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As interest in machine learning and its applications becomes more widespread, how to choose the best models

and hyper-parameter settings becomes more important. This problem is known to be challenging for human

experts, and consequently, a growing number of methods have been proposed for solving it, giving rise to

the area of automated machine learning (AutoML). Many of the most popular AutoML methods are based

on Bayesian optimization, which makes only weak assumptions about how modifying hyper-parameters

effects the loss of a model. This is a safe assumption that yields robust methods, as the AutoML loss landscapes
that relate hyper-parameter settings to loss are poorly understood. We build on recent work on the study

of one-dimensional slices of algorithm configuration landscapes by introducing new methods that test 𝑛-

dimensional landscapes for statistical deviations from uni-modality and convexity, and we use them to show

that a diverse set of AutoML loss landscapes are highly structured. We introduce a method for assessing

the significance of hyper-parameter partial derivatives, which reveals that most (but not all) AutoML loss

landscapes only have a small number of hyper-parameters that interact strongly. To further assess hyper-

parameter interactions, we introduce a simplistic optimization procedure that assumes each hyper-parameter

can be optimized independently, a single time in sequence, and we show that it obtains configurations that are

statistically tied with optimal in all of the 𝑛-dimensional AutoML loss landcsapes that we studied. Our results

suggest many possible new directions for substantially improving the state of the art in AutoML.
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1 INTRODUCTION
Machine learning has made many impressive contributions to a broad range of applications through

the development of a diverse set of models and training algorithms (see, e.g., Breiman [2001]; Cortes

and Vapnik [1995]; Krizhevsky et al. [2012]; LeCun et al. [2015]; Silver et al. [2016] or Angermueller

et al. [2016]). However, no single technique dominates for all applications; therefore, for many

applications, there are benefits in evaluating and comparing many approaches. Furthermore, it

is well known that hyper-parameter settings can strongly impact model quality [Bergstra et al.
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2011]. Recently, significant attention has been devoted to developing automated machine learning

(AutoML) methods to address this problem (see, e.g., Bergstra et al. [2011]; Bergstra and Bengio

[2012]; Falkner et al. [2018]; Feurer et al. [2015]; Fusi et al. [2018]; Kandasamy et al. [2017, 2015];

Li et al. [2017]; Snoek et al. [2012]; Springenberg et al. [2016]; Yang et al. [2019] or Zogaj et al.

[2021]). AutoML often casts the combined algorithm selection and hyper-parameter optimization

problem as a stochastic, black-box optimization task that aims to optimize model quality in terms

of generalization loss by finding suitable values for discrete, continuous and conditional hyper-

parameters. However, little is known about the AutoML loss landscapes that relate hyper-parameter

settings to generalization loss [Bergstra et al. 2011; Pimenta et al. 2020], hence most AutoML

methods make very few assumptions about these landscapes. The most common methods are based

on Bayesian optimization (see, e.g., Bergstra et al. [2011]; Feurer et al. [2015]; Kandasamy et al.

[2017]; Snoek et al. [2012] or Falkner et al. [2018]). These methods typically only assume that the

solution quality of configurations are locally correlated, and that this correlation can be learned and

exploited. Other prominent methods make even fewer assumptions, see e.g., Li et al. [2017, 2020] or
Bergstra and Bengio [2012], which rely on random search. It has even been proposed that AutoML

methods should perform well on nasty, multi-model synthetic benchmarks, such as rastrigin and

hartmann-6 [Eggensperger et al. 2013]. Because these assumptions are very conservative, they can

be expected to yield robust methods.

However, all of these methods may be unnecessarily inefficient if AutoML loss landscapes turned

out to be highly structured in a way that makes them easier to optimize. For example, if they

tended to be globally uni-modal or even convex (for numerical hyper-parameters), this would

have significant ramifications on the kinds of search procedures used for AutoML. This motivates

our first research question: RQ 1. Is the global structure of typical AutoML loss landscapes
relatively benign; in particular, are they (approximately) uni-modal or convex? It is already
well-known that most AutoML loss landscapes depend most strongly on a small number of hyper-

parameters [Bergstra et al. 2011]; if these hyper-parameters tend to interact weakly or not at all, they

could be optimized independently. This would also have substantial ramifications for many existing

Gaussian-process-based methods, for which a primary bottleneck is fitting a Gaussian-process

model to high-dimensional landscapes [Kandasamy et al. 2015]. This yields our second research

question:RQ 2. Domost hyper-parameters interact strongly; if not, to what extent do they
interact and where?
We are by no means the first to study the structure of optimization problems by way of an

analogy to physical landscapes. The analysis of the landscapes induced by optimization problems is

a well established topic, that can be traced back to the seminal work by Wright [1932] on the study

of evolutionary biology. Since then, a broad range of techniques have been proposed for what is

typically referred to as fitness landscape analysis (see, e.g., Hoos and Stützle [2005]; Malan [2021];

Malan and Engelbrecht [2013]; Pitzer and Affenzeller [2012] or Watson [2010]).

The application of fitness landscape analysis has recently received considerable attention in

machine learning. For example, it has been used to study the properties of the error landscapes

induced by the weight parameters of neural networks (see e.g., Rakitianskaia et al. [2016] or van
Aardt et al. [2017]). However, this work is orthogonal to ours; instead, for neural networks we

analyze the landscapes induced by architectural parameters and hyper-parameters.

Recently, neural architecture search landscapes have also been studied with fitness landscape

analysis techniques. For example, Rodrigues et al. [2020] studied the landscapes of a neuroevolution

procedure for optimizing the performance of convolutional neural networks (CNNs). In particular,

they compared the performance responses induced by three different types of neuroevolution

mutation operations. The first of these modifies the hyper-parameters associated with individual

neurons, e.g., the choice of the activation function. The second modifies the hyper-parameters
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of the optimization procedure used to train the CNNs, e.g., the learning rate. Finally, the third

modifies the topology of the network itself. From their analysis, they concluded that it is easiest to

configure the hyper-parameters of the optimization procedure, because they yield the smoothest

responses, and hardest to configure the topology-related hyper-parameters, because they yield the

most rugged responses.

Nunes et al. [2021] applied fitness landscape analysis methods to the validation accuracy obtained

by various graph neural network (GNN) architectures. They estimate the validation accuracy using

a single run for a given configuration with a given train/validation split. Unlike Rodrigues et al.

[2020], they do not consider the hyper-parameters of the optimization procedure when defining

the landscape; instead, they focus only on parameters that relate specifically to the architecture

of the GNN, e.g., the activation functions used. They conclude from a fitness distance correlation

(FDC) analysis [Jones and Forrest 1995] that the landscapes that arise for neural architecture

search on three different datasets should be relatively simple to optimize, with most high-quality

configurations grouped together in the search space. Based on their results, they also speculate

that the landscapes do not contain a substantial amount of neutrality [Reidys and Stadler 2001],

but call for further study in this direction.

Conceptually, landscape analysis for neural architecture search is closely related to that for

configuring ML pipelines; however, NAS provides the unique additional challenge that neural

networks have architectures that are graphical in nature, thereby imposing additional constraints

on the relationships between hyper-parameters. Consequently, the landscapes that arise in NAS

scenarios may (or may not) be similar to those of traditional ML pipelines.

We are only aware of two recent papers that specifically address AutoML loss landscapes. In

the first, Garciarena et al. [2018] make several dubious claims, for example: That AutoML methods

typically optimize the training loss of a model, which is factually incorrect (see e.g., Bergstra et al.
[2011]; Eggensperger et al. [2013] or Falkner et al. [2018]). They also claim that multiple distinct

local optima exist in the landscapes they studied and substantiate this claim by the fact that multiple

distinct machine learning models each contain hyper-parameter configurations that yield similarly-

good solutions. However, given the neighbourhood operator that they define, each of these “local”

minima may be directly connected.

Independently and in parallel to a major part of our work, Pimenta et al. [2020] apply fitness

distance correlation and a measure of neutrality to the landscapes induced by modifying AutoML

pipelines. They concluded that AutoML pipeline landscapes tend to be flatter close to high-quality

solutions and that FDC is a poor metric for characterizing AutoML loss landscapes, necessitating

further study. We observed similar results for FDC (see Section 4) and, partly prompted by this,

introduced two novel methods for analyzing the global shape of the landscapes (see Section 2.2).

We note that both of these existing studies are somewhat orthogonal to ours, as they focus on the

landscapes of AutoML pipelines, whereas we focus on the landscapes induced by hyper-parameters

of pre-specified models. This is a more interesting first question, as each pipeline must contain

several hyper-parameters that need instantiating, and therefore, our work is likely to apply to

automated pipeline generation procedures as well. However, all of our methods (see Section 2) could

be easily adapted to study the landscapes of AutoML pipeline generation through the appropriate

definition of a neighbourhood graph. We leave this as future work.

More closely related to our current work on AutoML loss landscapes, in our recent analysis

of algorithm configuration landscapes [Pushak and Hoos 2018], we proposed methods to test

for uni-modal and convex responses of parameters. However, our original work was limited to

studying the effects of individual parameters while all other parameters are fixed. In contrast, here

we propose novel improvements to these methods for analyzing the uni-modality of the full AutoML

loss landscapes and the joint convexity of multiple numerical hyper-parameters. Nevertheless,
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one major advantage of analyzing lower-dimensional slices of a landscape is the ability to more

easily visualize and interpret the results. Therefore, we apply our methods to study the structure

present in the full landscapes as well as in one- and two-dimensional slices. This also enables direct

comparisons against our earlier results, revealing several similarities and some differences between

the structures encountered in AutoML loss landscapes and running time minimization landscapes.

We also introduce a simplistic optimization procedure that naïvely assumes all hyper-parameters

can be optimized independently a single time in a random sequence. We stress that the goal in

considering this method is not to introduce a novel, state-of-the-art hyper-parameter optimization

procedure. Instead, this optimization procedure should be viewed as a landscape analysis tool that
explores the extent to which hyper-parameter interactions must be taken into account by a state-

of-the-art optimizer that exploits, e.g., the parallel evaluation of hyper-parameter configurations

and multi-fidelity estimates of configuration performance.

Many methods exist to quantify the importance of hyper-parameters and, in some cases, their

interactions. Most of these methods are local, see e.g., forward selection [Hutter et al. 2013],

ablation analysis [Biedenkapp et al. 2017; Fawcett and Hoos 2016] and local parameter impor-

tance [Biedenkapp et al. 2018]. While useful, local methods cannot determine if hyper-parameters

can safely be optimized independently. Functional ANOVA [Hutter et al. 2014a] is the most relevant

global importance technique; however, it is particularly sensitive to hyper-parameters for which a

small fraction of their values yield extremely bad performance (see Section 4). Furthermore, while

it returns technically sound results, they are nevertheless un-intuitive, which can obscure a lay-

person’s understanding when hyper-parameters interact strongly. To address this gap, we introduce

a method to assess the significance of hyper-parameter partial derivatives (see Section 2.7).

