouble predicting which configurations will result in
high performance due to interactions between parameters and the sheer size
of the combinatorial configuration spaces involved.

While tools specifically designed for automatically tuning the parameters
of such algorithms have been in use for at least a decade (see, e.g., Birat-
tari et al (2002)), the introduction of advanced procedures capable of deal-
ing with dozens of parameters, such as ParamILS (Hutter et al, 2007b, 2009),
GGA (Ansótegui et al, 2009), irace (López-Ibáñez et al, 2011) and SMAC (Hut-
ter et al, 2011), has generated great interest in the area of automated algo-
rithm configuration. The success of these automatic algorithm configurators in
practice has inspired a software design paradigm called Programming by Op-
timisation (PbO) (Hoos, 2012), which encourages developers to expose design
choices and actively seek alternatives for key parts of their algorithms, leading
to highly parametric designs that are then automatically optimised for specific
use contexts.

However, many configurations are sampled by these configuration tools,
and developers are often left wondering why their algorithm parameters were
set to specific values by the automated configuration process, or whether the
modification of some parameters from their default settings was truly necessary
to achieve substantially improved performance. Given a highly parameteric
algorithm, after making many parameter changes as a result of automated
configuration, how can an algorithm developer know which of the parameter
changes were actually important? The ability to answer questions like these
will allow developers to focus their efforts on the aspects of their solvers that
are providing the most performance gains (or losses), in an iterative algorithm
development process.
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In this work, we introduce the concept of ablation analysis, a procedure
investigating the path of configurations obtained by iteratively modifying pa-
rameter settings from a source configuration (e.g., an expert-defined default)
to those from a target configuration (e.g., one obtained from an automatic con-
figurator). Parameter values are modified one at a time, and at each stage the
configuration with the best performance is retained. 1 We present a brute-force
approach to this analysis, as well as an accelerated version that takes advan-
tage of racing methods for algorithm selection. We demonstrate the effective-
ness of this approach with an empirical study on five well-studied algorithm
configuration scenarios that involve high-performance solvers for propositional
satisfiability, mixed integer programming and AI planning problems, and we
show that for these scenarios, more than 95% of the performance gains from
automated configuration can be obtained by the modification of at most 4 (out
of 26–76) algorithm parameters.

We also present the results of several additional experiments using our
ablation analysis approach to produce algorithm configurations that generalise
well to unseen problem instances from different domains. Finally, we carried
out experiments to analyse the structure of the algorithm parameter response
surface near and between configurations with high performance, by performing
ablation analysis with these high-performance configurations as the source and
target configurations.

The remainder of this paper is structured as follows: In Section 2, we place
our contribution in context with related work in parameter importance, and we
then provide an in-depth explanation of both variants of our ablation analysis
procedure in Section 3. Section 4 presents the details of the experimental
study that we performed, with the results of that study shown and discussed
in Sections 5 and 6. We discuss opportunities for future work in this area in
Section 7 and then conclude in Section 8.

2 Background and Related Work

Many individual applications of automated algorithm configuration to specific
solvers include statements from the authors about the modified parameters,
as a post-hoc subjective justification without formal analysis. Examples of
this include the configuration of a state-of-the-art industrial sat solver (Hut-
ter et al, 2007a), as well as the automated design of general-purpose frame-
works for AI planning (Vallati et al, 2011, 2013). However, there has been
relatively little work on systematic techniques for assessing parameter im-
portance. The most closely related area of related work is that of sensitiv-
ity analysis in statistics, especially analysis of variance (ANOVA) and func-

1 Our use of the term ablation follows that of Aghaeepour and Hoos (2013) and loosely
echoes its meaning in medicine, where it refers to the surgical removal of organs, organ
parts or tissues. We ablate (i.e., remove) changes in the settings of algorithm parameters
to better understand the contribution of those changes to observed differences in algorithm
performance.
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tional ANOVA (Hooker, 2007) approaches to decomposing model or func-
tion response variance into low-order components. Furthermore, related work
on interactive parameter exploration using contour plot visualization (Bartz-
Beielstein, 2006), on evolutionary algorithms for parameter relevance estima-
tion (Nannen and Eiben, 2007) and on experimental design for analysing op-
timization algorithms (Chiarandini and Goegebeur, 2010) can be found in the
literature.

Chiarandini and Goegebeur (2010) present a thorough investigation of ex-
perimental design for analysing optimization algorithms, using linear mixed-
effects models. Their analysis only includes parameter configuration spaces of
low size and dimension, with fewer than 50 possible configurations. It is un-
clear whether this approach scales to larger configuration spaces (the scenarios
considered in our study comprise up to 1.90 × 1047 possible configurations).
Nannen and Eiben (2007) uses an entropy-based approach with evolutionary
algorithms to perform parameter relevance estimation, but this approach also
makes a smoothness assumption about the parameter response surface which
eliminate categorical parameters from consideration, as well as an assumption
that there will be few parameters (on the order of 10) in the problem. Fi-
nally, Bartz-Beielstein (2006) uses sequential parameter optimization (SPO)
to estimate 1- and 2-parameter effects, as well as providing interactive con-
tour plots in the configuration space. This approach also has difficulties with
the discrete configuration spaces induced by the categorical parameters en-
countered in many algorithm configuration scenarios. As these techniques each
have difficulties with the high dimensionality and/or the discrete nature of the
configuration spaces of typical highly-parameterised algorithms, an approach
overcoming both has high utility for algorithm developers.

Very recently, Hutter et al. have been using model-based techniques to in-
vestigate the problems of parameter importance and parameter interaction di-
rectly, using forward selection (Hutter et al, 2013) and functional ANOVA (Hut-
ter et al, 2014). Both approaches require an initial data-gathering step to
obtain algorithm performance data, which is then partitioned into training
and test sets. In (Hutter et al, 2013), this data was obtained by sampling
1 000 – 10 000 pairs of configurations and instances uniformly at random, while
in (Hutter et al, 2014) several experiments were performed using 10 000 ran-
domly sampled runs, the algorithm runs performed during executions of the
SMAC configurator (13 452 – 454 336 additional runs), as well as a combination
of both.

In the forward selection approach by Hutter et al (2013), this performance
data is used to iteratively build a regression model by greedily adding, at each
iteration, the parameter or instance feature which results in a model with the
lowest root mean squared error on the validation set. Hutter et al (2014), on the
other hand, introduced an efficient technique for applying functional ANOVA
to random forest models. This variance decomposition takes a random forest
model constructed from the precomputed data, and expresses the performance
variation in terms of components, with one component for every subset of
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parameters of size up to k (for small k). These two contributions differ from
our own in several fundamental ways.

The current version of the forward selection approach constructs models
wholly or partially based on thousands of configurations sampled uniformly
at random from the configuration space. The CPU time required to obtain
this data, as well as the time required to build the models themselves, can be
significant. The CPU time requirements for model construction are especially
significant for forward selection, which typically requires the construction of
thousands of models.

More importantly, this random sampling of configurations means that
many of the configurations used to build the model are from parts of the
configuration space that are unlikely to contain high quality configurations.
Furthermore, both methods have so far been used only to measure parameter
importance globally on expectation across the entire configuration space or,
for functional ANOVA, to broad sets of samples restricted to: (1) configura-
tions with better performance than the default configuration, or (2) configura-
tions in the top 25% in terms of performance. The importance values derived
from those experiments are still global measures, and can be averages across
many regions of very different high-performance configurations. There is no
guarantee that these importance measures apply to any individual algorithm
configuration, specifically to any high-performance configuration and the local
neighbourhoods around such configurations. Finally, the functional ANOVA
work relies on the assumption that accurate models of algorithm performance
can be obtained at a reasonable computational cost. This appears to be the
case for the experiments reported by Hutter et al (2014), but there is no
guarantee that on other scenarios, models with similar parameter importance
accuracy can be practically obtained. Our approach does not require model
construction, and is therefore not constrained by this assumption.

