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Abstract

Algorithm designers are regularly faced with the tedious task of finding suitable

default values for the parameters that impact the performance of algorithms. Thor-

oughly evaluating even a single parameter configuration typically requires running

the algorithm on a large number of problem instances, which can make the pro-

cess very slow. To address this problem, many automated algorithm configuration

procedures have been proposed. The vast majority of these are based on powerful

meta-heuristics with strong diversification mechanisms, thereby ensuring that they

sufficiently explore the parameter configuration space.

However, despite the prominence of automated algorithm configuration, rel-

atively little is known about the algorithm configuration landscapes searched by

these procedures, which relate parameter values to algorithm performance. As a

result, while these strong diversification mechanisms make existing configurators

robust, it is unclear whether or not they are actually required or simply increase the

running time of the configurators.

One particularly notable early work in the field showed evidence suggesting

that the algorithm configuration landscapes of two optimization algorithms are, in

fact, close to uni-modal. However, existing fitness landscape analysis techniques

are unable to account for the stochasticity in the performance measurements of

algorithms in a statistically principled way, which is a major barrier to their ap-

plication to studying algorithm configuration scenarios. We address this gap by

developing the first statistically principled method for detecting significant devia-

tions from uni-modality in a stochastic landscape.

We apply this method, along with other (new and existing) landscape analy-

sis techniques, to a variety of algorithm configuration scenarios arising in auto-
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mated machine learning (AutoML) and the minimization of the running time of

algorithms for solving NP-hard problems. We show that algorithm configuration

landscapes are most often highly structured and relatively simple.

Using the intuition from this analysis, we develop two prototype algorithm

configuration procedures designed for AutoML. We show that the methods make

assumptions that are too strong, leading to mixed results. However, we build on

this intuition and develop another procedure for the configuration of NP-hard al-

gorithms. Compared to state-of-the-art baselines, we show that our new method

often finds similar or better configurations in the same or less time.
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Lay Summary

Problems on a computer are solved by a series of steps, called algorithms. Much

like recipes, which can be modified by changing, for example, the baking tempera-

ture, algorithms have parameters that control their performance. Manually finding

suitable values for these parameters by trial and error is a tedious task. To alleviate

this burden, algorithm designers designed new algorithms, called configurators,

that can automatically find high-quality settings for these parameters. These con-

figurators are highly effective; however, they typically require evaluating a very

large number of parameter settings to ensure that no high-quality solutions are

missed. We hypothesize that there should be patterns in the parameters that make

the problem easier to solve. By way of analogy, consider the baking temperature of

a cake. Most likely, it is either too low, too high or just right. We develop statistical

methods for detecting this structure and show how it can be exploited.
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Preface

All of the research presented in this thesis is the original intellectual product of

the author, Yasha Pushak, with guidance and mentorship from my primary thesis

advisor, Holger Hoos. Most of this work has been published or submitted for

publication in various venues.

In 2015 during a class with Holger, I expressed interest in algorithm configura-

tion landscapes and what was known about them, which was, at the time, very little.

Two years later when my original research plan was struggling, Holger proposed

that I switch topics and begin investigating them. In particular, Holger first sug-

gested that we study individual parameter response slices to check for uni-modality

in a statistically principled way. From this idea, I developed early versions of some

of the methods proposed in Chapter 3, which were first published in Pushak and

Hoos [148] (the rest of the methods in Chapter 3 have been accepted for publication

in Pushak and Hoos [151], pending minor revisions). For the same paper [148], I

designed the experimental setup and conducted the analysis of the results presented

in Chapter 6, with guidance from Holger.

The writing from Pushak and Hoos [148] used in this thesis is largely my own;

however, as it was the first paper I co-authored with Holger, he naturally made

substantial edits to improve the clarity and presentation of the text, without sub-

stantially modifying the content.

Chapter 4 takes a large quantity of text from Pushak and Hoos [151], with only

very minor modifications. Pushak and Hoos [151] also introduced several new or

improved versions of the methods which are presented in Chapter 3. The writing of

these sections, the conception and design of the methods, experimental setup and

the analysis of the results were primarily my own contributions, with minor edits,
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suggestions and guidance from Holger.

Chapter 5 is also joint work with Holger Hoos that is under review for publica-

tion [147]. The design and implementation of the CQA method was done by me,

with little guidance from Holger. However, he proposed the second modification

using splines. He further substantially improved the work by giving suggestions to

improve the analysis of both methods using artificial scenarios with known prop-

erties in order to demonstrate why the two methods were too simple to work well

on the real scenarios.

An early prototype of GPS (see Chapter 7) was designed as part of a course

project for a class taught by Mark Greenstreet. I conceived of one of the key com-

ponents of GPS, how it makes use of parallelism, based on the guiding principles

from his class. My original idea for how the bandit queue should work was sub-

stantially more complicated than the one presented in Chapter 7.1.9, which was

Holger’s idea. Otherwise, the ideas behind the method and its implementation are

substantially my own contributions. The design of the experiments, analysis of the

results and their presentation in Chapter 7, were done with guidance from Holger.

Much of the writing in Chapter 7 was originally published in Pushak and Hoos

[149]. The writing was substantially my own, with moderate editing and guidance

from Holger on its structure and presentation.

The writing, research and content of each of the sections in the appendix comes

substantially from the papers mentioned above, for each of their respective chap-

ters. Contributions to the ideas, results and authorship are largely the same as for

their respective chapters.

Finally, Chapters 1, 2 and 8 all borrow small snippets of text from Pushak and

Hoos [148, 149] and Pushak and Hoos [151]. However, nearly all of the writing, the

presentation of ideas and synthesis of the related literature is my own contribution.
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Chapter 1

Introduction

If you were leading a team on a mountaineering expedition, with your goal being

to find the highest peak of an unfamiliar mountain range that is covered in a dense

fog, what would you want to know?

1.1 Automated Algorithm Configuration
When faced with a computational problem, computer scientists, engineers, re-

searchers and programmers write algorithms to solve them – that is, a collection

of steps that can be followed until a solution to the problem has been found. Algo-

rithm designers are typically faced with a variety of choices that need to be made

regarding their algorithm. For example, if the problem is to bake a cake, then two of

the decisions that the algorithm (or in this case: recipe) designer will need to make,

is to determine for how long the cake should be baked and at which temperature.

These algorithmic design choices are typically referred to as parameters of the

algorithm. These parameters can be real-valued (for example, the temperature),

integer-valued (for example, the number of layers) or categorical (for example,

whether or not the cake has icing). The parameters can also be conditional, that

is, their values are only used if one or more parent parameters are set to certain

values. For example, it only makes sense to define the flavor of icing on the cake if

the cake has icing. Clearly, choosing good values for these parameters can be very

important; if set incorrectly, many combinations, or configurations, of parameter
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values can lead to undesirable results or performance. For example, in our cake

baking analogy, if the temperature and baking time are set too high, then the cake

will dry out or possibly even burn.

For algorithmic problems, there are numerous methods that can be used to

measure how well a particular parameter configuration performs. For example, if

the algorithm is a machine learning classifier, then the goal may be to maximize

the classification accuracy of the model on a validation data set. Similarly, the goal

could be to minimize the root mean squared error of a machine learning regression

model. If the problem itself is an optimization problem, then the performance

of the algorithm may correspond to the quality of the solution that the algorithm

is able to find on a given problem instance. For example, if the algorithm is for

the travelling salesperson problem (TSP), then the solution quality, and hence the

performance of the algorithm, could correspond to the length of the shortest tour

found by the algorithm.

Many algorithms do not return results that can be used as a performance metric.

For example, a sorting algorithm produces output that is either correct or incorrect.

However, one may still be interested in minimizing the running time, memory us-

age or number of parallel resources required to run the algorithm (perhaps while

also enforcing constraints on the maximum amount of each such resource that can

be used).

Finding a good set of parameter values by hand for an algorithm is typically

quite tedious. To configure an algorithm by hand, the algorithm designer needs to

select a particular candidate parameter configuration and then evaluate it by run-

ning the algorithm to decide whether or not it is good enough. In order to obtain

good results, this process needs to be repeated many times to sufficiently explore

the space of possible parameter configurations. However, this process is often

prone to error, as the designer may evaluate the impact of varying each param-

eter independently, and then, once a suitable value is found, fixing them for the

remainder of the trials for the other parameters.

Even if (or perhaps: especially when) an algorithm designer evaluates a large

number of candidate configurations to adequately explore the parameter configura-

tion space, the final configuration chosen may still perform poorly. This can be due

to over-fitting – that is, two or more parameter configurations may result in com-
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pletely different relative performance when the algorithm is evaluated using dif-

ferent instances of a particular problem. As a result, an algorithm designer should

evaluate each candidate configuration on a large number of problem instances that

are representative of some important and relevant distribution of problem instances.

In this case, the performance of the algorithm should then be measured using some

population statistic that summarizes the performance of the algorithm on each in-

dividual problem instance in the training set; in most applications, the mean per-

formance is a suitable choice.

Naturally, to address the tedium and challenges of the algorithm configura-

tion problem, clever algorithm designers proposed to design new algorithms to

automate the process of configuring other algorithms. For clarity, throughout this

thesis, we will refer to:

• target algorithms, as the algorithms that are being optimized; and

• configuration procedures or configurators, as the algorithms that configure

the parameters of the target algorithms.

Similarly, we will use the terms:

• problem instances, to refer to the problems that are solved by the target al-

gorithms; and

• problem scenarios, to refer to the problems that are solved by the algorithm

configuration procedures.

Over the last two decades, algorithm configuration procedures have been in-

dependently proposed to automate the configuration of algorithms for solving a

wide variety of different computational problems; for example, automated ma-

chine learning (AutoML – for example, see Bergstra and Bengio [21], Feurer et al.

[62], Jamieson and Talwalkar [95], Li et al. [113] or Maron and Moore [124]), the

configuration of meta-heuristics for NP-hard and NP-complete problems (for

example, see Ansótegui et al. [6], Balaprakash et al. [15], Birattari et al. [26] or

Hutter et al. [87, 89]), numerical optimization (for example, see Audet and Orban

[12], Audet et al. [13] or Hutter et al. [87, 89]), sorting (for example, see Audet

3



et al. [14]), compiler optimization (for example, see Balaprakash et al. [16], Cava-

zos and O’Boyle [37], Gschwandtner et al. [74], Tiwari and Hollingsworth [176]

or Tiwari et al. [177]) or even the design parameters of field-programmable gate

array (FPGA) circuits (for example, see Mametjanov et al. [123]).

1.2 Algorithm Configuration Landscapes
Despite the considerable interest and substantial practical relevance of automated

algorithm configuration, to the best of our knowledge, very little is known about

the nature of the landscapes that are searched by automated algorithm configu-

ration procedures. Informally, an algorithm configuration landscape relates the

changes that we make to a parameter’s value to the changes that we observe in

the algorithm’s performance. Note that these landscapes are intrinsic to the target

algorithms and their parameters. Hence, they are distinct from the landscapes that

arise from different initial guesses to solutions of optimization problems, which

can sometimes be quite irregular in structure (for example, see Figure 2 of Van

Den Doel and Ascher [182]).

Landscape analysis is by no means a new concept in the field of optimization.

Indeed, the credit for the analogy that optimization algorithms can be viewed as

procedures that explore landscapes in order to find a minimum (valley) or max-

imum (peak) can be tracked back to the seminal work by Wright [191] in 1932

on evolutionary biology. Since then, the analysis of landscapes searched by op-

timization algorithms (typically referred to as fitness landscape analysis) has at-

tracted substantial attention in a wide variety of optimization applications (for an

overview of the field, for example, see Hoos and Stützle [84], Malan [120], Malan

and Engelbrecht [121], Pitzer and Affenzeller [143] or Watson [186]). The reason

for this is that knowing problem structure is of great practical interest. Derivative

free, black-box optimization algorithms [11] are widely applicable, and could be

used to solve a broad range of optimization problems, for example, convex opti-

mization [32], linear programming [71] and integer programming [43]. However,

in practice, black box optimization is rarely used to solve any of these problems.

Why? Because they are all highly-structured problems that can be solved more

efficiently with specialized methods.
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Indeed, even though the well-known no free lunch theorem proves that no op-

timization technique performs better than any other on average over all possible

objective functions [189, 190], it has been shown that very general classes of op-

timization problems – for example, those with solutions that can be evaluated in

polynomial time – contain structure that can be exploited [51]. In fact, it has even

been shown that fitness landscape analysis can be exploited to select an optimiza-

tion algorithm (or even a configuration of a given algorithm) that can efficiently

solve a given problem instance (for example, see Abell et al. [2], Belkhir et al.

[18], Kerschke et al. [101] or Malan [119]).

Intuitively, this makes sense. For example, suppose you were leading a team

on a mountaineering expedition, with your goal being to find the highest peak of

an unfamiliar mountain range that is covered in a dense fog. Each member of your

team is equipped with a single altimeter, which they can use to determine their

relative elevations.

If you knew that the mountain range contained only a single mountain with

a single peak, then you would instruct your team to focus purely on exploitation.

That is, the team could stick together, with each person simply exploring a small

distance away from the current highest known position, calling out to each other

what they have found. In contrast, if you knew that there were multiple mountains,

each highly rugged with numerous peaks at varying elevations, your best bet would

be to divide your team in several different groups. Each group would conduct their

own exploration starting from numerous different locations, hoping that one of

them would find the highest peak in the mountain range.

In fact, this very type of structure is one which seems quite natural to assume

should arise frequently in automated algorithm configuration scenarios. For exam-

ple, consider again our analogy to cake baking. In practice, changing the baking

temperature likely simply trades off between too little and too much. If it is set

too low, the cake will not bake, but if it is set too high, then the cake will burn.

Our hypothesis is that similar structure exists for most algorithmic parameters. For

example, consider a hyper-parameter that controls the depth of a decision tree. If

set too small, the tree will be unable to learn all but the simplest of trends, thus

frequently leading to under-fitting. However, if set too large, the tree will be able

to memorize the training data, thus leading to over-fitting.
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Alternatively, suppose you knew that each parameter (in our example: latitude

and longitude) produced changes in the performance of the algorithm that were

completely independent of each other. For example, suppose the mountain range,

f (x,y), could be perfectly described by two functions, f (x,y) = fx(x) + fy(y),

where x and y correspond to the latitude and longitude. In this case, you would

only need a team of two people to find the highest peak in the mountain range.

Both would traverse the mountain range in straight lines, one parallel to the lines

of latitude and one parallel to the lines of longitude. Once each had reported the

highest location they observed, they could report back and you would know exactly

where to find the highest peak in the mountain.

Of course, we would not expect any natural mountain range to contain this

sort of structure. However, should we expect algorithm configuration landscapes

to appear this way? In fact, our hypothesis is that there should be at least some

cases where this is true. For example, in our cake baking analogy, it seems quite

natural to assume that the flavour of the cake will have a negligible affect on the

optimal baking temperature or time (see the left pane of Figure 1.1). However,

we would not expect this to be true for the temperature and time parameters. In

particular, if the baking temperature is somewhat larger than optimal, it should be

possible to compensate by slightly decreasing the baking time (see the right pane

of Figure 1.1). Therefore, the question of interest is to determine how frequently

the parameters of algorithm configuration landscapes interact and to what extent

these interactions increase the complexity of algorithm configuration scenarios.

Besides developing new automated algorithm configuration techniques that can

better exploit landscape structure, an equally valuable contribution from landscape

analysis are the insights that can be gained. Without a better understanding of

algorithm configuration landscape structure, it can be challenging or impossible

to develop intuitive explanations for why one algorithm configuration procedure

works a) better than another, b) similarly to another completely different method,

or c) worse than anticipated. Without such insights, algorithm configuration re-

searchers are only able to speculate about the relative performance of different

approaches, and it is often unclear without additional costly study of the config-

urators (for example, see ablation analysis [23, 61]), whether or not their guesses

align with reality.
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Figure 1.1: Two examples of algorithm (or in this case: recipe) configura-
tion landscapes for our cake baking analogy. We show the quality of
the cake as a function of the baking temperature, baking time and cake
flavour. We measure quality in terms of regret to make this a minimiza-
tion problem, which is consistent with the remainder of the scenarios in
this thesis.

In cases where a researcher’s intuition is incorrect, they (and future researchers)

can get stuck at local minima (or plateaus) of the design space of possible algorithm

configuration procedures. We hope that the insights we shed in this thesis into

algorithm configuration landscapes will help future researchers a) build intuition,

b) perform retrospective analyses of existing algorithm configuration procedures

and c) gain inspiration for new and better configuration techniques.

1.3 Preliminaries and Notation
The goal in automated algorithm configuration is to optimize the performance of

a target algorithm, A, on a distribution of problem instances, I, thereby improving

the performance of A when it is used to solve future problem instances from I.

Formally, let P be the set of configurable parameters for A, which we can modify

to adjust the performance of A. Furthermore, let mI be the performance metric for

which we wish to optimize A on distribution I.

Since it is typically intractable to measure m on an entire distribution of prob-

lem instances, I, we typically approximate it with mI , where I ⊂ I is a random

sample of problem instances from distribution I. Hence, we denote by mI(c) and

mI(c) the lower and upper bounds, respectively, of a confidence interval for mI(c)
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calculated using I. Throughout the following, we will sometimes write m rather

than mI in cases where I is clear in a given context.

The performance metric, m, can correspond to any measurable attribute of an

algorithm, for example a resource consumed by the algorithm (for example the

running time or memory consumption) to solve a problem instance. For an opti-

mization problem instance, solving a problem instance may be defined as finding

the optimal solution, whereas for a boolean satisfiability (SAT) problem instance,

it may correspond to a certification of whether or not the boolean formula can be

satisfied by an assignment of the variables. In these cases, the set I would contain

a collection of problem instances representative of I.

Alternatively, m may measure the quality of the solution returned by the al-

gorithm. For example, this could be the objective function value for the final in-

cumbent in an optimization problem, or the accuracy or loss of a machine learning

classifier on a set of validation data. In the latter case, I typically corresponds to a

set of random training and validation splits of the data set. Depending on the time

required to train a machine learning model in these cases, it is not uncommon for I

to contain only a single training and validation split.

Throughout the following, we will always choose m such that a smaller value

corresponds to a better configuration, hence our algorithm configuration scenarios

all correspond to minimization problems; however, a metric could, of course, be

chosen such that the algorithm configuration scenario may correspond to a maxi-

mization problem.

Let p ∈ P be a parameter (or hyper-parameter, in the context of a machine

learning scenario) of algorithm A with values v ∈Vp. The parameter range Vp may

either be a range of continuous, real values, for example, vsample fraction ∈ [0,1);
an ordered set of discrete (often integer) values, for example, vpopulation size ∈
{10,11, ...,1000}; or a discrete set of un-ordered, categorical values, for example,

vsubsampling ∈ {ON,OFF}. We denote by c = (v1, ...,vn) ∈ C ⊆ Vp1 × ...×Vpn a

configuration for algorithm A.

Some parameters may be conditional, that is, their values are either consid-

ered to be undefined or are simply ignored, depending on the value(s) of one or

more parent or ancestor parameters. For example, vsample fraction may always

be ignored when vsubsampling = OFF.
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We can now formally define an instance of an algorithm configuration scenario.

Definition 1 (Algorithm Configuration Problem Scenario). An instance of an al-

gorithm configuration scenario is defined by the tuple (A,P,C, I,m), where the goal

is to find a configuration c∗ ∈C such that mI(c∗)≤ mI(c) for all c ∈C, and where

• A is a parameterized target algorithm;

• P is the set of parameters of A;

• C is the configuration space of the parameters P;

• I is a set of problem instances representative of a distribution of problem

instances I on which A is to be applied in the future; and,

• mI is a performance metric that can be used to evaluate a particular config-

uration c ∈C of A on instance set I.

Given an instance of an algorithm configuration scenario, we can define its

corresponding algorithm configuration landscape. However, the properties of any

search landscape also depend upon the definition of the underlying neighbourhood

– in our case, on the relation that specifies which parameter configurations are

neighbours and on the metric used to quantify distance between configurations.

We define a graph G = (C,E) over a grid that discretizes1 the parameter con-

figuration space, where the vertices C are the parameter configurations and edge

e = (ca,cb) is in E if ca and cb are adjacent in the grid. When the landscape

contains categorical parameters, we define all of the values of a given categorical

parameter to be adjacent, and thus there exists an edge between them in the graph.

Each edge e ∈ E is assigned a weight that represents the distance between the two

configurations.

Definition 2 (Algorithm Configuration Landscape). An algorithm configuration

landscape is defined by the tuple (A,P,C, I,m,G), where

1While fitness landscape analysis can be extended to continuous domains, in this thesis, we sim-
plify the analysis by discretizing all real-valued parameters to a grid of configurations. This allows
us to easily treat both numerical and categorical parameters uniformly and makes evaluating the
landscapes computationally tractable.
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• A is a parameterized target algorithm;

• P is the set of parameters of A;

• C is the configuration space of the parameters P, such that any numerical

parameters have been discretized;

• I is a set of problem instances representative of a distribution of problem

instances I on which A is to be applied in the future;

• mI is a performance metric that can be used to evaluate a particular config-

uration c ∈C of A on instance set I, which corresponds to an estimate of the

performance of A on the instance distribution I; and,

• G = (C,E) is a graph that defines the neighbourhood relation of the config-

uration space.

Throughout this thesis, we will typically refer to candidate solutions to the al-

gorithm configuration problem as configurations; however, in some contexts, we

may also use the word solution interchangeably. In most cases, when we refer to

candidate solutions instead of configurations, it is because we are speaking about

solutions to optimization problems more broadly, which could either be algorithm

configuration scenarios or classic numeric optimization problems (for example, see

our discussion of existing fitness landscape analysis techniques in Chapter 2.2).

Similarly, we will often use the terms solution quality and performance inter-

changeably when speaking in broad terms about methods that are applicable for

any optimization problem, and we will typically refer specifically to performance

when discussing only automated algorithm configuration scenarios, in order to help

distinguish between the solution quality of a particular problem instance in an al-

gorithm configuration scenario which may, or may not, be the metric used for the

target algorithm’s performance.

Furthermore, we will use the following notation related to configurations and

parameter settings: c[p] denotes the value of parameter p in configuration c; c[p] :=

v modifies c by setting parameter p to value v; and c|p=v denotes configuration c

with parameter p (temporarily) set to v.
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1.4 Thesis Contributions and Structure
The primary contribution of this thesis is that we are the first to take a rigorous

and statistically principled approach to analyzing the landscapes arising from au-

tomated algorithm configuration scenarios. We provide new insights into the typ-

ical structure of these landscapes for two prominent and important applications of

automated algorithm configuration: AutoML and the running time minimization

of algorithms for solving NP-hard and NP-complete problems. Using these in-

sights, we develop three new automated algorithm configuration procedures, which

we evaluate to show how well they work and the conditions under which we can

expect them to work well. In each case, we provide a discussion of what we be-

lieve were the key components responsible for the success (or failure) of the newly

proposed configuration procedures.

Chapter 2: Existing landscape analysis and automated algorithm configuration
procedures. In Chapter 2, we discuss what is already known about algorithm

configuration landscapes, and we provide a detailed survey of the fitness landscape

analysis methods that have been applied to study algorithm configuration land-

scapes and related problems. In Chapter 2, we also provide a summary of a diverse

set of the most prominent algorithm configuration procedures that have been ap-

plied to a variety of algorithm configuration scenarios.

Chapter 3: New, statistically principled algorithm configuration landscape anal-
ysis methods. In Chapter 3, we introduce the landscape analysis methods that we

use throughout this thesis, both old and new. For each of the new methods, we place

a particular emphasis on developing statistically sound methods. In particular, as

discussed throughout Chapter 2.2, existing fitness landscape analysis techniques

are all poorly suited to handling the stochasticity of algorithm configuration land-

scapes, which casts doubts about the accuracy of many of the conclusions drawn

by the authors of the work discussed in Chapter 2.1.

In particular, from our analysis in Chapter 2.1, we have concluded that there

is sufficient evidence to suggest that algorithm configuration landscapes can some-

times contain more than a single mode (see Chapter 5.3.6 of Pedersen [140]). How-
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ever, without careful treatment of the noisy performance objective values, it is un-

clear whether or not the observation that these landscapes also frequently contain

dozens of local minima is warranted. We therefore introduce two novel methods.

The first detects statistically significant deviations from uni-modality. The second

investigates an even stricter form of structure; it looks for statistically significant

deviations from convexity in the responses of the numerical parameters of algo-

rithms.

Furthermore, while there is also clear evidence that some algorithm configu-

ration landscapes can have strong parameter interactions (for example, see Yuan

et al. [196]), it is unclear how frequently this arises, how much of a given land-

scape is typically affected by strong interactions, and whether or not the presence

of these interactions makes algorithm configuration scenarios substantially harder

to optimize. To answer these questions, we propose to measure the fraction of par-

tial derivatives in the landscape that are significantly different from zero, and we

use a simplistic algorithm configuration procedure that assumes independence of

the parameters in the landscape, thereby allowing us to quantify how frequently it

can obtain high-quality final results.

Chapter 4: Analysis of AutoML loss landscapes. In Chapter 4, we perform an

analysis of a broad range of the landscapes that arise in AutoML, an application of

automated algorithm configuration for which relatively little is known about their

landscapes. Unlike those discussed in Chapters 2.1.6 and 2.1.7, we focus primarily

on the numerical hyper-parameters of the landscapes, with some limited analysis

of categorical hyper-parameters. We believe that these are the natural starting place

for research in the field, as they are the most likely candidates to contain exploitable

structure (which was, in fact, also observed by Rodrigues et al. [157]).

In this chapter, we show that other than a few particular exceptions, most Au-

toML loss landscapes appear to be highly structured and rather simple. In partic-

ular, they are often both uni-modal (but not convex) and, despite their presence,

hyper-parameter interactions do not typically increase the complexity of the algo-

rithm configuration scenario.
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Chapter 5: Attempts to exploit AutoML loss landscape structure. In Chapter 5,

we propose two new variations of an existing, state-of-the-art hyper-parameter con-

figuration procedure. Each method was designed to exploit a specific property that

we observed common among most AutoML loss landscapes; however, we demon-

strate on a set of problem scenarios that neither are competitive with the original

algorithm configuration procedure. In light of this result, we construct artificial

algorithm configuration scenarios that allow us to show when the two new meth-

ods can be expected to outperform the original configurator and when they cannot,

thereby revealing why these methods performed poorly on the realistic application

scenarios.