Somewhat related to our work is the recent discovery of the so-called “double descent curve”

that appears for many neural networks (see e.g., Belkin et al. [2019] and references therein), which

shows empirical evidence that there are two modes in the AutoML loss landscapes of neural

networks. As model complexity increases, you pass from an “under-parameterized” regime to

an “over-parameterized” regime – that is, in the under-parameterized regime there is insufficient

flexibility in the model to perfectly memorize the training data, hence modifying model complexity

corresponds to trading off between under- and over-fitting. However, somewhat surprisingly,

it appears that a second mode of even-better models exists in the over-parameterized regime.

Belkin et al. [2019] speculate that this is an example of Occam’s razor, i.e., that a large number of

smooth models exist in the over-parameterized regime that can perfectly learn the training data

and generalize well to unseen data. They show evidence of double descent curves for random

forests and xgboost, and hypothesize that this phenomenon is ubiquitous among all sufficiently

expressive models. Our results do not contradict theirs; most (if not all) of the landscapes we study

(see Section 3) are likely restricted to being entirely within one of the two regimes. Furthermore,

Belkin et al. [2019] conjecture that the peak between the two modes is very narrow and may

be easily missed by discretization of hyper-parameters (as must be done for empirical landscape

analysis).

We demonstrate that FDC [Jones and Forrest 1995] is poorly suited for characterizing the

difficulty of AutoML loss landscapes; however, our novel methods reveal that the full AutoML

loss landscapes appear to be uni-modal or very close to uni-modal (see Section 4.3). We also show

that, even though none of the full landscapes we study are convex (see Section 4.3), most of the

hyper-parameters studied yielded response slices that appear convex (see Section 4.1) when the

other hyper-parameters are fixed to their optimal values. Furthermore, we show that, while a

few hyper-parameters interact strongly, most do not, particularly in the vicinity of high-quality

configurations, which may in part explain why our simplistic optimization procedure turns out

to be highly effective. We present the (novel and existing) methods we used for this analysis (see
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Section 2) and summarize the machine learning methods that give rise to the landscapes we study

(see Section 3). Finally, we speculate about the intuitive shape of AutoML loss landscapes in light

of our results and comment on future work (see Section 5).

2 LANDSCAPE ANALYSIS METHODS
The properties of any search landscape depend upon the definition of the underlying neighbourhood

– in our case, on the relation that specifies which hyper-parameter configurations are neighbours and

on the metric used to quantify distance between configurations. All of the scenarios we study (see

Section 3) contain pre-evaluated grids of hyper-parameter configurations with a mix of numerical

and categorical hyper-parameters. We define all categorical values of a hyper-parameter to be

distance 1 from each other. For a numerical hyper-parameter, we define the distance between

two values to be the number of steps between them on the grid used for discretization. We then

define the distance between two configurations 𝑐𝑎 and 𝑐𝑏 to be the sum of the distances between

the respective pairs of hyper-parameter values. We define a graph 𝐺 = (𝐶, 𝐸), where the vertices
𝐶 are the hyper-parameter configurations and directed edge 𝑒 = (𝑐𝑎, 𝑐𝑏) is in 𝐸 if and only if 𝑐𝑎
and 𝑐𝑏 are distance 1 from each other. Many of the landscape analysis methods we use require a

confidence interval [Llow (𝑐),Lup (𝑐)] for each 𝑐 ∈ 𝐶 that captures the best-known estimate for the

performance of configuration 𝑐 measured in terms of some validation loss, L.

2.1 Hyper-Parameter Response Slices
In earlier work, we formally defined one-dimensional parameter response slices [Pushak and Hoos

2018], which we generalize here for higher dimensions. Let 𝐴 be a learning algorithm for a given

model that has 𝑛 hyper-parameters 𝑃 = {𝑝1, 𝑝2, ..., 𝑝𝑛}. We define a 𝐾-dimensional hyper-parameter
response slice, 𝑟 , for hyper-parameters 𝑃𝑠 = {𝑝𝑎, 𝑝𝑏, ..., 𝑝𝑘 } ⊆ 𝑃 to be obtained by fixing all other

parameters 𝑃\𝑃𝑠 to their respective values in some configuration 𝑐 ∈ 𝐶 and measuring the perfor-

mance, L, of 𝐴 as a function of the hyper-parameters in 𝑃𝑠 ; formally,

𝑟 (𝑣𝑎, 𝑣𝑏, ..., 𝑣𝑘 ) = L(𝑐 |𝑝𝑎=𝑣𝑎,𝑝𝑏=𝑣𝑏 ,...,𝑝𝑘=𝑣𝑘 ), (1)

where 𝑐 |𝑝=𝑣 denotes configuration 𝑐 with hyper-parameter 𝑝 modified to 𝑣 . Intuitively, a one-

dimensional hyper-parameter response slice corresponds to a single, axis-aligned slice through

the configuration landscape of 𝐴. Technically, it can be seen as a conditional response, subject to

all other hyper-parameters being held to fixed values. Even though all of the following methods

can be applied to full, 𝑛-dimensional AutoML loss landscapes, we still study lower-dimensional

hyper-parameter response slices of the landscapes, as they can be more easily visualized, and thus

the corresponding results can be more easily interpreted.

2.2 Test for Uni-Modality
The test for uni-modality attempts to construct a piece-wise affine landscape that is both uni-modal

and contained within the confidence intervals. If no such landscape exists, it rejects uni-modality.

To do this, we define an augmented graph 𝐺 ′ = (𝐶 ′, 𝐸 ′), where (𝑐,L) ∈ 𝐶 ′
if and only if 𝑐 ∈ 𝐶 and

Llow (𝑐) ≤ L ≤ Lup (𝑐); and where a directional edge 𝑒 ′ = ((𝑐𝑎,L𝑎), (𝑐𝑏,L𝑏)) is in 𝐸 ′ if and only

if 𝑒 = (𝑐𝑎, 𝑐𝑏) ∈ 𝐸 and L𝑎 ≤ L𝑏 . The method begins by finding a vertex (𝑐∗,Lup (𝑐∗)) such that

Lup (𝑐∗) ≤ Lup (𝑐) for all 𝑐 ∈ 𝐶 . We define 𝑐𝑘 to be reachable from 𝑐∗, if and only if there exists a

certifying path 𝑝 = (𝑐∗,L∗), (𝑐1,L1), ..., (𝑐𝑘 ,L𝑘 ) in 𝐺 ′
– i.e., 𝑐𝑘 can be reached via a path 𝑝 from

𝑐∗ with a sequence of non-decreasing objective function values that stay within the confidence
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intervals for each 𝑐 on 𝑝 . Technically, a certifying path 𝑝 is a chain of tuples (𝑐𝑖 ,L𝑖 ) such that

L𝑖 ≤ L𝑖+1,

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑐𝑖 , 𝑐𝑖+1) = 1,

L𝑖 ∈ [Llow (𝑐𝑖 ),Lup (𝑐𝑖 )] and
𝑐0 = 𝑐

∗ .

(2)

Clearly, if each 𝑐 ∈ 𝐶 is reachable from 𝑐∗, we cannot reject uni-modality for the landscape that

induced 𝐺 ′
. In Theorem 1 we show that if there exists some 𝑐0 ∈ 𝐶 that is not reachable from 𝑐∗

then no piece-wise affine, uni-modal landscape exists within the confidence intervals of 𝐶 , hence

we can safely reject uni-modality for the landscape that induced 𝐺 ′
.

Theorem 1 (Correctness of Test for Uni-Modality). Let𝐺 ′ = (𝑉 ′, 𝐸 ′) be a neighbourhood
relation graph defined for an AutoML loss landscape that contains a set of pre-evaluated configurations
𝐶 , such that each configuration 𝑐 ∈ 𝐶 has a corresponding confidence interval [Llow (𝑐),Lup (𝑐)] for
the loss of the machine learning method. If Lup (𝑐∗) ≤ Lup (𝑐) for all 𝑐 ∈ 𝐶 , and there exists 𝑐0 ∈ 𝐶
that is not reachable from 𝑐∗, then no uni-modal, piece-wise affine function exists that is contained
within the confidence intervals, and hence uni-modality can be rejected for the landscape.

A proof of Theorem 1 is in Appendix A.

We test if each configuration is reachable from 𝑐∗ by running Dijkstra’s algorithm on the modified

graph𝐺 ′
starting at the vertex (𝑐∗,Llow (𝑐∗)). Clearly, if 𝑐𝑘 is reachable from 𝑐∗, Dijkstra’s algorithm

will find a certifying path from (𝑐∗,Llow (𝑐∗)) to (𝑐𝑘 ,L𝑘 ). Furthermore, Dijsktra’s algorithm finds the

shortest path to each vertex and visits them in order. Hence, for each 𝑐 , the first vertex (𝑐,L) visited
by Dijkstra’s algorithm must contain the smallest value L out of all vertices (𝑐,L ′) for which a path
exists from (𝑐∗,Llow (𝑐∗)). Trivially, if an edge 𝑒 ′ = ((𝑐,L ′), ·) is in 𝐸 ′ and Llow (𝑐) ≤ L < L ′

, then

𝑒 = ((𝑐,L), ·) must also be in 𝐸 ′. We can therefore keep the time complexity of the test log-linear,

by pruning all paths to vertices (𝑐,L ′) such that L ′ > L.

2.3 Test for Convexity
Convexity does not apply to categorical hyper-parameters, so we fix these to their respective

values in the optimal configuration prior to applying the test. Convexity is also not defined for

discrete, numeric hyper-parameters. However, we can still include them in our test by checking if

the piece-wise affine function that linearly interpolates between their discrete values is convex. The

test converts the 𝑛 numeric hyper-parameters of each configuration into a set of points with 𝑛 + 1

dimensions, where the last dimension is the upper bound of the performance metric confidence

intervals. The lower half of the convex hull of these upper bounds then corresponds to a convex,

piece-wise linear function that has the largest possible performance value for all configurations,

without exceeding any of the upper bounds. If this function is contained within all of the confidence

intervals for the configurations, then there exists at least one convex function within the confidence

intervals, and thus we cannot reject the hypothesis of the landscape being convex. We say that a

configuration is interior to the convex hull if the lower bound of its confidence interval is contained
within the convex hull. If any of the configurations are interior, then our test rejects convexity.