The most important distinguishing factor between our work presented here
and these earlier studies lies in the fact that we aim to explain the importance
of differences between two algorithm configurations that are of interest to an
algorithm developer and user – for example, between the default configuration
and one produced by applying an automated algorithm configuration tool, such
as ParamILS. Using ablation analysis, we can quantify the performance losses
(or gains) along the “ablation path” (see Section 3.3) from one configuration
to another. This allows algorithm developers or users to find a minimal set of
parameter modifications from a given default configuration, while maintaining
most or all of the performance gains achieved by automated algorithm con-
figuration. We see this approach as complementary to the recent model-based
techniques of Hutter et al (2013, 2014), as the local information provided by
our approach can strengthen and validate (or invalidate) the results obtained
with those techniques. We also believe that there are ways to combine the two
lines of work (see Section 8).

There is an interesting conceptual connection between our ablation ap-
proach and that of path relinking, a general-purpose method for combining
the diversification and intensification stages in heuristic search (Glover, 1994,
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Algorithm 1: Ablation (A, θsource, θtarget, I,m)

Input: Parameterised algorithm A, two parameter configurations of A, θsource and
θtarget, benchmark instance set I, performance metric m

Output: An ordered list (θ0, θ1, θ2, θ3, . . . , θl) of configurations of A chosen during
each round of ablation. θ0 = θsource and θl = θtarget

θ ← θsource
activeParameters← set of parameters of A with different values in θsource and θtarget
ablationRoundsBest← (θsource)
while activeParameters 6= ∅ do
A′ ← set of algorithms with configurations obtained from θ via flipping 1
parameter in activeParameters to the value in θtarget, ignoring configurations that
are prohibited in the configuration space or that are equal to θ due to parameter
conditionality.
θ′ ← determine best (A′, I,m)
θ ← θ′

activeParameters← set of parameters of A with different values in θ and θtarget
append (ablationRoundsBest, θ′)

end
return ablationRoundsBest

1997; Glover and Laguna, 1997). Search strategies based on path relinking typ-
ically maintain a population of solutions and create new candidate solutions
by constructing paths in the search space between existing solutions in the
population. Each point in the search space lying on these paths is a potential
solution, often with properties similar to the start or end points of the path.
For further information on the history and application of path relinking, we
refer the interested reader to two surveys by Glover et al (2000, 2003).

Our ablation analysis approach can be seen as an application of path re-
linking in the configuration space of a given parameterised algorithm, as we
are constructing specific paths between a source and target configuration (as
such, to the best of our knowledge, we are describing the first application of
ideas from path relinking in the context of algorithm configuration). However,
ablation analysis pursues a different goal from path relinking: While the lat-
ter is used to identify candidate configurations during search, the former aims
to identify individual parameter settings responsible for the performance of a
given target algorithm. As we demonstrate in Section 6, ablation analysis can
also be used to find configurations that generalise well to different types of
problem instances solvable by a given target algorithm, and this application
of ablation analysis is even more closely related to path relinking.

3 Ablation Analysis

Given a parameterised algorithm A with d parameters and configuration space
Θ, along with a source and target configuration (θsource, θtarget ∈ Θ) of that
algorithm, our ablation procedure works as follows. Given a set of benchmark
instances I and a performance metric m (e.g., penalised average runtime or
mean solution quality), we first compute the set of parameters whose val-
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ues differ between θsource and θtarget. Then, beginning from θsource, we proceed
through a series of rounds: in each round, we use a subprocedure determine best
to choose a configuration from the set of all configurations obtained by flipping
one parameter in the current configuration to its value in θtarget. Algorithm 1
further outlines the details of this procedure.

In each round of ablation, i.e., in each iteration of the while-loop in Al-
gorithm 1, the procedure determine best (A′, I,m) selects the configuration in
A′ with the best performance on I w.r.t. m. In the case where the source
configuration has better performance on I than the target configuration, each
configuration selected by determine best (A′, I,m) will be the one with min-
imum loss compared to the configuration θ from the previous round. Con-
versely, when θtarget has better performance than θsource on I, the configuration
selected by determine best will be that with maximum gain over the previous θ.
Some parameterised algorithms have conditional parameters, i.e., parameters
that only exist (or whose values only affect algorithm performance) if one or
more other parameters (parents) are set to specific values. Configurations ob-
tained by modifying the values of inactive conditional parameters are ignored
in our procedure, as these configurations are by definition identical to the con-
figuration from which they were produced. This means that modification of
conditional parameters may be delayed until late in the ablation process if the
corresponding parent parameters have little effect on algorithm performance.
We discuss this issue further in Sections 5 and 7.

In the experiments we present in Section 4, we perform ablation analysis
in both directions for every pair of configurations. By performing ablation in
the direction of minimum loss, we can gauge the relative extent (by number
of parameter modifications) of the local area around θsource with roughly equal
performance. In the direction of maximum gain, we find the minimal number
of parameter modifications required to achieve roughly equal performance to
θtarget. As a greedy approach (not unlike forward selection), ablation in either
direction may produce suboptimal results at any distance except 1 from θsource.
In light of this, performing the analysis in two directions provides additional ro-
bustness. In the following, we describe two variants of determine best (A′, I,m):
a näıve brute-force method, which is easy to implement but slow, and a greatly
accelerated version based on a racing method.

3.1 Brute-Force Ablation

Our brute-force implementation of determine best (A′, I,m) involves perform-
ing a full empirical performance evaluation for every configuration in A′, by
running each configuration in A′ on every instance in I and recording the value
of the performance metric m thus obtained. The configuration in A′ with the
best performance according to m is selected and returned by determine best.

Given that one parameter is eliminated from consideration in every round,
ablation on instance set I with p differing parameters between θsource and θtarget
using this brute-force approach will require up to |I| · p · (p+ 1) /2 individual
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runs of algorithm A. (In the presence of conditional parameters, more than one
parameter can be eliminated in one round of ablation if an inactive parameter
is set to its default value in the target configuration.) Therefore, this procedure
can be extremely time-consuming in the presence of high runtime cutoffs or
large instance sets. Consider a typical case of ablation between a source and
target configuration with 25 differing parameters, and an instance set I with
1 000 benchmark instances. Over the course of ablation using the brute-force
method, 325 000 algorithm runs will be performed. Even with a mean CPU
time of only 30 seconds per run of A for any instance from I for all configura-
tions considered in the analysis, this implies an overall runtime requirement of
9 750 000 CPU seconds or 112 CPU days. We note that while, by parallelizing
runs across a cluster of machines (as we do in our experiments), this does not
necessarily render ablation using this method completely impractical, it rep-
resents a formidable computational burden. Clearly, a more efficient ablation
procedure would be highly desirable.

3.2 Acceleration via Racing

Based on early work for solving the model selection problem in memory-based
supervised learning (Maron and Moore, 1994), F-Race is a prominent racing
method for algorithm selection (Birattari et al, 2002). Given a benchmark
instance set and performance metric, F-Race takes a set of candidate algo-
rithms (or configurations of a parameterised algorithm) and iterates between
gathering performance data by running the candidate algorithms on bench-
mark instances, and eliminating candidates once there is enough statistical
evidence to justify removing them. The algorithms remaining at the end of
the procedure are the winners of the race.

We apply F-Race to determine the best configurations in each round of
ablation analysis, adhering very closely to the statistical framework described
by Birattari et al (2002). In this context, F-Race starts with a set of candidate
configurations containing all configurations in A′ and subsequently performs
a sequence of stages. In stage k, the remaining candidate configurations C =
(c1, c2, . . . , cn) are evaluated on a new instance ik ∈ I, and the results are then
combined with the results of the previous stages for each configuration. These
results are then organised into k blocks, with the jth block containing the n
performance metric values resulting from running the configurations in C on
instance ij .

On these blocks, a Friedman two-way analysis of variance by ranks, also
known as the Friedman test, is performed (Conover, 1999). If the null hypoth-
esis of this test is rejected, we can conclude that at least one configuration
in C has statistically significantly better performance than at least one other
configuration. In this case, we proceed to pairwise testing to identify which
configurations should be removed from the candidate list C. We use the same
pairwise test here as described by Birattari et al. for F-Race, by comparing the
configuration with the best sum of ranks across all blocks with the other n−1
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configurations in C using a modified t-test with n− 1 degrees of freedom (Bi-
rattari et al, 2002). After culling any configurations deemed to be statistically
significantly worse, we proceed to the next round of the race. The race ter-
minates when only one configuration remains, or when a specified maximum
number of rounds have been performed. In the latter case, the configuration
with the best mean performance (according to m) across all rounds is selected
as the winner; in the case of further ties, tie-breaking is performed uniformly
at random. (Further details on the statistical tests used in this procedure can
be found in Birattari et al (2002); Conover (1999)).