Chapter 6: Analysis of running time minimization landscapes forNP-hard and
NP-complete scenarios. In Chapter 6, we provide what is, to the best of our

knowledge, the very first empirical analysis of algorithm configuration landscapes

that arise when minimizing the running time of algorithms forNP-hard andNP-

complete problems. We show that many of these landscapes contain similar struc-

ture to their counterparts that arise in AutoML, albeit with substantially noisier

performance estimates.

Chapter 7: Exploiting structure in running time minimization landscapes. In

Chapter 7, we draw on insights from all previous chapters in this thesis to motivate

the design of a new algorithm configuration procedure, golden parameter search

(GPS). We show that GPS often finds similar or better configurations than a vari-

ety of other state-of-the-art algorithm configuration procedures, while requiring a

similar or smaller configuration budget.

Chapter 8: Conclusions and future work. Finally, in Chapter 8, we summarize

the core contributions and primary results of this thesis, and we contrast them with

what was previously known about algorithm configuration landscapes. We also

discuss several promising directions for future work, and comment on the next

generation of automated algorithm configuration procedures.
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1.5 Chapter Summary
In this chapter, we motivated and formally defined the algorithm configuration

problem. Put simply, the goal of automated algorithm configuration is to optimize

the performance of an algorithm by automatically finding high-quality values for

parameters that control the behaviour of the algorithm. We also introduced a formal

definition for algorithm configuration landscapes, which provides an analogy be-

tween the relationship of parameter values and algorithm performance to physical

landscapes.

To provide more intuition about our hypotheses regarding the structure of al-

gorithm configuration landscapes – which we expect are often quite simple – we

made an analogy between computational algorithms and cake-baking recipes. In

particular, we hypothesize that many parameters of algorithms frequently simply

trade off between too little and too much (much like the baking temperature of

a cake). Similarly, while some parameters likely interact in a compensatory way

(for example, the baking time and temperature of a cake), we suspect that many

interactions are negligible (for example, the baking time and the cake flavour).

With the intuition of our hypotheses in mind, we made yet another analogy be-

tween the optimization of algorithm configuration landscapes to a team of moun-

taineers trying to find the highest peak of an unfamiliar mountain range that is

cloaked in a dense fog. We observed that knowing whether or not the moun-

tain range is uni-modal or covered in numerous sub-optimal peaks (and simi-

larly whether or not the parameters – latitude and longitude – interact strongly or

weakly), has substantial ramifications for the search procedure the team of moun-

taineers would use.

Finally, we summarized the main contributions of this thesis and outlined the

thesis structure, revealing where more details of each contribution can be found.
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Chapter 2

Related Work

We are by no means the first to wish to automatically improve the performance of

algorithms by means of configuring their parameters, nor are we the first to study

the structure of optimization problems by way of an analogy to physical land-

scapes. Indeed, both topics have been extensively studied in a variety of different

application scenarios.

In Chapter 2.1, to put our questions and hypotheses regarding algorithm config-

uration landscapes in perspective, we provide an overview of all of the main empir-

ical findings on algorithm configuration landscapes (both old and new), while only

mentioning the methods used to gain those insights in passing. We include a more

detailed discussion of the many different methods for performing fitness landscape

analysis in Chapter 2.2, which focuses more broadly on existing fitness landscape

analysis methods that have been applied to algorithm configuration landscapes and

other optimization problems.

Similarly, in Chapter 2.3, rather than focusing on the application scenarios from

which each configuration procedure arose, we instead provide an overview of the

various methods, while only mentioning the application areas in passing. However,

we do make note of any methods that can only be applied in application areas that

contain specific properties (for example, see Chapter 2.3.2).
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2.1 What is known about algorithm configuration
landscapes?

To the best of our knowledge, when we began work on this thesis in 2015, very little

was known about the landscapes that arise in various algorithm configuration sce-

narios. In particular, we are only aware of three studies [140, 195, 196] (that were

conducted prior to the research that makes up this thesis) that present empirical

results regarding algorithm configuration landscapes, and one that shows theoreti-

cally that a particular parameter, the noise probability, of a stochastic local search

algorithm should yield a uni-modal response in performance [126]. However, since

our first publication on algorithm configuration landscapes in 2018 [148], there has

been substantially more interest in the topic, leading to several new publications in

the field (as well as one on a related topic [173]).

2.1.1 Particle Swarm Optimization

To the best of our knowledge, particle swarm optimization (PSO) [54] configura-

tion landscapes have been studied more extensively than any landscapes arising for

any other algorithm. Particle swarm optimization is an optimization algorithm that

maintains a population of “particles”, that is, candidate solutions, that are itera-

tively updated in a way that was inspired by the behaviour of birds when swarming

prey. The velocity of each particle is controlled by three factors, each of which

are typically associated with a single parameter: the inertia, cognitive and social

weights. The inertia parameter controls the tendency of a particle to continue mov-

ing in the same direction, whereas the cognitive and social parameters control the

strength with which a particle is attracted to the best solution it has visited so far

and the best solution visited by any of the particles in its vicinity, respectively.

To the best of our knowledge, Pedersen [140] was the first to study the land-

scapes induced by two of these parameters (they studied a PSO variant with the

cognitive parameter set to 0, thereby removing the attraction of a particle to its

personal previous best solution). In particular, the objective, m, of their algorithm

configuration scenario was the solution quality found by their PSO algorithm, and

they looked at grids of values for the two remaining parameters when evaluated

on 12 different well-known optimization problems; for example, the widely-used
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Rastrigin and Rosenbrock benchmark functions. These functions are frequently

used as benchmarks for optimization methods because they are known to be chal-

lenging to optimize – in the case of Rastrigin, it is challenging because it combines

the globally uni-modal structure of a quadratic function with the local ruggedness

of a sinusoidal function.

While they did not make use of any landscape analysis methods other than to

plot the landscapes with 3D visualizations, they showed that the two parameters

yielded a landscape with two close, but distinct regions, or modes, that contained

high-quality configurations. While the exact location and shape of these modes

varied between problem instances, the rough global structure appeared to be con-

sistent, as it also showed up in their plots of the landscape induced by the mean

solution quality obtained over all 12 problem instances.

Later, Yuan et al. [196] performed a simple analysis of five parameters of PSO,

in which they recorded the performance of the algorithm as the mean solution qual-

ity of a single run of the algorithm over 25 randomly selected problem instances.

They showed contour plots of two sets of parameters for PSO, which showed that

the structure of these parameters was globally uni-modal shaped, something which

was corroborated by their analysis of these (and the full) landscapes with fitness-

distance correlation (FDC) analysis. They pointed out that while there was a sub-

stantial amount of local variability that caused there to be numerous local minima,

it was unclear whether or not these local minima were in fact artifacts introduced

by the relatively small number of problem instances and target algorithm runs per-

formed in their analysis. Another notable observation made by Yuan et al. [196], is

that many of the parameters of PSO appeared to have high degrees of correlation

between the high-quality values of various pairs of parameters.

Several years later, it was shown that PSO algorithms exhibit order-2 stability,

when their parameters satisfy a specific parabolic-shaped condition [40, 41]. That

is, when the inertia and the sum of the cognitive and social parameters statisfy this

condition, then the expected value and variance of a particle’s step sizes will tend

towards a constant value.

Recently, three additional studies have been performed on the landscapes of

PSO [42, 79, 81]. In each case, they study the landscapes of the algorithm on 20-

26 individual problem instances, which again correspond to well known functions
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like Rastrigin and Rosenbrock. They all study the three main parameters of PSO;

however, in two cases they fix the cognitive and social weights to have the same

values, as suggested by the order-2 stability conditions.

The three studies use a variety of techniques to perform their analyses, but over-

all they all conclude that the landscapes are roughly globally uni-modal in shape

with some local ruggedness leading to a configuration problem with “mid-ranged”

difficulty. However, one of the pitfalls of their methods, is that they do not prop-

erly account for the variability in the performance of the algorithm. In particular,

they all assume that taking the mean over 30 independent runs of the algorithm is

sufficient to produce an accurate representation of the landscape. However, since

none of them include any additional information about this variance, for exam-

ple, the standard deviation of the performance metric, it is impossible to determine

whether or not any of their observations regarding the local features of the land-

scape are merely random artifacts.

Nevertheless, between them they show several examples of two-dimensional

slices of the PSO configuration landscape on various problem instances. In each

case, there appears to be a single basin of high-quality values, which roughly cor-

responds to the parabolic order-2 stability conditions. However, curiously, these

particular landscapes appear to often be shaped somewhat-similarly to the bottom

half of the inside of a human mouth. That is, the configurations close to the bound-

ary of the parabola yield high-quality performance, the configurations inside of the

parabola often yield mediocre-quality performance (the “tongue”), and the config-

urations outside of the parabola yield very poor performance (the “teeth”).

2.1.2 Differential Evolution

Differential evolution is another anytime optimization algorithm that iteratively

updates a population of candidate solutions [168]. Using the DE/rand/1/bin strat-

egy [80], there are two main parameters that are typically used to control how the

candidate solutions are updated. First, the crossover rate, which determines the

frequency with which candidates are updated or remain the same. And second,

the differential weight, which controls how much elements of different candidate

solutions in the population are “mixed” when crossover occurs.
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Pedersen [140] also studied the landscapes induced by the population size and

the differential weight, while keeping the crossover rate fixed. Similar to their

analysis for PSO, they measured the performance of a configuration as the mean

solution quality obtained over 50 independent runs of the algorithm. They showed

that the landscapes tend to be uni-modal, both on the 12 individual problem in-

stances as well as when taking the mean over all of the problem instances. They

point out that while there are some minor differences between the landscapes on

the individual problem instances, they are all relatively similar. Furthermore, they

show that there exists a single valley of high-quality configurations, which happens

to be diagonally oriented in the landscape, with some degree of curvature.

Belkhir et al. [18] conducted a study of how effectively random forests can be

used to predict which configurations can be expected to do well based on features

of given problem instances and the particular parameter configuration of the land-

scape. While the focus of their work was not on any form of landscape analysis,

it did include heatmaps of the landscapes induced by the crossover rate and differ-

ential weight parameters on four separate problem instances, in order to compare

them with the predictions from the random forest model. In each case, there again

appears to be a single region that contains high-quality configurations, with some

speckling around the boundaries between colours, indicating some degree of local

ruggedness. In some cases, one or two corners of the landscapes yield substantially

worse performance than the rest, suggesting that there is some degree of interac-

tions between the parameter values.

More recently, Harrison et al. [80] performed an analysis of the landscapes for

the differential weight and crossover rate parameters for 20 different individual

problem instances. They recorded the performance of the algorithm as the mean

solution quality over 30 independent runs of the algorithm, and they considered

two configurations the same if their performance scores were within 10−8 of each

other. Overall, their results were similar to the previous ones for differential evo-

lution. They concluded that the global structure of the landscapes is uni-modal.

From looking at their visualizations, we can again see some evidence of parameter

interactions via corners of the landscapes that yield better or worse performance.

They also note that some landscapes, particularly those that correspond to higher-

dimensional optimization problems, appear to be more rugged than others.
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2.1.3 Genetic Algorithms

Genetic algorithms are another widely-studied family of optimization algorithms

that maintain a population of candidate solutions [72]. These solutions are itera-

tively randomly mutated and combined (for example, with different components of

two candidate solutions swapped) and then subjected to a selective pressure, which

typically only allows the highest-quality candidates to remain in the population.

Treimun-Costa et al. [179] studied a generic genetic algorithm that contained

three parameters: the population size, the crossover rate and the mutation rate. Like

the previous work studying the landscapes of anytime optimization algorithms,

they measured the performance of a configuration as the mean solution quality the

algorithm obtains over multiple independent runs of the algorithm on a particu-

lar problem instance, where individual problem instances correspond to standard

objective functions, including the Rastrigin and Rosenbrock benchmark functions

(see Chapter 2.1.1).

From their analysis, they concluded that the landscapes contained several local

minima and, in some cases, even a small number of sub-optimal funnels (that is,

collections of local minima from which it is difficult to escape, even when using

strong perturbation operations). However, the mechanism they used to identify

local minima may incorrectly classify sub-optimal plateaus as local minima (for

more details, see Chapter 2.2.7). Furthermore, because, like much of the work

before them, they simply take the mean solution quality over multiple independent

runs, it is unclear how many of the local minima they observed are simply random

artifacts. Nevertheless, it seems unlikely that the sub-optimal funnels they observed

in some of the landscapes were simply spurious features, and hence we surmise that

there are at least some sub-optimal local minima in the landscapes corresponding

to certain individual problem instances. Nevertheless, because we are primarily

interested in the landscapes of algorithms over distributions of problem instances,

I, instead of the landscapes of algorithms on individual problem instances i ∈ I,

this result should be considered orthogonal from the contributions of this thesis.

Curiously, they also show that problem instances with more complex objective

functions tend to yield algorithm configuration landscapes with more sub-optimal

funnels, suggesting a correlation between the difficulty of the underlying problem
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instances and the corresponding algorithm configuration scenarios.

2.1.4 Ant Colony Optimization

The MAX–MIN ant system (MMAS) [170] is another iterative anytime op-

timization algorithm that maintains a population of candidate solutions, called

“ants”. At each iteration, there are two parameters, α and β , which trade off

between the strength of attraction that an ant has towards making locally greedy

steps compared with making moves that correspond to high pheromone trails. A

particular step is assigned a high pheromone trail if it is a step that was taken before

that proved to be helpful. A third parameter is also used to control the speed with

which pheromone trails “evaporate” over time.

Yuan et al. [196] studied the landscape induced by seven parameters of the

MMAS for solving TSP instances, as well as various subsets of those parameters.

Overall, similar to their results for PSO, they showed that several of the parameter

values that yield good-quality configurations are highly correlated, which suggests

that some strong parameter interactions exist. In contrast to the landscape for PSO,

they showed that the fitness distance correlation is relatively high, suggesting that

the scenario should be easier for configurators.

Interestingly, they also showed that the α and β parameters are typically set to

integer values by the configurators, which yields their optimal performance. They

observe that the reason for this is because the two parameters are used as exponents

when determining the relative strength of attraction for their two corresponding

factors. Since exponentiation with integers is typically handled by compilers with

multiplication, this is much more efficient than the Taylor series expansions that

are used to perform exponentiation with non-integers.

In some earlier work on ant colony optimization algorithm configuration sce-

narios, Yuan et al. [195] studied the effect of disabling or enabling a local search

heuristic in the ant colony optimization algorithm on the landscapes for the remain-

ing parameters. They observed that when the local search heuristic is enabled, the

landscape for the remaining parameters is substantially more flat, which indicates

that categorical parameters can cause substantial changes in the landscapes of the

remaining numerical parameters.
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2.1.5 Gradient Descent Step Size

Gradient descent and its many variants are another class of optimization algo-

rithms [105]; however, unlike those discussed in Chapters 2.1.1–2.1.4, they typ-

ically only track a single candidate solution, which is iteratively updated by taking

small steps in a gradient-based descent direction.

Correctly setting the (initial) choice of this step size parameter is important. In

fact, it is a well-known example of a parameter that frequently yields a uni-modal

response in performance – if set too large, the optimization algorithm overshoots

and diverges; if set too small, the optimization algorithm converges to the optimal

solution very slowly. To the best of our knowledge, even though this is common

knowledge among those familiar with (stochastic) gradient descent, this behaviour

was only recently demonstrated empirically in a statistically principled way [9].

Asi and Duchi [9] studied the sensitivity of several variants of stochastic gradi-

ent descent on the initial step size parameter. In particular, they evaluated several

different initial steps sizes for each method when applied to four different optimiza-

tion problem instances. They recorded the performance of the algorithm as both

the number of iterations to convergence and the solution quality after a small, fixed

number of iterations. The main focus of their study was to show that stochastic

gradient descent methods could be designed to be more robust to the initial choice

of this parameter value. However, because they performed multiple independent

runs of each algorithm and included 90% confidence intervals for the performance

of the algorithms, we can easily examine their plotted results to see that in every

case the initial step size parameter yields a uni-modal response in performance.

2.1.6 AutoML Pipelines

Machine learning has made many impressive contributions to a broad range of

applications through the development of a diverse set of models and training al-

gorithms [5, 33, 45, 108, 110]. However, no single technique dominates for all

applications; therefore, for many applications, there are benefits in evaluating and

comparing many approaches. Furthermore, it is well known that hyper-parameter

settings can strongly impact model quality [22]. Therefore, significant attention has

recently been devoted to developing automated machine learning (AutoML) meth-
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ods to address this problem (for example, see Bergstra and Bengio [21], Bergstra

et al. [22], Falkner et al. [59] or Li et al. [113]). However, we are only aware of

two recent publications that study the loss landscapes of AutoML pipelines.

In the first, Garciarena et al. [69] make several weakly substantiated claims, for

example: that AutoML methods typically optimize the training loss of a model,

which is trivially false (see for example, Bergstra et al. [22], Eggensperger et al.

[55] or Falkner et al. [59]). They also claim that multiple distinct local optima ex-

ist in the landscapes they studied. From the context of this statement, we surmise

that they substantiate this claim by the fact that multiple distinct machine learning

models each contain hyper-parameter configurations that yield similarly-good so-

lutions. However, given the neighbourhood operator that they define, each of these

“local” minima would be directly connected.

Independently and in parallel to a major part of our work, Pimenta et al. [142]

studied the landscapes of AutoML pipelines that arise from the combination of

18 possible preprocessors and 23 classification algorithms from scikit-learn [141],

when applied to six different datasets. They measured the performance of the al-

gorithm using the weighted F-score, which they approximate using 5-fold cross-

validation. They concluded that AutoML pipeline landscapes tend to be flatter

close to high-quality solutions and that FDC [97] (one of the most widely-used

metrics for fitness landscape analysis, see Chapter 2.2.2) is a poor metric for char-

acterizing AutoML loss landscapes, necessitating further study.

2.1.7 Neural Architecture Search

Clearly, the work in this field is closely related to that on developing AutoML

pipelines; however, NAS provides the unique additional challenge that neural net-

works have architectures that are graphical in nature, thereby imposing additional

constraints on the parameterization of the target algorithms. Consequently, the al-

gorithm configuration landscapes that arise in NAS scenarios may (or may not)

share similar properties with those of traditional AutoML pipelines.

Recently, neural architecture search landscapes have also been studied with fit-

ness landscape analysis techniques. For example, Rodrigues et al. [157] studied the

landscapes of a neuroevolution procedure for optimizing the performance of con-
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volutional neural networks (CNNs). In particular, they compared the performance

responses induced by three different types of neuroevolution mutation operations.

The first modifies the hyper-parameters of individual neurons, for example, the

choice of the activation function. The second modifies the hyper-parameters of

the optimization procedure used to train the CNNs, for example, the learning rate.

Finally, the third modifies the topology of the network itself.

They measured the performance of a given configuration as the categorical

cross-entropy loss when calculated on a held-out test set. They studied the land-

scapes on four different well-known datasets, including MNIST [109] and CIFAR-

10 [107]. From their analysis, they concluded that it is easiest to configure the

hyper-parameters of the optimization procedure, because they yield the smoothest

responses, and hardest to configure the topology-related hyper-parameters, because

they yield the most rugged responses.

Nunes et al. [134] applied fitness landscape analysis methods to the validation

accuracy obtained by various graph neural network (GNN) architectures. They

estimate the validation accuracy using a single run for a given configuration with

a given train/validation split. Unlike Rodrigues et al. [157], they do not consider

the hyper-parameters of the optimization procedure in the landscape, instead they

focus only on parameters that relate specifically to the architecture of the GNN, for

example, the activation functions used.

They conclude from a fitness distance correlation analysis that the landscapes

that arise for neural architecture search on three different datasets should be rela-

tively simple to optimize, with most high-quality configurations grouped together

in the search space. They also speculate from their results that the landscapes do

not contain a substantial amount of neutrality (or “flatness”, see Chapter 2.2.10),

but call for further study on the matter.

2.1.8 Double Descent Curves

Somewhat related to our work is the recent discovery of the so-called “double

descent curve” that appears for many neural networks (see for example, Belkin

et al. [19] and references therein), which shows empirical evidence that there are

two modes in the AutoML loss landscapes of neural networks. As model com-
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plexity increases, you pass from an “under-parameterized” regime to an “over-

parameterized” regime – that is, in the under-parameterized regime there is in-

sufficient flexibility in the model to perfectly memorize the training data, hence

modifying model complexity corresponds to trading off between under- and over-

fitting. However, somewhat surprisingly, it appears that a second mode of even-

better models can exist in the over-parameterized regime.

Belkin et al. [19] speculate that this is an example of Occam’s razor, that is,

that a large number of smooth models exist in the over-parameterized regime that

can perfectly learn the training data and generalize well to unseen data. They show

evidence of double descent curves for random forests and xgboost, and hypothesize

that this phenomenon is ubiquitous among all sufficiently expressive models. Our

results do not contradict theirs; most (if not all) of the landscapes we study (see

Chapter 4.1) are likely restricted to being entirely within one of the two regimes.

Furthermore, Belkin et al. [19] conjecture that the peak between the two modes is

very narrow and may be easily missed by discretization of hyper-parameters (as

must be done for empirical landscape analysis).

2.2 Landscape Analysis Methods
The analysis of the landscapes induced by optimization problems is a well estab-

lished topic, that can be traced back to the seminal work by Wright [191] on the

study of evolutionary biology. Since then, a vast number of techniques have been

proposed for what is typically referred to as fitness landscape analysis. In this

thesis, we do not attempt to fully enumerate or characterize all of these methods;

instead, we focus only on those methods which have been previously applied to

study algorithm configuration landscapes and closely related problems. We also

include the more influential and well-known methods that have been prominently

applied in the study of other problems. For a summary of the methods we discuss,

see Table 2.1; for a more exhaustive overview of the work on fitness landscape

analysis in related fields, see Hoos and Stützle [84], Malan [120], Malan and En-

gelbrecht [121], Pitzer and Affenzeller [143] or Watson [186].
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Landscape Method Global Local RS RW SW

Uni-Modality X
FDC X X
Dispersion X X
Information landscapes X X
Optima Statistics X X X
Regional Structures X X
Local Optima Networks X X X
Geomorphons X X
Ruggedness X X X
Neutrality X X X
Parameter Importance X X X X

Table 2.1: Summary of the most closely related work on landscape analysis
methods. Includes whether or not the method provides insights into the
global or local shape of a landscape (or both). Clearly, all methods can
be applied if the full landscape is evaluated; however, some can also
be efficiently approximated with a random sample (RS) of solutions, a
random walk (RW) or a selective walk (SW).

2.2.1 Modality

Perhaps the simplest and most obvious question to ask about a landscape, is whether

or not it is uni-modal. Here, the term modality comes from the statistical analy-

sis of distributions, where a mode corresponds to a single, connected region with a

high probability density. In an optimization problem, a mode similarly corresponds

to one or more neighbouring solutions which all exhibit a locally optimal solution

quality. If an optimization problem is uni-modal, then there is only a single such

local optimum, which is also the global optimum.

Uni-modality is perhaps most intuitively defined for numerical optimization

problems, for which candidate solutions have a natural ordering. For uni-modal

numerical landscapes taking small steps in the direction of the gradient (that is,

using gradient descent) will result in converging to the same region of the solution

space, regardless of the initial starting position.

However, uni-modality can also be defined for combinatorial optimization prob-

lems. In our application, the combinatorial nature of algorithm configuration sce-
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narios arises due to categorical parameters. By definition, categorical parameters

have no natural ordering. As a result, a landscape that contains only a single cat-

egorical parameter must always be uni-modal. However, for landscapes with two

or more categorical parameters, the distance between two candidate solutions can

be defined as the number of categorical parameters whose values are different be-

tween the two solutions, thereby inducing an ordering and hence the possibility

that the landscape may not be uni-modal. For uni-modal combinatorial landscapes

taking small descent steps in a suitably defined neighbourhood (for example, single

parameter flips) also leads to the same final region of the solution space, regardless

of the initial starting position.

Without additional knowledge about the nature of the optimization problem

(for example, that it is a linear program [163]), the only way to identify whether or

not the landscape of a given problem instance is uni-modal is to exhaustively verify

it by examining every solution. However, for any combinatorial problem instance

of a non-trivial size, this can be prohibitively expensive.

2.2.2 Fitness Distance Correlation (FDC)

Arguably the most widely-known and commonly-used method for analyzing the

global structure of a landscape is known as fitness distance correlation (FDC) anal-

ysis [97]. FDC analysis does exactly as it suggests; it analyses the correlation

between the fitness of a solution and its distance to the closest globally optimal

solution. Most often FDC is calculated using Pearson’s linear correlation coeffi-

cient; however, other variants use, for example, Spearman’s rank-based correlation

coefficient (for example, see Pimenta et al. [142]).

Obviously, exactly calculating the fitness distance correlation coefficient for

non-trivially-sized problem instances is also computationally prohibitive, and thus

it (and in fact, most landscape analysis methods) is typically computed on a random

sample of candidate solutions [84]. In cases where a globally-optimal solution is

unknown, an approximate version of FDC can also be computed where the distance

to the nearest best known solution is used instead [143].

FDC coefficient values range between -1 and 1. For minimization problems

large values correspond to problem instances with positive correlation between
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solution quality and distance to the nearest global optimum. Negative values cor-

respond to deceptive landscapes, where the best solution is hidden among poor

quality solutions. Usually, values near 0 are taken to indicate that the problem

instance has solutions of high and low quality spread throughout the landscape.

Intuitively, if a landscape has high FDC, then it must be globally “funnel-shaped”

and therefore the highest-quality solutions must be relatively close together in the

landscape. However, high FDC does not necessarily imply uni-modality, nor do

all uni-modal landscapes have high FDC. For example, the very simple uni-modal

function f (x) = 1
x +
√

x over the domain 0.0001 < x < 10 has a (linear) FDC coef-

ficient of approximately −0.006, because there are very poor solutions very close

to the left of the optimal value and medium-quality solutions much farther to the

right of the optimal value. Nevertheless, since its introduction, FDC has been

prominently used to study and characterize the difficulty of a wide variety of land-

scapes, including those arising in automated algorithm configuration (for example,

see Harrison et al. [79], Nunes et al. [134], Pimenta et al. [142], Pitzer and Affen-

zeller [143], Tanabe [173], Treimun-Costa et al. [179] or Yuan et al. [196]).

2.2.3 Dispersion

In a similar vein to FDC, dispersion [118] seeks to quantify the global structure

of a landscape by identifying whether or not the set of high-quality solutions are

all densely clustered together. Unlike FDC, dispersion was originally designed to

be computationally efficient, and hence it only requires the evaluation of a set of

randomly sampled candidate solutions. In particular, given a threshold, p, and a

set of random candidate solutions, s, dispersion is calculated as the mean pair-wise

distance between the best p percentage of the solutions in s.