Determining whether or not the hypothesis of convexity should be rejected therefore amounts

to checking whether any of the lower bounds for a given configuration are contained within the

convex hull of the upper bounds. Let 𝑋 ∈ R𝑚×𝑛+1
be a matrix containing all of the configurations of

the landscape for which the first𝑛 columns correspond to the hyper-parameter values, and the𝑛+1th
column represents the corresponding upper bounds. Let 𝑥 ∈ R𝑛+1 be an 𝑛+1-dimensional point that

corresponds to a particular configuration and the corresponding lower bound. A computationally
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efficient way to determine whether or not 𝑥 is in the convex hull of 𝑋 is to check if 𝑥 can be

represented as a convex combination of 𝑋 – that is, if there exists 𝛼 ∈ R𝑚 such that

𝑚∑
𝑖=1

𝛼𝑖 · 𝑋𝑖 = 𝑥, (3)

where

𝑚∑
𝑖=1

𝛼𝑖 = 1 and 𝛼𝑖 ≥ 0 for all 𝛼𝑖 . (4)

One edge case that needs to be considered when applying this method is how lower bounds that

are co-planar with the convex hull of the upper bounds are treated. Technically, if a single lower

bound is co-planar with the convex hull of the upper bounds, then there exists only a single value

that a convex function contained within the confidence intervals can take on for the corresponding

configuration, and therefore convexity should not be ruled out. However, testing whether or not 𝑥

is a convex combination of𝑋 does not allow us to easily distinguish between whether 𝑥 is co-planar

to the convex hull of𝑋 or strictly interior to it. This problem is further complicated by the numerical

imprecision of floating point operations, which may introduce possible rounding errors. Therefore,

for any configuration and lower bound 𝑥 that is found to be a convex combination of 𝑋 , we propose

to perform a second test with 𝑥 ′, where 𝑥 ′ contains the same set of hyper-parameter values as 𝑥 ,

but where its lower bound has been slightly decreased by a small absolute and relative tolerance. If

𝑥 ′ can also be represented as a convex combination of 𝑋 , then we say that the lower bound for

the configuration is interior and reject the hypothesis of convexity, otherwise we say that it is

co-planar within machine precision. In our experiments, we used a relative and absolute tolerance

of 10
−5

and 10
−8
, respectively.

2.4 Validation of Sensitivity
If the confidence intervals are all very large or similar (e.g., the intersection of every confidence

interval is non-empty), then our tests will be trivially unable to reject their null hypotheses due to

a lack of sensitivity. The situation is further complicated in high dimensions by the connectedness

of the graph (e.g., a fully connected graph is uni-modal for any set of confidence intervals). We

would not expect a landscape with completely random performance values to be either uni-modal

or convex. We therefore randomly permute the confidence intervals for each landscape, thereby

breaking the association between the original configurations and performance estimates, but

maintaining the distribution of confidence intervals and the neighbourhood graph. If a test for

convexity or uni-modality fails to reject their null hypotheses for a permuted landscape, then a

similar result on the original landscape should be considered meaningless. We would not expect

any random landscapes to be uni-modal or convex. However, to avoid falsely assuming sensitivity,

in our experiments, we heuristically repeated this procedure three times for each landscape. We

then considered the test “sensitive” only if convexity or uni-modality was rejected for all three of

the permuted landscapes.

2.5 Identifying “Interesting” Hyper-Parameters
Hyper-parameters with almost flat responses (i.e., robust ones, whose settings have little or no
effect on the performance of the algorithm) are of limited interest to our investigation. We therefore

used the same simple heuristic procedure from our previous work [Pushak and Hoos 2018] to

identify hyper-parameters with interesting (i.e., non-flat or sensitive) one-dimensional response

slices, based on the sizes of and overlap between the confidence intervals for each value of the

hyper-parameter. Intuitively, this measure is somewhat related to how we validate the sensitivity
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of the statistical tests as described in Section 2.4, since if the response of a hyper-parameter is

flat, then we should not expect the permuted landscape to be non-flat. To be precise, we say a

hyper-parameter’s response slice is interesting, if the size of the overlap between the two confidence

intervals with the least amount of overlap is at most half of the average size of the confidence

intervals.

2.6 Fitness Distance Correlation
Fitness-distance correlation (FDC) [Jones and Forrest 1995] measures the degree to which the

“fittness” of an objective function is correlated with the distance from an optimal configuration.

Technically, let 𝑑 (𝑐) be the distance of configuration 𝑐 from the nearest optimal solution 𝑐∗. Then,
given the fitness-distance pairs (L(𝑐), 𝑑 (𝑐)) for all candidate configurations 𝑐 ∈ 𝐶 ′ ⊆ 𝐶 , FDC is

defined as

𝜌𝐹𝐷𝐶 (L, 𝑑) :=
𝐶𝑜𝑣 (L, 𝑑)
𝜎 (L) · 𝜎 (𝑑) , (5)

where 𝐶𝑜𝑣 and 𝜎 represent the covariance and standard deviations over all fitness-distance pairs,

respectively.

High FDC corresponds to globally funnel-shaped landscapes that are easy to optimize and low

FDC corresponds to random or deceptive landscapes. FDC has since been prominently applied to

study many problems (see e.g., Hoos and Stützle [2005] or Pimenta et al. [2020]).

2.7 Locally Significant Partial Derivatives
For each combination of hyper-parameters, we calculate finite difference approximations for the

partial derivatives of the performance measure with respect to the hyper-parameters. We use the

grid of hyper-parameter configurations to obtain multiple local estimates for each partial derivative.

For scenarios with 𝑘 estimates for the performance measure, we calculate 𝑘 paired estimates for each

local partial derivative. Then, for each one, we check to see if the partial derivative is significantly

different from zero. Finally, we count the percentage of local partial derivatives that are different

from zero at a 5% significance level.

Counter-intuitively, thismethod can even be generalized for usewith categorical hyper-parameters.

Let L𝑘 (𝑐 |𝑝=𝑣𝑙 ) be the estimate for the performance measure of a response slice evaluated at the 𝑙 th

value 𝑣𝑙 of hyper-parameter 𝑝 on the 𝑘 th validation set. We calculate the 𝑙 th local partial derivative

for the 𝑘 th validation set as

𝜕L𝑘

𝜕𝑝
=

L𝑘 (𝑐 |𝑝=𝑣𝑙 ) − L𝑘 (𝑐 |𝑝=𝑣𝑙−1 )
𝑣𝑙 − 𝑣𝑙−1

. (6)

However, since the distance 𝑣𝑙 − 𝑣𝑙−1 is a constant for each value of 𝑘 in
𝜕L𝑘

𝜕𝑝
, it can be ignored

without changing the outcome of the statistical test. Therefore, we can generalize our notion of local

hyper-parameter significance and apply it to each pair of values for a categorical hyper-parameter

by simply omitting the distance normalization term.

In some scenarios, only a single point estimate for the performance measurement was available;

however, confidence intervals for the performance could still be obtained by making additional

assumptions, e.g., we assume the binary classification test errors for the latent structured SVM

scenario (see Section 3) are binomially distributed. In these cases, we applied a pessimistic version

of the test that operates directly on the confidence intervals. In particular, to calculate the upper

bound of a derivative for two points 𝑣𝑙 and 𝑣𝑙−1, we take the difference between the upper bound of

𝑣𝑙 and the lower bound of 𝑣𝑙−1, i.e.,
𝜕Lup

𝜕𝑝
= Lup (𝑐 |𝑝=𝑣𝑙 ) − Llow (𝑐 |𝑝=𝑣𝑙−1 ). (7)
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Similarly, to calculate a lower bound, we use

𝜕Llow

𝜕𝑝
= Llow (𝑐 |𝑝=𝑣𝑙 ) − Lup (𝑐 |𝑝=𝑣𝑙−1 ). (8)

We then say that the derivative is significantly different from zero, if the confidence interval does

not contain zero. For first-order derivatives, this is equivalent to checking if two neighbouring

configurations have overlapping confidence intervals for their performance measurements.

2.8 fANOVA
Functional analysis of variance (fANOVA) has been prominently applied to study the importance of

hyper-parameters and their interactions [Hutter et al. 2014a]. It decomposes the variance observed

in the performance into components associated with each hyper-parameter individually and with

their interactions. However, instead of using the implementation by Hutter et al. [2014a], which

operates on a landscape approximated using a random forest, we re-implemented the analysis to

compute the exact results for a grid of hyper-parameter configurations. Since the complexity of

fANOVA grows exponentially with the order of the interaction effects computed, previous work

has been restricted to studying the importance of low-order interaction effects (e.g. 2nd- or 3rd-order
effects) [Hutter et al. 2014a; Klein and Hutter 2019]. However, our re-implementation came with an

unexpected bonus: we made heavy use of highly-optimized libraries (i.e., numpy), which allowed us

to compute the importance of the 11
th
order hyper-parameter interactions for our largest scenario

within a few minutes. While purely due to software engineering, this is a substantial improvement,

since calculating only low-order importance scores for landscapes with strong interactions could

fail to reveal the important hyper-parameters due to marginalization: e.g., the function defined by

𝑓 (𝑥,𝑦) = |𝑥 − 𝑦 | for 𝑥,𝑦 ∈ [−1, 1] would be attributed with no importance to the first order effects

and 100% importance to the interaction effect.

2.9 Optimizing Hyper-Parameters Independently
Locally significant partial derivatives and fANOVA both quantify the degree to which the interac-

tions of two or more hyper-parameters impact the response in terms of loss. The first speaks to the

percentage of the landscape for which the impact of interactions are statistically significant, and the

second speaks to the magnitude of those interactions. However, a much more natural and practical

question to ask is: Can I optimize each of the hyper-parameters of my algorithm independently

and still obtain a high-quality loss value?

In practice, this is quite likely how some algorithm designers choose the default values of each

of the hyper-parameters of their algorithms, i.e., through manual exploration of the response

of varying each hyper-parameter independently, in sequence. After selecting a good value for a

hyper-parameter, it would then typically be held fixed for the remainder of the manual optimization

process.

We therefore propose to use the grids of the pre-evaluated hyper-parameter configurations

to emulate a simplistic optimization procedure, for which we can quantify how frequently it

can be expected to produce high-quality configurations. In particular, the procedure assumes

that the default configuration (i.e., the initial incumbent) is the one in the grid that is estimated

to obtain the worst loss. Then, for a random ordering of the hyper-parameters, the simplistic

optimization procedure looks at the point-estimates for the loss of all of the configurations in the

one-dimensional slice centered around the current incumbent and updates the incumbent to be

the one with the best loss. This process is carried out for each of the hyper-parameters, until each

of them has been optimized once. At that point, we say that its final incumbent configuration is

‘tied with optimal’, if the lower bound for its loss is at least as good as the upper bound for the loss
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Table 1. The machine learning scenarios for which AutoML loss landscape analysis was performed.

Model Dataset # HP # Instances # Loss Samples
Num Cat Train Val Test Val Test

FCNet SL 6 3 32K 11K 11K 4 4

PS 6 3 27K 9K 9K 4 4

NP 6 3 7K 2K 2K 4 4

PT 6 3 4K 2K 2K 4 4

XGBoost CT 11 – 47K 5K – 5 –

LogReg MNIST 4 – 471K 52K 10K 1 1

LSSVM UP 3 – 20K – 20K – 1

OLDA Wiki 3 – 200K 25K 25K – 1

of the configuration with the best point-estimate for the loss. For a given grid of pre-evaluated

hyper-parameter configurations, this procedure can be run for all possible permutations of the

hyper-parameters (which determine the sequence in which these are optimized), in order to obtain

the probability that the simplistic optimization procedure will obtain a final incumbent that is tied

with optimal.