Table 1 Results from performing ablation analysis on two scenarios with three ablation
variants: the brute force approach, racing with the maximum number of rounds equal to
the number of instances, and racing with the maximum number of rounds equal to 200.
The spear and cplex scenarios themselves are identical to those described in detail in
Section 4. For both racing rows, we note that a full empirical analysis was performed on the
chosen benchmark instances after each racing round in order to calculate the performance
of every configuration on the ablation path. Run counts and CPU times for racing alone are
approximately half of the reported values.

spear swv cplex corlat
Scenario runs CPU time (s) runs CPU time (s)
Brute force 70 366 472 686.17 212 000 2 801 674.25
Racing (max #rounds = |I|) 43 982 107 418.36 115 665 921 487.05
Racing (max #rounds = 200) 28 544 108 036.14 51 349 399 092.70

To measure the speed-ups of this racing approach to ablation analysis com-
pared to the brute-force approach described earlier, we performed experiments
using two of the scenarios described in Section 4. Using our spear and cplex
scenarios, we performed ablation analysis from the solver default to the con-
figuration obtained from ParamILS using three ablation analysis approaches.
The brute-force approach required approximately 5 CPU days for the spear
scenario, and 32 CPU days for the cplexscenario. Using our racing approach
with the maximum number of rounds set to the size of the benchmark set I
reduced these requirements to just over 1 CPU day for spear, and 10.7 CPU
days for cplex. By limiting the maximum number of racing rounds to 200
(rather than |I| = 302 for spear and 1000 for cplex), we achieved further
reductions to 4.6 CPU days for cplex. We also note that every algorithm
run inside a single stage of our racing approach can be performed in parallel,
resulting in further reductions in the wall-clock time required. Table 1 gives a
summary of these performance gains.

Determining the optimal value for the maximum number of racing rounds
parameter is not straightforward, but in general it can be expected to depend
on the number of instances in the given set of benchmark instances for which
algorithm performance is highly correlated. We determined our conservative
choice of 200 by subsampling runs from the full instance sets and choosing the
lowest value that did not change the distribution of runtime over the resulting
set in any substantial way for any of our scenarios.
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Table 2 Depots training and test set performance obtained when evaluating every param-
eter configuration in the 1-neighbourhood of the LPG default configuration.

parameter modified training set performance test set performance
default 30.499 22.140
cri intermediate levels 1.548 1.574
walkplan 14.923 15.633
triomemory 29.124 26.216
tabu fct 29.225 23.607
tabu length 29.293 24.958
donot try suspected actions 30.497 24.798
dynoiseTabLen 30.587 24.937
dynoisecoefnum 30.622 23.588
tabu act 30.624 24.959
no cut 30.642 26.323
vicinato 31.964 22.238
maxnoise 33.387 24.963
inc re 38.475 31.776
numrestart 39.073 29.187
static noise 45.005 39.559
extended effects evaluation 49.412 51.042
numtry 70.004 51.778
weight mutex in relaxed plan 71.346 61.178
noise 132.844 121.984
noise incr 175.963 148.953
ri list 402.606 371.674
depots configured 0.642 0.637

While it is possible that racing will return different ablation results than the
brute-force approach, we do not consider this to be a problem, since the brute-
force approach is also not guaranteed to compute the optimal path between
two configurations. Furthermore, in all of our experiments, the brute-force and
racing results were closely aligned. We additionally tested how close our rac-
ing approach comes to the optimal parameter choice, by performing complete
evaluations of the 1-neighbourhood of configurations around the default for
each of our five scenarios. These neighbourhoods consist of those configura-
tions obtained by modifying a single parameter from its value in the source
configuration to its value in the target configuration. In all cases, the most
important parameter selected by our racing approach for each scenario is the
same as the best parameter in the 1-neighbourhood around the source con-
figuration. The results for the lpg solver on our depots scenario are given in
Table 2.

3.3 Ablation Paths

We call the path of configurations (θ0, . . . , θl) obtained between θsource and
θtarget computed by our ablation procedure along with the respective perfor-
mance values on set I (or an independent test set of instances similar to
those in I) an ablation path. These paths can take several qualitatively dif-
ferent forms, depending on the relative performance of θsource and θtarget, and
on characteristics of the response surface that captures the functional depen-
dency of the performance of A on its parameter settings. Figure 1 illustrates
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Fig. 1 Ablation paths can take several qualitatively different forms, illustrated by these
(idealised) runtime examples. Lower values indicate better performance (for details, see
text).

these cases; each point represents the performance of one of the configurations
θi, from θsource on the left-hand side to θtarget on the right. Figure 1(a) illus-
trates one extreme case, where θsource and θtarget differ in performance on I and
all parameters are of equal importance. A case at the opposite extreme (not
shown) would be if the performance difference between θsource and θtarget was
fully explained by the modification of a single parameter.

A more realistic case lies between these extremes, with the modification of
a small number of parameters explaining most of the difference in performance
between θsource and θtarget (Figure 1(b)). Figures 1(c) and 1(d) show two ad-
ditional cases that may occur when the source and target configurations have
roughly equal performance on I. In 1(c), θsource and θtarget are connected by
a path of configurations that all have the same performance; this could arise
in a situation where both lie on a large plateau of the response surface. How-
ever, it is also possible that the two configurations lie in separate basins of
the response surface, such that a “saddle” of worse performance must be sur-
mounted along the ablation path from θsource to θtarget, as illustrated in 1(d).2

We note that the results from all of our experiments performing ablation from
algorithm defaults to configurations obtained from automated configurators
fall into case 1(b).

2 The ablation path illustrated in Figures 1(d) resembles the folding pathways observed
in biopolymers like RNA that have to overcome a thermodynamic barrier in order to change
from one low-energy structure to another (Reidys, 2011)
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4 Experiment design

In order to empirically evaluate our ablation methods, we performed exper-
iments on five scenarios using state-of-the-art solvers for sat, mip and AI
planning. We implemented the brute-force and racing-based ablation meth-
ods as plugins for HAL, a Java-based platform for distributed experiment
execution and data management (Nell et al, 2011). All runs were performed
using machines in the Compute-Calcul Canada / Westgrid Orcinus cluster,
each equipped with two Intel Xeon X5650 6-core 2.66Ghz processors, 12MB
of cache and 24GB of RAM, running CentOS 5 Linux. For each target algo-
rithm run, we used a single core and enforced a maximum of 2GB (spear and
cplex) or 6GB (lpg) of RAM.

Using the existing ParamILS plugin for HAL 1.1.6, we performed 10
independent runs of ParamILS for each scenario, with each configurator run
allocated 48 CPU hours of total runtime. In each case, we minimised penalised
average runtime (PAR10), a standard performance metric for configuration
and empirical analysis; under PAR10, each run that terminates successfully
was assigned a score equal to the CPU time used, and runs that crash or
do not produce a valid solution on a given instance were assigned a score of
10 times the runtime cutoff (this heavily penalised these cases to attempt to
enforce good instance set coverage.) Of the 10 configurations produced in our
ParamILS runs, we selected the one with the best PAR10 performance on the
full training set for that scenario. (This corresponds to one of the standard
protocols for using ParamILS.)