In general, if the difference between the dispersion with a low value of p and

a high value of p is negative, then this corresponds to a low dispersion landscape,

whereas a high value corresponds to a high dispersion landscape [118]. Any uni-

modal landscape must have low dispersion; however, a low-dispersion landscape

can also contain an arbitrary number of distinct local minima, provided that the

highest-quality local minima are all clustered within a small region of the solution

space. Similar to FDC, dispersion has been prominently applied to study a vari-
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ety of landscapes, including algorithm configuration landscapes (for example, see

Harrison et al. [79], Nunes et al. [134] or Tanabe [173]).

2.2.4 Information Landscapes

Borenstein and Poli [30] introduced information landscapes as an alternate means

to study a landscape. In particular, an information landscape is constructed by

creating a matrix where each row and column corresponds to one of the candidate

solutions in the original landscape. They then fill in the matrix with a 1 in locations

for which the solution corresponding to the row is greater than that corresponding

to the column, a 0.5 if they are the same and a 0 everywhere else.

Borenstein and Poli [30] argue that the information landscape can be a more

informative way of studying a landscape, because it more closely aligns with how

search procedures view the problem. That is, because a search procedure has no

direct means of determining how far away from the optimal solution a candidate

solution is, they effectively use a pairwise comparison between two candidate solu-

tions as a proxy to determine which solution is assumed to be closer to the optimal

solution. In this light, the information present in an information landscape can ei-

ther be: positive, that is, the comparison of the solution qualities accurately reflects

which candidate solution is closer to the optimal solution; negative, that is, the

comparison of the solution qualities is misleading, because the candidate solution

with better quality is farther from the optimal solution; or absent, because the two

candidate solutions have equal quality. Borenstein and Poli [30] then define the

degree of information that is present in a landscape as the fraction of elements in

the matrix that are not 0.5.

Furthermore, Borenstein and Poli [30] propose to measure the distance be-

tween two information landscapes as the normalized sum of the absolute value of

the differences between each element in the two information landscape matrices.

Using this distance metric, Malan and Engelbrecht [122] proposed the informa-

tion landscape negative searchability (ILns) metric, which measures the distance

between a given information landscape and the D-dimensional sphere function,

f (x) = ∑
D
i=1 x2

i . To do this, they first shift the global optimum of the sphere func-

tion to align it with global optimum of the original landscape. Malan and Engel-
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brecht [122] proposed the term negative searchability, because large values of the

metric correspond to landscapes that should be hard to optimize. The informa-

tion landscape negative searchability metric provides a completely different take

on analyzing the global structure of a landscape compared to FDC and disper-

sion. However, care needs to be taken with its interpretation. In particular, other

functions that may be easy to optimize for many search procedures (for example,

f (x,y) = |x− y|) may end up receiving relatively large ILns scores due to their

dissimilarity from a quadratic function.

In their original application, information landscapes were proposed to study

optimization problems with deterministic objective functions, hence it was triv-

ial to determine whether or not the quality of two candidate solutions are equal.

However, to apply them to algorithm configuration landscapes, care needs to be

taken when determining whether or not two configurations are considered to have

equal performance, otherwise the outcome of the results may differ substantially

for some problem instances. Borenstein and Poli [30] suggested that it may be

possible to make use of other intermediate values between 0 and 1 in some appli-

cations. However, even though Harrison et al. [79] used the ILns measure to study

PSO configuration landscapes (see Chapter 2.1.1), they did not mention how they

determined configuration equality nor whether or not they used any additional in-

termediate values, hence we surmise they treated means of the 30 independent runs

of the target algorithm as deterministic values.

2.2.5 Optima Statistics

For multi-modal problems, a variety of statistics computed on a set of local optima

have been proposed as features that can be used to estimate the difficulty of a land-

scape for a given optimization algorithm [2, 125, 186]. For example, Abell et al.

[2] used a local hill-climbing procedure initialized at random candidate solutions

to identify a set of local optima. They then measured several statistics, including

the fraction of local optima with equal solution quality to the best found optimum,

the mean and standard deviation of the pairwise distance between the local optima,

and the mean and standard deviation of the distance between each local optima and

the nearest best known optimum.
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Many of the features used by Abell et al. [2] are somewhat similar, because

they were chosen to be computationally efficient to obtain. This efficiency allowed

them to be used to predict which configuration of an optimization algorithm should

be used to attempt to solve a given problem instance. This application requires the

ability to compute the statistics in substantially less time than the problem instance

requires to be solved. This also means that their set of features could be suitable

for studying algorithm configuration landscapes, where the cost to evaluate a single

candidate solution is typically rather high. However, they would need to be adapted

to handle the non-determinism that arises in the objective functions of algorithm

configuration landscapes, which makes it more difficult and costly to determine

whether or not a particular configuration is a local optimum.

2.2.6 Regional Structures

Several local or regional structures can be defined that comprise a landscape, for

example, plateaus, basins and barriers [84]. Informally, a plateau is a flat region of

a landscape. Formally, a plateau is simply a connected set of candidate solutions

that all yield equal solution quality. Similarly, a basin, for a given solution and

solution quality, is defined to be the set of all solutions that can be reached from

the solution by a path through the solution space that does not exceed the given

solution quality. In contrast, a basin of attraction for a given local minimum is

the set of all solutions that are connected to the local minimum by a path through

the solution space for which the quality of the solutions decreases monotonically.

Furthermore, both strict and non-strict basins of attraction can be defined, which

corresponds to excluding or including those solutions that can reach more than

one local minimum via such a path. A closely related concept is the barrier level

or barrier height between two candidate solutions, which is the smallest solution

quality at which a path can be constructed between the two solutions such that none

of the solutions on said path yield a solution quality larger than the barrier height.

Throughout this thesis we will sometimes refer to these concepts; however, we

do not discuss them in more depth here, since the primary focus of the landscape

analysis in this thesis is instead on the global structure of algorithm configuration

landscapes. For a more technical and thorough discussion of each of these and
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other related structures, see Hoos and Stützle [84]. Furthermore, to the best of our

knowledge, relatively little work has been done on the study of the presence of

these structures in algorithm configuration landscapes. The only exception to this

is the application of local optima networks, which is a closely related concept that

we discuss in more detail in the following section.

2.2.7 Local Optima Networks

Local optima networks were first introduced by Ochoa et al. [135]. They provide a

method for efficiently summarizing the global (and, to some extent, regional) struc-

ture of a landscape without boiling it down to a single summary statistic, which

allows them to provide deeper insights into the structure of the landscape. In their

original formulation, each vertex in the local optima network graph corresponded

to a basin of attraction. Edges were placed between two vertices if their corre-

sponding basins of attractions were adjacent. Later, a variant was introduced that

includes weighted directional edges, where the weight of an edge corresponds to

the probability of transitioning from one basin of attraction to another with a given

movement operator [136].

This variation works particularly well with, for example, iterated local search

procedures such as BasicILS [87] (a variant of ParamILS, see Chapter 2.3.4), which

can be adapted to extract local optima networks while solving a particular problem

instance [179]. In particular, if we assume that the termination of each local search

procedure performed with BasicILS corresponds to a local optimum, then it can be

recorded as a vertex in the local optima network. Edges can then be introduced any

time a perturbation operation causes the configuration procedure to move from one

local optimum to another. By performing many independent runs of the iterated

local search procedure and counting the fraction of times that each edge is taken to

move from one local optimum to another, the weights can be approximated.

While local optima networks provide a very useful overview of a landscape,

this method of extracting local optima networks is not without flaws. For example,

the local search procedure used by BasicILS may not terminate at a local optimum,

instead, it may terminate at a plateau. However, even more problematic with the

method used by Treimun-Costa et al. [179] is that they do not properly account for
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the variability in the performance measurements for their randomized algorithm.

Instead they simply take the mean solution quality over 30 independent runs of

their algorithm and treat this as if it were the exact solution quality. As a result,

it is unclear whether or not any of the “local optima” in the network correspond

to features of the underlying landscape or merely to random fluctuations in the

performance measurements.

2.2.8 Geomorphons

Recently, geomorphons were proposed as a method to classify the physical land-

forms present in a digital elevation model of Poland [96]. Inspired by this work,

Harrison et al. [80, 81] proposed to use geomorphons to classify the landforms

present in algorithm configuration landscapes.

Geomorphons are landscape structures that often occur at a smaller scale than

the plateaus, barriers and basins discussed in Chapter 2.2.6. In particular, geomor-

phon classification is performed by first constructing a three-by-three grid around a

particular candidate solution and counting the number of neighbors of that solution

that have better, worse or equal solution quality. Based on these numbers, the so-

lution can be classified as being one of eight different geomorphons. For example,

if all eight neighbours have worse solution quality than the particular candidate

solution, then the solution is considered a pit; if all of them have better solution

qualities, then it is considered a peak; or, if all them are the same, then it is consid-

ered a valley. By counting the total number of each type of geomorphon present in

a landscape, one can gain some insights into the types of structures present.

However, one major limitation of geomorphons is that they are only well-

defined for landscapes that contain two numerical parameters. While it may be

possible to extend the classification schema to higher dimensions, the intuitive in-

terpretation of many of the landform types would become challenging.

Geomorphons also heavily aggregate information, which can abstract away

some important details. For example, Harrison et al. [80] show an example of a

“shoulder” geomorphon that contains three adjacent neighbours that move down-

wards, with all of the other neighbours at equal solution quality to the solution at

the center of the three-by-three grid. Intuitively, this seems like a reasonable de-
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scription for this landform shape. However, the shoulder geomorphon also includes

all three-by-three grids such that any three neighbours move down with the remain-

ing six flat. In particular, this includes the case where the two bottom corners are

moving downwards, along with the top middle neighbour, which is a landform that

does not intuitively represent a shoulder.

Furthermore, like most studies of algorithm configuration landscapes, Harrison

et al. [80, 81] define two neighbours to be of equal solution quality if their perfor-

mance scores are within a small absolute tolerance, in this case, 10−8. However,

they do not report any measure of the variability in the performance measurement

between independent runs of the algorithm, so it is unclear if this was a suitable

choice or if it will introduce spurious artifacts into their analysis.

2.2.9 Ruggedness

Intuitively, the ruggedness of a landscape is typically considered to relate to the

tendency of neighbouring candidate solutions to obtain similar solution quality.

This is often closely related to the number of local optima in a landscape, since

if a landscape is highly rugged then it is likely that many solutions will be local

optima. Landscapes with low degrees of ruggedness are generally assumed to be

easier to optimize, because the quality of a given candidate solution will provide

more information about the quality of its neighbours; from the perspective of infor-

mation landscapes (see Chapter 2.2.4), low degrees of ruggedness should typically

correspond to higher degrees of positive information.

Perhaps the most common definition for ruggedness in a landscape is the land-

scape correlation function, which is the correlation in solution quality between

all pairs of candidate solutions at a fixed distance from each other in the land-

scape [187]. If the correlation in solution quality is large for short distances, then

this implies that the landscape must be relatively smooth, with high-quality solu-

tions grouped together in the solution space. As a result, low degrees of ruggedness

should correspond to landscapes that are easier to optimize.

Of course, exactly calculating the correlation between all pairs of candidate

solutions at a given length is typically infeasible. Instead, this quantity is typically

estimated by means of a random walk through the landscape [187], a measure
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which is typically referred to as the (empirical) autocorrelation function or sim-

ply autocorrelation. However, in order for the autocorrelation of a landscape to

be representative of the landscape’s correlation function, the landscape must be

isotropic [84], which, in this context, means that the starting location of the ran-

dom walk does not bias the estimation of the autocorrelation. In practice, we do not

expect this to be true for algorithm configuration landscapes. In these landscapes

we expect to observe small changes in parameters that yield very large changes in

algorithm performance in some regions of a landscape and very small changes in

other regions of the landscape. Hence we believe that any autocorrelation mea-

surements for algorithm configuration landscapes can only be interpreted as local

measures of ruggedness. For this reason, we do not further discuss the correlation

length, which is another common and closely related measure of ruggedness [167].

Other related measures of ruggedness have also been proposed, for example,

Vassilev et al. [184] proposed to perform a random walk on the landscape and then

measure, for each step, whether or not the solution quality increases, decreases or

remains within some small threshold from zero. Then, they calculated the informa-

tion content of the landscape by measuring the Shannon entropy [161] of the pairs

of adjacent solution quality transition types. Vassilev et al. [184] also proposed

to calculate the information stability as the smallest value for the tolerance such

that the landscape is flat. They further defined the partial information content to

be the number of local optima encountered along the walk divided by the length

of the walk. Despite the fact that Vassilev et al. [184] originally positioned these

measures as quantifying something other than ruggedness, the information content

of a landscape has come to be referred to as an entropic measure of ruggedness by

some (for example, see Rodrigues et al. [157]). However, like autocorrelation, all

of these measures should be viewed as local measures of ruggedness rather than

global ones, since they are also based on random walks.

Another related measure to the information content, is a geomorphon-based

entropic measure of ruggedness that was proposed by Harrison et al. [80]. In par-

ticular, they proposed to measure the ruggedness by calculating the entropy of the

various landform classification geomorphons in the landscape.

However, one of the problems with all of these measures when applied to algo-

rithm configuration landscapes is that none of them take into account the variabil-
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ity between independent estimates of the performance of the algorithm. Without

proper treatment this variability can increase the apparent ruggedness of the land-

scape – that is, a landscape that appears smooth on a large number of problem

instances may appear rugged if it is not evaluated on a large enough instance set.

2.2.10 Neutrality

Closely related to the ruggedness of a landscape is its neutrality [154]. Informally,

landscapes that are highly neutral are those that contain a large number of neigh-

bouring solutions with equal solution quality – that is, a landscape with high neu-

trality is one that contains many plateaus (or perhaps one large plateau). While

clearly related to ruggedness, low degrees of neutrality do not necessarily imply

high degrees of ruggedness and vice versa [154]. Similarly, high neutrality does

not necessarily make a landscape easier to optimize – in fact, the opposite can be

true, as an optimization procedure may have difficulty knowing in which direction

it should search if it finds itself at a sub-optimal plateau.

Nevertheless, neutrality has been extensively used to study a variety of different

types of landscapes (for example, see Nunes et al. [134], Pimenta et al. [142], Rei-

dys and Stadler [154] or van Aardt et al. [181]). Similar to measures of ruggedness,

neutrality can be calculated using random walks. For example, van Aardt et al.

[181] measured the neutrality in neural network loss landscapes by measuring the

percentage of a walk that was neutral, as well as the longest segment of the walk

that was neutral. However, neutrality is also frequently defined in other ways; for

example, Vanneschi et al. [183] defined the neutrality ratio of a candidate solution

as the percentage of its neighbours which have the same solution quality as the

original candidate solution. This method was later adopted by Pimenta et al. [142]

when studying the loss landscapes of AutoML pipelines.

2.2.11 Parameter Importance

While somewhat orthogonal to the work done most commonly in the fitness land-

scape analysis community, some of the most common work done to study algo-

rithm configuration landscapes is the identification of the importance of each pa-

rameter of an algorithm. Many such methods exist to quantify the importance of
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parameters and, in some cases, their interactions.

Many of these methods are local, for example, ablation analysis [61], which

attempts to determine which parameters contribute the most to the difference in

performance between two given configurations. Starting with one of the config-

urations, it first evaluates the change in performance associated with individually

changing the value of each parameter from the first configuration to the value of the

second configuration. Whichever parameter value change brings the performance

of the original configuration closest to the second configuration is considered the

most important. The first configuration is then updated such that its value is equal

to that from the second configuration, and the process repeats to find the next most

important parameter.

Clearly, a brute-force implementation of ablation analysis can be computation-

ally expensive, as it requires evaluating a potentially large number of configurations

of an algorithm on a potentially large number of problem instances. To reduce this

cost, Fawcett and Hoos [61] proposed to use the F-Race procedure [26] to speed up

the comparisons between configurations. Later, Biedenkapp et al. [23] proposed to

replace the evaluation of the configurations’ performances with the predicted per-

formance obtained by a surrogate model (a random forest) fit to data collected by

one or more previous runs of a configuration procedure.

In a separate line of work, Biedenkapp et al. [24] propose an alternative for-

mulation of local parameter importance (LPI). It evaluates the importance of the

parameters around a particular configuration. For each parameter, they indepen-

dently evaluate the performance of modified copies of the configuration using a

grid of values for the parameter. They then measure the importance of each param-

eter based on the fraction of the variance in the performance changes that can be

explained by each of the individual parameters. Similar to their previous work on

ablation analysis [23], they proposed to speed up this process by replacing the ac-

tual performance of the algorithm with the predicted performance from a surrogate

model.

While local parameter importance methods can be very useful, they are less

helpful for our particular goal of identifying the global structure present in al-

gorithm configuration landscapes. For example, they cannot help us determine

whether or not parameters can safely be configured independently.
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As a global parameter importance method, Hutter et al. [92] proposed forward

selection, which attempts to first identify the most important set of parameters. To

do this, it trains a machine learning model to predict the performance of the algo-

rithm based on the parameter values (and, in their case, problem instance features).

They start with an initially-empty set of parameters and iteratively test how much

the accuracy of the model increases as the parameters are added one at a time.

The parameter that yields the largest increase in validation loss is added to the set

and considered an important parameter. This is repeated until a desired number of

parameters have been selected. Then, to identify their relative performance, they

use the same mechanism as Friedman [66] and Leyton-Brown et al. [112], and

measure the decrease in RMSE obtained by individually omitting each of those

features from the model. The largest decrease in RMSE is normalized to have an

importance score of 100.

Perhaps the most relevant global parameter importance technique is functional

analysis of variance (ANOVA) or fANOVA [93]. Functional ANOVA is somewhat

similar to LPI, in that it assesses the importance of each parameter by quantifying

the degree of variance in performance that is explained by each of the parameters.

However, it does so on a global scale, and it can be used to quantify the impor-

tance of the interactions between all possible subsets of the parameters. To make

the computation more efficient when applied to algorithm configuration scenarios,

fANOVA is typically calculated using the performance estimates from a surrogate

model; however, it can also be calculated using a grid of pre-evaluated parameter

configurations [103].

One property of functional ANOVA is that it is particularly sensitive to param-

eters for which a small fraction of their values yield extremely bad performance.

Furthermore, while it returns technically sound results, they are nevertheless un-

intuitive, which can obscure a lay-person’s understanding when parameters interact

strongly. For example, the function f (x,y) = |x− y| over the domain x,y ∈ [−1,1]

would be assigned no importance to each of x and y individually, whereas the in-

teraction effect would be assigned 100% of the importance. While this is accurate

in a mathematical sense, it obscures the fact that any independent change to either

x or y will result in a change in the function’s value.

Probst et al. [146] propose a very different take on the importance of parame-
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ters, in which they focus on the so-called tunability of the parameters. In particular,

they define the tunability of a given parameter to be the performance gain that can

be achieved by configuring it independently compared to some reference default

configuration. Similarly, they define the joint tunability of two parameters to be

the performance gain that can be obtained by configuring both of those param-

eters relative to the best performance that can be obtained by configuring either

one of them independently. They also define the tunability of the algorithm itself,

for a given problem instance or set of problem instances, as the maximum perfor-

mance gain that can be obtained by configuring the parameters of the algorithm,

again relative to some default configuration. Clearly, like many other methods for

calculating parameter importance, it would be prohibitively expensive to exactly

calculate all of these quantities. Therefore, like much of the work before them,

Probst et al. [146] proposed to use a random forest model as a surrogate, which

is then queried to obtain performance estimates that are used in place of the true

performance of the algorithm.

2.3 Automated Algorithm Configuration
The most basic strategy for algorithm configuration is simply manual trial and er-

ror. Typically, when algorithm configuration is performed by hand in this way, the

algorithm is only tested on a limited number of problem instances. Slightly more

advanced techniques automate this process with a grid or random search over the

parameters [21]. While even simple techniques like random search are known to

substantially outperform manual or grid search [21], there still remains significant

room for improvement by more intelligent optimization and exploitation strategies.

In the following, we provide an overview of many such possible improvements for

the automated configuration of algorithms.

2.3.1 Racing

Birattari et al. [26] proposed racing procedures for general purpose algorithm con-

figuration. The key idea is to begin with an initial set of candidate configurations

and then iteratively evaluate them on new problem instances interleaved with sta-

tistical tests to determine as quickly as possible when challengers can be discarded
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with confidence. Specifically, Birattari et al. [26] recommended to use the Fried-

man test. However, the initial version of F-Race is often prohibitively expensive

to apply in practice, since they began the race by evaluating all possible configura-

tions of an algorithm.

A family of methods known as iterated racing procedures overcomes this limi-

tation, whereby racing procedures are iteratively applied to a set of randomly gen-

erated configurations. In these methods, the winners of each race are used to bias

the random sampling procedure towards high-quality regions of the configuration

space. Balaprakash et al. [15] introduce such a method for numerical parameters,

which Birattari et al. [27] later extended to handle categorical and conditional pa-

rameters.

By their nature, racing procedures are an embarrassingly parallel method. This

fact was first exploited in an implementation by López-Ibáñez et al. [117], which

was later improved to include an adaptive capping procedure [35] (the variant we

study in Chapter 7). In a separate line of work, Styles and Hoos [171] proposed

a permutation test to determine the outcome of individual races, arguing that the

rank-based F-Test only indirectly optimizes mean running time. It was this work

that inspired the use of permutation tests in our work (see Chapters 7.1.1, 7.1.2

and 7.1.6).

Yuan et al. [195, 196] also proposed to combine racing procedures with vari-

ous existing continuous black-box optimization procedures, including MADS [10],

CMAES [78] and BOBYQA [144]. Notably, when F-RACE was combined with

CMAES, an optimization procedure that is known to work relatively well on ob-

jective functions that are globally uni-modal, it was found to be competitive with

the other variants on all of the benchmarks they studied. Their benchmarks con-

figured the parameters of particle swarm optimization and ant colony optimization

algorithms to improve the final solution qualities found by the target algorithms.

2.3.2 Exploiting Low Fidelity Approximations

A closely related concept to the one underlying racing procedures is to make use

of “low-fidelity” approximations of an algorithm’s performance to quickly elimi-

nate poorly performing configurations. This terminology and these methods arise
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frequently in AutoML. These are typically used in place of racing procedures in

AutoML because the number of problem instances (here: training and valida-

tion splits) is typically kept to a very small number, for example 1–5. However,

Jamieson and Talwalkar [95] point out that many machine learning methods are

iterative by nature, and thus the final validation loss of a machine learning method

can often be cheaply approximated by examining the validation loss of the method

after an intermediate number of training iterations.

With this insight, Jamieson and Talwalkar [95], introduced the pioneering ban-

dit algorithm known as successive halving. The procedure is straight-forward.

First, an initial set of configurations are trained using a small training budget. Next,

each configuration is compared on a validation set and the worst half are discarded.

The training for the remaining configurations is resumed until they have exhausted

twice their original training budget. This process iterates until a single configura-

tion remains or the configuration budget is otherwise exhausted.

Numerous variants of successive halving have since been proposed. For exam-

ple, Hyperband [113] performs several successive halving brackets with different

values for the initial training budget, thereby reducing the dependence of the orig-

inal method on the choice of this parameter value. Later, Li et al. [114] proposed

an asynchronous version of the successive halving algorithm, ASHA, designed to

scale well to very large degrees of parallelism.

Besides varying the number of training iterations or epochs to obtain low-

fidelity estimates of performance, it has also been proposed to use, for example,

the number of estimators in an ensemble or a subsample of the training set (for ex-

ample, see Kandasamy et al. [99] or Klein et al. [104] ). Other methods have also

been proposed that combine multiple different types of low-fidelity approximations

to further speedup the evaluation of cheap approximations [99].

While numerous methods have been proposed that combine advanced search

strategies with methods for exploiting low-fidelity approximations (for example,

see Kandasamy et al. [99], Klein et al. [104] or Falkner et al. [59], the latter of

which we discuss further in Chapter 2.3.3), even the methods that rely strictly on

random search for generating candidate configurations have been shown to perform

very well in practice (see for example, Li et al. [113, 114]).

To the best of our knowledge, methods that exploit low-fidelity approximations
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(not including racing procedures, which effectively exploit a specific type of low-

fidelity approximation) have only been proposed for use in algorithm configuration

scenarios other than AutoML scenarios a single time, by Audet et al. [14]. How-

ever, instead of proposing to exploit these approximations with a bandit method

as is typically done in AutoML, they suggest that a surrogate function for an any-

time optimization algorithm’s [46] performance could be obtained by relaxing the

optimization procedure’s termination condition. (We discuss the remaining com-

ponents of their proposed method further in Chapter 2.3.6.)

2.3.3 Bayesian Optimization

Bartz-Beielstein et al. [17] introduce using concepts from Bayesian Optimization

for general-purpose automated algorithm configuration. This work was extended

by Hutter et al. [88] to use training budgets based on running time (target algorithm

+ configurator time) instead of only the number of target algorithm runs. Hutter

et al. [88] also argued that the large variance in the running time distributions of

many algorithms posed a unique challenge to algorithm configuration procedures

that are used for running time minimization (a key insight that informed many

components crucial to one of the configuration procedures we propose, see for

example, Chapters 7.1.1, 7.1.7 and 7.1.8). They proposed to address this in two

ways. First, with a projected process model that incorporated this uncertainty and

which could be built more quickly than the previous Gaussian process model).

Second, via an intensification mechanism, which slowly increases the number of

problem instances on which candidate configuration are evaluated. However, all of

this early work was limited to configuring only numerical parameters of algorithms

applied to individual instances rather than instance sets. Hutter et al. [89] later

proposed a configuration procedure capable of working with instance sets called

SMAC, which uses a random forest model, thereby also extending the method to

configuring categorical parameters.

Since then SMAC has continued to be refined [58, 90, 116] and used as the en-

gine underlying Auto Scikit-learn [62, 64]. In another recent extension, Anastacio

and Hoos [3, 4] showed that SMAC’s performance can be further improved by ex-

ploiting prior knowledge regarding high-quality configurations – that is, by biasing
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the search process to spend more time evaluating configurations near to the default

configuration.

Another variant of SMAC was proposed by Hutter et al. [91] that evaluated

multiple candidate configurations in parallel. However, to the best of our knowl-

edge this version of SMAC has never been made publicly available. Instead, the

so-called standard protocol when using SMAC is to perform 10–25 independent

runs of SMAC in parallel and then validate the resulting configurations on the en-

tire training set and then to return the best one [172].