Notice that we do not expect this simplistic optimization procedure to be competitive with

state-of-the-art hyper-parameter optimizers. Instead, our goal is to use it as a tool for exploring the

extent to which hyper-parameters can be naïvely optimized independently, and thus the extent to

which a state-of-the-art hyper-parameter optimizer (which can also make use of parallel resources

and multi-fidelity estimates of the loss) can rely upon an assumption of independence between its

hyper-parameters.

3 EXPERIMENTAL SETUP
We applied the methods in Section 2 to landscapes from eight machine learning scenarios summa-

rized in Table 1. Ideally, each model should be trained and evaluated on separate, randomly sampled

training and validation sets (e.g., using 𝑘-fold cross validation), as this allows for generalization

loss confidence intervals that capture three sources of variance: independent training runs, and

the instances included in the particular training and validation datasets. However, we found sev-

eral existing scenarios with grids of pre-evaluated hyper-parameter configurations that provided

sufficient data to calculate confidence intervals that captured subsets of these sources of variance.

Klein and Hutter [2019] pre-evaluated a grid of 62 208 joint hyper-parameter and neural archi-

tecture configurations for a feed-forward neural network (FCNet)
1
applied to four different UCI

datasets [Dua and Graff 2017]: slice localization (SL) [Graf et al. 2011], protein structure (PS) [Rana

2013], naval propulsion (NP) [Coraddu et al. 2016] and Parkinsons telemonitoring (PT) [Tsanas

et al. 2010]. They performed 4 training runs for each configuration using different random seeds,

yielding a total of 4 validation and 4 test loss scores (for the final, 100-epoch training budget that

we analyze here). To obtain the best-possible estimate for generalization error, we took the mean

of all 8 loss samples and calculated 95% Student-t-based confidence intervals by assuming that all

8 loss samples were independently and identically distributed. When considering the validation

and test scores separately, 11.92% of the configurations over all of the scenarios have normality

rejected for their losses at a 5% significance level using a Shapiro-Wilk test[Shapiro and Wilk 1965].

However, by naïvely combining the validation and test scores in this way, these samples are not

in fact independently and identically distributed, and hence 32.89% of the sets of samples have

normality rejected. This indicates that these confidence intervals are likely slightly over-confident,

1
Available at https://github.com/automl/nas_benchmarks.
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and thus some of the statistical tests that we perform may incorrectly reject their null hypothesis

more frequently than expected for the given significance level.

Our second scenario comes from ACLib [Hutter et al. 2014b], where Xgboost [Chen and Guestrin

2016] is applied to the covertype dataset [Dua and Graff 2017]. We applied fANOVA [Hutter et al.

2014a] to a random sample of configurations and found that eta was by far the most important

hyper-parameter. We therefore evaluated a uniform grid of hyper-parameter values with 7 values

for eta and 3 values for each of the remaining 10 hyper-parameters (see Appendix B for the table

of values).

ACLib provides 10 splits for performing 10-fold cross validation. To keep within our computa-

tional budget, we trained and evaluated the model on the first 5 splits. ACLib also specifies a 1 000

second running time cut-off for training. In the scripts provided by ACLib, this time includes reading

the data from disk and splitting it. However, since this required about 40 seconds per run, and we

performed just over 2 million runs of Xgboost, we reduced this cutoff to 960 seconds and used our

own scripts that pre-loaded the instances and held them in memory. Nevertheless, collecting all

of the performance data for xgboost took 14.7 CPU years. We calculated 95% confidence intervals

for the generalization loss of Xgboost using Student-t-based confidence intervals (normality was

rejected for only 5.37% of the samples at a 5% significance level).

Our remaining three scenarios came from pre-computed grids available in HPOLib [Eggensperger

et al. 2013]. The first scenario [Snoek et al. 2012], logistic regression on the MNIST digits dataset [Le-

Cun et al. 1998], contained one validation and one test loss, so we again calculated Student-t-based

confidence intervals
2
. The hyper-parameter configuration grids for the latent structured SVM [Miller

et al. 2012] applied to a DNAmotif-finding dataset (UniProbe or UP) and the online LDAmodel [Hoff-

man et al. 2010] applied to Wikipedia articles were evaluated by Snoek et al. [2012]. However, each

only had a single estimate of generalization loss available. Since the SVM scenario was binary clas-

sification, we assumed that the errors were binomially distributed
3
and calculated 95% confidence

intervals using the Wald method [de Laplace 1820]. We were unable to make a similar assumption

for the perplexity loss from online LDA. We therefore assumed all confidence intervals could be

expressed as a percentage of the loss and performed a binary search to find the smallest value for

the size of the interval for which the tests failed to reject their null hypotheses (uni-modality or

convexity). If the confidence intervals are small, we can still conclude that the landscape is close to

uni-modal or convex.

4 RESULTS
We applied each applicable method of analysis from Section 2 to each of the 45 one-dimensional

hyper-parameter response slices (see Section 4.1), each of the 211 two-dimensional hyper-parameter

responses slices (see Section 4.2) as well as the full landscapes (see Section 4.3).

4.1 One-Dimensional Hyper-Parameter Response Slices
The results from our tests for uni-modality and convexity, as well as the median FDC for the 45

one-dimensional, numeric hyper-parameter response slices are summarized in Table 2. Confidence

intervals of size ± 0.14% were large enough for all of the response slices for the hyper-parameters

2
With only two samples per configuration we were unable to test for deviations from normality.

3
Technically, the errors are distributed according to the convolution of two binomial distributions – one for each class;

however, without the error rates for each class it is impossible to obtain more precise confidence intervals. Using this

method yields conservatively large confidence intervals [Emil and Tamar 2013], thus our test may have failed to detect

slight deviations from uni-modality; however, our permutation tests still indicated that the results should be considered

sensitive (see Tables 3, and 4), hence it is unlikely that we missed observing any large deviations from uni-modality.
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Table 2. The percentage of the one-dimensional hyper-parameter response slices for which uni-modality
(Uni-M) and convexity (Cvx) could not be rejected, and the median fitness distance correlation (FDC). All
hyper-parameter response slices are centered around the global optima of the landscapes. Note that this
table assumes the online LDA scenario has intervals of size ± 0.14%.

Type # Slices Uni-M Cvx FDC

All 45 97.8% 82.2% 0.93

Interesting 44 97.7% 81.8% 0.93

of online LDA to appear both uni-modal and convex; since these are very small, we count them as

being both uni-modal and convex, and we show them as such in the table.

Overall, the results are quite similar to running time minimization landscapes induced by SAT,

TSP and MIP algorithms [Pushak and Hoos 2018]: Nearly all of the hyper-parameter response

slices appear uni-modal (44 out of 45) and most of them appear convex (37 out of 45). The biggest

difference is that all but one of the 45 hyper-parameter response slices are considered to be

interesting, according to our heuristic criterion (compared to just 18 out of the 193 of the running

time minimization slices). We believe this is caused by AutoML loss landscapes typically being

much less noisy than those for algorithm configuration for running time minimization.
4

Xgboost’s subsample hyper-parameter was the only one for which the response slice was

determined to be neither unimodal nor convex. Since this hyper-parameter was found to be

relatively unimportant, according to fANOVA (its first order effect accounts for 2.5% of the variance

in the loss), we originally only evaluated three different values for it. The middle hyper-parameter

value had a loss substantially larger than both of the others, as well as a much wider confidence

interval.

We investigated by increasing the number of hyper-parameter values from 3 to 21 for this

individual hyper-parameter response slice (and we re-evaluated the original three values as well).

We show the resulting hyper-parameter response slice in the top left pane of Figure 1. As can be

seen, the large barrier in the response completely disappeared and our tests now failed to reject

both uni-modality and convexity. Looking more closely at the original data, we see that 4 out of

the 5 evaluations on different cross-validation folds exceeded the 960 second running time cutoff;

therefore, their error rates were recorded as 1. For the expanded response slice, the mean running

time for subsample = 0.50 was 863 seconds, with a standard deviation of 42. Therefore, we surmise

that background processes or other environment noise likely caused several of the original runs to

be censored.

Given that this is, effectively, a spurious result, it would be reasonable to replace the original

loss values with the new ones for the remaining analysis. However, in practice, AutoML optimizers

are likely to encounter similar challenges from time to time, therefore, we leave the data as is and

continue to analyze the landscape with a spike in it.

4
In fact, the difference in the variability of the performance in the two applications makes sense. In AutoML scenarios, each

problem instance corresponds to a random training and validation split of a given data set. For most data sets, this tends to

result in problem instances that are relatively similar. In contrast, for running time minimization scenarios the diversity in

the problem instances tends to be much larger. As an example, consider sets of SAT instances derived from bounded model

checking problems encountered in hardware verification: Here, the instances correspond to unrolling different (possibly

unrelated) logical circuits to different depths, leading to substantial differences in structure and difficulty. It is also well

known that the running times of randomized algorithms for NP-hard problems such as SAT tend to exhibit very high

variability over multiple independent runs on identical problem instances. Conversely, some of the performance metrics in

the AutoML loss landscapes we study (e.g., the error rate of the latent-structured SVM) are bounded to the interval [0, 1],

which further restricts the maximum size of the confidence intervals.
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Fig. 1. Four example one-dimensional hyper-parameter response slices. From top to bottom, left to right:
Xgboost’s subsample hyper-parameter, FCNet’s init_lr hyper-parameter on the protein structure dataset,
Logistic Regression’s l2_reg hyper-parameter, and LSSVM’s alpha hyper-parameter.

Of the remaining seven hyper-parameters for which convexity was rejected, three were FCNet’s

init_lr hyper-parameter for three of the four datasets. For all four datasets, small values of

the hyper-parameter provided the best loss, with a sometimes-abrupt transition to a sub-optimal,

approximately plateau-shaped region. The response on the protein structure dataset (see the top

right pane of Figure 1) is representative of the other responses; however, the response on the slice

localization dataset has confidence intervals that are too large to reject convexity.

The epsilon hyper-parameter for latent-structured SVMs also yielded a somewhat similar

response slice; however, the difference between the good and bad values for the hyper-parameter

were substantially smaller, there were only 4 values evaluated for the hyper-parameter, and the

size of the confidence intervals were nearly as large as the transition, thus it is unclear whether or

not this was merely due to random fluctuations in the performance measurements.

At the bottom left of Figure 1, we show the response slice for logistic regression’s l2_reg hyper-

parameter, for which convexity was also rejected. The mean loss increases nearly monotonically

with the value of the hyper-parameter from 0.07 to 0.90; however, the response is more rugged than

for most of the other hyper-parameters, and appears to perhaps even be concave in shape. The

only other hyper-parameter that shows some ruggedness in its one-dimensional response is latent-

structured SVM’s alpha hyper-parameter, which is shown in the bottom right pane of Figure 1.