We then performed two ablation experiments using our racing-based ab-
lation procedure on the training set for each scenario, with the maximum
number of rounds set to 200. Ablation was performed in two directions, first
from the default to the optimised configuration obtained through automated
configuration using maximum gain, and then from the optimised configuration
to the default using minimum loss. Each configuration on the resulting abla-
tion paths for each scenario was subsequently evaluated using the independent
test set for that scenario. (Performing ablation directly on test sets produced
very similar results.)

sat using spear. The propositional satisfiability problem, or sat, is the pro-
totypical NP -hard problem with important real-world application, including
circuit design as well as hardware and software verification. sat has also been
widely studied in the context of automated algorithm configuration Hutter
et al (2007b, 2009, 2011). We chose to analyze the industrial sat solver spear
1.2.1, winner of one category of the 2007 Satisfiability Modulo Theories Com-
petition (Hutter et al, 2007a); spear has 26 configurable parameters, creating
a space of 8.34× 1017 configurations. spear has also been used in two recent
investigations of parameter importance using forward selection (Hutter et al,
2013) and functional ANOVA (Hutter et al, 2014). We analyzed the perfor-
mance of spear on the swv software verification instance set used in several
previous investigations. This set, consisting of 604 software verification condi-
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tions produced by an automated static checker, is partitioned into a training
set (used for configuration and ablation analysis) and test set (used for evalua-
tion of the ablation paths) consisting of 302 instances each. Following previous
work, we used a 300 CPU-second runtime cutoff for automated configuration
and all analysis runs.

mip using cplex. Mixed integer programming (mip) is another widely-studied
problem with many prominent real-world applications. IBM ILOG cplex is
one of the most widely used mip solvers, both in academia and industry, and
has a highly-parameterised configuration space containing 76 configurable pa-
rameters that directly impact solver performance (a total of 1.90 × 1047 con-
figurations). Automated configuration of cplex has proven successful in past
work (Hutter et al, 2010, 2011), and cplex has also been used in the same
parameter importance investigations as mentioned for spear. We chose to use
cplex 12.1 and the corlat instance set for this scenario (Gomes et al, 2008);
corlat is a set of computational sustainability mip instances based on real
data used for wildlife corridor construction for grizzly bears in the Northern
Rockies region. This set has been used in previous work on algorithm con-
figuration and on parameter importance; it is partitioned into a training and
test set containing 1 000 instances each. A 300 CPU-second runtime cutoff was
used for all runs.

AI Planning using lpg. The design and automated configuration of highly-
parameterised solvers has recently proven successful in the AI planning com-
munity, contributing to both the winner and runner-up in the Learning Track
of the 7th International Planning Competition (IPC-2011) (Vallati et al, 2011,
2013). Highly-parameterised general-purpose planners represent ideal candi-
date scenarios for studying parameter importance, because intuitively, the
benefits to be gained by exploiting the structure and differences between
various planning domains suggest that high-performance configurations will
vary widely between such domains. We chose to investigate the configuration
space of lpg td-1.0, a state-of-the-art local search based planner, and a key
component in the winner of the IPC-2011 Learning Track. lpg has 66 con-
figurable parameters, with a total of 9.11 × 1036 possible configurations. We
analyzed lpg’s performance on three planning domains: depots, satellite, and
zenotravel. These three domains have been used in previous planning compe-
titions, as well as in previous work on automated configuration for planning.
Each instance set contains disjoint 2 000-instance training and test sets gen-
erated using the same parameter settings of a randomised instance generator.
Consistent with previous work, a 60 CPU-second runtime cutoff was used for
configuration, while a 300 CPU-second cutoff was used for all test-set evalua-
tion and ablation analysis runs.

5 Results

Table 3 and Table 4 show the training and test set performance for the default
configurations and automatically optimised configurations in all five scenarios
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Table 3 Training set performance results for all 5 of our scenarios, for both the default
configurations and those obtained from ParamILS. Runtime cutoffs in all cases were 300
CPU seconds.

Training set performance (PAR10, s)
solver instance set q25 q50 q75 mean
spear default swv 0.122 0.528 23.649 573.649
spear configured swv 0.122 0.592 1.279 1.359
cplex default corlat 0.101 3.563 90.596 556.531
cplex configured corlat 0.110 1.220 5.812 5.511
lpg default depots 0.551 1.086 8.182 43.245
lpg configured depots 0.220 0.318 0.510 0.671
lpg default satellite 15.232 17.580 20.595 17.962
lpg configured satellite 4.827 5.645 6.404 5.662
lpg default zenotravel 20.092 26.377 34.642 29.671
lpg configured zenotravel 1.414 1.826 2.490 2.065

Table 4 Test set performance results for all 5 of our scenarios, for both the default con-
figurations and those obtained from ParamILS. Runtime cutoffs in all cases were 300 CPU
seconds.

Test set performance (PAR10, s)
solver instance set q25 q50 q75 mean
spear default swv 0.102 0.499 11.392 569.645
spear configured swv 0.079 0.531 1.114 1.321
cplex default corlat 0.097 3.551 70.602 471.722
cplex configured corlat 0.112 1.238 5.650 5.411
lpg default depots 0.535 1.055 7.194 38.097
lpg configured depots 0.220 0.324 0.511 0.658
lpg default satellite 15.173 17.575 20.514 17.940
lpg configured satellite 4.943 5.760 6.529 5.783
lpg default zenotravel 19.792 26.026 34.929 29.361
lpg configured zenotravel 1.407 1.841 2.556 2.092

considered; as expected, and consistent with previously published results for
these solvers, we observed 3- to 422-fold speedups after configuration.

Table 5 Design space size and number of parameters changed from the default configura-
tion by ParamILS for all 5 scenarios. Note that the number of parameters changed from the
default represents an upper bound on the number of ablation rounds, as conditional param-
eters can cause fewer rounds to be required if they are inactive in the source configuration
and active with their default values in the target configuration.

solver instance set design space size # parameters # changed from default

spear swv 8.34× 1017 26 21
cplex corlat 1.90× 1047 76 20
lpg depots 9.11× 1036 66 22
lpg satellite 9.11× 1036 66 35
lpg zenotravel 9.11× 1036 66 33

Table 5 details the design space size for each of the three solvers used in our
empirical analysis, as well as the number of parameters that were changed from
the default in each of our five scenarios. Interestingly, nearly every spear pa-
rameter was changed from the default, while for the cplex and lpg scenarios,
approximately one-third to one-half of the parameters were modified.
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Table 6 Parameters chosen and resulting PAR10 performance on both the training and
test sets for ablation analysis accelerated by racing (maximum of 200 rounds) for spear
on swv training set. Ablation was performed using the spear default configuration as the
source, and the configuration produced by ParamILS as the target.

round parameter performance
training test

default - 573.649 569.645
1 sp-var-dec-heur 2.041 1.800
2 sp-res-cutoff-cls 2.341 1.930
3 sp-rand-var-dec-scaling 1.554 1.287
4 sp-use-pure-literal-rule 1.350 1.276
5 sp-rand-var-dec-freq 1.365 1.288
6 sp-var-activity-inc 1.428 1.325
7 sp-clause-decay 1.413 1.310
8 sp-learned-size-factor 1.420 1.302
9 sp-res-cutoff-lits 1.432 1.319
10 sp-rand-phase-dec-freq 1.405 1.308
11 sp-clause-activity-inc 1.412 1.302
12 sp-orig-clause-sort-heur 1.418 1.341
13 sp-learned-clauses-inc 1.442 1.311
14 sp-max-res-runs 1.404 1.331
15 sp-learned-clause-sort-heur 1.352 2.018
16 sp-first-restart 1.273 1.214
17 sp-restart-inc 1.476 1.452
18 sp-res-order-heur 1.488 1.327
19 sp-variable-decay 1.417 1.377
20 sp-phase-dec-heur 12.038 1.602
21 sp-max-res-lit-inc 1.359 1.321
configured - 1.359 1.321

Table 7 Parameters chosen and resulting PAR10 performance on both the training and
test sets for ablation analysis accelerated by racing (maximum of 200 rounds) for cplex on
the corlat training set. Ablation was performed using the cplex default configuration as
the source, and the configuration produced by ParamILS as the target.