Bayesian optimization is also by far the most common approach used to config-

ure the hyper-parameters of machine learning methods (for example, see Bergstra

et al. [22], Feurer et al. [62], Kandasamy et al. [99], Snoek et al. [164] or Falkner

et al. [59]). In particular, Bergstra et al. [22] proposed two of the first and most

influential methods in this space. The first models the machine learning method’s

performance directly using Gaussian processes, and the second uses tree-structured

parzen estimators (TPEs) to instead model regions of the configuration space be-

lieved to be good or bad, thereby only indirectly modelling the machine learning

method’s performance as a function of the hyper-parameters.

A notable extension of the work by Bergstra et al. [22] was done by Falkner

et al. [59], which combined the TPE-based method with Hyperband [113] (dis-

cussed in more detail in Chapter 2.3.2), thereby yielding a method capable of

quickly finding reasonable-quality configurations via low fidelity approximations,

while still obtaining strong final performance by making use of Bayesian opti-

mization. They dubbed their method BOHB, short for Bayesian optimization with

Hyperband. This is the method that forms the basis of the two configuration pro-

cedures we propose in Chapter 5.

2.3.4 Iterated Local Search

In a separate line of work, Hutter et al. [86] introduced ParamILS, an iterated lo-

cal search procedure for automated algorithm configuration. ParamILS was later

improved with a novel adaptive capping mechanism [87], which is used to pick

running time cutoffs when optimizing algorithms in terms of running time. The

key observation behind adaptive capping is that when a challenging configuration
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is being evaluated, we can limit the running time cutoff of the algorithm with a

bound that reflects the total running times already used to evaluate the challenger

and incumbent, thereby avoiding spending a very long time evaluating configura-

tions that perform very poorly. Since for many NP-Hard problems the running

time of algorithms can vary substantially between problem instances, the use of

an adaptive capping mechanism can substantially reduce the computational budget

required for configuration.

Independently and in parallel to the work in this thesis, Hall et al. [75, 76,

77] proposed a few variants of ParamILS, and rigorously proved various proper-

ties about the configurators’ performance. For example, they modified ParamILS

to use a harmonic mutation operator and proved that this variant obtains opti-

mal worst-case performance for one-dimensional uni-modal or approximately uni-

modal functions [77]. However, one of the downsides of ParamILS and its variants

is that they all require a discretization of the parameter configuration space.

Blot et al. [29] proposed a multi-objective variant of ParamILS, dubbed MO-

ParamILS, that is suitable for automated algorithm configuration procedures in

which the user needs to optimize the performance of an algorithm in terms of mul-

tiple performance metrics.

2.3.5 Genetic Algorithms

Another approach for automated algorithm configuration is the use of a gender-

based genetic algorithm, GGA, proposed by Ansótegui et al. [6]. GGA applies a

different selection pressure to each gender of the population. For one gender only

the top X% of the population are kept, whereas the other gender is not subjected to

pressure and is instead used merely to store diversity in the population. While this

avoids the computation time needed to evaluate half of the population, it is also a

departure from classical gender-based genetic algorithms where both populations

are normally evaluated according to a fitness criteria.

Ansótegui et al. [7] later proposed a modified method, GGA++, which uses a

tailor-purposed random forest model trained on the competitive gender to predict

the performance of the configurations in the non-competitive gender. These pre-

dictions are then used to sample from the non-competitive population when select-
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ing mates. This random forest model is also used when determining which genes

to keep from each parent when mating. Surprisingly, neither GGA nor GGA++

makes use of several of the crucial components commonly used by state-of-the-art

algorithm configurators, for example an adaptive capping mechanism [35, 87], an

intensification mechanism [88] or a racing mechanism [26]. However, both meth-

ods are implemented in such a way that the evaluation of candidate configurations

can be performed in parallel.

While less common than Bayesian optimization, genetic algorithms have also

been used in various AutoML applications to configure the hyper-parameters of

machine learning methods. For example, Lessmann et al. [111] showed that ge-

netic algorithms can be used to find improved kernel functions for SVMs, albeit at

a substantial computational cost. More recently, Di Francescomarino et al. [49],

showed that genetic algorithms are particularly suitable in AutoML applications,

where the goal is to optimize the performance of a machine learning method in

terms of multiple performance metrics. This is because genetic algorithms are

known to contain diversity among their populations, which often makes them com-

petitive when solving multi-objective optimization problems.

In a separate line of work, Olson et al. [139] proposed TPOT, which uses ge-

netic programming to automatically configure and construct tree-based AutoML

pipelines. In their early work on TPOT, they only supported random forests and

decision trees as binary classifiers. In fact, they even proposed to use these same

classifiers for feature construction and selection. For feature construction, they

used the output of classifiers built in previous stages as potential new features, and

for selection they used decision trees to rank pairs of features based on the classi-

fication accuracy that could be obtained when using only those two features. They

then used the genetic programming package DEAP [65] to generate pipelines that

composed feature construction, selection and classification. These pipeline were

tree-shaped, in that multiple copies of the data set could be fed into different pre-

processors, which would eventually be merged by the time they reached the final

binary classifier.

While the initial version of TPOT showed promise, it sometimes produced

complex pipelines that were slow to run. To address this, Olson et al. [138] later

proposed to use the highly successful NSGA-II [47] selection strategy, which is
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designed for multi-objective optimization problems. In addition to optimizing for

classification accuracy, they sought to minimize the complexity (that is, number of

stages) of the pipeline. They then used copies of the pipelines on this Pareto front

to seed the next generation of each population. Olson and Moore [137] further

extended this line of research to show that this strategy can effectively find simple

pipelines that obtain high accuracy across a wide variety of classification settings.

2.3.6 Pattern and Direct Search

Audet and Orban [12] proposed to use mesh adaptive direct search (MADS) al-

gorithms to configure numerical parameters of algorithms. MADS algorithms are

derivative-free optimization procedures that generalize coordinate descent algo-

rithms. However, in contrast to coordinate descent, parameters are searched along

iteratively updated meshes that may not be axis-aligned, and which grow dense in

the unit sphere [14]. Unlike many of the other state-of-the-art algorithm configu-

rators, the method by Audet and Orban [12] required candidate configurations to

be evaluated on one or both of two fixed sets of problem instances. In particular,

rather than evaluating each configuration on the full set of problem instances, they

treated a subset of the problem instances as a surrogate function used to speed up

the optimization process.

In their initial work, Audet and Orban [12] noted small amounts of stochastic-

ity in performance measurements between repeated runs of the target algorithm;

however, they left this unaddressed. This restriction was later removed by Yuan

et al. [195], who proposed to hybridize MADS with F-Race [26], which yielded

an improvement to both methods and compared favourably to iterated racing [15]

(see Chapter 2.3.1).

Later, Audet et al. [14] further generalized the use of MADS algorithms in a

framework for the optimization of algorithms (dubbed OPAL), by adding support

for categorical parameters. At the same time, they proposed to improve the use

of a subset of the problem instances as a surrogate via clustering. In particular,

by clustering the full set of problem instances they identified groups of instances

with similar characteristics from each of which a single instance could be sam-

pled to generate a set of representative problem instances. However, to the best
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of our knowledge, MADS algorithms for algorithm configuration have never been

combined with adaptive capping mechanisms, which are known to be crucial for

obtaining state of the art performance when minimizing an algorithm’s running

time [35, 87].

In a separate line of work Pedersen [140] proposed an algorithm configuration

procedure called local unimodal sampling (LUS), which is essentially a pattern

search algorithm. Their method was inspired by the observation that two particular

meta-heuristic optimization algorithms, differential evolution and particle swarm

optimization, yield algorithm configuration landscapes that are close to uni-modal.

The algorithm is very simple, at each iteration it samples a new configuration uni-

formly around the incumbent and checks to see if it is an improvement. If it is, it

is accepted, otherwise the challenging configuration is rejected and the sampling

radius is decreased. Pedregosa et al. [141] showed that LUS was able to effectively

configure the parameters of particle swarm optimization and differential evolution;

however, to the best of our knowledge it has not been compared against, nor made

available for comparison against, other existing state-of-the-art algorithm configu-

ration procedures.

2.3.7 Gradient-Based Optimization

Despite their widespread success in a variety of other optimization problems (for

example, see Bottou and LeCun [31], Cauchy et al. [36], Nesterov [133], Robbins

and Monro [156] or Roux et al. [159]), very few methods exist for performing au-

tomated algorithm configuration that explicitly exploit gradient-based information.

The most obvious reason for this is that gradients cannot be easily obtained through

differentiation, nor is the objective “function” guaranteed to be either smooth or

continuous [95].

Nevertheless, Yakovlev et al. [193] recently showed that gradient approxima-

tion via finite differences can be used to create an effective hyper-parameter con-

figuration procedure used as a part of an AutoML pipeline. In particular, they

configure each hyper-parameter semi-independently in parallel, and then use pairs

of similar hyper-parameter values to estimate gradients. They use these gradi-

ent approximations to make educated guesses about which regions of the hyper-
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parameter configuration space should be evaluated next.

2.3.8 Bandit-based Bi-level Optimization

Thornton et al. [175] formally defined the combined algorithm selection and hyper-

parameter configuration (CASH) problem, which, despite its name, is most often

reformulated as a single-level optimization problem that contains hierarchically-

structured parameters (for example, see Feurer et al. [62, 64], Kotthoff et al. [106]

or Thornton et al. [175]). However, Li et al. [115] instead argued that this unnec-

essarily complicates the problem for the hyper-parameter configuration procedure.

They instead treat the CASH problem as a bi-level one, in which the outer level

selects which machine learning method is to be used, and in which the inner level

then seeks to configure the hyper-parameters of said machine learning method.

For the outer optimization problem, they propose a new bandit-based algo-

rithm, dubbed rising bandits. Each “arm” in their formulation is a single run of

a hyper-parameter configuration procedure applied to a particular machine learn-

ing method. They track the anytime performance of each arm, linearize the most

recent performance improvements and use this linear model to predict the final

performance of each arm. As soon as the predicted final performance of a partic-

ular arm falls below the current performance of another arm, the particular arm is

removed from consideration and its hyper-parameter configurator is stopped.

In their implementation, they used SMAC as their inner hyper-parameter con-

figuration procedure and compared against methods that configure the entire bi-

level optimization process. They used a variety of benchmarks to show that their

method compared favourably to other state-of-the-art Bayesian optimization con-

figurators, for example, SMAC [89] and BOHB [59].

2.4 Chapter Summary
In this chapter, we thoroughly reviewed what little is known about the landscapes

of algorithm configuration scenarios (most of which was, in fact, obtained from

research performed subsequently to the publication of our first paper on algo-

rithm configuration landscapes in 2018) and we presented an overview of the most

closely related work in the fields of fitness landscape analysis and automated algo-
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rithm configuration.

We observed that nearly all studies of algorithm configuration landscapes per-

tained only to the landscapes of optimization algorithms, wherein the performance

of the algorithm was measured almost exclusively in terms of the objective func-

tion value of the final incumbent solution for the optimization algorithm. (Although

there is also a small amount of recent research on AutoML loss landscapes as well.)

Much of this work analyzed the landscapes of algorithms only on individual

problem instances instead of on instance sets, which, while interesting, is much

less useful, since in practice one is rarely interested in optimizing the performance

of an algorithm for a single problem instance. Indeed, the purpose behind auto-

mated algorithm configuration is to improve the performance of the algorithm on

a distribution of problem instances, thereby realizing performance gains on future

problem instances that need to be solved.

Furthermore, we showed that all existing algorithm configuration landscape

analysis (both old and new) lacks the statistical sophistication necessary to handle

the stochastic nature of algorithm performance. Therefore, contrary to the con-

clusions of some of the authors of work on algorithm configuration landscapes,

we believe that there has been insufficient evidence collected so far to conclude

with confidence that algorithm configuration landscapes frequently contain more

than even a single mode. In addition, while we believe that clear evidence exists

that the parameters of an algorithm can interact strongly, the extent to which these

interactions complicate the algorithm configuration problem remains unclear.

Next, we reviewed methods for performing fitness landscape analysis, which

studies the structure of objective functions that arise in various optimization prob-

lems by way of an analogy to physical landscapes. We discussed a broad range of

these techniques, primarily targeting those that are most relevant for the study of

the global structure of algorithm configuration landscapes.

In particular, we discussed the modality of a landscape as well as several lo-

cal optima summary statistics that can be computed for multi-modal landscapes

in order to characterize the difficulty of an optimization problem. We reviewed

the widely-used fitness distance correlation coefficient and the dispersion metric,

which each measure the degree to which high-quality solutions are grouped to-

gether. We also discussed information landscapes, which provide a different lens
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for the analysis of optimization landscapes that can be useful for quantifying the

degree to which a given problem instance’s landscape resembles a simple land-

scape that should be easy to optimize.

Next, we briefly reviewed the definitions of several different kinds of regional

structures that can arise in a landscape. For example, basins of attraction and

barriers, which can be jointly analyzed through the use of local optima networks

to gain a view of an optimization landscape that is both detailed and broad. We

also reviewed the definition of geomorphons, which are used to classify small-scale

features that are present in physical landforms.

Next, we reviewed several of the most common methods for quantifying the

ruggedness of a landscape, which include the autocorrelation function and infor-

mation stability, an entropic measure of landscape ruggedness. In a similar vein,

we discussed some of the methods used to study the neutrality of a landscape,

which measure the extent to which many neighbouring solutions within a land-

scape yield equal or similar solution quality.

Finally, we discussed the most commonly used methods for quantifying the

importance of an algorithm’s parameters and their interactions, for example, func-

tional ANOVA, ablation analysis and tunability.

In our discussion of the related work on automated algorithm configuration,

we reviewed both racing and the exploitation of low-fidelity approximations of

solution quality. We observed that both of these some-what related concepts can

be used to substantially reduce the running time required to perform automated

algorithm configuration by using early feedback about the performance of low-

quality configurations to quickly eliminate them. In each case, it has been proposed

to combine the techniques with various optimization search procedures.

We further presented a summary of the most well-known applications of vari-

ous derivative-free optimization techniques (that is, Bayesian optimization, iterated

local search, genetic algorithms and direct search) to the automated configuration

of algorithms. Among these, by far the most common and popular methods for

automated algorithm configuration tend to be those with powerful meta-heuristics,

which are designed to ensure that sufficient exploration is performed of the param-

eter configuration space so as to avoid missing potentially high-quality regions of

the landscapes. However, given that relatively little is known about algorithm con-
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figuration landscapes (and given the relatively competitive behaviour observed by

very simple methods like random sampling), it remains unclear whether or not the

sophistication and strength of the exploration procedures used by these methods is

justified.

We also discussed two methods for algorithm configuration that diverge from

the classic approaches: gradient-based optimization (via finite difference approxi-

mations) and local uni-modal sampling. The design of each of these methods – the

first, implicitly, and the second, explicitly – suggest that the authors of the meth-

ods assumed that algorithm configuration landscapes must not be as complex as is

commonly assumed by the research community. The fact that these methods have

been shown to perform relatively well, further motivates our questions regarding

the simplicity of the structure of algorithm configuration landscapes.
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Chapter 3

Methods: Analyzing a Landscape

All of the existing fitness landscape analysis methods reviewed in Chapter 2 were

designed for deterministic landscapes, that is, landscapes for which a particular

candidate solution results in a deterministic measure of fitness. However, in our

application the algorithm performance objectives are non-deterministic. Even for

deterministic algorithms, the performance objective must be a random variable that

depends upon the particular choice of problem instances used to evaluate the algo-

rithm; however, for some performance objectives (for example, running time) the

results are stochastic even with fixed random seeds and sets of problem instances

(due to interference by background processes and other types of noise in the exe-

cution environment).

For some fitness landscape analysis methods, such as the fitness distance corre-

lation (FDC) coefficient [97], this is only mildly problematic. We can still approx-

imate the FDC coefficient by taking the mean performance for each configuration

and calculating the metric as usual. While the number of problem instances used to

evaluate the configurations will have some impact on how rugged the landscape ap-

pears and thus on the estimate of the FDC, this is likely to be negligible compared

to the particular choice of configurations used to calculate the FDC coefficient.

Provided that the variance between independent runs of the target algorithm is

bounded and not too large, and that we use a sufficiently large number of problem

instances to evaluate each configuration, we can still obtain a reasonably accurate

estimate for the expectation of the FDC coefficient over the distribution of problem
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instances.

However, some of the simplest forms of fitness landscape analysis, for exam-

ple, counting the number of local minima, can no longer be trivially performed

via an exhaustive search of the landscape. As a result, all of the landscape anal-

ysis methods that we introduce in this chapter place particular emphasis on the

variability in an algorithm’s performance estimates. To this end, many of the land-

scape analysis methods require a confidence interval [m(c),m(c)] for each c ∈ C

that captures the best known estimate for the performance of configuration c ac-

cording to some performance metric m. Depending on the application scenario, we

calculate these confidence intervals in different ways (see Chapters 4.1 and 6.1).

In this chapter,1 we introduce the methods that we use in Chapters 4 and 6

to analyze AutoML loss landscapes and running time minimization landscapes,

respectively. By making use of confidence intervals these methods can help us

answer several basic questions about algorithm configuration landscapes, which,

as motivated in Chapters 1 and 2, may yield insights about whether or not existing

algorithm configuration procedures are unnecessarily inefficient.

To summarize, if algorithm configuration landscapes tend to be globally uni-

modal or even convex (for numerical hyper-parameters), this would have signif-

icant ramifications on the kinds of search procedures that could be used. This

motivates our first research question: RQ 1. Is the global structure of typical
algorithm configuration landscapes relatively benign; in particular, are they
(approximately) uni-modal or convex?

It is already well-known that most algorithm configuration landscapes depend

most strongly on a small number of parameters [22]; if these parameters tend to in-

teract weakly or not at all, they could be configured independently. This would also

have substantial ramifications for many existing Gaussian-process-based meth-

ods, for which a primary bottleneck is fitting a Gaussian-process model to high-

dimensional landscapes [98]. This yields our second research question: RQ 2. Do
most parameters interact strongly; if not, to what extent do they interact and

1This chapter is based on the methods introduced in joint work with Holger Hoos. An early
version of some of these methods first appeared in Pushak and Hoos [148], where we received the
2018 PPSN best paper award. A single award is given out every two years, selected by an expert
committee with guidance from a popular vote. An extended version of the methods has been accepted
for publication, pending minor revisions [151].
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where?

3.1 Parameter Response Slices
Ideally, landscape analysis would be performed using the entire configuration space

of the target algorithm A to be configured. However, for many applications fully

evaluating the set of configurations arising from the cross-product of a modest

number of values for each parameter can be prohibitively expensive. Let A be an

algorithm with n parameters P = {p1, p2, ..., pn}. We define a parameter response

slice for parameters Pslice = {pa, pb, ..., pk} ⊆ P to be obtained by fixing all other

parameters P\Pslice to their respective values in some configuration c ∈C and mea-

suring the performance of A as a function of the parameters in Pslice; formally,

r(va,vb, ...,vk) = m(c|pa=va,pb=vb,...,pk=vk). (3.1)

Intuitively, a one-dimensional parameter response slice corresponds to a single,

axis-aligned slice through the configuration landscape of A. Technically, it can be

seen as a conditional response, subject to all other parameters being held to fixed

values.

3.2 Analysis of Global Landscape Shape
To address our first research question regarding the global shape of typical algo-

rithm configuration landscapes, we designed two methods that initially assume that

the landscapes are very simple (that is, uni-modal and convex) and then test to see

whether or not there is sufficient evidence to reject these hypotheses. As with

any type of statistical test, the outcome can vary depending on the particular sam-

ple of data used for the test; in our case, this corresponds to the grid of param-

eter values that are evaluated and used to form the neighbourhood relation graph

G = (C,E) (see Chapter 1.3). In particular, for continuous-valued parameters, it is

always possible that our test will fail to detect a barrier that separates two or more

modes because it falls between two adjacent parameter values. However, all of the

methods described in Chapter 2 share similar weaknesses when used to study any

continuous-valued domain.
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In this section we also briefly review an existing related method of analysis,

FDC, which we use to study the shape of the landscapes.

3.2.1 Test for Uni-Modality

The test for uni-modality attempts to construct a piece-wise affine landscape that is

both uni-modal and contained within the confidence intervals. If no such landscape

exists, it rejects uni-modality. To do this, we define an augmented graph G′ =

(C′,E ′), where (c,m) ∈C′ if and only if c ∈C and m(c)≤ m≤ m(c); and where a

directional edge e′ = ((ca,ma),(cb,mb)) is in E ′ if and only if e = (ca,cb) ∈ E and

ma≤mb. The method begins by finding a vertex (c∗,m(c∗)) such that m(c∗)≤m(c)

for all c ∈ C. We define ck to be reachable from c∗, if and only if there exists a

certifying path p = (c∗,m∗),(c1,m1), ...,(ck,mk) in G′ – that is, ck can be reached

via a path p from c∗ with a sequence of non-decreasing performance values that

stay within the confidence intervals for each c on p (see Figure 3.1). Technically, a

certifying path p is a chain of tuples (ci,mi) such that

mi ≤ mi+1,

distance(ci,ci+1) = 1,

mi ∈ [m(ci),m(ci)] and

c0 = c∗.

(3.2)

Clearly, if each c ∈C is reachable from c∗, we cannot reject uni-modality for the

landscape that induced G′. In Thereom 1, we show that if there exists some c0 ∈C

that is not reachable from c∗ then no piece-wise affine, uni-modal landscape exists

within the confidence intervals of C, hence we can safely reject uni-modality for

the landscape that induced G′.

Theorem 1 (Correctness of Test for Uni-Modality). Let G′ = (V ′,E ′) be a neigh-

bourhood relation graph defined for a landscape that contains a set of pre-evaluated

configurations C, such that each configuration c ∈ C has a corresponding confi-

dence interval [m(c),m(c)] for the performance of the algorithm. If m(c∗)≤ m(c)

for all c ∈ C, and there exists c0 ∈ C that is not reachable from c∗, then no uni-

modal, piece-wise affine function exists that is contained within the confidence in-
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Figure 3.1: An example discretization of an algorithm configuration land-
scape with confidence intervals. The horizontal axis corresponds to
a numerical parameter and the vertical axis corresponds to the per-
formance of the configurations (lower is better). Dijsktra’s algorithm
would find certifying path p0 from c∗ to c0 through c1 that does not
decrease in solution quality, thereby indicating that both c0 and c1 are
reachable from c∗. However, no monotonically increasing path from c∗

to c3 exists because the lower bound of c2 is above the upper bound
of c3. Therefore, c3 is not reachable from c∗, and uni-modality can be
rejected for the landscape.

tervals, and hence uni-modality can be rejected for the landscape.

A proof of Theorem 1 is in Appendix A.1.

We test if each configuration is reachable from c∗ by running Dijkstra’s al-

gorithm [50] on the modified graph G′ starting at the vertex (c∗,m(c∗)). Clearly,

if ck is reachable from c∗, Dijkstra’s algorithm will find a certifying path from

(c∗,m(c∗)) to (ck,mk). Furthermore, Dijsktra’s algorithm finds the shortest path

to each vertex and visits them in order. Hence, for each c, the first vertex (c,m)

visited by Dijkstra’s algorithm must contain the smallest value m out of all vertices

(c,m′) for which a path exists from (c∗,m(c∗)). Trivially, if an edge e′ = ((c,m′), ·)
is in E ′ and m < m′, then e = ((c,m), ·) must also be in E ′. We can therefore keep

the time complexity of the test log-linear, by pruning all paths to vertices (c,m′)
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such that m′ > m.

3.2.2 Counting the Number of Modes (Local Minima)

One commonly used feature to describe the ruggedness of a search landscape is

the number and density of local optima (for example, see Chapter 5 of Hoos and

Stützle [84]). A lower bound on the number of local minimum in a landscape can

be obtained by repeatedly applying the test for uni-modality. Initially, the test for

uni-modality is run as normal, keeping track of all reachable configurations. If

there remain configurations that are unreachable, then the test is re-applied, this

time starting with the configuration (c′,m(c′)) such that m(c′)≤m(c) for all c that

were unreachable in all previous applications of the test for uni-modality. This

process then repeats until all configurations have been reached during at least one

of the applications of the test for uni-modality. The number of times the test was

applied corresponds to the lower bound for the number of local minima in the

landscape.

3.2.3 Test for Convexity

Convexity does not apply to categorical parameters, so we fix these to their respec-

tive values in the optimal configuration prior to applying the test. Convexity is also

not defined for discrete, numerical parameters. However, we can still include them

in our test by checking if the piece-wise affine function that linearly interpolates

between their discrete values is convex. The test converts the n numerical parame-

ters of each configuration into a set of points with n+1 dimensions, where the last

dimension is the upper bound of the performance metric confidence intervals.

The lower half of the convex hull of these upper bounds then corresponds to a

convex, piece-wise linear function that has the largest possible performance value

for all configurations, without exceeding any of the upper bounds. If this function

is contained within all of the confidence intervals for the configurations, then there

exists at least one convex function within the confidence intervals, and thus we

cannot reject the hypothesis of the landscape being convex. We say that a configu-

ration is interior to the convex hull if the lower bound of its confidence interval is

contained within the convex hull. If any of the configurations are interior, then our
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test rejects convexity.

Determining whether or not the hypothesis of convexity should be rejected

therefore amounts to checking whether or not any of the lower bounds for a given

configuration are contained within the convex hull of the upper bounds. Let X ∈
Rm×n+1 be a matrix containing all of the configurations of the landscape for which

the first n columns correspond to the parameter values and the n + 1th column

represents the corresponding upper bounds. Let x ∈ Rn+1 be an n+1-dimensional

point that corresponds to a particular configuration and the corresponding lower

bound.

A computationally efficient way to determine whether or not x is in the convex

hull of X is to check if x can be represented as a convex combination of X – that is,

if there exists α ∈ Rm such that

m

∑
i=1

αi ·Xi = x, (3.3)

where
m

∑
i=1

αi = 1 and αi ≥ 0 for all αi. (3.4)

This test can be easily implemented by encoding Equations 3.3 and 3.4 as the

constraints of a linear program and then using a linear programming solver to verify

whether or not any feasible solutions exist. We used the default configuration of

the interior-point linear programming solver available in scipy [185].

One edge case that needs to be considered when applying this method is how

lower bounds that are co-planar with the convex hull of the upper bounds are

treated. Technically, if a single lower bound is co-planar with the convex hull of the

upper bounds, then there exists only a single value that a convex function contained

within the confidence intervals can take on for the corresponding configuration, and

therefore convexity should not be ruled out. However, testing whether or not x is a

convex combination of X does not allow us to easily distinguish between whether x

is co-planar to the convex hull of X or strictly interior to it. This problem is further

complicated by the numerical imprecision of floating point operations, which may

introduce possible rounding errors.