In this case, the response is very smooth, apart from a single hyper-parameter value that yields

an abnormally large loss. Visually, this hyper-parameter response slice at first appears bi-modal;

however, careful inspection reveals that the confidence intervals are just large enough to admit the

possibility of a uni-modal response. Nevertheless, in light of the spurious bi-modal response that

we observed for Xgboost’s subsample hyper-parameter, it is possible that the behaviour present
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Table 3. Summary of the test results for uni-modality and convexity, as well as the median FDC applied
to the two-dimensional hyper-parameter response slices centred on the global optima of the AutoML loss
landscapes. We also show the mean percentage of the landscape that was unreachable (UnR) from the global
optimum or interior (Int) to the convex hull of the upper bounds for those slices for which uni-modality
or convexity could be rejected, respectively; the mean percentage of the lower-bounds that were co-planar
(Co-P) to the convex hull of the upper bounds; and the mean percentage of the landscapes for which the tests
appeared sensitive (Sen) according to our permutation-based analysis.

Type # Slices Uni-M UnR Sen Cvx Int Co-P Sen FDC

N×N 127 92.1% 22.3% 77.2% 58.3% 24.8% 22.2% 90.6% 0.71

N×C 72 100.0% – 62.5% – – – – 0.77

C×C 12 100.0% – 0.0% – – – – 0.72

in this response may have arisen in a similar fashion. However, without access to more detailed

information or the original model and dataset, we were unable to verify this hypothesis.

Other than the seven exceptions discussed so far (and one more discussed in Section 4.2 and

shown in the top left pane of Figure 2), the remaining 37 of the hyper-parameter response slices are

quite smooth, with many of them being qualitatively similar in smoothness to that seen at the top

left of Figure 1. The final non-convex hyper-parameter response, for Xgboost’s min_child_weight,
also appears smooth, but has a slope that is slightly negatively correlated with the loss.

4.2 Two-Dimensional Hyper-Parameter Response Slices
In Table 3, we show a summary of the results from our tests for uni-modality and convexity, as well

as median FDC values for the two-dimensional hyper-parameter response slices centered around

the global optima of each landscape. The results are quite similar to those from the one-dimensional

analysis (see Section 4.1); however, all of the numbers are slightly lower – especially those from

the tests for convexity. In total, of the 208 hyper-parameter response slices we tested (this excludes

those for online LDA, for which true confidence intervals could not be obtained, see Section 3),

95.19% appear to be uni-modal (all but 10), and the median FDC is 0.73. However, the test for

convexity rejected its null hypothesis more frequently, and only 58.87% of the response slices with

two numeric hyper-parameters appear to be convex. In Table 3, we include the three response

slices for online LDA as if it had confidence intervals of size ± 0.16%, which were small enough to

fail to reject uni-modality, but not large enough to fail to reject convexity. Indeed, it appears that

the landscape is most likely not convex, as it requires the intervals to be at least ± 8.70% before it

fails to reject convexity.

The latent-structured SVM’s c and alpha hyper-parameters yielded the most unusual two-

dimensional response slice (see the top left pane of Figure 2). For many of the values of alpha, c’s
response smoothly decreases monotonically prior to the optimal value near to c = 10 000; however,

there is a small “bump” around c = 1 000 that causes the response to almost form a sub-optimal

plateau. Most interestingly, for the four largest values of alpha, the smaller values of c yield saw-

tooth-style responses instead of the smooth curves. Furthermore, each of the “teeth” in this part of

the landscape align closely, which suggests that there exists a complex interaction between the

two hyper-parameters. Despite this, only 2.5% of this response slice had locally significant partial

derivatives, since with the exception of alpha = 1 and alpha = 1.5, all of the other neighbouring

values of alpha yielded qualitatively similar hyper-parameter response slices in c. Note that this is
the same alpha hyper-parameter that is pictured in the bottom right pane of Figure 1, hence the

near-bi-modality in that one-dimensional response slice may in fact be due to a complex dependence

of the loss upon the value of alpha rather than a spurious result.

ACM Trans. Evol. Learn., Vol. xx, No. x, Article xxx. Publication date: x 2022.



AutoML Loss Landscapes xxx:15

Fig. 2. Four examples of two-dimensional hyper-parameter response slices. From top to bottom, left to right:
latent-structured SVM’s c and alpha hyper-parameters, logistic regression’s l2_reg and batchsize, online
LDA’s kappa and s, and logistic regression’s l2_reg and lrate.

Another unusual, non-uni-modal hyper-parameter response slice was observed for logistic re-

gression’s l2_reg and batchsize hyper-parameters (see the top right pane of Figure 2). Similar to

the previously discussed case, we see more evidence that l2_reg has a highly rugged response; how-
ever, unlike the rugged portion of the response between the latent-structured SVM’s c and alpha
hyper-parameters, the jagged peaks of l2_reg’s response slices for varying values of batchsize
do not align. Instead, the shape of the landscape is suggestive of a highly rugged and jagged

mountainscape that slowly levels off towards the top. However, recall that for this scenario only

one validation and one test loss value were available. Since these losses are likely correlated, it is

possible that the landscape only appears to have numerous local minima due to our assumption

that the two loss values were i.i.d. when we calculated the confidence intervals. If so, then the

landscape may actually be uni-modal, albeit with much larger variance than most other cases.

Nevertheless, many hyper-parameter optimizers never bother quantifying (accurately or at all)

this source of variance in AutoML loss landscapes. Instead, they only perform a single run of the

training algorithm on a single training and validation split (or they may take the mean over a few

cross-validation folds). As a result, a robust hyper-parameter optimizer must still be prepared to

occasionally deal with some local ruggedness that can cause small, sub-optimal local minima to

speckle the landscape.

FCNet’s dropout_1 and dropout_2 hyper-parameters on the protein structure dataset yield a

third non-uni-modal response slice. In this case, there is only a single point in the landscape that is

unreachable from the global optimum; however, if the confidence level of the test is just slightly

increased from 95% to 96.52%, our test fails to reject its null hypothesis. It is also possible that this

apparent sub-optimal local minima could be due to the discretization of the landscape, since its 3
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by 3 grid may be too coarse to allow for diagonally-oriented basins to appear uni-modal. However,

without access to the original model and dataset, we are unable to verify whether or not this is the

case.

The remaining seven hyper-parameter response slices for which uni-modality was rejected all

contain Xgboost’s subsample hyper-parameter. In each case, we continue to see that one or more

of the configurations with subsample = 0.5 caused the algorithm to exceed the running time cutoff,

thus once again introducing spike-like barriers into the landscape. We speculate that re-running

each of these instances with larger running time cutoffs (or perhaps even with the same running

time cutoff, but on a machine with a smaller background load) would yield uni-modal responses.

However, given that hyper-parameter optimizers would not have access to this kind of information

while in use, we continue to analyze the landscape with these spikes present.

In the bottom right pane of Figure 2, we show the hyper-parameter response slice for online

LDA’s kappa and s hyper-parameters. Given the apparent smoothness in the response, it should

come as no surprise that an interval size as small as ± 0.16% yields uni-modal responses for each of

the three two-dimensional hyper-parameter response slices. Out of the four response slices shown

in Figure 2, both the smoothness and simplicity of this response is the most representative of all of

the other hyper-parameter response slices (not shown).

The hyper-parameter response in the bottom right pane of Figure 2 also exhibits an interesting

property: If the hyper-parameters were to be optimized individually a single time in sequence or

independently in parallel, one would still find a configuration very near to optimal. This remains

true even though 74.29% of the local second-order partial derivatives are significant (when arbitrarily

using an interval size of ± 0.16%). It was this observation that ultimately inspired the methodology

described in Section 2.9, which seeks to answer the question: How often does this hold true in

practice for other combinations of hyper-parameters? Clearly, it does not always hold (see, e.g., the
bottom right pane of Figure 2); nevertheless, 80.77% of the hyper-parameter pairs and permutations

of hyper-parameter optimization order yielded landscapes so benign that our simplistic optimization

process was able to find a configuration tied with optimal. This shows that, even though many

of the hyper-parameters have statistically significant interactions within somewhat substantial

fractions of their landscapes (see Table 7 in Appendix D), most of these interactions are relatively

benign from the perspective of a hyper-parameter optimizer.

This trend held true quite often even for hyper-parameter response slices involving one or

two categorical hyper-parameters. In fact, all of the hyper-parameter response slices with at least

one categorical hyper-parameter also appear to be uni-modal. Unsurprisingly, in some cases,

changing a categorical hyper-parameter shifts the loss up or down without substantially moving

the optimum (see e.g., the left pane of Figure 3); however, we would also expect to find cases where

changing a categorical hyper-parameter would result in a completely different landscape with a

new optimum for the other hyper-parameter. In fact, we did observe a small number of examples

of the latter case (see, e.g., the right pane of Figure 3); however, in each case, the optimum of the

numeric hyper-parameter for a sub-optimal categorical value yielded an equal or greater loss for the

configuration with the same numeric value and the optimal categorical value. Therefore, the overall

hyper-parameter response slices were still uni-modal. Nevertheless, since our study included a

relatively small number of categorical hyper-parameters, we remain skeptical that this behaviour

will generalize to all – or perhaps even most – other scenarios. We leave the study of this question

as future work.

4.3 Higher-Dimensional AutoML Loss Landscapes
We show the results for uni-modality, convexity and FDC applied to the full AutoML loss landscapes

in Table 4. Contrary to most of the lower-dimensional hyper-parameter response slices of the
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Fig. 3. Two examples of two-dimensional hyper-parameter response slices that include one numeric and
one categorical hyper-parameter. Left: FCNet’s n_units_1 and activation_fn_1 hyper-parameter on the
slice localization dataset. Right: FCNet’s n_units_2 and activation_fn_2 hyper-parameter on the naval
propulsion dataset.

landscapes we studied, we see that all of the complete AutoML loss landscapes have relatively

low FDC, which suggests that they should be quite challenging to optimize. However, the test for

uni-modality tells a different story: It rejects uni-modality for only two of the seven landscapes we

were able to test. For the remaining scenario, online LDA, only 3.12% of the landscape is unreachable

– even without using confidence intervals at all. Furthermore, no deep (if small) sub-optimal modes

exist in this landscape, since an interval size of only ±1.36% is sufficient to fail to reject uni-modality,

which limits the height of a barrier between two modes to being no greater than 2.76% of the loss

of the best configuration corresponding to either mode (the derivation for this is in Appendix C).

Both scenarios for which uni-modality is rejected are for FCNet. In one case only three, and

in the other only 41, out of 62 208 configurations are unreachable. Given that these numbers are

so small, could this merely be due to random chance? To answer this question, we analyzed the

distances between the unreachable configurations. If they were unreachable due to random chance,

we might expect them to be spread out uniformly at random. For the protein structure instance

set, the mean pairwise distance between unreachable configurations is 4.73. For comparison, we

drew 1 000 sets of 41 random configurations from the landscape. The smallest mean pairwise

distance out of the 1 000 samples was 9.61 and the mean was 10.36, hence the 41 unreachable

configurations are clustered together. In fact, many of them are adjacent, thus forming 18 very

small, sub-optimal modes. We calculated the depth of these modes as the amount the smallest upper

bound of each would need to increase to become reachable from the global optimum. Since there

are a small number of configurations with extremely bad loss, we measure the size of this increase

as a percentage of the range of losses spanned by the optimal configuration and the 95
th
percentile

of the losses. The median increase in loss required is 1.92% and the largest is only 6.30%; hence,

these modes are rather shallow.