round parameter performance
training test

default - 556.531 471.722
1 mip cuts covers 90.776 63.067
2 mip strategy heuristicfreq 16.599 21.385
3 simplex dgradient 8.080 7.368
4 simplex tolerances markowitz 10.345 12.763
5 mip limits aggforcut 6.900 6.120
6 mip strategy variableselect 8.974 8.012
7 simplex pgradient 5.799 8.037
8 mip strategy fpheur 8.699 5.155
9 lpmethod 8.700 5.151
10 barrier crossover 8.662 5.146
11 preprocessing symmetry 8.696 5.140
12 sifting algorithm 8.695 5.145
13 barrier limits growth 8.678 5.137
14 mip limits gomorycand 8.704 5.143
15 mip limits cutsfactor 5.639 5.115
16 mip cuts gubcovers 5.672 5.132
17 mip cuts gomory 5.447 5.236
18 preprocessing repeatpresolve 5.608 5.433
19 mip strategy presolvenode 5.766 5.288
20 mip cuts mircut 5.511 5.411
configured - 5.511 5.411
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Table 8 Parameters chosen and resulting PAR10 performance on both the training and
test sets for ablation analysis accelerated by racing (maximum of 200 rounds) for lpg on
the depots training set. Ablation was performed using the lpg default configuration as the
source, and the configuration produced by ParamILS as the target.

round parameter performance
training test

default - 43.245 38.097
1 cri intermediate levels 1.610 1.520
2 triomemory 1.482 1.370
3 donot try suspected actions 1.460 1.345
4 walkplan 1.310 1.162
5 weight mutex in relaxed plan 1.069 1.012
6 noise 1.143 1.033
7 static noise 1.124 1.067
8 ri list 1.132 1.069
9 numrestart 1.117 1.062
10 maxnoise 1.114 1.062
11 inc re 1.086 1.008
12 extended effects evaluation 1.167 1.096
13 numtry 1.035 1.013
14 no cut 1.035 1.015
15 vicinato 1.038 1.014
16 hpar cut neighb 0.671 0.658
configured - 0.671 0.658

Tables 6 and 7 detail the full ablation paths using up to 200 rounds of rac-
ing, for the spear and cplex scenarios. Tables 8, 9 and 10 detail the ablation
paths for the three lpg scenarios. In all cases, we present the ablation paths
using the default configuration as the source and the ParamILS configura-
tion as the target. The ablation paths in the reverse direction are qualitatively
similar, with small deviations due to parameter conditionality in the case of
our cplex and lpg scenarios.

Figure 2(a) illustrates the mean PAR10 score on the swv test set for ev-
ery configuration along the path found through racing-accelerated ablation
analysis of spear on the swv training set. Expressing the performance gain
from a single ablation round as a percentage of the total gain between θsource
and θtarget, 99.92% of the performance gain between the default configura-
tion and the optimised configuration can be achieved by modifying the value
of a single parameter, sp-var-dec-heur. This parameter controls the choice of
the variable decision heuristic used by spear, which is known to be an impor-
tant parameter in most state-of-the-art sat solvers. Furthermore, if we modify
only four parameters (sp-var-dec-heur, sp-rand-var-dec-scaling, sp-res-cutoff-
cls, and sp-first-restart) from their default values, we obtain a configuration
with slightly better performance on the test set than the target configuration
obtained with ParamILS. In contrast, Hutter et al (2014) noted in their func-
tional ANOVA work that sp-var-dec-heur was important, but only 76% of the
improvement over the default could be attributed to single-parameter effects
in their model. We hypothesize that sp-var-dec-heur is much more important
in high-performance parts of the spear configuration space, a bias that is not
taken into account by the empirical performance models used by Hutter et al..
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Table 9 Parameters chosen and resulting PAR10 performance on both the training and
test sets for ablation analysis accelerated by racing (maximum of 200 rounds) for lpg on
the satellite training set. Ablation was performed using the lpg default configuration as the
source, and the configuration produced by ParamILS as the target.

round parameter performance
training test

default - 17.962 17.940
1 cri intermediate levels 7.316 7.577
2 criprecond 6.967 7.141
3 noise 7.029 6.997
4 no cut 6.925 6.803
5 improve reachability 6.943 6.837
6 donot try suspected actions 6.834 6.793
7 numrestart 6.915 6.776
8 dynoisecoefnum 6.859 6.787
9 cri update iterations 6.856 6.795
10 vicinato 6.887 6.788
11 hpar cut neighb 5.357 5.317
12 triomemory 5.357 5.325
13 verifyinit 5.337 5.329
14 noise incr 5.356 5.351
15 maxnoise 5.471 5.343
16 evaluate mutex for action remotion 5.360 5.325
17 walkplan 5.363 5.340
18 evaluation function 5.217 5.339
19 dynoiseTabLen 5.239 5.341
20 static noise 5.314 5.328
21 relaxed examination 5.268 5.314
22 reset extended unsupported facts 5.413 5.331
23 mutex and additive effects 5.423 5.344
24 numtry 5.460 5.339
25 not supported preconds evaluation 5.355 5.335
26 inc re 5.379 5.327
27 zero num A 5.331 5.335
28 not extended unsupported facts 5.372 5.344
29 fast best action evaluation 5.371 5.341
30 no mutex with additive effects 5.375 5.331
31 lagrange 5.376 5.334
32 h 5.662 5.783
configured - 5.662 5.783

Similarly, Figure 2(b) shows the performance of configurations on the path
found through racing-accelerated ablation analysis of cplex on the corlat
training set, evaluated on the test set. Here, 87.64% of the performance gain
resulted from modifying the value of a single parameter, mip cuts covers,
which controls whether or not to generate cover cuts. 99.58% of the gain
can be achieved by modifying just three cplex parameters (mip cuts covers,
mip strategy heuristicfreq and simplex dgradient). We note that simplex dgradient
was not in the top 10 important parameters identified for this scenario by Hut-
ter et al (2014), although 6 of the 10 most important cplex parameters as
identified by their functional ANOVA approach were not changed from their
default values in our experiments (this effect was also noted by Hutter et al.).

Finally, Figures 2(c), 2(d) and 2(e) illustrate the performance along the
ablation paths for each of the three lpg scenarios: depots, satellite and zeno-
travel. For the depots and satellite scenarios, the top three parameters were
the same. Modifying the value of cri intermediate levels resulted in 97.7% and
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Table 10 Parameters chosen and resulting PAR10 performance on both the training and
test sets for ablation analysis accelerated by racing (maximum of 200 rounds) for lpg on
the zenotravel training set. Ablation was performed using the lpg default configuration as
the source, and the configuration produced by ParamILS as the target.

round parameter performance
training test

default - 29.671 29.361
1 fast best action evaluation 8.064 8.258
2 triomemory 5.789 5.912
3 noise 4.266 4.369
4 criprecond 3.701 3.713
5 stop remove act 3.458 3.446
6 verifyinit 3.418 3.435
7 weight mutex in relaxed plan 3.393 3.421
8 reset extended unsupported facts 3.377 3.401
9 inc re 3.348 3.387
10 twalkplan 3.347 3.392
11 choose min numA fact 3.357 3.391
12 numrestart 3.375 3.393
13 lagrange 3.376 3.391
14 verifyAf 3.371 3.392
15 no cut 3.368 3.397
16 zero num A 3.362 3.393
17 noise incr 3.333 3.388
18 numtry 3.401 3.389
19 bestfirst 3.372 3.389
20 evaluation function 3.343 3.388
21 no pruning 3.367 3.391
22 h 3.385 3.392
23 donot try suspected actions 3.367 3.388
24 cri insertion add mutex 3.371 3.387
25 vicinato 3.370 3.381
26 hpar cut neighb 2.035 2.047
27 nonuniform random 2.018 2.056
28 dynoiseTabLen 1.996 2.053
29 no insert threated act in neighb 2.005 2.052
30 maxnoise 2.065 2.092
configured - 2.065 2.092

84.55% of the target configuration performance over the default, respectively.
Furthermore, modifying the values of three parameters (cri intermediate levels,
vicinato (the neighbourhood choice), and hpar cut neighb) resulted in 99.22%
of the performance gain for the depots scenario.

For the zenotravel scenario (Figure 2e), we observed different choices for the
two most important parameters, depending on the direction in which ablation
was performed. Modifying triomemory and fast best action evaluation from
their default values resulted in 85.99% of the overall performance gain over
the default, while modifying vicinato and hpar cut neighb (similar to the other
two lpg scenarios) resulted in 88.09% of the total performance gain. Four
parameter modifications (vicinato, hpar cut neighb, triomemory, and noise)
accounted for 97.8% of the total performance gain.