Therefore, for any configuration and lower bound x that is found to be a convex
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combination of X , we propose to perform a second test with x′, where x′ contains

the same set of parameter values as x, but where its lower bound has been slightly

decreased by a small absolute and relative tolerance. If x′ can also be represented as

a convex combination of X , then we say that the lower bound for the configuration

is interior and we reject the hypothesis of convexity, otherwise we say that it is co-

planar within machine precision and we do not reject the hypothesis of convexity.

In our experiments, we used a relative and absolute tolerance of 10−5 and 10−8,

respectively.

3.2.4 Validation of Sensitivity

If the confidence intervals are all very large or similar (for example, the intersection

of every confidence interval is non-empty), then our tests will be trivially unable to

reject their null hypotheses due to a lack of sensitivity. The situation is further com-

plicated in high dimensions by the connectedness of the neighbourhood relation

graph (for example, a fully connected graph is uni-modal for any set of confidence

intervals). We would not expect a landscape with completely random performance

values to be either uni-modal or convex. We therefore randomly permute the con-

fidence intervals for each landscape, thereby breaking the association between the

original configurations and performance estimates, but maintaining the distribu-

tion of confidence intervals and the neighbourhood graph. If a test for convexity or

uni-modality fails to reject their null hypotheses for a permuted landscape, then a

similar result on the original landscape should be considered meaningless. In our

experiments, we repeated this procedure three times for each landscape and con-

sidered the test sensitive if convexity or uni-modality was rejected for all three of

the permuted landscapes.

3.2.5 Identifying “Interesting” Parameters

Parameters with almost flat responses (that is, robust ones, whose settings have

little or no effect on the performance of the algorithm between their minimum and

maximum allowed values) are of limited interest to our investigation. We therefore

used a simple heuristic procedure to identify parameters with interesting (that is,

non-flat or sensitive) responses, based on the sizes of and overlap between the
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confidence intervals for each value of a parameter. Intuitively, this measure is

related to how we validate the sensitivity of the statistical tests as described in

Section 3.2.4, since if the response of a parameter is flat, then we should not expect

the permuted response to be non-flat.

To be precise, we define a parameter’s response slice to be interesting, if the

size of the overlap between the two confidence intervals with the least amount of

overlap is at most half of the average size of the confidence intervals. For scenarios

where the performance of the algorithm is measured in running time, we perform

this check on the log-transform of the running times, since in these scenarios, we

are typically most interested in constant-factor changes in the running times.

3.2.6 Fitness Distance Correlation

Fitness-distance correlation (FDC) [97] measures the degree to which the “fitness”

of an objective function is correlated with the distance from an optimal configu-

ration. Technically, let d(c) be the distance of configuration c from the nearest

optimal solution c∗. Then, given the fitness-distance pairs (m(c),d(c)) for all can-

didate configurations c ∈C′ ⊆C, FDC is defined as

ρFDC(m,d) :=
Cov(m,d)

σ(m) ·σ(d)
, (3.5)

where Cov and σ represent the covariance and standard deviations over all fitness-

distance pairs, respectively.

High FDC corresponds to globally funnel-shaped landscapes that are easy to

optimize and low FDC corresponds to random or deceptive landscapes. FDC has

since been prominently applied to study many problems (see for example, Harrison

et al. [79], Hoos and Stützle [84], Nunes et al. [134], Pimenta et al. [142], Pitzer and

Affenzeller [143], Tanabe [173], Treimun-Costa et al. [179] or Yuan et al. [196]).

3.3 Analysis of Parameter Interactions
To address our second research question, regarding the importance of the inter-

actions between the parameters of typical algorithm configuration landscapes, we

introduce two new methods. The first assesses the significance of local estimates
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for partial derivatives, and the second attempts to naı̈vely configure the parameters

of the algorithms independently. We also use functional ANOVA [93].

3.3.1 Locally Significant Partial Derivatives

For each combination of parameters, we calculate finite difference approximations

for the partial derivatives of the performance measure with respect to the parame-

ters. We use the grid of parameter configurations to obtain multiple local estimates

for each partial derivative. For scenarios with k estimates for the performance

measure, we calculate k paired estimates for each local partial derivative. Then,

for each one, we check to see if the partial derivative is significantly different from

zero. Finally, we count the percentage of local partial derivatives that are different

from zero at a 5% significance level.

Counter-intuitively, this method can even be generalized from continuous pa-

rameters for use with categorical parameters via a “discrete gradient” approxima-

tion. Let m{ik}(c|p=vl ) be the estimate for the performance measure of a response

slice evaluated at the lth value vl of parameter p on the kth problem instance ik. We

calculate the lth local partial derivative for the kth problem instance as

∂m{ik}
∂ p

=
m{ik}(c|p=vl )−m{ik}(c|p=vl−1)

vl− vl−1
. (3.6)

However, since the distance vl − vl−1 is a constant for each value of k in
∂m{ik}

∂ p , it

can be ignored without changing the outcome of the statistical test. Therefore, we

can generalize our notion of local parameter significance and apply it to each pair

of values for a categorical parameter by simply omitting the distance normalization

term.

In some scenarios, only a single point estimate for the performance measure-

ment of each configuration was available; however, confidence intervals for the

performance could still be obtained by making additional assumptions. For exam-

ple, from a single run of a latent structured SVM binary classifier (see Chapter 4.1)

we can obtain a point estimate of the error rate obtained with a given configura-

tion. We then assume the test errors are binomially distributed, which allows us to

calculate a confidence interval for the estimate of the error rate.
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In these cases, we applied a pessimistic version of the test that operates directly

on the confidence intervals for two adjacent configurations. In particular, to calcu-

late the upper bound of a derivative for two adjacent parameter values vl and vl−1,

we take the difference between the upper bound of vl and the lower bound of vl−1,

that is,
∂m
∂ p

= m(c|p=vl )−m(c|p=vl−1). (3.7)

Similarly, to calculate a lower bound, we use

∂m
∂ p

= m(c|p=vl )−m(c|p=vl−1). (3.8)

We then say that the derivative is significantly different from zero, if the confi-

dence interval does not contain zero. For first-order derivatives, this is equivalent

to checking if two neighbouring configurations have overlapping confidence inter-

vals for their performance measurements.

3.3.2 Functional Analysis of Variance (fANOVA)

Functional analysis of variance has been prominently applied to study the impor-

tance of parameters and their interactions [93]. It decomposes the variance ob-

served in the performance into components associated with each parameter indi-

vidually and with their interactions. However, instead of using the implementation

by Hutter et al. [93], which operates on a landscape approximated using a random

forest, we re-implemented the analysis to compute the exact results for a grid of

parameter configurations.

Since the complexity of fANOVA grows exponentially with the order of the

interaction effects computed, previous work has been restricted to studying the im-

portance of low-order interaction effects (for example 2nd- or 3rd-order effects) [93,

103]. However, our re-implementation came with a surprising bonus; rather than

storing a list of tuples of n parameter values and their mapping to performance

values, we stored the performance value of each configuration in an n-dimensional

numpy array, which allowed us to compute the importance of the 11th order param-

eter interactions for our largest scenario within a few minutes using simple matrix

operations (not including the time required to evaluate the grid of parameter val-
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ues). While purely due to software engineering, this is a substantial improvement,

since calculating only low-order importance scores for landscapes with strong in-

teractions could fail to reveal the important parameters due to marginalization: for

example, the function defined by f (x,y) = |x− y| for x,y ∈ [−1,1] would be at-

tributed with no importance to the first order effects and 100% importance to the

interaction effect.

3.3.3 Configuring Parameters Independently

Locally significant partial derivatives and fANOVA both seek to quantify the de-

gree to which the interactions of two or more parameters impact the response in

in terms of performance. The first speaks to the percentage of the landscape for

which the impact of interactions are statistically significant, and the second speaks

to the magnitude of those interactions. However, a much more natural and prac-

tical question to ask is: can we configure each of the parameters of our algorithm

independently?

In practice, this is quite likely how most algorithm designers choose the default

values of each of the parameters of their algorithms, that is, through manual explo-

ration of the response of varying each parameter independently, in sequence. After

settling on a good value for a parameter, it would then typically be held fixed for

the remainder of the manual configuration process.

We therefore propose to use the grids of the evaluated parameter configura-

tions to emulate a simplistic configuration procedure, for which we can quantify

how frequently it can be expected to produce high-quality results. In particular,

the procedure assumes that the default configuration (that is, the initial incumbent)

is the one in the grid that is estimated to obtain the worst performance. Then, for

a random ordering of the parameters, the simplistic configuration procedure looks

at the point-estimates for the performance of all of the configurations in the one-

dimensional slice centered around the current incumbent and updates the incum-

bent to be the one with the best performance. This process is carried out for each of

the parameters, until each of them has been configured once. At that point, we say

that its final incumbent configuration is “tied with optimal” if the lower bound for

its performance (where lower is considered better) is at least as good as the upper
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bound for the performance of the configuration with the best point-estimate for the

performance.

For a given grid of pre-evaluated parameter configurations, this procedure can

be run for all possible permutations of the parameters (which determines the se-

quence in which these are configured), in order to obtain the probability that the

simplistic configuration procedure will obtain a final incumbent that is tied with

optimal.

As stated previously, this procedure is designed to emulate a common practice

for configuring parameters by hand. However, this procedure evaluates the perfor-

mance of an algorithm on a large set of problem instances, whereas most manual

parameter configuration is likely done using only a small number of different prob-

lem instances, many of which may not even be representative of the true problem

instances on which the algorithm must perform well in practice. As a result, we do

not expect the results of this method to be representative of the quality that can be

expected with manual configuration. Instead, we use it as a proxy to understand

the extent to which a more advanced automated algorithm configuration procedure

can assume that parameters are independent before we should expect it to start

producing poor-quality results.

3.4 Chapter Summary
In this chapter, we formally defined parameter response slices, which relate the

performance of an algorithm to one or more parameters when the remaining param-

eters are held fixed. In addition, we presented two new methods for the analysis of

the global shape of a landscape, as well as two new methods for the analysis of the

importance of interactions between the parameters of a landscape. In each case, we

paid special attention to a critical property of algorithm configuration landscapes:

the stochastic nature of measurements of an algorithm’s performance. This feature

of algorithm configuration landscapes is important, because it makes the direct ap-

plication of many existing fitness landscape analysis methods inappropriate.

Our first two measures for global landscape shape test the landscapes for sta-

tistically significant deviations from two simple properties, uni-modality and con-

vexity. If the test for uni-modality rejects its null hypothesis then we showed how
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it can be adapted to find a lower bound on the number of local minima in a land-

scape. We also reviewed fitness distance correlation (FDC) [97], a related measure

of global landscape shape that we apply throughout this thesis.

In some cases, our tests for statistical deviations from uni-modality and con-

vexity may fail to reject their null hypotheses. When this happens, it may not be

because the null hypotheses are correct, but instead because of a lack of sensitivity

that can arise when the performance measurements are highly stochastic or when

relatively little data could be collected. To safeguard against drawing incorrect

conclusions from the interpretation of such results, we further proposed a method

that validates the sensitivity of our tests using a technique similar to a permutation

test. In a somewhat similar vein, we also introduced a heuristic for identifying

parameters which yield “interesting” or non-flat responses around the best known

configuration in a landscape.

In addition to reviewing the definition of fANOVA [93], an existing technique

that can measure the importance of parameter interactions, we proposed two new

methods with the same goal. The first method we proposed quantifies the fraction

of local estimates for partial derivatives that are significantly different from zero.

If this fraction is large for a given partial derivative, then we can conclude that

the impact of the interactions between the parameters in the partial derivative are

important for a large fraction of the landscape.

The second method we proposed for measuring the importance of parameter

interactions is more direct; we run a simplistic configuration procedure to config-

ure each parameter independently in a random sequence. If this procedure can

typically find configurations that are statistically tied with optimal, regardless of

the sequence in which they are configured, then we conclude that the effects of

the interactions do not substantially increase the complexity of the configuration

scenario. Note that this can occur even when the interaction effects are large and

statistically significant according to the other two methods.
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Chapter 4

Analysis I: AutoML Loss
Landscapes

As stated in the introduction, the recent rise in popularity of automated machine

learning (AutoML) has lead to a plethora of proposed techniques for the configura-

tion of a machine learning method’s hyper-parameters (for example, see Bergstra

and Bengio [21], Bergstra et al. [22], Feurer et al. [62], Kandasamy et al. [98, 99],

Li et al. [113], Olson and Moore [137], Snoek et al. [164], Springenberg et al. [166]

or Falkner et al. [59]). However, despite this, very little is known about the struc-

ture of the AutoML loss landscapes that are searched by these techniques [142].

This makes analyzing the structure present in AutoML loss landscapes an impor-

tant next step in the maturity of the field. Without a better understanding of this

structure, it can be challenging for AutoML researchers to understand the relative

performance of different approaches, or to judge whether or not a potential new

method is likely to improve over the current state of the art. In particular, if these

landscapes are found to be simpler than expected, then it may be possible to de-

velop faster configuration procedures by exploiting this structure. To address this

gap, in this chapter1 we applied the methods for landscape analysis described in

Chapter 3 to landscapes from a variety of machine learning scenarios.

1This Chapter is based on the experiments and results of joint work with Holger Hoos that has
been accepted for publication, pending minor revisions [151].
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Table 4.1: The machine learning scenarios for which AutoML loss landscape
analysis was performed.

Model Dataset # HP # Instances # loss samples
Num Cat Train Val Test Val Test

FCNet SL 6 3 32K 11K 11K 4 4
PS 6 3 27K 9K 9K 4 4
NP 6 3 7K 2K 2K 4 4
PT 6 3 4K 2K 2K 4 4

XGBoost CT 11 – 47K 5K – 5 –
LogReg MNIST 4 – 471K 52K 10K 1 1
LSSVM UP 3 – 20K – 20K – 1
OLDA Wiki 3 – 200K 25K 25K – 1

4.1 Experimental Setup
Ideally, each model should be trained and evaluated on separate, randomly sam-

pled training and validation sets (for example, using k-fold cross validation), as

this allows for confidence intervals that capture three sources of variance: 1) inde-

pendent training runs, and the instances included in the particular 2) training and 3)

validation datasets. However, we found several existing scenarios with grids of pre-

evaluated hyper-parameter configurations that provided sufficient data to calculate

confidence intervals that captured subsets of these sources of variance. These eight

machine learning scenarios are summarized in Table 4.1.

Klein and Hutter [103] pre-evaluated a grid of 62 208 joint hyper-parameter

and neural architecture configurations for a feed-forward neural network (FCNet)2

applied to four different UCI datasets [52]: slice localization (SL) [73], protein

structure (PS) [153], naval propulsion (NP) [44] and Parkinsons telemonitoring

(PT) [180]. They performed 4 training runs for each configuration using different

random seeds, yielding a total of 4 validation and 4 test loss scores (for the final,

100-epoch training budget that we analyze here). To obtain the best-possible esti-

mate for generalization error, we took the mean of all 8 loss samples and calculated

95% Student-t-based confidence intervals by assuming that all 8 loss samples were

independently and identically distributed. When looking at the validation and test

scores separately, 11.92% of the samples between all of the scenarios have nor-

mality rejected at a 5% significance level using a Shapiro-Wilk test. However, by

2Available at https://github.com/automl/nas benchmarks.
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naı̈vely combining the validation and test scores in this way, these samples are not

in fact independently and identically distributed, and hence 32.89% of the sets of

samples have normality rejected. This indicates that these confidence intervals are

likely slightly over-confident, and thus some of the statistical tests that we perform

may incorrectly reject their null hypothesis more frequently than expected for the

given significance level.

Our second scenario comes from ACLib [94], where Xgboost [38] is applied

to the covertype dataset [52]. We applied fANOVA [93] to some preliminary data

and found that eta was by far the most important hyper-parameter. This hyper-

parameter, eta, is sometimes also referred to as the shrinkage factor or learning

rate, because it controls the weight assigned to each subsequently-fit tree in the

ensemble, and hence the ability of the model to quickly over-fit to the training

data. Given that it was the most important hyper-parameter, we evaluated a uniform

grid of hyper-parameter values with 7 values for eta and 3 values for each of the

remaining 10 hyper-parameters (see Appendix A.2.1 for the table of values).

ACLib provides 10 splits for performing 10-fold cross validation. To keep

within our computational budget, we trained and evaluated the model on the first

5 splits. ACLib also specifies a 1 000 second running time cut-off for training. In

the scripts provided by ACLib, this time includes reading the data from disk and

splitting it. However, since this required about 40 seconds per run, and we per-

formed just over 2 million runs of Xgboost, we reduced this cutoff to 960 seconds

and used our own scripts that pre-loaded the instances and held them in memory.

Nevertheless, collecting all of the data took 14.7 CPU years. We calculated 95%

confidence intervals for the generalization loss of Xgboost using Student-t-based

confidence intervals (normality was rejected for only 5.37% of the samples at a 5%

significance level).

Our remaining three scenarios came from pre-computed grids that are available

in HPOLib [55]. The first scenario [164], logistic regression on the MNIST digits

dataset [109], contained one validation and one test loss, so we again calculated

Student-t-based confidence intervals3. The hyper-parameter configuration grids for

the latent structured SVM [127] applied to a DNA motif-finding dataset (UniProbe

3With only two samples per configuration, we were unable to test for deviations from normality.
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or UP) and the online LDA model [83] applied to Wikipedia articles were evaluated

by Snoek et al. [164]. However, each only had a single estimate of generalization

loss available. Since the SVM scenario was binary classification, we assumed that

the errors were binomially distributed4 and calculated 95% confidence intervals

using the Wald method. We were unable to make a similar assumption for the

perplexity loss from online LDA. We therefore assumed all confidence intervals

could be expressed as a percentage of the loss and performed a binary search to

find the smallest value for the size of the interval for which the tests failed to reject

their null hypotheses. If the confidence intervals are small, we can still conclude

that the landscape is close to uni-modal or convex.

These grids of hyper-parameter values contained values that were chosen with

domain knowledge that reflects the expected changes in the response to the hyper-

parameters. For example, online LDA’s hyper-parameters tau (a learning param-

eter that down weights initial iterations) and s (the size of the mini-batches) were

both sampled such that each parameter value was four times larger than the previ-

ous one, whereas its kappa hyper-parameter (the learning rate’s exponential decay

rate) values were sampled with uniform spacing. Thus, to reflect this prior knowl-

edge when calculating FDC, we defined the distance between any two adjacent

numerical parameter values as 1, a constant value.

4.2 One-Dimensional Hyper-Parameter Response Slices
The results from our tests for uni-modality and convexity, as well as the median

FDC for the 45 one-dimensional, numerical hyper-parameter response slices are

summarized in Table 4.2. Confidence intervals of size ± 0.14% were large enough

for all of the hyper-parameter response slices for the hyper-parameters of online

LDA to appear both uni-modal and convex; since these are very small, we count

them as being both uni-modal and convex, and we show them as such in the table.

Nearly all of the hyper-parameter response slices appear uni-modal (44 out of

4Technically, the errors are distributed according to the convolution of two binomial distributions
– one for each class; however, without the error rates for each class it is impossible to obtain more
precise confidence intervals. Using this method yields conservatively large confidence intervals [57],
thus our test may have failed to detect slight deviations from uni-modality; however, our permutation
tests still indicated that the results should be considered sensitive (see Tables 4.3 and 4.4), hence it is
unlikely that we missed observing any large deviations from uni-modality.
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Table 4.2: The percentage of the one-dimensional hyper-parameter response
slices for which uni-modality (Uni-M) and convexity (Cvx) could not be
rejected, and the median fitness distance correlation (FDC). All of the
hyper-parameter response slices are centered around the global minima
of the landscapes. Note that this table assumes the online LDA scenario
has intervals of size 0.14%.

Type # Slices Uni-M Cvx FDC

All 45 97.8% 82.2% 0.93
Interesting 44 97.7% 81.8% 0.93

45) and most of them appear convex (37 out of 45). Furthermore, all but one of

the 45 hyper-parameter response slices are considered to be interesting, according

to our heuristic criterion, indicating that most AutoML hyper-parameters can be

configured to improve the performance of their corresponding machine learning

methods.

Xgboost’s subsample hyper-parameter was the only one for which the re-

sponse slice was determined to be neither uni-modal nor convex. Since this hyper-

parameter was found to be relatively unimportant, according to fANOVA (its first

order effect accounts for 2.5% of the variance in the loss), we originally only eval-

uated three different values for it. The middle hyper-parameter value had a loss

substantially larger than both of the others, as well as a much wider confidence

interval.

Curious, we investigated by increasing the number of hyper-parameter val-

ues from 3 to 21 for this individual hyper-parameter response slice (and we re-

evaluated the original three values as well). We show the resulting hyper-parameter

response slice in the top left pane of Figure 4.1. To our surprise, the large barrier

in the response completely disappeared and our tests now failed to reject both uni-

modality and convexity.

Looking more closely at the original data, we see that 4 out of the 5 evaluations

on different cross-validation folds exceeded the 960 second running time cutoff;

therefore, their error rates were recorded as 1. For the expanded response slice,

the mean running time for subsample= 0.50 was 863 seconds, with a standard

deviation of 42. Therefore, we surmise that background processes or other envi-
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Figure 4.1: Four examples of one-dimensional hyper-parameter response
slices. From top to bottom and left to right: Xgboost’s subsam-
ple hyper-parameter, FCNet’s init lr hyper-parameter on the pro-
tein structure dataset, Logistic Regression’s l2 reg hyper-parameter,
and LSSVM’s alpha hyper-parameter.

ronment noise likely caused several of the original runs to be censored. Given that

this is, effectively, a spurious result, it would be reasonable to replace the original

loss values with the new ones for the remaining analysis. However, in practice,

many AutoML configurators are likely to encounter similar challenges from time

to time. Therefore, we leave the data as is and continue to analyze the landscape

with a spike in it.

Of the remaining seven hyper-parameters for which convexity was rejected,

three were FCNet’s init lr hyper-parameter for three of the four datasets. For

all four datasets, small values of the hyper-parameter provided the best loss, with

a sometimes-abrupt transition to a sub-optimal, approximately plateau-shaped re-

gion. The response on the protein structure dataset (see the top right pane of Fig-

ure 4.1) is representative of the other responses; however, the response on the slice
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localization dataset has confidence intervals that are too large to reject convexity.

The epsilon hyper-parameter for latent-structured SVMs also yielded a some-

what similar response slice; however, the difference between the good and bad val-

ues for the hyper-parameter were substantially smaller, there were only 4 values

evaluated for the hyper-parameter, and the size of the confidence intervals were

nearly as large as the transition, thus it is unclear whether or not this was merely

due to random fluctuations in the performance measurements.

At the bottom left of Figure 4.1, we show the response slice for logistic re-

gression’s l2 reg hyper-parameter, for which convexity was also rejected. The

mean loss increases nearly monotonically with the value of the hyper-parameter

from 0.07 to 0.90; however, the response is more rugged than for most of the

other hyper-parameters and appears to perhaps even be concave in shape. The

only other hyper-parameter that shows some ruggedness in its one-dimensional re-

sponse is latent-structured SVM’s alpha hyper-parameter, which is shown in the

bottom right pane of Figure 4.1. In this case, the response is very smooth apart

from a single hyper-parameter value that yields an abnormally large loss. Visu-

ally, this hyper-parameter response slice at first appears bi-modal; however, careful

inspection reveals that the confidence intervals are just large enough to admit the

possibility of a uni-modal response. Nevertheless, in light of the spurious bi-modal

response that we observed for Xgboost’s subsample hyper-parameter, it is possi-

ble that the behaviour present in this response may have arisen in a similar fashion.

However, without access to more detailed information or the original model and

dataset, we were unable to verify this hypothesis.

Other than the seven exceptions discussed so far (and one more discussed in

Chapter 4.3 and shown in the top left pane of Figure 4.2), the remaining 37 hyper-

parameter response slices are surprisingly smooth, with many of them being qual-

itatively similar in smoothness to that seen at the top left of Figure 4.1. The final

non-convex hyper-parameter response, for Xgboost’s min child weight, also

appears smooth, but has a slope that is slightly negatively correlated with the loss.
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Table 4.3: Summary of the test results for uni-modality and convexity, and the
median FDC applied to the two-dimensional hyper-parameter response
slices centred around the global optima of the AutoML loss landscapes.
Includes the mean percentage of the landscapes that is unreachable (UnR)
from the global optima or interior (Int) to the convex hull of the upper
bounds for those slices for which uni-modality or convexity was rejected,
respectively; the mean percentage of the lower-bounds that are co-planar
(Co-P) to the convex hull of the upper bounds; and the mean percentage
of the landscapes for which the tests are sensitive (Sen) according to our
permutation-based analysis.

Type # Slices Uni-M UnR Sen Cvx Int Co-P Sen FDC

N×N 127 92.1% 22.3% 77.2% 58.3% 24.8% 22.2% 90.6% 0.71
N×C 72 100.0% – 62.5% – – – – 0.77
C×C 12 100.0% – 0.0% – – – – 0.72

4.3 Two-Dimensional Hyper-Parameter Response Slices
In Table 4.3 we show a summary of the results from our tests for uni-modality

and convexity, as well as the median FDC values for the two-dimensional hyper-

parameter response slices that are centered around the global optima of each land-

scape. The results are quite similar to those from the one-dimensional analysis

(see Chapter 4.2); however, all of the numbers are slightly lower – especially those

from the tests for convexity. In total, of the 208 hyper-parameter response slices

we tested (this excludes those for online LDA, for which true confidence inter-

vals could not be obtained), 95.19% appeared to be uni-modal (all but 10), and the

median FDC is 0.73. However, the test for convexity rejected its null hypothesis

more frequently, and only 58.87% of the response slices with two numeric hyper-

parameters appear to be convex. In Table 4.3, we include the three response slices

for online LDA as if it had confidence intervals of size± 0.16%, which were small

enough to fail to reject uni-modality, but not large enough to fail to reject convex-

ity. Indeed, it appears that the landscape is most likely not convex, as it requires

the intervals to be at least ± 8.70% before it fails to reject convexity.

The latent-structured SVM’s c and alpha hyper-parameters yielded the most

unusual two-dimensional response slice (see the top left pane of Figure 4.2). For

many of the values of alpha, c’s response smoothly decreases monotonically
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Figure 4.2: Four examples of two-dimensional hyper-parameter response
slices. From top to bottom and left to right: latent-structured SVM’s
c and alpha hyper-parameters, logistic regression’s l2 reg and
batchsize, online LDA’s kappa and s, and logistic regression’s
l2 reg and lrate.

prior to the optimal value near to c = 10000; however, there is a small “bump”

around c = 1000 that causes the response to almost form a sub-optimal plateau.