On the other hand, convexity is rejected for all of the complete AutoML loss landscapes that

we studied. In particular, the FCNet landscapes appear to be quite far from convex, with 38.76% to

50.05% of the lower bounds being interior to the convex hull of the upper bounds. One of the two

scenarios that is closest to being convex is Xgboost on the covertype dataset. For this scenario, it

would have been computationally expensive (requiring approximately 1.5 months on our machines)

to exactly calculate the percentage of the lower bounds that were interior; however, given that we

only needed to find a single such configuration to reject convexity, it sufficed to randomly sample

and evaluate 5% of the lower bounds to estimate the percentage that are interior. Using this method

we calculated a 95% confidence interval for the percentage of points that are interior as [9.56%,
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Table 4. Summary of the tests for uni-modality and convexity, and FDC applied to the full AutoML loss
landscapes. Includes the mean percentage of the landscape that was unreachable (UnR) from the global
optimizer or interior (Int) to the convex hull of the upper bounds for those slices for which uni-modality
or convexity could be rejected, respectively; the mean percentage of the lower-bounds that were co-planar
(Co-P) to the convex hull of the upper bounds; and the mean percentage of the landscapes for which the tests
appeared sensitive (Sen) according to our permutation-based analysis.

Model Dataset Interval UnR Sen Int Co-P Sen FDC

FCNet SL 95% 0.00% Yes 50.05% 0.00% Yes 0.00

PS 95% 0.03% Yes 49.67% 0.00% Yes 0.03

NP 95% 0.00% Yes 43.63% 0.03% Yes 0.01

PT 95% < 0.01% Yes 38.76% 0.00% Yes 0.01

LSSVM UniProbe 95% 0.00% Yes 18.86% 0.36% Yes 0.43

LogReg MNIST 95% 0.00% Yes 28.25% 0.10% Yes −0.03
XGB CT 95% 0.00% Yes 9.65% 0.21% Yes 0.33

OLDA Wiki ± 0.00% 3.12% Yes 21.88% 61.46% Yes 0.36

± 1.36% 0.00% Yes 6.25% 0.00% Yes 0.36

± 8.70% 0.00% Yes 0.00% 0.00% Yes 0.36

9.74%] – i.e., just below 10% of the landscape would need to be altered for the entire landscape to

appear convex. The other landscape that is somewhat close to being convex is online LDA, for

which the loss intervals need to be ± 8.70% in size to fail to reject convexity. However, even the

much smaller interval size of ± 1.36% leaves only 6.25% of the lower bounds interior to the convex

hull.

While these results from the test for convexity on the full landscapes are quite different than

those on the lower-dimensional hyper-parameter response slices, they should come as no surprise.

In fact, since every one of the scenarios had at least one two-dimensional hyper-parameter response

slice that was non-convex, it follows that the full landscapes must also all be non-convex.

In Table 5, we show the mean percentage of each landscape that is dependent on the 1
st
- through

6
th
-order partial derivatives, i.e., for each 𝑛th-order interaction we calculated the percentage of

significant partial derivatives and then report the means for each order 𝑛. For landscapes that had

them, the higher order interaction results remained relatively similar to the 6
th
order interaction

results (see Appendix D). Most of these scenarios behave roughly as we would expect: The first-

order derivatives for most hyper-parameters affect relatively large portions of the landscapes.

However, there are a few exceptions: For example, logistic regression’s n_epochs hyper-parameter

only affects 10.56% of the landscape. As the order of interactions increases, fewer tuples of hyper-

parameters interact, and those that do affect smaller portions of the landscape. For example, 50% of

the 2
nd
-order interactions for logistic regression affect between 20.90% − 26.61% of the landscape,

and the rest affect less than 7.07%; one of the 3rd-order interactions affects 18.10% of the landscape,

and the remaining four affect less than 5.21%.

However, the results are rather different for the FCNet landscapes. The higher-order parameter

interactions are substantially more influential than expected. For the four scenarios between 19.90%

– 24.27% of the landscapes are dependent upon interactions between all 9 hyper-parameters. The

results from fANOVA (see Table 9) show additional support for the fact that the FCNet landscapes

depend to a much larger degree on higher-order interactions than the other landscapes. In particular,

fANOVA attributes between 17.01%–28.58% of the total variance in the FCNet landscapes to the

6
th
-order interactions, compared to only 0.15%–4.50% for the 1

st
-order effects. In comparison, for

XGBoost, fANOVA attributes only 0.24% to the 6
th
-order interactions and 58.94% to 1

st
-order effects.

We speculate that one possible explanation for this is that the FCNet scenarios are the only ones

we study that fall into the over-parameterized regime [Belkin et al. 2019], which may exhibit
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qualitatively different AutoML loss landscapes. In particular, because there may be a large number

of models which all obtain (nearly) perfect training scores, the hyper-parameters may interact in

complex ways to produce models that interpolate differently between the training instances.

There is a qualitative difference between the fANOVA results and those regarding partial deriva-

tives. For most scenarios, fANOVA reports that a small number of hyper-parameters are responsible

for a large percentage of the variance in the objective function. The XGBoost landscape is a represen-

tative example: fANOVA reports that the 1
st
-order effect of the hyper-parameter eta is responsible

for 52.6% of the variance, and the rest are individually responsible for less than 2.54%. In comparison,

eta has the third largest percentage of non-zero partial derivatives (67.65%) and all but one of the

rest have between 17.06% – 75.16% (the one remaining has 3.01%). However, these results are not

contradictory, since the statistical test can detect small but significant partial derivatives. Indeed,

all that can be interpreted from fANOVA’s result for eta is that at least one value of eta yields

very different performance from the rest.

To determine where hyper-parameters are most important, we excluded from the analysis any

partial derivative that contained a configuration in the worst 𝑋% of the landscape (see Tables 10–13

for 𝑋 = 50% and 𝑋 = 75%). The outcome of this analysis was mixed. For latent-structured

SVMs, logistic regression and online LDA, the partial derivatives for most hyper-parameters were

significant less often; e.g., first-order partial derivatives of the hyper-parameters of latent-structured

SVMs were found to be significant for 19.10% of the entire landscape on average, but only for

6.42% of the landscape when excluding the worst 50% of the configurations. However, we found

the opposite to be true for FCnet and Xgboost; for example, the first-order partial derivatives for

the FCNet landscape were significant 9.75% more often on average when the worst 50% of the

configurations were excluded from the analysis.

This result for FCNet is consistent with the sub-optimal, plateau-shaped regions that we observed

in FCNet’s init_lr hyper-parameter response, suggesting that this behaviour likely also occurs

for more of the slices of AutoML loss landscapes that were excluded from our one-dimensional

analysis. For Xgboost, it is possible that if there are regions of the configuration space for which

the running time of the algorithm tends to be high, then entire portions of the landscape may

have been artificially censored due to a running time cutoff. (We observed one example of this

behaviour for subsample = 0.5, which tended to have many censored runs reported as a loss of 1.)

If this were to happen sufficiently often in clustered areas, then it could be the case that the worst

configurations form regions of sub-optimal plateaus where the loss is 1.

We also observed one hyper-parameter with a particularly notable increase in the significance of

its partial derivatives: logistic regression’s l2_reg hyper-parameter. For example, when excluding

the worst 75% of configurations, its 1
st
-order partial derivative became significant 25.37% more

often. This indicates that l2_reg’s response must be steepest nearest to its optimum, possibly with

a sub-optimal plateau embedded in its response – indeed, this is precisely what we observed in the

one- and two-dimensional hyper-parameter response slices for it (see Figures 1 and 2).

Finally, we applied our simple test, wherein we optimized each hyper-parameter independently

a single time in a random sequence. Because Xgboost has nearly 40 million possible permutations

for the order in which its hyper-parameters can be optimized, we restricted ourselves to a small,

30 minute computation budget, which allowed for a random 537 100 permutations. For all of the

other scenarios, we performed the analysis for all possible hyper-parameter permutations. The only

scenario for which we found any permutations of the hyper-parameter optimization order that

did not yield a result tied with optimal was online LDA, with an interval size of ±0.00%. However,
even in this case, the optimization procedure found the optimal configuration in all but one of

the six permutations. This result is surprising, especially given that we have observed non-trivial

percentages of the landscapes that are dependent upon hyper-parameter interactions, as it suggests
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Table 5. Hyper-parameter partial derivative significance result summary – part 1. Each column represents the
mean percentage of the landscape with statistically significant partial derivatives for each partial derivative
order.

Model Dataset Interval 1
st

2
nd

3
rd

4
th

5
th

6
th

FCNet SL 95% 66.45% 45.25% 34.06% 28.66% 25.62% 23.59%

PS 95% 68.16% 44.02% 31.68% 26.74% 24.58% 23.60%

NP 95% 53.66% 37.29% 29.93% 26.68% 25.15% 24.33%

PT 95% 70.96% 45.82% 31.62% 26.25% 24.08% 22.98%

LSSVM UniProbe 95% 19.10% 4.43% 0.96% – – –

LogReg MNIST 95% 36.21% 15.21% 7.77% 4.24% – –

XGB CT 95% 43.57% 13.35% 4.88% 3.30% 2.98% 2.91%

OLDA Wiki ± 1.36% 67.53% 17.07% 0.00% – – –

that AutoML loss landscapes may be much simpler to optimize than previously assumed. One

possible explanation for this result is our previous observation that in many (albeit not all) cases,

the hyper-parameters tend to interact most strongly in regions of the configuration space that are

far from optimal. An example can be seen in the bottom left pane of Figure 2, where the effect of

kappa has no significant impact on the response in the three best values of s.

5 CONCLUSIONS AND FUTUREWORK
We introduced novel methods to test for significant deviations from uni-modality and convexity in

𝑛-dimensional AutoML hyper-parameter loss landscapes. We applied these methods to empirical

data from a diverse set of state-of-the-art machine learning models and algorithms. All but two of

the AutoML loss landscapes we studied appear to be uni-modal at a 95% significance level, and

those that significantly deviate from uni-modality do so only slightly. At first glance, this result

may appear contradictory with the 2.2% of the one-dimensional and 4.8% of the two-dimensional

hyper-parameter response slices for which uni-modality was rejected. However, the reason for this

must lie in the hyper-parameter interactions, which allow a path from the sub-optimal modes in

the lower-dimensional slices to circumnavigate its barriers. We were able to reject convexity for all

of the landscapes we studied at a 95% significance level; however, we nevertheless observed that

82.2% of the hyper-parameters yield convex responses when considered independently and when

other hyper-parameters are fixed to their optimal values.