It is interesting to note that there is a conditional parameter interaction
between hpar cut neighb and vicinato, as hpar cut neighb is only active when
vicinato takes certain values. In our experiments, modifying vicinato often did
not produce large gains in performance by itself, but allowed for modification
of hpar cut neighb, which in turn resulted in large performance improvements.
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(a) SPEAR on SWV test set
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(b) CPLEX on CORLAT test set
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(c) LPG on depots test set
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(d) LPG on satellite test set
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(e) LPG on zenotravel test set

Fig. 2 Ablation paths determined using racing with up to 200 rounds on the training sets
of the five configuration scenarios, with each configuration on the ablation path evaluated
using the corresponding test set. The horizontal lines indicate the PAR10 scores of the
default (source) and automatically-configured (target) configurations on the test set for
each scenario.

The effect of conditional parameters can also be seen in the “late” performance
improvements in the three lpg scenarios in the direction of maximum gain.

6 Additional experimental results

So far, we have focussed on results from straightforward applications of ab-
lation analysis. However, ablation analysis can also be used to find configu-
rations that generalise better than the default configuration to new domains
(i.e., problem instance classes) of interest, or to obtain information about
the topology of the algorithm configuration space around and between high-
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Table 11 Performance analysis of the lpg default, configurations obtained from ParamILS,
and the first 4 flips of ablation, for all 3 lpg scenarios, on the depots test set.

configuration depots test set performance (PAR10)
default 38.097
depots ablation flip 1 1.520
depots ablation flip 2 1.390
depots ablation flip 3 1.261
depots ablation flip 4 1.037
depots configured 0.658
satellite ablation flip 1 10.413
satellite ablation flip 2 6.194
satellite ablation flip 3 224.976
satellite ablation flip 4 223.590
satellite configured 2643.840
zenotravel ablation flip 1 11.983
zenotravel ablation flip 2 11.790
zenotravel ablation flip 3 368.500
zenotravel ablation flip 4 1720.010
zenotravel configured 2807.531

Table 12 Performance analysis of the lpg default, configurations obtained from ParamILS,
and the first 4 flips of ablation, for all 3 lpg scenarios, on the satellite test set.

configuration satellite test set performance (PAR10)
default 17.940
depots ablation flip 1 7.275
depots ablation flip 2 7.260
depots ablation flip 3 7.279
depots ablation flip 4 7.234
depots configured 7.617
satellite ablation flip 1 7.577
satellite ablation flip 2 7.141
satellite ablation flip 3 6.997
satellite ablation flip 4 6.997
satellite configured 5.783
zenotravel ablation flip 1 17.358
zenotravel ablation flip 2 17.381
zenotravel ablation flip 3 16.323
zenotravel ablation flip 4 10.102
zenotravel configured 7.952

performance configurations. As mentioned in Section 2, these extended uses
of ablation analysis strongly echo ideas from path relinking.

In several of these experiments, we focussed on our three lpg scenarios,
since these allowed us to investigate generalisation of performance between
different classes of instances (here: planning domains).

Generalisation to other domains. After spending hours of CPU time to pro-
duce an algorithm configuration that is highly-optimised for a specific problem
instance set, it would be ideal if a user could somehow use that configuration
to find a different configuration with better performance than the default on a
different, previously unseen problem instance set. To investigate the potential
for ablation analysis to produce such configurations, we performed three sets of
experiments, in order to investigate how configurations “near” the lpg default
(along ablation paths toward a chosen ParamILS configuration) perform on
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Table 13 Performance analysis of the lpg default, configurations obtained from ParamILS,
and the first 4 flips of ablation, for all 3 lpg scenarios, on the zenotravel test set.

configuration zenotravel test set performance (PAR10)
default 29.361
depots ablation flip 1 1114.835
depots ablation flip 2 908.578
depots ablation flip 3 896.241
depots ablation flip 4 894.766
depots configured 1028.118
satellite ablation flip 1 1467.274
satellite ablation flip 2 1468.614
satellite ablation flip 3 870.385
satellite ablation flip 4 867.646
satellite configured 2478.914
zenotravel ablation flip 1 8.258
zenotravel ablation flip 2 5.912
zenotravel ablation flip 3 4.369
zenotravel ablation flip 4 3.713
zenotravel configured 2.092

scenarios other than the one used to determine the original ablation paths.
Tables 11, 12 and 13 illustrate the results of these experiments. For depots
and satellite, configurations that are a small number of ablation rounds away
from the default perform substantially better than the default configuration
itself (2.5- to 6.1-fold speedups), before the ablation path hits more specialised
configurations that do not generalise as well to new domains. We do not see the
same effect in the zenotravel domain, where the ablation path does improve in
quality before getting worse, but fails to exceed at any point the performance
of the default configuration.

Ablation paths between high-quality configurations. Next, we investigated whether
ablation analysis could be used to better understand the topology of the search
space between high-quality configurations for each of our 5 scenarios. If the
configurations found on ablation paths between two high-quality configura-
tions do not differ in performance from the source and target, we might ex-
pect the existence of a large plateau of high-quality configurations in the search
space. Conversely, if the configurations lying on such ablation paths have worse
performance than the source and target, we have reason to believe that the
source and target may lie in different basins of the parameter response surface.

We examined the ablation paths between two high-quality configurations
for each of our five scenarios, defined as the best and second-best configura-
tions found by ParamILS, evaluated on the training set. We used our racing
approach, with the maximum number of rounds again set to 200. Tables 14,
15, 16, 17 and 18 detail the qualities of each configuration along the ablation
paths for each scenario, while Figure 3 gives a visual summary of the paths.

We see that for spear, there appears to be at least one ridge of poor-quality
configurations that must be surmounted in order to move from the source to
the target configuration. In all of the other four scenarios, no such ridge is
present, and every configuration along the ablation paths share the quality of
the source/target configurations. We note that as ablation analysis is a greedy
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Table 14 Parameters chosen and resulting test set performance for ablation analysis ac-
celerated by racing (maximum of 200 rounds) for spear on swv test set, using the best
ParamILS configuration as the source and the second-best ParamILS configuration as the
target.

round parameter performance
best - 1.321
1 sp-res-cutoff-lits 1.899
2 sp-learned-clauses-inc 11.104
3 sp-max-res-lit-inc 1.734
4 sp-phase-dec-heur 1.316
5 sp-max-res-runs 1.310
6 sp-restart-inc 1.501
7 sp-variable-decay 1.404
8 sp-clause-decay 1.397
9 sp-rand-var-dec-freq 11.892
10 sp-learned-size-factor 11.934
11 sp-rand-phase-dec-freq 1.1474
12 sp-use-pure-literal-rule 1.504
13 sp-clause-activity-inc 1.455
14 sp-clause-del-heur 1.481
15 sp-update-dec-queue 1.488
16 sp-learned-clause-sort-heur 11.327
17 sp-res-cutoff-cls 11.390
18 sp-rand-var-dec-scaling 93.552
19 sp-first-restart 2.256
second-best - 2.256

process, the occurrence of such ridges on the ablation paths does not strictly
imply the existence of barriers that must be overcome by all paths between
the source and target configurations. However, in the cases where no such
ridges are present in the ablation paths, at least one path of qual performance
between the source and target configurations is guaranteed to exist.

Ablation between high-quality configurations for different domains. Next, we
investigated the use of ablation paths between high-performance configurations
for different domains, to see how different configurations “needed” to be before
high performance was achieved on a domain different from that for which they
were originally optimised. (We note that this question is closely related to the
problem of transfer learning.) We performed ablation analysis experiments
between the chosen ParamILS configurations for two of the lpg scenarios,
evaluated using the test set from one of those scenarios. Tables 19 and 20
show the full ablation paths between the depots and satellite configurations,
evaluated on the depots and satellite test sets respectively.

Similarly, Tables 21 and 22 show the results for ablation between the de-
pots and zenotravel configurations, and Tables 23 and 24 show the results for
ablation between the satellite and zenotravel configurations. Figure 4 presents
these ablation paths visually.