Most interestingly, for the four largest values of alpha, the smaller values of c

yield a saw-tooth-style response instead of the smooth curves. Furthermore, each

of the “teeth” in this part of the landscape align closely, which suggests that there

exists a complex interaction between the two hyper-parameters. Despite this, only

2.5% of this response slice had locally significant partial derivatives, since with the

exception of alpha = 1 and alpha = 1.5, all of the other neighbouring values

of alpha yielded qualitatively similar hyper-parameter response slices in c. Note

that this is the same alpha hyper-parameter that is pictured in the bottom right of

Figure 4.1, hence the near-bi-modality in that one-dimensional response slice may

in fact be due to a complex dependence of the loss upon the value of alpha rather
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than a spurious result.

We observed another unusual, non-uni-modal hyper-parameter response slice

for logistic regression’s l2 reg and batchsize hyper-parameters (see the top

right pane of Figure 4.2). Similar to the previously discussed case, we see more

evidence that l2 reg has a highly rugged response; however, unlike the rugged

portion of the response between the latent-structured SVM’s c and alpha hyper-

parameters, the jagged peaks of l2 reg’s response slices for varying values of

batchsize do not align. Instead, the shape of the landscape is suggestive of

a highly rugged and jagged mountainscape that slowly levels off towards the top.

However, recall that for this scenario only one validation and one test loss value

were available. Since these losses are likely correlated, it is possible that the land-

scape only appears to have numerous local minima due to our assumption that the

two loss values were i.i.d. when we calculated the confidence intervals. If so, then

the landscape may actually be uni-modal, albeit with much larger variance than

most other cases.

Nevertheless, many hyper-parameter configurators never bother quantifying

(accurately or at all) this source of variance in AutoML loss landscapes. Instead,

they only perform a single run of the training algorithm on a single training and

validation split (or they may take the mean over a few cross-validation folds). As a

result, a robust hyper-parameter configurator must still be prepared to occasionally

deal with some local ruggedness that can cause small, sub-optimal local minima to

speckle the landscape.

FCNet’s dropout 1 and dropout 2 hyper-parameters on the protein struc-

ture dataset yields a third non-uni-modal response slice. In this case, there is only a

single point in the landscape that is unreachable from the global optima; however,

if the confidence level of the test is just slightly increased from 95% to 96.52%,

our test fails to reject its null hypothesis. It is also possible that this apparent sub-

optimal local minima could be due to the discretization of the landscape, since its 3

by 3 grid may be too coarse to allow for diagonally-oriented basins to appear uni-

modal. However, without access to the original model and dataset, we are unable

to verify whether or not this is the case.

The remaining seven hyper-parameter response slices for which uni-modality

was rejected all contain Xgboost’s subsample hyper-parameter. In each case,
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we continue to see that one or more of the configurations with subsample= 0.5

caused the algorithm to exceed the running time cutoff, thus once again introducing

spike-like barriers into the landscape. We speculate that re-running each of these

instances with larger running time cutoffs (or perhaps even with the same running

time cutoff, but on a machine with a smaller background load) would yield uni-

modal responses. However, given that hyper-parameter configurators would not

have access to this kind of information while in use, we continue to analyze the

landscape with these spikes present.

In the bottom right pane of Figure 4.2, we show the hyper-parameter response

slice for online LDA’s kappa and s hyper-parameters. Given the apparent smooth-

ness in the response, it should come as no surprise that an interval size as small as

± 0.16% yields uni-modal responses for each of the three, two-dimensional hyper-

parameter response slices. Out of the four response slices shown in Figure 4.2,

both the smoothness and simplicity of this response is the most representative of

all of the other hyper-parameter response slices (not shown).

The hyper-parameter response in the bottom right pane of Figure 4.2 also ex-

hibits a very interesting property: if the hyper-parameters were to be configured

individually a single time in sequence or independently in parallel, one would still

find a configuration very near to optimal. This remains true even though 74.29%

of the local second order partial derivatives are significant (when arbitrarily using

an interval size of ± 0.16%). It was this observation that ultimately inspired the

methodology described in Chapter 3.3.3, which seeks to answer the question: how

often does this hold true in practice for other combinations of hyper-parameters?

Clearly, it does not always hold (for example, see the bottom right pane of Fig-

ure 4.2); nevertheless, a surprising 80.77% of the hyper-parameter pairs and per-

mutations of hyper-parameter configuration order yielded landscapes so benign

that our simplistic configuration process was able to find a configuration tied with

optimal. This shows that even though many of the hyper-parameters have statis-

tically significant interactions within somewhat substantial fractions of their land-

scapes (see Table A.2), most of these interactions are relatively benign from the

perspective of a hyper-parameter configurator.

This trend held true surprisingly often even for hyper-parameter response slices

involving one or two categorical hyper-parameters. In fact, all of the response slices
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Figure 4.3: Two examples of two-dimensional hyper-parameter response
slices that include numerical and categorical hyper-parameters. Left:
FCNet’s n units 1 and activation fn 1 on the slice localization
dataset; right: FCNet’s n units 2 and activation fn 2 on the
naval propulsion dataset.

with at least one categorical hyper-parameter also turned out to be uni-modal. Un-

surprisingly, in some cases, changing a categorical hyper-parameter shifts the loss

up or down without substantially moving the optimum (for example, see the left

pane of Figure 4.3); however, we would also expect to find cases where chang-

ing a categorical hyper-parameter would result in a completely different landscape

with a new optimum for the other hyper-parameter. In fact, we did observe a small

number of examples of the latter case (for example, see the right pane of Fig-

ure 4.3); however, in each case, the optimum of the numeric hyper-parameter for

a sub-optimal categorical value yielded an equal or greater loss for the configura-

tion with the same numeric value and the optimal categorical value. Therefore, the

overall hyper-parameter response slices were still uni-modal. Nevertheless, since

our study included a relatively small number of categorical hyper-parameters, we

remain skeptical that this behaviour will generalize to all – or perhaps even most –

other scenarios. We leave the study of this question as future work.

4.4 Higher-Dimensional AutoML Loss Landscapes
We show the results for uni-modality, convexity and FDC applied to the full Au-

toML loss landscapes in Table 4.4. Contrary to most of the lower-dimensional

hyper-parameter response slices of the landscapes we studied, we see that all of the
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complete AutoML loss landscapes have relatively low FDC, which suggests that

they should be quite challenging to optimize. However, the test for uni-modality

tells a different story: it rejects uni-modality for only two of the seven landscapes

we were able to test. For the remaining scenario, online LDA, only 3.12% of the

landscape is unreachable – even without using confidence intervals at all. Fur-

thermore, no deep (if small) sub-optimal modes exist in this landscape, since an

interval size of only ±1.36% is sufficient to fail to reject uni-modality, which lim-

its the height of a barrier between two modes to being no greater than 2.76% of the

loss of the best configuration corresponding to either mode (the derivation for this

is in Appendix A.2.2).

Both scenarios for which uni-modality is rejected are for FCNet. In one case

only three, and in the other only 41, out of 62 208 configurations are unreachable.

Given that these numbers are so small, could this merely be due to random chance?

To answer this question, we analyzed the distances between the unreachable con-

figurations. If they were unreachable due to random chance, we might expect them

to be spread out uniformly at random. For the protein structure instance set, the

mean pairwise distance between unreachable configurations is 4.73. For compar-

ison, we drew 1 000 sets of 41 random configurations from the landscape. The

smallest mean pairwise distance out of the 1 000 samples was 9.61 and the mean

was 10.36, hence the 41 unreachable configurations are clustered together.

In fact, many of them are adjacent, thus forming 18 very small, sub-optimal

modes. We calculated the depth of these modes as the amount the smallest upper

bound of each would need to increase to become reachable from the global opti-

mum. Since there are a small number of configurations with extremely bad loss,

we measure the size of this increase as a percentage of the range of losses spanned

by the optimal configuration and the 95th percentile of the losses. The median in-

crease in loss required is 1.92% and the largest is only 6.30%; hence, these modes

are rather shallow.

On the other hand, convexity is rejected for all of the complete AutoML loss

landscapes that we studied. In particular, the FCNet landscapes appear to be quite

far from convex, with 38.76% to 50.05% of the lower bounds being interior to the

convex hull of the upper bounds.

One of the two scenarios that is closest to being convex is Xgboost on the
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Table 4.4: The Uni-modality and convexity test results, and fitness-distance
correlation for the full AutoML loss landscapes.

Model Dataset Interval UnR Sen Int Co-P Sen FDC

FCNet SL 95% 0.00% Yes 50.05% 0.00% Yes 0.00
PS 95% 0.03% Yes 49.67% 0.00% Yes 0.03
NP 95% 0.00% Yes 43.63% 0.03% Yes 0.01
PT 95% < 0.01% Yes 38.76% 0.00% Yes 0.01

LSSVM UniProbe 95% 0.00% Yes 18.86% 0.36% Yes 0.43
LogReg MNIST 95% 0.00% Yes 28.25% 0.10% Yes −0.03
XGB CT 95% 0.00% Yes 9.65% 0.21% Yes 0.33
OLDA Wiki ± 0.00% 3.12% Yes 21.88% 61.46% Yes 0.36

± 1.36% 0.00% Yes 6.25% 0.00% Yes 0.36
± 8.70% 0.00% Yes 0.00% 0.00% Yes 0.36

covertype dataset. For this scenario, it would have been computationally expensive

(requiring approximately 1.5 months on our machines) to exactly calculate the per-

centage of the lower bounds that were interior; however, given that we only needed

to find a single such configuration to reject convexity, it sufficed to randomly sam-

ple and evaluate 5% of the lower bounds to estimate the percentage that are interior.

Using this method we calculated a 95% confidence interval for the percentage of

points that are interior as [9.56%, 9.74%] – that is, just below 10% of the landscape

would need to be altered for the entire landscape to appear convex.

The other landscape that is somewhat close to being convex is online LDA,

for which the loss intervals need to be ± 8.70% in size to fail to reject convexity.

However, even the much smaller interval size of± 1.36% leaves only 6.25% of the

lower bounds interior to the convex hull.

While these results from the test for convexity on the full landscapes are quite

different than those on the lower-dimensional hyper-parameter response slices,

they should come as no surprise. In fact, since every one of the scenarios had

at least one two-dimensional hyper-parameter response slice that was non-convex,

it follows that the full landscapes must also all be non-convex.

In Table 4.5, we show the mean percentage of each landscape that is dependent

on the 1st- through 6th-order partial derivatives, that is, for each nth-order interac-

tion we calculated the percentage of significant partial derivatives and then report

the means for each order n. For landscapes that had them, the higher order inter-

action results remained relatively similar to the 6th order interaction results (see
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Appendix A.2.3). Most of these scenarios behave roughly as we would expect:

the first-order derivatives for most hyper-parameters affect relatively large portions

of the landscapes. However, there are a few exceptions: for example, logistic re-

gression’s n epochs hyper-parameter only affects 10.56% of the landscape. As

the order of interactions increases, fewer tuples of hyper-parameters interact, and

those that do affect smaller portions of the landscape. For example, 50% of the

2nd-order interactions for logistic regression affect between 20.90%− 26.61% of

the landscape, and the rest affect less than 7.07%; one of the 3rd-order interactions

affects 18.10% of the landscape, and the remaining four affect less than 5.21%.

However, the results are quite different for the FCNet landscapes. The higher-

order parameter interactions are substantially more influential. For the four sce-

narios between 19.90% – 24.27% of the landscapes are dependent upon interac-

tions between all 9 hyper-parameters. The results from fANOVA (see Table A.4)

show additional support for the fact that the FCNet landscapes depend to a much

larger degree on higher-order interactions than the other landscapes. In particular,

fANOVA attributes between 17.01%–28.58% of the total variance in the FCNet

landscapes to the 6th-order interactions, compared to only 0.15%–4.50% for the

1st-order effects. In comparison, for XGBoost, fANOVA attributes only 0.24% to

the 6th-order interactions and 58.94% to 1st-order effects.

One possible explanation for this is that the FCNet scenarios are the only ones

we study that fall into the over-parameterized regime [19], which may exhibit qual-

itatively different AutoML loss landscapes. In particular, because there may be

a large number of models which all obtain (nearly) perfect training scores, the

hyper-parameters may interact in complex ways to produce models that interpolate

differently between the training instances.

The high degree of significant interactions between the FCNet hyper-parameters

also provides a possible explanation for the sub-optimal modes that we observed

in two of these landscapes. In particular, if the resolution of the grid of hyper-

parameter values is too coarse, then a landscape that contains a diagonally-oriented

basin with steep walls may appear to have multiple sub-optimal local minima be-

cause our neighbourhood relation graph does not allow for configurations to be

connected even if they are diagonally adjacent. However, without the ability to

collect additional performance measurements it is impossible to test whether or
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not increasing the resolution of the grid of hyper-parameter values would alter the

outcome of the test.

There is a qualitative difference between the fANOVA results and those regard-

ing partial derivatives. For most scenarios, fANOVA reports that a small number of

hyper-parameters are responsible for a large percentage of the variance in the ob-

jective function. The XGBoost landscape is a representative example: fANOVA re-

ports that the 1st-order effect of the hyper-parameter eta is responsible for 52.6%

of the variance, and the rest are individually responsible for less than 2.54%. In

comparison, eta has the third largest percentage of non-zero partial derivatives

(67.65%) and all but one of the rest have between 17.06% – 75.16% (the one re-

maining has 3.01%). However, these results are not contradictory, since the statis-

tical test can detect small but significant partial derivatives. Indeed, all that can be

interpreted from fANOVA’s result for eta is that at least one value of eta yields

very different performance from the rest.

To determine where hyper-parameters are most important, we excluded from

the analysis any partial derivative that contained a configuration in the worst X%

of the landscape (see Tables A.5–A.8 for X = 50% and X = 75%). The outcome

of this analysis was mixed. For latent-structured SVMs, logistic regression and

online LDA, the partial derivatives for most hyper-parameters were significant less

often; for example, first-order partial derivatives of the hyper-parameters of latent-

structured SVMs were found to be significant for 19.10% of the entire landscape on

average, but only for 6.42% of the landscape when excluding the worst 50% of the

configurations. However, we found the opposite to be true for FCnet and Xgboost;

for example, the first-order partial derivatives for the FCNet landscapes were sig-

nificant 9.75% more often on average when the worst 50% of the configurations

were excluded from the analysis.

This result for FCNet is consistent with the sub-optimal, plateau-shaped re-

gions that we observed in FCNet’s init lr hyper-parameter response, suggest-

ing that this behaviour likely also occurs for more of the slices of AutoML loss

landscapes that were excluded from our one-dimensional analysis. For Xgboost,

it is possible that if there are regions of the configuration space for which the run-

ning time of the algorithm tends to be high, then entire portions of the landscape

may have been artificially censored due to a running time cutoff. (We observed
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Table 4.5: Hyper-parameter partial derivative significance result summary –
part 1. Each column represents the mean percentage of the landscape
with statistically significant partial derivatives for each partial derivative
order.

Model Dataset Interval 1st 2nd 3rd 4th 5th 6th

FCNet SL 95% 66.45% 45.25% 34.06% 28.66% 25.62% 23.59%
PS 95% 68.16% 44.02% 31.68% 26.74% 24.58% 23.60%
NP 95% 53.66% 37.29% 29.93% 26.68% 25.15% 24.33%
PT 95% 70.96% 45.82% 31.62% 26.25% 24.08% 22.98%

LSSVM UniProbe 95% 19.10% 4.43% 0.96% – – –
LogReg MNIST 95% 36.21% 15.21% 7.77% 4.24% – –
XGB CT 95% 43.57% 13.35% 4.88% 3.30% 2.98% 2.91%
OLDA Wiki ± 1.36% 67.53% 17.07% 0.00% – – –

± 5.10% 29.77% 0.95% 0.00% – – –

one example of this bevahiour for subample = 0.5, which tended to have many

censored runs reported as a loss of 1.) If this were to happen sufficiently often in

clustered areas, then it could be the case that the worst configurations form regions

of sub-optimal plateaus where the loss is 1.

We also observed one hyper-parameter with a particularly notable increase

in the significance of its partial derivatives: logistic regression’s l2 reg hyper-

parameter. For example, when excluding the worst 75% of configurations, its 1st-

order partial derivative became significant 25.37% more often. This indicates that

l2 reg’s response must be steepest nearest to its global optimum, possibly with

a sub-optimal plateau embedded in its response – indeed, this is precisely what we

observed in the one- and two-dimensional hyper-parameter response slices for it

(see Figures 4.1 and 4.2).

Finally, we applied our simple test, wherein we configured each hyper-parameter

independently a single time in a random sequence. Because Xgboost has nearly

40 million possible permutations for the order in which its hyper-parameters can

be configured, we restricted ourselves to a small, 30 minute computation budget,

which allowed for a random 537 100 permutations. For all of the other scenarios,

we performed the analysis for all possible hyper-parameter permutations. The only

scenario for which we found any permutations of the hyper-parameter configura-

tion order that did not yield a result tied with optimal was online LDA, with an

interval size of ±0.00%. However, even in this case, the configuration procedure
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found the optimal configuration in all but one of the six permutations.

This result is rather surprising, especially given that we have observed non-

trivial percentages of the landscapes that are dependent upon hyper-parameter in-

teractions, as it suggests that AutoML loss landscapes may be much simpler to

optimize than previously assumed. One possible explanation for this result is our

previous observation that in many (albeit not all) cases, the hyper-parameters tend

to interact most strongly in regions of the configuration space that are far from

optimal. An example can be seen in the bottom left pane of Figure 4.2, where

the effect of kappa has no significant impact on the response in the three best

values of s. Alternatively, as motivated in Chapter 1, the compensatory nature of

some hyper-parameters may yield responses for which fixing a single value of a

hyper-parameter does not harm the performance of the algorithm, since a different

hyper-parameter can be modified to compensate for this, thereby still yielding an

approximately-optimal configuration.

4.5 Chapter Summary
In this chapter, we applied the landscape analysis methods from Chapter 3 to em-

pirical data from a diverse set of state-of-the-art machine learning models and al-

gorithms. All but two of the eight AutoML loss landscapes we studied appear to

be uni-modal at a 95% significance level, and those that significantly deviate from

uni-modality do so only slightly. At first glance, this result may appear contra-

dictory with the 2.2% of the one-dimensional and 4.8% of the two-dimensional

hyper-parameter response slices for which uni-modality was rejected. However,

the reason for this must lie in the hyper-parameter interactions, which allow a

path from the sub-optimal modes in the lower-dimensional slices to circumnavi-

gate their barriers. We were able to reject convexity for all of the landscapes we

studied at a 95% significance level; however, we nevertheless observed that 82.2%

of the hyper-parameters yield convex responses when considered independently.

Furthermore, we showed that an intuitively related metric, fitness distance cor-

relation (FDC) [97], fails to accurately characterize the simplicity of the structure

present in most of the full AutoML loss landscapes, which is consistent with previ-

ous results [142]. However, despite the clear evidence that most hyper-parameters
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induce highly-structured and exploitable responses in the corresponding loss land-

scapes, we also observed a small number of exceptions to this rule. For example,

small values of latent-structured SVM’s alpha hyper-parameter yielded a very

smooth, wavy response in c, whereas large values of alpha yielded a saw-tooth

response (as seen in the top left pane of Figure 4.2). Somewhat similarly, logistic

regression’s l2 reg hyper-parameter yielded a relatively noisy and rugged re-

sponse, with some sub-optimal plateaus (see the top right and bottom right panes

of Figure 4.2). Finally, we also observed that certain values of hyper-parameters

(for example, subsample in xgboost) are correlated with longer running times,

which can cause the training algorithm to be censored, thus yielding spurious clus-

ters of spikes and ridges, due to censored loss values.

We found that most landscapes have only a small number of hyper-parameters

that interact strongly. However, the FCNet landscapes we studied were qualita-

tively very different and exhibited surprisingly large percentages of statistically

significant high-order partial derivatives. We leave as future work the investiga-

tion of whether or not this behaviour could be attributed to the fact that the FC-

Net landscapes we studied may have been in the so-called “over-parameterized

regime” [19].

We observed that many hyper-parameters tend to have flatter responses near

high-quality solutions; however, we did observe some exceptions – the most no-

table of which was logistic regression (particularly its l2 reg hyper-parameter),

for which the response contains some sub-optimal plateaus and a steep drop near

the optimum (for example, see the top right and bottom right panes of Figure 4.2).

Nevertheless, from this general trend we can surmise why random search can often

find high-quality configurations, even though there is typically only a single region

in the configuration space that contains high-quality solutions – that is, the region

of high-quality solutions must usually not be too small.

Finally, we used our simplistic configuration procedure that naı̈vely config-

ures each hyper-parameter independently, a single time and in a random order,

to determine the extent to which interactions between hyper-parameters increase

the complexity of the configuration problem. Surprisingly, we found that in all

cases this procedure was able to find final configurations that were statistically

tied with the optimal configuration, according to the respective 95% confidence
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intervals. While this configuration procedure lacks several essential ingredients

of state-of-the-art hyper-parameter configurators (for example, the ability to make

use of multi-fidelity estimates for the loss of a hyper-parameter configuration), it

nevertheless demonstrates that the effects of the hyper-parameter interactions are

relatively benign, despite their statistically significant presence.

Also somewhat unexpectedly, we found that the landscapes induced by the cat-

egorical hyper-parameters for the FCNet benchmarks are either completely or very

close to uni-modal. Indeed, we speculate that this behaviour will not generalize

to the combinatorial landscapes induced by model and pre-processor selection in

machine learning pipelines. We leave the study of this question as future work.
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Chapter 5

Exploitation I: AutoML Loss
Landscapes

In Chapter 4, we learned that most AutoML loss landscapes are more benign than

may initially be expected. In particular, this is because they appear to often be uni-

modal (or very close to it) and their hyper-parameters tend not to interact in ways

that cause challenges for a simplistic configuration procedure that configures each

hyper-parameter independently, a single time and in a random order. Of course,

the most interesting question raised by this analysis is how to best exploit these

insights for the development of faster, more efficient and more effective AutoML

methods.

In this chapter,1 we propose and evaluate two prototype variations of a re-

cent, state-of-the-art hyper-parameter configurator, BOHB [59]. BOHB combines

Bayesian optimization with Hyperband [113], which exploits low-fidelity approx-

imations of configurations’ performances to quickly eliminate them. To perform

Bayesian optimization, BOHB uses a tree-structured Parzen estimator (TPE) to

model the high- and poor-quality regions of the AutoML loss landscape. While

this has been shown to perform well in practice [22], it may be unnecessarily inef-

ficient for two possible reasons.

• First, all Bayesian optimization methods are designed to trade off between

1This chapter is based on joint work with Holger Hoos that is currently under review [147].
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both exploitation and exploration. However, if the landscapes of AutoML

scenarios are typically very simple, there may be little need to spend time

evaluating unexplored regions of the configuration space if they can be rea-

sonably predicted to have poor performance.

• Second, the TPE model used by BOHB is a very flexible, non-parametric

model. In many machine learning applications, this can be advantageous;

however, when very little training data is available early in the configuration

process, this may cause the procedure to produce models that have over-

fit and are not representative of the actual loss landscape. Using simpler

models with stronger priors regarding the structure in the landscape may

help overcome this, thereby expediting the configuration process as a whole.

For these reasons, using relatively simple surrogate models that incorporate our

prior expectation regarding the structure of the landscapes (either that they are uni-

modal or that the hyper-parameter interactions are relatively benign) may help to

improve the efficiency of the configuration procedure by cutting down on unneces-

sary configuration evaluations. However, as we will show in Chapter 5.3, both of

our alternative surrogate models (a convex quadratic and a B-spline model) proved

to be too simple, resulting in similar or worse performance compared to BOHB for

most of the AutoML scenarios we studied. Nevertheless, our experiments provide

additional insights into a) the structure of AutoML problem scenarios, b) the rea-

sons why these particular methods did not perform as well as expected, and c) the

conditions under which they can be expected to perform well.

5.1 Experimental AutoML Procedures
Both of our modifications to BOHB involved replacing the TPE model with sim-

pler, more constrained surrogate models, which were chosen to reflect one of the

structural properties we observed in AutoML loss landscapes (see Chapter 4). Sim-

ilar to BOHB’s TPE model, each of our surrogate models attempt to approximate

the full AutoML loss landscapes. In the case of the convex quadratic surrogate

model, this resulted in substantially increased overhead for fitting each of the mod-

els. Therefore, in order to avoid slowing down the configuration procedure un-

necessarily, we fit the models asynchronously. However, this means that we are
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required to suggest multiple configurations using the same surrogate model. As a

result, we employed a similar, but adapted version of BOHB’s method for suggest-

ing configurations, which does not completely optimize the surrogate model.

5.1.1 Convex Quadratic Surrogate Models

Even though the results of our landscape analysis (See Chapter 4.4) revealed that

AutoML loss landscapes are not convex, it may still be helpful to use a convex

quadratic function as a surrogate model for the landscape, as it is perhaps the sim-

plest n-dimensional model that is constrained to be uni-modal.

To fit convex quadratic models, we use the methods proposed by Rosen and

Marcia [158]. One advantage of their methods compared to others is that the mod-

els are fitted using the L1 norm, which is more robust than the L2 norm in the

presence of noise and outliers. They further impose the constraint that the fitted

models must under-estimate all of the available training data. While it is unclear

whether or not this will be beneficial for our application, we do not expect it to

harm the performance of the method. Adding such a constraint will increase the

residuals of an optimally-fitted model and thus will decrease the accuracy of the

model’s predictions. However, a model need not have high predictive accuracy in

order to be an effective surrogate model; indeed, an ideal surrogate model only

needs two properties: it should be easy to optimize and its global optimum should

be in a similar location to the global optimum of the original landscape.

To fit the convex quadratic under-estimator models, Rosen and Marcia [158]

proposed two methods, both of which formulate the problem as a two-step proce-

dure. In the first step of each, the problem is simplified by imposing additional

constraints on the quadratic model, thereby allowing the problem to be efficiently

solved using linear programming. They then proposed to use the incumbent solu-

tion from the linear program to initialize the parameters of the non-linear program

that is used to fit the general convex quadratic approximation model. This ini-

tial guess for the solution to the non-linear program can then be iteratively refined

using an interior-point method.