Furthermore, we showed that an intuitively relatedmetric, fitness distance correlation (FDC) [Jones

and Forrest 1995], fails to accurately characterize the simplicity of the structure present in most of

the full AutoML loss landscapes. However, despite the clear evidence that most hyper-parameters

induce highly-structured and exploitable responses in the corresponding loss landscapes, we also

observed a small number of exceptions to this rule. For example, small values of latent-structured

SVM’s alpha hyper-parameter yielded a very smooth, wavy response in c, whereas large values of
alpha yielded a saw-tooth response (as seen in the top left pane of Figure 2). Somewhat similarly,

logistic regression’s l2_reg hyper-parameter yielded a relatively noisy and rugged response, with

some sub-optimal plateaus (see the top right and bottom right panes of Figure 2). Finally, we also

observed that certain values of hyper-parameters (e.g., eta in xgboost) are correlated with longer

running times, which can cause the training algorithm to be censored, thus yielding spurious

clusters of spikes and ridges, due to censored loss values.

We further introduced a novel method that assesses the significance of finite difference approxi-

mations of partial derivatives. Using this method, we found that most landscapes have only a small

number of hyper-parameters that interact strongly. However, the FCNet landscapes we studied were

qualitatively very different and exhibited large percentages of statistically significant high-order
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partial derivatives. We leave as future work the investigation of whether or not this behaviour

could be attributed to the fact that the FCNet landscape we studied may have been in the so-called

“over-parameterized regime” [Belkin et al. 2019]. We observed that many hyper-parameters tend to

have flatter responses near high-quality solutions; however, we did observe some exceptions – the

most notable of which was logistic regression (particularly its l2_reg hyper-parameter), for which

the response contains some sub-optimal plateaus and a steep drop near the optimum (see, e.g. the
top right and bottom right panes of Figure 2).

Finally, we used a simplistic optimization procedure that naïvely optimizes each hyper-parameter

independently, a single time and in a random order, to determine the extent to which interactions

between hyper-parameters increase the complexity of the optimization problem. We found that in

all cases this procedure was able to find final configurations that were statistically tied with the

optimal configuration, according to the respective 95% confidence intervals. While this optimization

procedure lacks several essential ingredients of state-of-the-art hyper-parameter optimizers (e.g.,
the ability to make use of multi-fidelity estimates for the loss of a hyper-parameter configuration),

it nevertheless demonstrates that the effects of the hyper-parameter interactions are relatively

benign, despite their statistically significant presence.

Also somewhat unexpectedly, we found that the landscapes induced by the categorical hyper-

parameters for the FCNet benchmarks are either completely or very close to uni-modal. Indeed,

we speculate that this behaviour will not generalize to the combinatorial landscapes induced by

model and pre-processor selection in machine learning pipelines. In particular, while a machine

learning method that uses model𝑚1 might perform best with feature encoding mechanism 𝑒1, it is

not clear that 𝑒1 will be optimal for a qualitatively different machine learning method that relies on

model𝑚2. Therefore, if the choice for each pre-processor and model are encoded as categorical

hyper-parameters (as is often done, see e.g., Feurer et al. 2019) it is not clear that the neighbourhood
relation defined in Section 2 will induce a uni-modal landscape.

A crucial ingredient of state-of-the-art hyper-parameter optimizers is their ability to make use

of low-fidelity estimates of the loss of a given configuration, in order to quickly eliminate poorly

performing configurations – often, such methods require orders of magnitude less computing

resources to obtain high-quality configurations (see e.g., Li et al. [2017] or Falkner et al. [2018]).
Given the outstanding successes obtained by these methods, it is clear that low- and medium-fidelity

estimates of AutoML loss landscapes must bear at least some level of similarity to their full-fidelity

counterparts. However, better understanding how AutoML loss landscapes change as a function

of fidelity, as well as a comparison of how different measures of fidelity (e.g., a lower number of

training iterations, a smaller training set or fewer cross-validation folds) impact those changes

could help spark further breakthroughs in the state of the art of AutoML. We leave the investigation

of these and other AutoML loss landscape analysis questions as future work.

In their current form, our landscape analysis methods remain prohibitively expensive to be useful

as a means of selecting a given hyper-parameter optimization procedure for solving a particular

AutoML scenario. However, it may be possible to modify or approximate some of these methods to

obtain computationally-cheap exploratory landscape analysis features (see, e.g., Derbel et al. [2019];
Mersmann et al. [2011]). If this can indeed be done, the logical next step would be to develop an

algorithm selection procedure [Abell et al. 2012; Belkhir et al. 2016; Kerschke et al. 2019; Malan 2018]

to decide which hyper-parameter optimization procedure is most likely to produce high-quality

results on a given AutoML scenario.

Of course, the most interesting question raised by our analysis is how to best exploit these

insights for the development of faster, more efficient and more effective AutoML methods. Similar

landscape structure [Pushak and Hoos 2018] in a related optimization problem has recently been

provably exploited in one-dimensional problems [Hall et al. 2020] and empirically exploited in
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higher-dimensional problems [Pushak and Hoos 2020]. In the latter, we used a generalization of

the golden section search algorithm [Kiefer 1953] – which has optimal worst-case performance

for one-dimensional uni-modal functions – to high-dimensional problems using a coordinate

descent-based [Wright 2015] approach. Given the relatively benign hyper-parameter interactions

that we observed in most scenarios, this and other coordinate descent-based algorithms may be

especially well-suited to hyper-parameter optimization. However, one key difference in running

time minimization landscapes [Pushak and Hoos 2018] and those investigated here is that all

but a very small number of AutoML hyper-parameters appear to yield responses in the loss that

are much less prone to random fluctuations between independent runs of the training algorithm.

Nevertheless, our observations may also explain some of the recent success observed by Yakovlev

et al. [2020], who combine gradient-based hyper-parameter optimization with coordinate descent –

a method which could possibly be further improved by exploiting the approximate uni-modality

and convexity that appears to arise in many AutoML loss landscapes.
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Fig. 4. Diagram used in the proof of correctness for test for uni-modality.

A PROOF OF CORRECTNESS FOR TEST FOR UNI-MODALITY
Theorem 1 (Correctness of Test for Uni-Modality). Let𝐺 ′ = (𝑉 ′, 𝐸 ′) be a neighbourhood

relation graph defined for an AutoML loss landscape that contains a set of pre-evaluated configurations
𝐶 , such that each configuration 𝑐 ∈ 𝐶 has a corresponding confidence interval [Llow (𝑐),Lup (𝑐)] for
the loss of the machine learning method. If Lup (𝑐∗) ≤ Lup (𝑐) for all 𝑐 ∈ 𝐶 , and there exists 𝑐0 ∈ 𝐶
that is not reachable from 𝑐∗, then no uni-modal, piece-wise affine function exists that is contained
within the confidence intervals, and hence uni-modality can be rejected for the landscape.

Proof. Let 𝑐∗ be a global minimum of 𝐶 , i.e.,

Lup (𝑐∗) ≤ Lup (𝑐) for all 𝑐 ∈ 𝐶, (9)

and let 𝑐0 ∈ 𝐶 be a configuration that is not reachable from 𝑐∗. Because this 𝑐0 exists, we cannot
construct a piece-wise affine function that is contained within the confidence intervals of 𝐶 that

also contains 𝑐∗ as a global minima. It remains to be shown that this is a sufficient condition to

conclude that no uni-modal, piece-wise affine function exists that is contained within the confidence

intervals of 𝐶 .

Assumption. For eventual contradiction, assume that a piece-wise affine uni-modal function does

exists within the confidence intervals of 𝐶 . This function must have at least one global minima

𝑐 ′ ∈ 𝐶 from which all other points 𝑐 ∈ 𝐶 must be reachable. We will show (1) that there must exist

a path 𝑝1 from 𝑐∗ to 𝑐 ′ and a path 𝑝2 from 𝑐 ′ to 𝑐0 (see Figure 4); however, since they cannot be

concatenated (otherwise 𝑐0 would be reachable from 𝑐∗), we will show (2) that 𝑐∗ must not have

been a global minima of 𝐶 , which is a contradiction.

Step 1. First, we show that there must exist a path 𝑝1 from (𝑐∗,Llow (𝑐∗)) to (𝑐 ′,L1). Since 𝑐∗
is reachable from 𝑐 ′, there must be a path 𝑝0 from (𝑐 ′,Llow (𝑐 ′)) to (𝑐∗,Lup (𝑐∗)). Furthermore,

based on the definition of reachability, the height of path 𝑝0 must never exceed Lup (𝑐∗), therefore
Llow (𝑐) ≤ Lup (𝑐∗) for all 𝑐 on 𝑝0. Combining this with Equation 9, we obtain

Llow (𝑐) ≤ Lup (𝑐∗) ≤ Lup (𝑐) for all 𝑐 on 𝑝0. (10)
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Hence, we can clearly construct at least one path from 𝑐∗ to 𝑐 ′ with height less than or equal to

Lup (𝑐∗) for all 𝑐 on 𝑝0 that is the reverse of 𝑝0. Let 𝑝1 be the path from (𝑐∗,Llow (𝑐∗)) to (𝑐 ′,L1)
with minimal height at all configurations 𝑐 on 𝑝1. The final height, L1, of 𝑝1 must be constrained

by the lower bound of the configuration, 𝑐1, that has the smallest lower bound in 𝑝1, i.e., L1 =

Llow (𝑐1) ≤ Llow (𝑐) for all 𝑐 on 𝑝1. Combining this with Equation 10, we have

Llow (𝑐1) = L1 ≤ Lup (𝑐∗). (11)

Step 2. Let 𝑝2 be the certifying path from (𝑐 ′,L2) to (𝑐0,Lup (𝑐0)) with the maximum possible

height for all configurations 𝑐 on 𝑝2. The beginning height, L2, of 𝑝2 must be constrained by the

upper bound of the configuration, 𝑐2, that has the smallest upper bound in 𝑝2, i.e.,

L2 = Lup (𝑐2) ≤ Lup (𝑐) for all 𝑐 on 𝑝2 . (12)

Since 𝑐0 is not reachable from 𝑐∗, we must not be able to concatenate the paths 𝑝1 (from 𝑐∗ to 𝑐 ′)
and 𝑝2 (from 𝑐 ′ to 𝑐0). This can only happen if the height, L1, at the end of 𝑝1 is above the height,

L2, at the beginning of 𝑝2, i.e.,

L2 < L1. (13)

Contradiction. Finally, combining Equations 11, 12 and 13, we obtain

Lup (𝑐2) = L2 < L1 ≤ Lup (𝑐∗), (14)

i.e.,

Lup (𝑐2) < Lup (𝑐∗). (15)

However, this contradicts our precondition that 𝑐∗ is a global minima of𝐶 (see Equation 9). Therefore,

our original assumption must be false: No uni-modal, piece-wise affine function exists within the

confidence intervals of 𝐶 . ■

B XGBOOST AUTOML LOSS LANDSCAPE HYPER-PARAMETER GRID
The grid of hyper-parameters configurations we used to evaluate Xgboost on the covertype dataset

can be obtained by taking the cross product of the lists of hyper-parameter values in Table 6

Table 6. XGBoost hyper-parameter grid

Hyper-parameter Grid of Values

eta [0, 0.15, ..., 0.9]

gamma [0, 5, 10]

max_dept [2, 6, 10]

min_child_weight [1, 10.5, 20]

max_delta_step [0, 5, 10]

subsample [0.01, 0.505, 1]

colsample_bytree [0.5, 0.75, 1.0]

colsample_bylevel [0.5, 0.75, 1.0]

lambda [1, 5.5, 10]

alpha [0, 5, 10]

num_round [50, 150, 250]
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C MAXIMUM BARRIER HEIGHT FOR ONLINE LDA
Let 𝑐𝑎 be a configuration that is a sub-optimal local minimawith a corresponding barrier 𝑐𝑏 , blocking

it from the optimal configuration 𝑐∗. That is, 𝑐𝑏 is a configuration with the smallest loss through

which any path from 𝑐𝑎 to the 𝑐
∗
must pass. Technically, a barrier 𝑐𝑏 for a local-minima 𝑐𝑎 is defined

to be any configuration such that

L(𝑐𝑏) = min

𝑝𝑐𝑎→𝑐∗
max

𝑐 on 𝑝
L(𝑐), (16)

where 𝑝𝑐𝑎→𝑐∗ denotes a path from 𝑐𝑎 to 𝑐
∗
.