We also performed additional ablation experiments between the configura-
tions obtained from ParamILS for each pair of lpg scenarios, evaluated using
the test set of the third scenario. This set of experiments further tests the use
of ablation paths to find configurations that generalise well to previously un-
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Table 15 Parameters chosen and resulting test set performance for ablation analysis ac-
celerated by racing (maximum of 200 rounds) for cplex on corlat test set, using the best
ParamILS configuration as the source and the second-best ParamILS configuration as the
target.

round parameter performance
best - 5.411
1 preprocessing repeatpresolve 5.117
2 mip cuts gomory 5.027
3 simplex limits singularity 5.014
4 simplex pgradient 4.983
5 preprocessing boundstrength 4.989
6 mip limits cutsfactor 5.026
7 mip strategy dive 4.749
8 barrier crossover 4.753
9 lpmethod 4.765
10 mip cuts pathcut 4.751
11 preprocessing symmetry 4.760
12 simplex pricing 4.760
13 barrier limits growth 4.767
14 mip cuts zerohalfcut 4.747
15 mip cuts cliques 4.751
16 sifting algorithm 4.745
17 mip strategy presolvenode 4.780
18 mip strategy variableselect 5.114
19 mip limits cutpasses 5.658
20 mip strategy probe 5.592
21 simplex tolerances markowitz 5.485
22 mip cuts flowcovers 6.286
23 emphasis mip 6.017
24 mip cuts mircut 5.096
25 mip limits aggforcut 4.823
26 mip cuts covers 4.812
27 mip strategy branch 5.036
28 simplex dgradient 5.024
29 mip strategy heuristicfreq 5.932
second-best - 5.932

Table 16 Parameters chosen and resulting test set performance for ablation analysis ac-
celerated by racing (maximum of 200 rounds) for lpg on the depots test set, using the best
ParamILS configuration as the source and the second-best ParamILS configuration as the
target.

round parameter performance
best - 0.658
1 extended effects evaluation 0.603
2 static noise 0.614
3 numrestart 0.617
4 evaluation function 0.612
5 triomemory 0.611
6 dynoiseTabLen 0.616
7 ri list 0.617
8 cri update iterations 0.621
9 noise incr 0.608
10 dynoisecoefnum 0.627
11 numtry 0.643
12 weight mutex in relaxed plan 0.583
13 walkplan 0.689
14 tabu length 0.585
second-best - 0.585



24 Chris Fawcett, Holger H. Hoos

Table 17 Parameters chosen and resulting test set performance for ablation analysis accel-
erated by racing (maximum of 200 rounds) for lpg on the satellite test set, using the best
ParamILS configuration as the source and the second-best ParamILS configuration as the
target.

round parameter performance
best - 5.783
1 static noise 5.293
2 cri update iterations 5.293
3 inc re 5.239
4 fast best action evaluation 5.256
5 evaluation function 5.233
6 evaluate threated supported preconds of neighb action 5.234
7 weight mutex in relaxed plan 5.213
8 walkplan 5.257
9 choose min numA fact 5.211
10 dynoiseTabLen 5.281
11 mutex and additive effects 5.269
12 maxnoise 5.161
13 not supported preconds evaluation 5.220
14 no mutex with additive effects 5.187
15 dynoisecoefnum 5.214
16 no pruning 5.210
17 noise incr 5.189
18 numtry 5.189
19 no insert threated act in neighb 5.145
20 zero num A 5.144
21 avoid best action cycles 5.182
22 noise 5.261
23 twalkplan 5.170
24 numrestart 5.198
25 ri list 5.117
26 extended effects evaluation 5.157
27 not extended unsupported facts 5.356
second-best - 5.356

Table 18 Parameters chosen and resulting test set performance for ablation analysis ac-
celerated by racing (maximum of 200 rounds) for lpg on the zenotravel test set, using the
best ParamILS configuration as the source and the second-best ParamILS configuration as
the target.

round parameter performance
best - 2.092
1 no pruning 2.040
2 criprecond 2.019
3 choose min numA fact 2.029
4 inc re 2.022
5 remove act next step 2.023
6 nonuniform random 2.016
7 verifyAf 2.013
8 numtry 2.009
9 maxnoise 2.016
10 numrestart 2.006
11 no insert threated act in neighb 2.019
12 bestfirst 2.009
13 dynoisecoefnum 2.013
14 dynoiseTabLen 2.019
15 verifyinit 2.025
16 noise incr 2.007
17 cri insertion add mutex 2.014
18 evaluation function 2.014
19 extended effects evaluation 2.105
20 h 2.119
second-best - 2.119
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Fig. 3 Ablation paths determined using racing with up to 200 rounds on the test sets of the
five configuration scenarios. Ablation was performed from the best ParamILS incumbent to
the second-best incumbent on each scenario. The horizontal lines indicate the PAR10 scores
of the default (source) and automatically-configured (target) configurations.

seen problem instance sets. The results of these experiments are detailed in
Tables 25, 26 and 27, and are shown visually in Figure 5.

For the ablation from the depots configuration to the satellite configura-
tion, both the source and target configurations are significantly worse than
the default on the zenotravel test set. However, there are configurations along
the resulting ablation path with better performance than the default.

For the ablation from the depots configuration to the zenotravel configu-
ration, both the source and target configurations are better than the default,
but we again see improvement along the ablation path. In fact, many of the
configurations along the ablation path are better than the satellite ParamILS
configuration, evaluated on the satellite test set.
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Table 19 Parameters chosen and resulting test set performance for ablation analysis accel-
erated by racing (maximum of 200 rounds) for lpg on the depots test set, using the depots
configuration as the source and the satellite configuration as the target.

round parameter performance
depots - 0.658
1 extended effects evaluation 0.603
2 criprecond 0.640
3 ri list 0.637
4 verifyinit 0.642
5 relaxed examination 0.637
6 fast best action evaluation 0.593
7 not supported preconds evaluation 0.673
8 inc re 0.677
9 zero num A 0.679
10 cri update iterations 0.679
11 maxnoise 0.678
12 evaluation function 0.674
13 h 0.672
14 numrestart 0.670
15 improve reachability 0.686
16 mutex and additive effects 0.626
17 weight mutex in relaxed plan 0.617
18 numtry 0.631
19 evaluate mutex for action remotion 0.697
20 not extended unsupported facts 0.773
21 no mutex with additive effects 0.866
22 reset extended unsupported facts 0.959
23 noise 19.654
24 cri intermediate levels 1005.004
25 hpar cut neighb 2643.840
satellite - 2643.840

Finally, for the ablation from the satellite configuration to the zenotravel
configuration evaluated on depots, again we see that the source and target
configurations are orders of magnitude worse than the default configuration.
As with the other two experiments, the configurations along the ablation path
have better performance on the depots test set than either the source or target
configuration, although none reach the performance of the default configura-
tion.

7 Future work

This work can be extended in various directions, with the primary extension
being improved handling of conditional effects and interdependencies between
parameters. As we outlined in Section 3, for an inactive conditional parameter
to be flipped in a given ablation round, all of its dependent parent parameters
that were inactive in the source configuration must have been flipped in pre-
vious ablation rounds. This dependency can cause an important conditional
parameter to be flipped much later in the ablation process than it should be.
We observed this with the vicinato and hpar cut neighb parameters in all three
of our lpg scenarios, for example.