In the first method, they force the Hessian to be a diagonal matrix, and in the

second, they force it to be a diagonally-dominant matrix. Rosen and Marcia [158]
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found that the second method yielded higher-quality final solutions, therefore, we

chose to use it when possible. For a set of m data points in Rn, the general convex

quadratic model fit using this procedure uses s = (n+1) · (n+2)/2 variables, and

thus requires at least m ≥ s data points before models can be fit. However, the

separable convex quadratic model obtained using a diagonal Hessian matrix only

uses s = 2 · n+ 1 variables. Since we know from Chapter 4 that most AutoML

hyper-parameters do not interact strongly in the vicinity of high-quality solutions,

we therefore chose to fit a separable convex quadratic surrogate model whenever

2 ·n+1 < m < (n+1) · (n+2)/2, and we fit a general convex quadratic surrogate

model when m≥ (n+1) · (n+2)/2.

The methods proposed by Rosen and Marcia [158] also require a parameter ε ,

which is used to constrain the minimum eigenvalue of the Hessian, thereby improv-

ing the conditioning of the surrogate-fitting optimization problems and ensuring

that the optimum of the surrogate is unique. In our experiments, we set ε = 10−3,

since it is well-known that some hyper-parameters may have relatively little im-

pact on the solution quality (see for example, Hutter et al. [93] or Chapter 4). Fur-

thermore, we optimized the linear programs using the default linear-programming

solver available in python’s SciPy package [185]. To optimize the non-linear pro-

grams, we used SciPy’s sequential least squares quadratic programming solver

(SLSQP).

5.1.2 B-Spline Basis Surrogate Models

Using a convex quadratic as a surrogate model has the advantage that it enforces

our prior expectation that most AutoML loss landscapes are uni-modal. However,

quadratic models are much less flexable than the original TPE model, and as shown

in Chapter 4.4, AutoML loss landscapes are not typically convex. As an alternative,

we focus on one of the other properties that we observed in Chapter 4, that is, that

interactions between hyper-parameters in AutoML loss landscapes are not often

relatively strong, particularly in the vicinity of the global optimum. Given this

observation, fitting a linear model to a B-spline basis function [56] is a natural

choice, as they are known to provide high-quality and stable approximations, and

they force the fitted model to contain no hyper-parameter interactions.
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Gaussian processes are a more commonly used model in AutoML methods that

would likely provide similar-quality results to spline models. Gaussian processes

are typically chosen, because they can provide a confidence interval around their

predictions, which is necessary for most Bayesian optimization methods. However,

in our application, where we wish to focus on exploitation rather than trading off

between exploration and exploitation, we do not require this confidence interval.

Instead, we prefer splines for their lower computational complexity.

Another advantage of using splines is that they support various methods for ex-

trapolation. For our application, we chose to extrapolate using a constant function,

as this will ensure that unpromising directions for exploration remain unexplored,

whereas promising directions for exploration will continue to be explored.

To compute the spline basis function, we used the implementation available

in scikit-learn’s latest development branch,2 with the default settings of its

parameters: five knots per feature with a third-degree basis. For hyper-parameters

that are searched on a linear scale, we used a uniform spacing for the knots, whereas

we spaced the knots geometrically for hyper-parameters that are searched on a

logarithmic scale. Because we anticipated that the models would frequently be

under-constrained, particularly early in the configuration process when relatively

little configuration performance data is available, we used LASSO regression with

five-fold cross-validation to choose the value of the regularization parameter.

5.1.3 Asynchronous Model Fitting and Selection

Since fitting these surrogate models typically requires substantially more time than

fitting a TPE model, we fit the models asynchronously. In BOHB, new models are

fitted when worker processes report new configuration results to the main process.

In our methods, we initiate and check for completed model-fitting processes in this

function as well (see Algorithm 1). We limit the number of models being fitted at

any given time to one, to ensure that it does not overburden the machine and slow

down the evaluation of the configurations.

Similarly, BOHB also evaluates each candidate configuration asynchronously.

Each time a worker process for BOHB is done evaluating a configuration, the

2As of 2021-06-24.
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Algorithm 1 The report function for our experimental AutoML configurators.
1: input
2: mI(c), the performance of a newly evaluated configuration
3: f , the level of fidelity at which the configuration was evaluated
4: R, a dictionary mapping fidelities to configuration evaluation results
5: model, a dictionary mapping fidelities to previously-fit surrogate models (or None)
6: output
7: None
8: procedure report
9: # Save the configuration results and check for model-fitting results

10: R[ f ][c] := mI(c)
11: Check if a model-fitting process has completed
12: # Save the new model, if applicable
13: if a model-fitting process reported modelnew at fidelity level f ′, then
14: if model[ f ′] is None or modelnew better approximates R[ f ′] than model[ f ′], then
15: model[ f ′] := modelnew
16: # Start a new model-fitting process, if applicable
17: if no model-fitting processes are running, then
18: for each fidelity f ∈ R in descending order, do
19: if length(R[ f ])≥ 2 · |P|+1, then
20: Initiate a model-fitting process with R[ f ]
21: break
22: return

worker process reports its results to the main process. When the main process

receives this data, it checks to see if there is sufficient data available to fit a model

and if there are no models that are currently being fitted. If both of these condi-

tions are met, the main process will initiate an asynchronous model-fitting process.

Once the model-fitting process is complete, it reports its results back to the main

process.

Similar to BOHB, we fit separate CQA or spline models for each level of fi-

delity of the performance estimates. In some early prototypes, we experimented

with using a weighted combination of some or all of the available performance

estimates, regardless of their level of fidelity. However, we observed that because

some measures of fidelity not only decrease the variability in the performance es-

timates, but also substantially change the performance values for a given config-

uration, doing so typically caused the model-fitting procedure to diverge, thereby

producing unreliable surrogate models. Therefore, as soon as sufficient data to fit

a model is available for a higher-fidelity performance estimate, the methods switch

to fitting models using the higher level of fidelity instead.
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In some rare cases the addition of new configuration performance data, or the

switch from a large training set with low-fidelity performance estimates to a small

training set with higher-fidelity performance estimates, can de-stabilize the model-

fitting procedure, thereby causing it to diverge. To protect against this, we only

accept a new surrogate model if the mean absolute error of a newly-fitted model is

not worse than the current accepted model, if one exists.

5.1.4 Suggesting a Configuration

The simplest way to use a surrogate model to guide an optimization process is

to find the globally optimal solution to the surrogate model and then to evaluate

that solution using the original objective function. When the surrogate model is a

convex quadratic model, this would be both easy and inexpensive to do. However,

surrogate models that are fitted to previous performance data are typically only

good approximations of the original landscape near to the previously-evaluated

solutions. Therefore, it is common practice to employ, for example, a trust region,

which limits how far away from the current incumbent the surrogate model should

be trusted. The next configuration to evaluate is then the configuration predicted to

have the optimal performance by the surrogate model that is contained within the

trust region.

However, in our application, the surrogate models are fitted asynchronously,

so it is also sometimes necessary for multiple new configurations to be suggested

using the same surrogate model. Therefore, rather than using a trust region, we

employ a somewhat similar trick to BOHB, whereby we randomly sample new

configurations from a mixture of three Gaussian models, where each of the three

Gaussian models are parameterized to be centered around the three best known

configurations. To determine which configurations are best, we simply used the

largest available fidelity budget evaluation for each of the configurations (see Al-

gorithm 2).

We chose to use a mixture of three Gaussian models instead of a single Gaus-

sian model, in case any of the low-fidelity budgets yield high-variance performance

estimates that could cause the procedure to select the wrong configuration as the

incumbent. We heuristically set the covariance of each of the Gaussian models to
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Algorithm 2 The suggest function for our experimental AutoML configurators.
1: input
2: R, A dictionary mapping fidelities to configuration evaluation results
3: model, A dictionary mapping fidelities to previously-fit surrogate models (or None)
4: C, the parameter configuration space
5: output
6: cnext , a configuration to evaluate
7: procedure suggest
8: # Find the largest-fidelity model, if any
9: Initialize modelcurrent := None

10: for each fidelity f ∈ R in descending order, do
11: if model[ f ] is not None, then
12: modelcurrent := model[ f ]
13: break
14: # Sample a new configuration using the model, if possible
15: if modelcurrent is None, then
16: Pick cnext by sampling a random configuration from C
17: else
18: # Find the best configuration at any fidelity level
19: Initialize an empty dictionary, per f ormance := {}
20: for each fidelity f ∈ R, in ascending order, do
21: for each configuration c ∈ R[ f ], do
22: per f ormance[c] := R[ f ][c]
23: # Sample from a mixture of 3 Gaussian models (see text for details)
24: Sample 9 configurations from around the best 3 configurations in per f ormance
25: Pick cnext as the best of the 9 configurations according to modelcurrent
26: return cnext

be a diagonal matrix parameterized such that the standard deviation of each hyper-

parameter is equal to 5% of the total range of values for the hyper-parameter. Fi-

nally, each time a configuration needs to be suggested we sample a total of nine

candidate configurations from the mixture of Gaussian models and suggest the one

predicted to have the best performance by the surrogate model. The number of

Gaussians, their standard deviations, and the number of samples drawn were each

chosen based on some preliminary experiments on hand-crafted benchmarks.

For spline surrogate models, this procedure has the added benefit that we do

not need to be able to locate the optimal configuration according the spline model,

which may be non-trivial to do, as the model is not guaranteed to be uni-modal.
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Table 5.1: The five real-world and four hand-crafted scenarios used to com-
pare the four different hyper-parameter configurators.

Model/Algorithm Dataset/Task Fidelity Type Fidelity Range # HP

Bayesian Neural Network Boston Housing MCMC Steps [500, 10 000] 7
Protein Structure MCMC Steps [500, 10 000] 7

Proximal Policy Optimization Cart Pole Swing-Up # Training Runs [1, 9] 5
Xgboost King-Rook vs King-Pawn # Estimators [2, 128] 6
Histogram Gradient Boosting Covertype Dataset Fraction [1%, 100%] 7

Simulated Binary Classifier Symmetric Dataset Size [500, 5 000] 1
Asymmetric Dataset Size [500, 5 000] 1
No Interactions Dataset Size [500, 5 000] 2
Interactions Dataset Size [500, 5 000] 2

5.2 Experimental Setup
In preliminary experiments, we compared prototypes of our methods against sev-

eral existing state-of-the-art baseline hyper-parameter configuration procedures,

including BOHB [59], HyperBand [113] and ASHA [114]; however, we quickly

realized that the method used to exploit low-fidelity approximations of configura-

tion performance often had an equal or greater effect on the performance of the

method than changing the search procedure. However, since our primary goal in

this study is to answer the question: “Can AutoML loss landscape structure be ex-

ploited to improve configurator performance?”, the fidelity budget allocation strat-

egy is effectively an orthogonal design decision that acts as a confounding factor.

Therefore, to isolate the impact of the search method from the fidelity budget al-

location strategy, our preliminary analysis of the methods only compares them to

BOHB [59] and Hyperband [113]. To further eliminate confounding factors, we

used the implementation of Hyperband that is available with the original imple-

mentation of BOHB, and used the same values for all of the shared parameters of

the configurators.

All but one of the AutoML scenarios in Chapter 4 contained pre-collected con-

figuration performance data, and we did not have access to the original training

algorithms and datasets. As a result, we evaluated each configurator on five new

scenarios, spanning a range of different machine learning methods and datasets,

as well as on four hand-crafted benchmark scenarios. We present a summary of

the scenarios in Table 5.1. For each of the real-world scenarios, we performed 25
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independent runs of the configurators, and we report the median test loss with 95%

bootstrap percentile confidence intervals. To obtain a stable estimate for the test

loss, we performed 5 independent training runs of the machine learning methods

using each configuration and recorded their mean test losses. For the hand-crafted

benchmark scenarios, which require substantially less running time to use, we per-

formed 101 independent runs of the configurators and we report the exact loss

underlying the landscape.

The first three scenarios we studied were also used in the original evaluation of

BOHB [59]. The first two are for a Bayesian neural network trained using stochas-

tic gradient Hamiltonian Monte-Carlo sampling [39] with scale adaption [166] on

two UCI datsets [52], Boston housing and protein structure. We were unable to

reproduce qualitatively similar results compared to those reported in Falkner et al.

[59] for either of these two scenarios.3 In each case, we observed that the gap be-

tween the performance for BOHB and Hyperband was much smaller than reported

in their original study.

The third scenario we used from their study configures the hyper-parameters

of proximal policy optimization [160] on the cart pole swing-up reinforcement

learning task. In this case, even though the final performance gap between BOHB

and Hyperband was also slightly smaller than originally reported, the results were

still qualitatively similar.

For the next two scenarios, we configured the hyper-parameters of Xgboost [38]

on the UCI [52] king-rook vs king-pawn [162] dataset and histogram gradient

boosting (scikit-learn’s [141] implementation of a machine learning method

inspired by LightGBM [100]) on the covertype dataset [28].

We also evaluated the four configurators on four artificial scenarios that simu-

late a binary classifier’s error rate, thereby allowing us to control the precise shape

of the AutoML loss landscape optimized by the configuration procedures. This

control allowed us to test hypotheses about the relative behaviour of the methods

under various circumstances, thereby providing answers to questions that arose

3From personal communication with the authors, we confirmed that we correctly set up the exper-
iments and reproduced their method of analysis. To the best of our knowledge, the only differences
in our execution environments were the particular machines used and, perhaps, the versions of some
of the software packages.
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from our results on the real-world benchmark scenarios.

The simulated classifier was constructed such that the variability in the mea-

surements of the landscape mimic the behaviour of a binary classifier with a given

error rate on a validation set of a given size. In particular, for each scenario, we

defined functions that describe the landscape by mapping configurations to error

rates, p, such that 0 < p < 1. Then, given the error rate, p, of a particular configu-

ration and a validation dataset size of n (the level of fidelity), we simulated an eval-

uation of a configuration by randomly drawing n trials from a binomial distribution

with a success rate of p, and we recorded the loss as the number of successful trials

divided by the total number of trials, n. We simulated short training times for the

procedure by sleeping for one second per 1 000 instances in the dataset. This sim-

ulation ignores the variability in performance due to the random seed used when

training a machine learning model; however, it still provides a cheap-to-evaluate

and approximately realistic method for generating landscapes with exactly known

structure that can be used to evaluate the configurators.

We motivate and define the precise landscapes that we used for the simulated

classifier scenarios in Chapter 5.3, based on the results of the real-world scenarios.

5.3 Results
We show the anytime configuration results for three configuration budgets for

the five real-world scenarios in Table 5.2. A similar analysis of other configura-

tion budgets (not shown) yields qualitatively similar results. Overall, none of the

methods consistently perform substantially better than any of the others; however,

BOHB, which uses the TPE model, found the best or tied for the best on each sce-

nario for all configuration budgets. Unfortunately, while both of the new methods

we proposed can find high-quality configurations, neither of them appear to con-

sistently work as well as BOHB. In fact, Hyperband, which only relies on random

search, often performs similarly or only slightly worse than BOHB, and often per-

forms similarly or slightly better than the methods using the CQA or spline models.

Why does a CQA surrogate model not work better? Given that we observed in

Chapter 4 that most AutoML loss landscapes are uni-modal, it seems reasonable to
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Table 5.2: Results from applying the hyper-parameter configurators to the
real-world AutoML scenarios. At each configuration budget we show
the median test loss over the independent configurator runs with 95%
bootstrap percentile confidence intervals. The median losses are shown
in boldface if they are not worse than the best loss for a given configura-
tion budget, according to a one-sided Welch t-test with a 5% significance
level. All losses are scaled by dividing by the loss of the single best
known configuration for each scenario. Smaller is better.

BNN-BH BNN-PS PPO-CP XGB-KR HGB-CT
Budget (10%) 1 580 Seconds 2 420 Seconds 4 667 Seconds 148 Seconds 888 Seconds

CQA 1.91 [1.46, 2.42] 2.14 [1.63, 4.30] 10.49 [7.67, 13.74] 1.72 [1.44, 2.28] 1.28 [1.18, 1.35]
Spline 1.52 [1.40, 1.79] 1.77 [1.63, 1.87] 13.74 [9.42, 13.74] 1.72 [1.41, 2.41] 1.30 [1.21, 1.42]
Random (HB) 3.10 [1.60, 4.00] 2.13 [1.77, 4.74] 7.73 [6.21, 10.13] 1.91 [1.50, 2.00] 1.22 [1.13, 1.42]
TPE (BOHB) 1.76 [1.45, 2.05] 1.87 [1.56, 3.09] 7.70 [4.57, 9.84] 1.69 [1.47, 2.00] 1.23 [1.14, 1.48]

Budget (50%) 7 899 Seconds 12 102 Seconds 23 337 Seconds 742 Seconds 4 442 Seconds

CQA 1.44 [1.31, 1.67] 1.97 [1.72, 2.60] 5.73 [3.06, 6.47] 1.91 [1.44, 2.12] 1.17 [1.12, 1.24]
Spline 1.50 [1.42, 1.70] 1.85 [1.55, 2.24] 5.31 [4.10, 8.43] 1.56 [1.41, 1.94] 1.11 [1.10, 1.14]
Random (HB) 1.39 [1.36, 1.57] 1.50 [1.31, 1.83] 4.97 [3.25, 6.86] 1.78 [1.53, 1.97] 1.08 [1.07, 1.10]
TPE (BOHB) 1.38 [1.27, 1.68] 1.24 [1.10, 1.40] 3.59 [2.31, 5.37] 1.37 [1.28, 1.53] 1.09 [1.07, 1.14]

Budget (100%) 15 798 Seconds 24 204 Seconds 46 674 Seconds 1 484 Seconds 8 884 Seconds

CQA 1.44 [1.31, 1.67] 1.97 [1.62, 2.32] 4.45 [2.92, 6.11] 1.72 [1.41, 2.00] 1.12 [1.12, 1.17]
Spline 1.50 [1.43, 1.77] 1.85 [1.35, 2.24] 4.44 [3.53, 6.51] 1.56 [1.41, 1.94] 1.09 [1.06, 1.13]
Random (HB) 1.39 [1.36, 1.57] 1.50 [1.31, 1.83] 4.67 [2.69, 6.66] 1.72 [1.53, 1.97] 1.08 [1.06, 1.09]
TPE (BOHB) 1.38 [1.27, 1.68] 1.25 [1.10, 1.43] 2.22 [1.76, 3.21] 1.38 [1.31, 1.59] 1.05 [1.03, 1.08]

assume that a uni-modal surrogate function should be able to improve the perfor-

mance of BOHB. However, since the CQA surrogate model is a quadratic function,

it implicitly assumes that the landscape is symmetric around the globally optimal

configuration – which was frequently not the case in the one- and two-dimensional

hyper-parameter response slices that we observed in Chapter 4. Therefore, this

could be at least partly responsible for the poor performance that we observed with

the CQA surrogate model.

To investigate this hypothesis, we compared the performance of the four con-

figuration procedures on two artificial scenarios, where the machine learning algo-

rithm’s loss is simulated as described in Chapter 5.2. In both cases, the simulated

classifier had a single real-valued hyper-parameter, x, that was searched over the

range of values [−1,1]. For the first scenario, we set the error rate to be

psymmetric(x) = |x|3 +0.01 (5.1)
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and for the second scenario we set it to

pasymmetric(x) =

|x|3 +0.01 if x < 0
1
5 · |x|

3 +0.01 otherwise.
(5.2)

In both cases, we clipped the error rate to be within [0, 1].

In the asymmetric scenario, it should be easier for the configuration procedures

to find better-quality configurations, because 50% of the configurations obtain bet-

ter error rates. However, we observed that when using a CQA surrogate model, the

anytime configuration performance on the asymmetric scenario was actually worse

than on the symmetric scenario (see Table 5.3). Furthermore, we see that on the

symmetric scenario, using the CQA surrogate model yields significantly better per-

formance than all of the other methods for most configuration budgets; however,

on the asymmetric scenario it instead ties with all of the other methods for all but

the 10% configuration budget, at which point it still has a small advantage.

This example clearly illustrates a rather large failure mode for using a CQA

model as a surrogate function; even though the asymmetric artificial classifier sce-

nario aligns very closely with the types of landscapes for which we had designed it

to perform well, we see that it does not outperform any of the other methods at all.

Why does the spline surrogate model not work better? Similar to the CQA

model, we had expected the spline surrogate model to yield better results, given

that we observed in Chapter 4 that most hyper-parameters could be safely con-

figured independently in a random sequence. However, note that this definition of

simplicity among hyper-parameter interactions may not actually indicate that a sur-

rogate model can assume that the hyper-parameters are independent of each other.

Indeed, the function f (x,y) = |x−y| is trivial to minimize when considering either

x or y independently – for any fixed value of one, the other can be adjusted to yield

an optimal solution. Despite this “simplicity”, the spline surrogate model would be

unable to accurately model the function due to the strong interaction between the

hyper-parameters x and y.

To investigate, we again compared the performance of the four configura-

tion procedures on two artificial classifier scenarios. Each scenario contained two
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Table 5.3: Results from applying the hyper-parameter configurators to the ar-
tificial, hand-crafted AutoML scenarios. At each configuration budget
(the cumulative number of training examples used to “train” candidate
models) we show the median loss (the percentage of errors) over the in-
dependent configurator runs with 95% bootstrap percentile confidence
intervals. The median losses are shown in boldface if they are within
0.01% of the best loss for a given configuration budget. Smaller is better.

Symmetric Asymmetric No Interactions Interactions
Budget (10%) 13k Examples 13k Examples 13k Examples 13k Examples

CQA 1.01 [1.01, 1.02] 1.04 [1.03, 1.09] 3.56 [2.89, 4.88] 3.08 [2.73, 3.70]
Spline 1.06 [1.03, 1.10] 1.08 [1.04, 1.13] 5.19 [3.93, 6.24] 3.50 [2.99, 4.19]
Random (HB) 1.11 [1.05, 1.20] 1.08 [1.05, 1.12] 5.26 [3.75, 6.39] 4.12 [3.40, 4.43]
TPE (BOHB) 1.12 [1.07, 1.25] 1.08 [1.04, 1.14] 4.32 [3.36, 5.48] 3.68 [3.03, 4.32]

Budget (50%) 67k Examples 67k Examples 67k Examples 67k Examples

CQA 1.01 [1.00, 1.01] 1.02 [1.01, 1.03] 2.12 [1.86, 2.29] 1.27 [1.19, 1.37]
Spline 1.02 [1.01, 1.04] 1.02 [1.01, 1.03] 1.27 [1.20, 1.44] 1.60 [1.47, 1.74]
Random (HB) 1.04 [1.02, 1.05] 1.02 [1.01, 1.03] 2.06 [1.84, 2.40] 1.91 [1.77, 2.25]
TPE (BOHB) 1.04 [1.03, 1.10] 1.02 [1.01, 1.04] 2.40 [1.90, 2.83] 1.64 [1.38, 2.04]

Budget (100%) 135k Examples 135k Examples 135k Examples 135k Examples

CQA 1.00 [1.00, 1.00] 1.01 [1.00, 1.01] 1.32 [1.21, 1.47] 1.15 [1.12, 1.18]
Spline 1.01 [1.00, 1.02] 1.01 [1.00, 1.02] 1.11 [1.09, 1.13] 1.26 [1.19, 1.31]
Random (HB) 1.02 [1.01, 1.04] 1.01 [1.01, 1.02] 1.65 [1.54, 1.85] 1.59 [1.48, 1.73]
TPE (BOHB) 1.03 [1.01, 1.04] 1.01 [1.01, 1.02] 1.38 [1.23, 1.59] 1.27 [1.16, 1.32]

hyper-parameters, x and y in [−1,1]. In one case there were no interactions and the

error rate was defined as

pno interactions(x,y) =
1
2
· |x|+0.01 (5.3)

(y was ignored). The second case used the same objective function after applying

a 45 degree rotation, that is, the error rate was set to

pinteractions(x,y) =
1

2 ·
√

2
· |x− y|+0.01. (5.4)

Similar to the previous experiment, we clipped the error rate to the range [0, 1].

In this experiment, the scenario with hyper-parameter interactions should be

easier for the configurators, because the basin of optimal solutions lies along the

diagonal x = −y (which has length 2 ·
√

2 for x,y ∈ [−1,1]) instead of along the
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line x = 0 (which has length 2 over the same domain). However, similar to the case

where we challenged the CQA model, we see that this simple rotation of the land-

scape causes the scenario to become substantially more challenging for the spline

model. For both of the larger two configuration budgets, the spline model finds

configurations with smaller error rates when there are no hyper-parameter inter-

actions (see Table 5.3). Similarly, for all three configuration budgets, we see that

the spline model finds the best solutions when there are no interactions, whereas

when there are interactions, the CQA model performs best. (Note that both of the

landscapes in these scenarios are perfectly symmetric along two axes around the

global optima, hence we would expect CQA to do well in both cases – which it

does.)

This example clearly illustrates an important failure mode for the spline model;

even though it may often be sufficient to configure each hyper-parameter indepen-

dently in a random sequence, it is not necessarily safe to build surrogate models

that assume that they are independent.

Furthermore, similar to the parameters of the meta-heuristics studied by Yuan

et al. [196] (see Chapter 2.1), we expect there to be some hyper-parameters with

this type of interaction in AutoML scenarios. For example, consider the learning

rate (l rate) and the momentum decay rate (mdecay) hyper-parameters for the

Bayesian neural network scenarios. The learning rate corresponds to the step size

taken in each iteration of the optimization process, and the momentum decay rate

corresponds to how quickly old gradient information is lost. Specifically, a large

value for momentum corresponds to making heavy use of the previous gradients,

whereas a small value corresponds to heavily trusting the most recently observed

gradient.

In cases where gradient measurements are noisy, it is helpful to use large val-

ues of momentum to take an average over a larger number of previous gradient

observations, thereby smoothing the path taken by the optimizer. This should be

particularly important for large step sizes, since otherwise the optimizer will be tak-

ing large steps in nearly-random directions, effectively placing too much trust in

each gradient observation. Indeed, we empirically observed precisely this relation-

ship between these two hyper-parameters. For example, the best 5% of the 1 234

anytime configurations suggested by any of the configuration procedures have a
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correlation coefficient of 0.83 for the l rate and mdecay hyper-parameters on

the protein structure dataset. These observations likely explain why the spline

model did not produce better results on the real-world scenarios.

5.4 Chapter Summary
In this chapter, we introduced two experimental modifications to a state-of-the-art

AutoML hyper-parameter configuration procedure, BOHB. In its original form,

BOHB combines Bayesian optimization (using a TPE model) with Hyperband

(which exploits low-fidelity approximations of configuration performance). Both

of the modifications we made were inspired by the simplicity of the structure we

observed in most AutoML loss landscapes in Chapter 4. Our hypothesis was that

it should be more efficient to search landscapes that are relatively simple by using

surrogate models that mimic aspects of that simplicity to guide the search process.

However, in both cases, we observed that the models we chose were too simple to

be effective on real-world problems.