Let the height of a barrier 𝑐𝑏 for local minima 𝑐𝑎 be defined as

𝐻 (𝑐𝑏, 𝑐𝑎) := L(𝑐𝑏) − L(𝑐𝑎). (17)

Let 𝑠 define the size of the intervals for a configuration 𝑐 , i.e.,

Lup (𝑐) := L(𝑐) · (1 + 𝑠) and
Llow (𝑐) := L(𝑐) · (1 − 𝑠). (18)

Theorem 2 (Maximum Barrier Height). Any interval size, 𝑠 < 1, for which the landscape cannot
have uni-modality rejected, bounds the height, 𝐻 (𝑐𝑏, 𝑐𝑎), of any barrier, 𝑐𝑏 , for any local minima, 𝑐𝑎 ,
such that

𝐻 (𝑐𝑏, 𝑐𝑎) ≤ L(𝑐𝑎) ·
(
1 + 𝑠
1 − 𝑠 − 1

)
. (19)

Proof. By definition, since interval size 𝑠 yields a landscape for which uni-modality cannot be

rejected, we know that 𝑐𝑎 must be reachable from 𝑐∗, and hence

Llow (𝑐𝑏) ≤ Lup (𝑐𝑎) ⇐⇒ 0 ≤ Lup (𝑐𝑎) − Llow (𝑐𝑏). (20)

Trivially,

𝐻 (𝑐𝑏, 𝑐𝑎) = L(𝑐𝑏) − L(𝑐𝑎)
≤ L(𝑐𝑏) − L(𝑐𝑎) +

(
Lup (𝑐𝑎) − Llow (𝑐𝑏)

)
≤ (L(𝑐𝑏) − Llow (𝑐𝑏)) +

(
Lup (𝑐𝑎) − L(𝑐𝑎)

)
.

(21)

From the definition in Equation 18, we know that

L(𝑐𝑏) − Llow (𝑐𝑏) = 𝑠 · L(𝑐𝑏) and
Lup (𝑐𝑎) − L(𝑐𝑎) = 𝑠 · L(𝑐𝑎),

(22)

which we can substitute into Equation 21 to obtain

L(𝑐𝑏) − L(𝑐𝑎) ≤ 𝑠 · L(𝑐𝑏) + 𝑠 · L(𝑐𝑎). (23)

By re-arranging and solving for L(𝑐𝑏) we obtain

L(𝑐𝑏) ≤ L(𝑐𝑎) ·
1 + 𝑠
1 − 𝑠 , (24)

which we can plug back into the definition in Equation 17 to obtain the desired result. ■

Using Theorem 2, and the fact that a confidence interval of size 𝑠 = 0.0136 yields a landscape

for online lDA for which uni-modality cannot be rejected, we know that the maximum height of

any barrier for any sub-optimal local minima in the landscape can be no more than

(
1+0.0136
1−0.0136 − 1

)
≈

0.0276 times the height of the local minima.
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Table 7. The mean percentage of locally significant hyper-parameter interactions based on an analysis of the
partial derivatives (Sig 𝜕2), the 2nd order fANOVA scores (fANOVA), and the mean probability of obtaining a
configuration that is tied with optimal if each hyper-parameter is optimized once sequentially in a random
order (Tied w Opt). All results are for the two-dimensional hyper-parameter response slices centered around
the global optimizers of the AutoML loss landscapes.

Type # Slices Model Dataset Interval Sig 𝜕2 fANOVA Tied w Opt

N×N 15 FCNet NP 95% 52.80% 15.05% 76.67%

PS 95% 54.56% 4.26% 76.67%

PT 95% 50.56% 10.20% 83.33%

SL 95% 61.53% 11.36% 86.67%

3 LSSVM UP 95% 1.78% 5.38% 83.33%

6 LogReg MNIST 95% 20.97% 10.17% 91.67%

55 XGB CT 95% 20.91% 9.35% 84.55%

3 OLDA Wiki ± 8.70% 0.00% 16.61% 100.00%

± 0.16% 75.81% 16.61% 50.00%

± 0.00% 100.00% 16.61% 50.00%

N×C 18 FCNet NP 95% 63.89% 18.95% 72.22%

PS 95% 60.93% 4.14% 80.56%

PT 95% 43.89% 15.15% 72.22%

SL 95% 63.70% 15.26% 86.11%

C×C 3 FCNet NP 95% 0.00% 17.24% 66.67%

PS 95% 33.33% 3.38% 100.00%

PT 95% 66.67% 28.60% 50.00%

SL 95% 33.33% 2.81% 83.33%

Table 8. Hyper-parameter partial derivative significance result summary – part 2.

Model Dataset Interval 7
th

8
th

9
th

10
th

11
th

FCNet SL 95% 22.05% 21.08% 19.80% – –

PS 95% 23.23% 23.36% 23.80% – –

NP 95% 23.92% 23.70% 24.27% – –

PT 95% 22.24% 22.05% 20.20% – –

XGB CT 95% 2.92% 2.97% 3.05% 3.14% 3.04%

D EXTENDED HYPER-PARAMETER INTERACTION RESULTS
In Table 7 we show the results of our analysis on the two-dimensional slices of the landscapes.

Throughout the remainder of the tables, we denote by “–” a result does not exist because there are

not enough hyper-parameters to compute the indicated quantity. In the case of the higher-order

interaction tables wherein we excluded the worst 50% or 75% of the landscapes, we denote by “nan”

the scenarios for which the exclusion of the indicated fraction of the configurations resulted in

us being unable to calculate any of the indicated partial derivatives because all of them contained

at least one such censored configuration. In Table 8 we show the remaining partial derivative

significance summary for the scenarios with more than seven hyper-parameters. In Table 9 we

show the sum of the variance explained by each order 𝑛 of hyper-parameter interactions for each

landscape. In Tables 10, 11, 12 and 13 we show the same analysis used to determine the fraction of

the landscapes with locally significant partial derivatives of various orders; however, in the first and

second two sets of tables we drop the worst 50% and 75% of the configurations from the analysis,

respectively.
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Table 9. Hyper-parameter fANOVA importance result summary.

Model Dataset 1
st

2
nd

3
rd

4
th

5
th

6
th

7
th

8
th

9
th

10
th

11
th

FCNet SL 0.44 2.80 9.75 20.46 27.13 23.03 12.20 3.70 0.49 – –

PS 4.50 8.88 14.22 15.50 16.13 17.01 14.68 7.63 1.46 – –

NP 0.15 0.48 2.58 9.05 20.21 28.58 24.69 11.85 2.41 – –

PT 0.27 0.82 3.36 10.53 21.58 28.27 22.82 10.34 2.01 – –

XGB CT 58.94 12.96 14.47 9.24 3.70 0.24 0.15 0.14 0.10 0.11 0.02

LogReg MNIST 76.25 21.89 1.76 0.11 – – – – – – –

LSSVM UP 87.39 11.59 1.01 – – – – – – – –

OLDA Wiki 70.16 29.50 0.34 – – – – – – – –

Table 10. Hyper-parameter partial derivative significance excluding worst 50% of configurations – part 1.

Model Dataset Interval 1
st

2
nd

3
rd

4
th

5
th

6
th

FCNet SL 95% 74.72% 49.51% 36.26% 30.36% 27.40% 25.63%

PS 95% 81.17% 50.58% 33.46% 26.70% 23.98% 23.05%

NP 95% 64.97% 43.78% 33.42% 28.40% 26.01% 24.56%

PT 95% 77.29% 50.04% 32.37% 25.60% 22.90% 21.84%

XGB CT 95% 54.98% 13.41% 4.34% 3.44% 3.36% 3.36%

LogReg MNIST 95% 32.70% 11.18% 4.79% 3.01% – –

LSSVM UniProbe 95% 6.42% 0.00% 0.00% – – –

OLDA Wiki ± 1.36% 41.92% 0.42% 0.00% – – –

± 5.10% 1.23% 0.00% 0.00% – – –

Table 11. Hyper-parameter partial derivative significance excluding worst 50% of configurations – part 2.

Model Dataset Interval 7
th

8
th

9
th

10
th

11
th

FCNet SL 95% 24.43% 25.36% 26.74% – –

PS 95% 23.11% 24.60% 22.00% – –

NP 95% 24.07% 23.53% 33.33% – –

PT 95% 21.98% 23.34% 21.05% – –

XGB CT 95% 3.41% 3.47% 3.51% 3.40% 3.70%

Table 12. Hyper-parameter partial derivative significance excluding worst 75% of configurations – part 1

Model Dataset Interval 1
st

2
nd

3
rd

4
th

5
th

6
th

FCNet SL 95% 75.30% 50.46% 35.61% 29.34% 26.52% 23.74%

PS 95% 81.34% 51.28% 32.41% 26.60% 24.65% nan

NP 95% 63.91% 43.22% 32.76% 27.36% nan nan

PT 95% 72.67% 46.60% 30.42% 24.86% nan nan

XGB CT 95% 64.86% 15.53% 3.95% 3.35% 3.28% 3.26%

LogReg MNIST 95% 38.25% 14.34% 6.44% 3.82% – –

LSSVM UP 95% 6.11% 0.00% 0.00% – – –

OLDA Wiki ± 1.36% 11.70% 0.00% 0.00% – – –

± 5.10% 0.00% 0.00% 0.00% – – –

Table 13. Hyper-parameter partial derivative significance excluding worst 75% of configurations – part 2

Model Dataset Interval 7
th

8
th

9
th

10
th

11
th

FCNet SL 95% nan nan nan – –

PS 95% nan nan nan – –

NP 95% nan nan nan – –

PT 95% nan nan nan – –

XGB CT 95% nan nan nan nan nan
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