We propose to solve this issue by allowing the modification of more than
one parameter in each ablation round. In this case, rather than ignoring a
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Table 20 Parameters chosen and resulting test set performance for ablation analysis ac-
celerated by racing (maximum of 200 rounds) for lpg on the satellite test set, using the
satellite configuration as the source and the depots configuration as the target.

round parameter performance
depots - 7.617
1 hpar cut neighb 5.997
2 not extended unsupported facts 5.805
3 reset extended unsupported facts 5.710
4 criprecond 5.340
5 extended effects evaluation 5.290
6 evaluate mutex for action remotion 5.559
7 relaxed examination 5.345
8 inc re 5.313
9 ri list 5.532
10 not supported preconds evaluation 5.307
11 cri intermediate levels 5.368
12 numrestart 5.405
13 zero num A 5.376
14 lagrange 5.376
15 evaluation function 5.375
16 h 5.675
17 noise 5.602
18 cri update iterations 5.708
19 weight mutex in relaxed plan 5.515
20 improve reachability 5.462
21 no mutex with additive effects 5.427
22 maxnoise 5.473
23 numtry 5.668
24 fast best action evaluation 5.640
25 mutex and additive effects 5.297
26 verifyinit 5.783
satellite - 5.783

parameter that is currently active, we would include as a candidate the con-
figuration obtained by flipping that parameter and all of its inactive parent
parameters to their value in the target configuration. We have implemented a
prototype for this extension, and in preliminary experiments with spear and
lpg we observed ablation paths qualitatively similar to those in Section 5.
However, as expected, in the lpg scenarios vicinato and hpar cut neighb are
now flipped together much earlier in the ablation path, giving a better estimate
of their importance.

Another opportunity for future work is the investigation of alternatives and
improvements to our racing-based ablation approach. For example, we have
observed that in later ablation rounds, F-Race quickly eliminates all candidate
configurations except for a small number of configurations with very similar
performance. In these cases, the maximum number of racing rounds are used.
We also observed a related case where the F-Race was quickly reduced to two
candidate configurations, where the p-value of the Friedman test was sufficient
to proceed to pairwise elimination, but the p-value of the subsequent t-test was
insufficient to eliminate the configuration with worse performance. Although
this is consistent with what is known in terms of the impact of violated nor-
mality assumptions on the power of tests involving the t-statistic, it would
be beneficial to investigate further as a solution to this problem could sub-
stantially reduce the number of algorithm runs required. Possible candidates
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Table 21 Parameters chosen and resulting test set performance for ablation analysis accel-
erated by racing (maximum of 200 rounds) for lpg on the depots test set, using the depots
configuration as the source and the zenotravel configuration as the target.

round parameter performance
depots - 0.658
1 extended effects evaluation 0.603
2 no insert threated act in neighb 0.586
3 lagrange 0.595
4 no pruning 0.595
5 choose min numA fact 0.576
6 evaluation function 0.584
7 verifyinit 0.595
8 zero num A 0.590
9 nonuniform random 0.601
10 h 0.596
11 bestfirst 0.578
12 ri list 0.588
13 maxnoise 0.590
14 cri insertion add mutex 0.582
15 triomemory 0.591
16 numrestart 0.587
17 static noise 0.635
18 inc re 0.538
19 criprecond 0.543
20 dynoiseTabLen 0.542
21 noise incr 0.542
22 dynoisecoefnum 0.542
23 twalkplan 2.022
24 walkplan 2.009
25 numtry 0.535
26 verifyAf 0.524
27 reset extended unsupported facts 0.526
28 fast best action evaluation 8.115
29 hpar cut neighb 190.062
30 noise 1275.739
31 cri intermediate levels 2767.166
32 stop remove act 2807.531
zenotravel - 2807.531

would be to use a non-parametric test instead, possibly in combination with
multiple-testing correction (see Styles and Hoos (2013)).

Finally, we believe that our approach and the model-based techniques dis-
cussed in Section 2 are complementary and can be combined, e.g., by building
functional ANOVA models using configurations sampled along ablation paths
or from the localised region between the two input configurations.

8 Conclusions

In this work, we have introduced a new procedure, ablation analysis, which al-
lows developers of highly-parameterised algorithms to ascertain which of their
parameters contribute most to performance differences between two algorithm
configurations. Using ablation analysis, it is possible to determine which mod-
ifications of a given default configuration were truly necessary to achieve im-
proved performance, and which modifications can essentially be considered
spurious side effects of an automated (or manual) configuration process.
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Table 22 Parameters chosen and resulting test set performance for ablation analysis ac-
celerated by racing (maximum of 200 rounds) for lpg on the zenotravel test set, using the
zenotravel configuration as the source and the depots configuration as the target.

round parameter performance
depots - 1028.118
1 ri list 1021.959
2 cri intermediate levels 10.058
3 hpar cut neighb 2.755
4 criprecond 3.584
5 twalkplan 2.163
6 extended effects evaluation 2.130
7 noise 2.061
8 stop remove act 2.020
9 verifyAf 2.019
10 numrestart 2.026
11 triomemory 2.044
12 walkplan 2.046
13 verifyinit 2.046
14 bestfirst 2.031
15 cri insertion add mutex 2.060
16 static noise 2.054
17 zero num A 2.056
18 maxnoise 2.077
19 dynoiseTabLen 2.055
20 lagrange 2.055
21 no insert threated act in neighb 2.077
22 inc re 2.082
23 h 2.086
24 dynoisecoefnum 2.108
25 numtry 2.116
26 choose min numA fact 2.067
27 evaluation function 2.077
28 reset extended unsupported facts 2.063
29 fast best action evaluation 2.115
30 noise incr 2.088
31 nonuniform random 2.040
32 no pruning 2.092
zenotravel - 2.092

We validated our approach in an experimental study using five well-studied
configuration scenarios from propositional satisfiability, mixed-integer pro-
gramming and AI planning, with 26 to 76 configurable parameters. We showed
that a variant of our approach accelerated by a racing method required 25%
of the CPU time needed by the brute-force variant, while achieving qualita-
tively similar results. In all of these scenarios, we found that 95–99% of the
performance improvements achieved by automated configuration of the given,
highly-parametric solver could be obtained with the modification of only 1–4
parameters, a small fraction of total number of parameters for each algorithm.
In two cases, we found that modification of a single parameter could achieve
99.92% and 87.64% of the performance gain between the default configura-
tion and one found by ParamILS. Similar results have been reported for the
global impact of parameters previously (e.g., by Hutter et al (2014)), but we
show that this is true locally for high-performance configurations, and in some
cases the locally-important parameters are different from those that are im-
portant globally. Overall, we believe that our ablation analysis approach can
be of great use to help algorithm developers and end users understand more
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Table 23 Parameters chosen and resulting test set performance for ablation analysis ac-
celerated by racing (maximum of 200 rounds) for lpg on the satellite test set, using the
satellite configuration as the source and the zenotravel configuration as the target.

round parameter performance
satellite - 5.783
1 static noise 5.293
2 dynoisecoefnum 5.293
3 no pruning 5.767
4 improve reachability 5.485
5 twalkplan 5.402
6 not extended unsupported facts 5.708
7 nonuniform random 5.778
8 verifyAf 5.526
9 noise incr 5.631
10 not supported preconds evaluation 5.613
11 dynoiseTabLen 5.681
12 bestfirst 5.616
13 cri update iterations 5.223
14 cri insertion add mutex 5.502
15 evaluate mutex for action remotion 5.306
16 inc re 5.293
17 h 5.385
18 numtry 5.471
19 no mutex with additive effects 5.322
20 mutex and additive effects 5.275
21 triomemory 5.232
22 stop remove act 5.222
23 relaxed examination 5.238
24 weight mutex in relaxed plan 5.297
25 numrestart 5.293
26 walkplan 5.312
27 no insert threated act in neighb 5.355
28 choose min numA fact 5.291
29 maxnoise 5.357
30 cri intermediate levels 7.952
zenotravel - 7.952

about which algorithm parameters (and therefore algorithm subsystems and
behaviours) are most responsible for high performance on problem instances
of interest. The implementation of our approach has additional been made
available for other researchers to use, please see the project page 3 for more
details.
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Fig. 4 Ablation paths determined using racing with up to 200 rounds on the test sets of
the three lpg scenarios. Ablation was performed from the best ParamILS incumbent on
domain A to the best incumbent on domain B on each scenario, evaluated on domain A
and B. The horizontal lines indicate the PAR10 scores of the default and the domain A/B
incumbents.
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Fig. 5 Ablation paths determined using racing with up to 200 rounds on the test sets of
the three lpg scenarios. Ablation was performed from the best ParamILS incumbent on
domain A to the best incumbent on domain B on each scenario, evaluated on domain C.
The horizontal lines indicate the PAR10 scores of the default, the domain A/B incumbents,
and the performance of the ParamILS configuration for domain C.