First, we replaced the TPE model in BOHB with a convex quadratic approx-

imation (CQA) surrogate model. We assumed that because the CQA model is

uni-modal (like most AutoML loss landscapes), it should help guide the search

process away from regions of the configuration space that we can reasonably as-

sume contain poor configurations – regardless of whether or not configurations in

that part of the search space have previously been evaluated.

However, we demonstrated that even landscapes that we originally assumed

would be easy to optimize when using the CQA model turned out not to be. In par-

ticular, we constructed two hand-crafted benchmarks with known objective func-

tions: one that was both uni-modal and symmetric around the global optimum,

and a second that was still uni-modal, but not symmetric. On the symmetric land-

scape, the CQA model outperforms the other baselines; however, for the slightly

altered asymmetric landscape, the CQA model does worse and instead ties with the

other baselines. Since we do not expect most landscapes to be symmetric around

the global optimum, this clearly explains why we did not observe competitive be-

haviour on the real-world benchmark problems.

Our second attempt replaced the TPE model in BOHB with a B-spline model.
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Since the convex quadratic approximation model was not expressive enough to

properly model the landscapes, we chose a more flexible class of models, in the

hope that it could exploit a different kind of simplicity in AutoML loss landscapes.

In particular, in Chapter 4, we showed that our simplistic configuration procedure

that configures each hyper-parameter independently, a single time and in a random

order, was able to find configurations tied with optimal for all of the scenarios we

studied. This made spline models a natural choice, since they are known to provide

high-quality approximations of functions with no interactions between the vari-

ables. Unlike CQA models, splines are not constrained to be uni-modal; however,

by extrapolating with a constant, a spline model should still help avoid suggesting

configurations that are likely to be bad in regions of the configuration space that

have been unexplored.

Unfortunately, spline models turned out to not be helpful on the real-world

benchmark problems either. In this case, we demonstrated on two additional hand-

crafted benchmarks that while spline models do in fact perform better than the other

baselines on objective functions that contain independent hyper-parameters, even

a simple 45 degree rotation of the landscape (pno interactions(x,y) = 1
2 · |x|+0.01→

pinteractions(x,y) = 1
2·
√

2
· |x− y|+0.01) is enough to cause it to perform worse than

the other baselines. Note that even though pinteractions(x,y) = 1
2·
√

2
· |x− y|+ 0.01

contains strong interactions between x and y, it would still be trivial to optimize

by varying either x or y independently of the other. In practice, we expect some

interactions to arise between hyper-parameters that cause landscapes with this type

of structure. For example, we showed that the high-quality configurations for the

Bayesian neural network scenarios have a correlation coefficient of 0.83 between

the values of their momentum decay rate and learning rate hyper-parameters.

Finally, we also observed that even though the original version of BOHB per-

formed best in all of the real-world scenarios we studied, Hyperband often per-

formed the same or only slightly worse. The only difference between the two meth-

ods is that BOHB uses a TPE model to search the configuration space, whereas Hy-

perband uses random search. This suggests that while using a surrogate model to

guide the search process can make it more efficient, the benefit of doing so appears

to be relatively small. We suspect that this is quite likely because of Hyperband’s

ability to make use of cheap, low-fidelity approximations of the landscapes. If
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the cost of evaluating a modest number of additional configurations is very small,

then the performance penalty from using random search instead of something more

intelligent will also be small. For this reason, the benefit that can be obtained by us-

ing something even more intelligent than BOHB’s TPE model is likely also rather

small.
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Chapter 6

Analysis II: Running Time
Minimization Landscapes

In Chapters 4 and 5 we gained insights into the structure of AutoML loss land-

scapes and how that structure can be exploited. However, in Chapter 5, we were

unable to reach our ultimate goal to develop a new hyper-parameter configura-

tion procedure that improves upon the state of the art. Therefore, we may wonder

why should we continue to analyze the structure of landscapes for other, related

algorithm configuration problems? In fact, there are several good reasons. As mo-

tivated in Chapter 1, landscape analysis is useful for other reasons; for example, to

build intuition about existing configuration procedures to retrospectively analyze

their relative performance.

Furthermore, even though we observed that BOHB was already performing

reasonably well at learning and exploiting the structure present in AutoML loss

landscapes, this may not be the case for similar algorithm configuration proce-

dures that seek to minimize the running time of algorithms for solving NP-hard

and NP-complete problems. In fact, for many NP-hard problems it is unclear

whether or not it is possible to obtain low-fidelity approximations of an algorithm’s

performance, whereas for AutoML scenarios the pervasiveness of low-fidelity ap-

proximations allows a large number of low-quality configurations to be quickly

eliminated. Therefore, the fraction of the configuration budget spent evaluating

poorly-performing configurations is typically larger in scenarios with NP-hard
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problem instances. As a result, running time minimization scenarios with NP-

hard problems is arguably an even more promising application area for landscape

analysis than AutoML.

In this chapter,1 we apply the methods for landscapes analysis described in

Chapter 3 to the running time minimization landscapes of several prominent algo-

rithms for three widely-studied NP-hard problems: SAT, TSP and MIP. Our goal

is to determine whether or not these landscapes are similar to AutoML loss land-

scapes – that is, are they globally uni-modal (or convex) and are their parameter

interactions strong or weak?

6.1 Experimental Setup
Unlike in Chapter 4, we were unable to find any existing data sets relating grids

of algorithm configurations to performance, so we collected our own data. The

evaluation of algorithm configurations for solving NP-hard problems is typically

rather costly, so we focus our analysis primarily on one-dimensional parameter

response slices of the landscapes, with some limited analysis on two-dimensional

slices.

6.1.1 Parameter Response Slices

To focus our analysis on the most interesting portion of the landscapes, we studied

parameter response slices centered around high-quality configurations. To do this,

we first performed 25 independent runs of SMAC [89] for each scenario (configur-

ing both numerical and categorical parameters), and subsequently evaluated the re-

sulting configurations on the entire training set. We then used the best-performing

configuration on the training set as the centre point for each of the one- and two-

dimensional parameter response slices studied in Chapters 6.2 and 6.3.

Even evaluating every possible value for both of the one dimensional parame-

ter response slices in our EAX scenario (described in more detail in Chapter 6.1)

would take 6 CPU years, so we reduced the one-dimensional slices to only 15 pa-

1This chapter is based on the experiments and results from joint work with Holger Hoos. The
results for the one-dimensional landscape analysis were published in Pushak and Hoos [148], where
they received the 2018 PPSN best paper award. A single award is given out every two years, selected
by an expert committee with guidance from a popular vote.
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rameter values each. We further reduced the two-dimensional slices to 7 values for

each parameter, resulting in up to 49 pairs of parameter values for each slice. If a

parameter had an insufficient number of possible values, then we used all of them;

otherwise, to obtain high resolution near the best known parameter setting, we in-

creased the spacing between adjacent numeric values exponentially with increasing

distance from the best known value.

We added an additional constraint to ensure that we obtained some coverage

of the parameter response on either side of the best known parameter setting. In

particular, we restricted at most 75% of the points to be on one side of the best

known value. (Note that this constraint could not always be enforced, for example,

if the best known value took the maximum or minimum allowed value.) Since

there were still many possible locations for the points satisfying these constraints,

we multiplied the grid of points by a randomly chosen weight to choose their exact

location.

For any integer-valued parameter, we first determined a set of values as for

real-valued parameters and then rounded each setting thus obtained to the nearest

valid and previously unused value. Finally, we performed 10 independent runs

per instance to obtain median performance values to ensure that the performance

estimates for each configuration were robust.

This method produces grids of irregularly spaced parameter values that are

mostly concentrated around the best known configuration. Some of the metrics

we used (for example, FDC, see Chapter 3.2.6) require knowledge of the distance

between two configurations. Therefore, we normalized the range of values for each

numerical parameter to the range [0, 1] when calculating distances to ensure that

they were all on the same scale. For categorical parameters, we treated the distance

between each pair of possible values as 1.

6.1.2 Bootstrap Analysis and Confidence Intervals

To account for the variance between independent target algorithm runs and prob-

lem instances, we used a nested bootstrap procedure similar to the one by Mu and

Hoos [130] with 1 001 outer and inner bootstrap samples. To be precise, for each

configuration and problem instance, we created 1 001 (inner) bootstrap samples of
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the 10 independent runs to obtain a distribution of median performance values for

each problem instance. Next, we created 1 001 bootstrap samples of the instance

set. For each occurrence of a problem instance in a sample of the instance set,

we sampled a value from the corresponding distribution of median performance

values. Finally, we calculated the (outer) median performance observed on the in-

stance sets for each bootstrap sample of the per-instance medians. We used this

distribution to calculate 95% bootstrap percentile confidence intervals for the per-

formance observed for each configuration. Since each parameter response slice

contained up to 49 unique configurations (each with a corresponding confidence

interval), we used Bonferroni multiple testing correction to adjust their confidence

intervals.

6.1.3 Algorithms and Problem Instances

We studied 10 different algorithm configuration scenarios, spanning three widely

studied, NP-hard problems (SAT, MIP and TSP), 6 prominent algorithms and

5 well-known instance sets. All of these scenarios involve the minimization of

running time, measured in PAR10 – that is, mean running time with timed-out

runs counted at 10 times the running time cutoff. In Table 6.1, we summarize the

configuration budgets and running time cutoffs used for our scenarios. All instance

sets are readily available online in ACLib scenarios that have been identified as

interesting and challenging benchmarks for algorithm configurators [94]. For the

SAT and MIP instance sets, we used the same budgets and running time cutoffs

as specified in the corresponding ACLib scenarios. We increased the running time

cutoff for the test set (and parameter slices) for the SAT and TSP scenarios, in order

to better assess poorly performing configurations.

Table 6.2 provides an overview of the 6 algorithms we studied. We introduce a

few new, state-of-the-art algorithms not found in existing ACLib scenarios.

For the SAT scenarios, we studied CaDiCaL [25], because it was one of the top-

performing, configurable solvers in the application track of the 2017 SAT competi-

tion; lingeling [25], because it was the winner of the 2014 Configurable SAT Solver

challenge on the circuit-fuzz and BMC08 instances; and cryptominisat [165], be-

cause it is a variant of the well-known and commonly used minisat algorithm. Ref-
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Table 6.1: The instance sets we studied from ACLib scenarios and the con-
figuration budgets and training/testing running time cutoffs (all measured
in CPU Seconds) used for their scenarios.

Problem Instance Set Config Budget Training Cutoff Test Cutoff # Instances

SAT circuit-fuzz 172 800 300 600 586
BMC08 172 800 300 600 718

MIP CLS 172 800 10 000 10 000 50
Regions200 172 800 10 000 10 000 1 000

TSP TSP-RUE-1000-3000 86 400 86 3 600 250

Table 6.2: The 6 algorithms we studied for the analysis or running time min-
imization landscapes for NP-hard problems.

Problem Algorithm Version # Num # Cat

SAT CaDiCaL sc17 40 22
lingeling azf 1851 137
cryptominisat 4.1 22 36

MIP CPLEX 12.6 22 52

TSP EAX+restart JDL 2 0
LKH+restart 2.0.7 12 9

1We configured all 185 numerical parameters, but
only studied slices for the 10 most important (see
text for details).

erence implementations of lingeling and cryptominisat were directly obtained from

ACLib 2.0, whereas that of CaDiCaL was taken from the 2017 SAT competition.

For the TSP scenarios, we chose two extensively studied [53, 131], state-of-the-

art, inexact solvers: EAX [132] and LKH [82]. We used the same implementations

as Mu et al. [131] and Dubois-Lacoste et al. [53], which were modified to use a

restarting mechanism and terminate upon reaching optimal solution quality values

(which are known from long runs of an exact solver). The TSP scenarios in ACLib

configure for solution quality, so we chose these solvers to focus on running time

minimization.

For the MIP scenarios, we studied the high-performance commercial solver

IBM ILOG CPLEX [1], version 12.6 (featured in several ACLib scenarios), which

terminates upon finding an optimal solution to a given MIP instance and complet-

ing a proof of optimality. We slightly modified the CPLEX scenarios from ACLib,
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by treating CPLEX as a randomized algorithm. Earlier versions of CPLEX used a

fixed random seed that was not exposed to the user; however, CPLEX is in fact a

randomized solver, and treating it as such avoids potential problems arising from

bias due to the use of a specific random seed.

For every algorithm except lingeling we were able to evaluate one-dimensional

parameter response slices for all of their numerical parameters; however, since lin-

geling had so many parameters, we restricted our analysis to a subset of them.

Falkner et al. [58] reported the 10 most important parameters according to func-

tional ANOVA [93] (all of which were numerical) for lingeling on the circuit-fuzz

instance set, so we only used these 10. We also slightly modified the ranges for a

few parameters for LKH and CPLEX. Some of the numerical parameters use values

0 or -1 to encode special behaviour, for example, for the automatic setting of the

parameter value or the deactivation of the mechanism controlled by the parameter.

In cases where the documentation was unclear, we erred on the side of caution and

removed a parameter value or treated the special value as a categorical parameter.

We also performed an analysis of a limited number of two-dimensional slices

of the landscapes. In particular, we looked at data from one scenario for each of

the three types of problems: EAX on the TSP RUE instances, CaDiCaL on the

circuit-fuzz SAT instances and CPLEX on the Regions200 MIP instances. Since

fully evaluating all possible two-dimensional slices would have been prohibitively

expensive, we further limited our analysis to the cross product of only those pa-

rameters which were classified as interesting by our heuristic criterion (see Chap-

ter 3.2.5).

In order to assess to what extent the categorical parameters interact with the

numeric parameters (and each other) we first performed the same method of anal-

ysis to determine the subset of categorical parameters that were also interesting

according to our criterion. We summarize the number of numeric and categorical

parameters deemed interesting in each of the scenarios in Table 6.3. In total, this

resulted in 17 two-dimensional parameter response slices between numerical pa-

rameters, 64 slices between one numerical and one categorical parameter and 120

slices between two categorical parameters.

For the CPLEX scenario, we further reduced the computational cost of collect-

ing the data by decreasing the running time cutoff from 10 000 CPU seconds to
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Table 6.3: The number of numeric and categorical parameters deemed inter-
esting by our heuristic criterion (see Chapter 3.2.5). These are the pa-
rameters that we used for the analysis of the two-dimensional slices of
the algorithm configuration landscapes.

Problem Algorithm Instance Set # Num # Cat

SAT CaDiCaL circuit-fuzz 5 0
MIP CPLEX CLS 4 16
TSP EAX TSP-RUE-1000-3000 2 0

Table 6.4: PAR10 values on the test sets for the default configuration versus
the configuration with the best training PAR10. All times are in CPU
seconds.

Problem Algorithm Instance Set Default PAR10 Configured PAR10 Speedup

SAT CaDiCaL circuit-fuzz 468.71 252.34 1.86
BMC08 638.57 637.93 1.00

lingeling circuit-fuzz 382.23 279.29 1.37
BMC08 692.80 691.51 1.00

cryptominisat circuit-fuzz 444.68 276.83 1.61
BMC08 938.61 970.07 0.97

MIP CPLEX CLS 40.39 3.39 11.91
Regions200 106.77 6.40 16.68

TSP EAX TSP-RUE-1000-3000 65.99 56.84 1.16
LKH TSP-RUE-1000-3000 428.60 228.62 1.87

1 200 CPU seconds, since we observed that a relatively small number of the con-

figurations in the original analysis required a disproportionately large amount of

the computational budget to be fully evaluated. However, even with these modifi-

cations it still took 58.9 CPU years to collect all of the data for the two-dimensional

parameter response slices.

In Table 6.4, we show the results from configuring our 10 scenarios, using

25 runs of SMAC [89] per scenario. These results are consistent with the litera-

ture. We note that in some cases, configuration did not result in significant perfor-

mance improvements over the default parameter settings of a given algorithm; this

is unproblematic, since our goal in performing automated configuration was not

to obtain improved performance, but rather to ensure we used high-performance

configurations as reference points for the parameter response slices that formed the

basis for our algorithm configuration landscape analysis.
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Table 6.5: Summary of the shape analysis results for the one-dimensional pa-
rameter response slices.

Parameters # Slices Uni-M Cvx FDC

All 193 99.5% 99.5% 0.20
Interesting 18 94.4% 94.4% 0.72

We ran all of our experiments on Ada, a cluster of 20 nodes, equipped with 32

2.10 GHz Intel Xeon E5-2683 v4 CPUs with 40 960 KB cache and 96 GB RAM

each, running openSUSE Leap 42.1 (x86 64). To minimize detrimental cache ef-

fects and memory contention, in all experiments, we used a single core per CPU

and limited RAM use to 3 GB. In total, we used 102.4 CPU years for automated

configuration and collection of parameter response slice data.

6.2 One-Dimensional Parameter Response Slices
In total, we collected and analyzed 193 one-dimensional parameter response slices

as described in Chapter 6.1, the results for which are summarized in Table 6.5.

Overall, similar to in Chapter 4, the parameter response slices appear to be more

benign than one might expect. Our tests for uni-modality and convexity failed to

reject their null hypotheses for all but one of the parameter response slices. That

is, 99.48% of the slices appear to be both uni-modal and convex.

Somewhat surprisingly, our heuristic method outlined in Chapter 3.2.5 iden-

tified only 18 of the slices as interesting (compared to 44 out of the 45 studied in

Chapter 4). In Figure 6.1, we show four parameter response slices that are represen-

tative of the qualities we observed in this set of 18 (the remaining 14 are available

in Appendix A.3.1). To our surprise, neither lingeling nor cryptominisat had any

interesting parameter response slices. The parameter that fANOVA rated to be the

most important for lingeling [58] shows a slight dip at the smallest parameter value

in the slice for the circuit-fuzz instance set. To investigate further, we evaluated an

additional 15 parameter values, but still found it to be un-interesting according to

our criterion.

The only parameter we found that had a non-unimodal and non-convex re-

sponse was LKH’s BACKBONE TRIALS parameter (see Figure 6.1), which spec-
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Figure 6.1: Four examples of one-dimensional parameter response slices.
From left to right and top to bottom: EAX’s Npop on the TSP-RUE-
1000-3000 instance set, CaDiCaL’s keepglue on the circuit-fuzz in-
stance set, LKH’s BACKBONE TRIALS on the TSP-RUE-1000-3000
instance set and CPLEX’s mip limits submipnodelim on the
Regions200 instance set.

ifies the number of backbone trials in each run. Apart from BACKBONE TRI-

ALS=0, even this response slice appears to be both convex and uni-modal. To the

best of our knowledge, a value of 0 does not have special meaning, apart from the

obvious semantic difference of some versus no backbone trials, which may alone

account for this difference, since it likely corresponds to a (poorly performing)

heuristic component of the algorithm that is turned on or off.

Some of the parameter responses (for example, keepglue in Figure 6.1),

appear to be flat for poorly performing parameter values, and hence non-convex

overall. However, our tests were unable to reject convexity, despite this visual evi-

dence, because of the relatively wide bootstrap confidence intervals. Nevertheless,

we believe that these flat regions are artifacts of how PAR10 scores treat censored
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runs and hence a sufficiently large running time cutoff may continue to yield con-

vex responses.

In the three SAT scenarios involving the BMC08 instance set, we found only

one parameter response slice considered interesting according to our criterion:

CaDiCaL’s restartmargin. This is consistent with the fact that SMAC was

unable to achieve significant performance improvements for these scenarios. We

further note that the default value for restartmargin is very near to the best

known value. Hence, it appears that better configurations may not exist rather than

that they are hard to find due to highly irregular or rugged landscapes.

These results paint a very different picture of the difficulty of the landscapes

than our analysis using FDC would suggest. The median FDC value for the 193

parameter response slices is 0.20 – in fact 75% of the response slices have FDC

values less than 0.35. These FDC values suggest that most of these parameters

should be challenging to configure. However, if we look only at the 18 parameters

with interesting response slices, then we see the median increases to 0.72 and 75%

of these slices have FDC values less than 0.88. These results indicate that many

of the low FDC scores are in fact due to parameters with mostly-flat responses.

Given this result, we conclude that FDC is a less useful metric for characterizing

the difficulty of algorithm configuration landscapes for running time minimization.

For a more detailed discussion of the FDC analysis as well as an analysis of

the algorithm configuration landscapes that arise when optimizing algorithm per-

formance on individual instances (instead of on sets of instances as done here), see

Appendices A.3.2 and A.3.3.

6.3 Two-Dimensional Parameter Response Slices
Overall, none of the 201 two-dimensional parameter response slices appeared to

be multi-modal according to our test (see Chapter 3.2.1). However, only 19.40%

of these tests were considered sensitive by our validation procedure (see Chap-

ter 3.2.4), so it is possible that some of these parameter response slices could appear

multi-modal if analyzed with a larger computational budget. Of the 17 parameter

response slices with two numerical parameters, our test for convexity only rejected

its null hypothesis for one of them – that is, 16 of the 17 parameter response slices
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appear to be convex. Since the test for convexity imposes a stronger requirement

on its null hypothesis, all of these tests were deemed sensitive by our validation

procedure. The only response slice for which convexity was rejected contained the

population size, Npop, and number of children, Nch, used by EAX (see the top left

pane of Figure 6.2). However, even in this case only 6.12% of the landscape was

interior to the convex hull of the upper bounds, which indicates that only a small

portion of the landscape would need to be modified to make it indistinguishable

from a convex function.

Of the two-dimensional slices with two numerical parameters, EAX’s two pa-

rameters also had the lowest FDC, at 0.11. As discussed previously, low FDC val-

ues are typically believed to represent landscapes that are challenging to optimize.

However, from inspection of the top left pane of Figure 6.2, it can be seen that

the FDC is low in this landscape because configurations with smaller-than-optimal

values for Npop yield worse performance much more quickly than configurations

with larger-than-optimal values. In comparison, most of the other numerical pa-

rameter response slices had relatively large FDC values, as seen in Table 6.6.

From Table 6.6 we can also see that the FDC for the parameter response slices

with at least one categorical parameter tend to be quite a bit lower than those with

only numerical parameters; however, this observation should come as no surprise,

since each categorical value for a particular parameter is considered equidistant

from each other. This result also suggests that categorical parameters typically

contain less exploitable structure than their numerical counterparts.

In the summary of the results for the parameter interactions (see Table 6.7),

we again see that the parameter response slice from EAX is an outlier compared

to the rest of the slices with two numerical parameters. Apart from EAX, all but

three of the parameter response slices have very few significant interactions among

their numerical parameters. The rest of the numerical parameters interact in no

more than 11.11% of their landscapes. However, EAX has interactions among

its two parameters that span nearly the entire landscape, that is, 97.22% of it. In

Figure 6.2, we can see that the interactions are compensatory in nature; we surmise

that this is because both the number of children, Nch, and the population size,

Npop, influence the degree of exploration performed within each iteration of EAX.

The percentage of the two-dimensional parameter response slices that have
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Table 6.6: The uni-modality and convexity test results and the fitness distance
correlations for the two-dimensional parameter response slices obtained
for the parameters in Table 6.3. Includes the mean percentage of the land-
scapes that were unreachable (UnR) from the global optima and interior
(Int) to the convex hull of the upper-bounds for those slices for which
uni-modality or convexity could be rejected, respectively; the mean per-
centage of the lower-bounds that were co-planar (Co-P) to the convex
hull of the upper bounds; and the mean percentage of the landscapes for
which the tests appeared sensitive (Sen) according to our permutation-
based analysis.

Type # Slices Algorithm UnR Sen Int Co-P Pow FDC

N×N 1 EAX 0.00 100.00 6.12 0.00 100.00 -0.21
10 CaDiCaL 0.00 0.00 0.00 0.00 40.00 0.70
6 CPLEX 0.00 0.00 0.00 0.00 0.00 0.60

N×C 64 CPLEX 0.00 32.81 – – – 0.16

C×C 120 CPLEX 0.00 14.17 – – – 0.31

Table 6.7: The mean percentage of locally significant parameter interactions
based on the analysis of the partial derivatives (Sig ∂ 2), the 2nd order
fANOVA scores (fANOVA), and the mean probability of obtaining a
configuration that is tied with optimal if each parameter is configured
independently, a single time and in a random order (Tied w Opt). All re-
sults are for the two-dimensional parameter response slices obtained for
the parameters in Table 6.3.

Type # Slices Algorithm Sig ∂ 2 fANOVA Tied w Opt

N×N 1 EAX 97.22% 42.61% 50.00%
10 CaDiCaL 2.78% 7.36% 100.00%

6 CPLEX 0.00% 16.39% 100.00%

N×C 64 CPLEX 4.98% 0.68% 100.00%

C×C 120 CPLEX 31.82% 3.28% 97.92%
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locally significant interactions tends to be larger between categorical parameters

than numerical parameters. Nevertheless, the median numbers for these are still

rather small (see Table 6.7), indicating that even the interactions among categorical

parameters appear to be relatively infrequent.

The fANOVA results (also summarized in Table 6.7) are consistent with those

from the locally significant partial derivatives; however, they provide a different

lens to the analysis. Typically, fANOVA scores are calculated for the full land-

scapes; however, ours are computed using only two-dimensional parameter re-

sponse slices rather than complete landscapes, hence they need to be interpreted

in a slightly different way. Effectively, the 2nd order fANOVA score presented

here measures the percentage of the variance in the two-dimensional slice of the

landscape that is explained by the interactions of the two parameters compared to

each of the parameters independently. That is, the sum of all of the fANOVA scores

for all of the 190 CPLEX parameter response slices will sum to 19 000%, instead

of 100%. With this in mind, we again see the EAX landscape has much more de-

pendence upon the interaction of its parameters, since only 57.39% of its response

can be explained by the two parameters independently. Similarly, we see that the

interactions among many of the categorical parameters are surprisingly small.

Finally, to put our hypotheses regarding the relative simplicity of the interac-

tions of most parameters to the test, we used our simplistic configuration procedure

from Chapter 3.3.3 to determine to what extent the parameters can be configured

independently. We show these results in the final column of Table 6.7.

Similar to in Chapter 4, we observe the surprising result that the configuration

procedure found configurations tied with optimal in nearly all cases, regardless of

the order in which the parameters were configured. EAX’s two parameters were,

once again, the only exception among the parameter response slices with only nu-

merical parameters. However, in many cases this is no doubt due to the large

variability between the performance of a given configuration on different problem

instances. For example, in the top right of Figure 6.2, we can see that the order in

which the parameters are configured would yield different median running times;

however, these differences are insignificant when taking into account the size of the

confidence intervals. Nevertheless, the bottom two response slices in Figure 6.2 –

for both of which it is quite clear that the order of configuration would be unimpor-
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tant – are representative of a surprising fraction of the two-dimensional parameter

response slices. In fact, the bottom right pane of Figure 6.2 is representative of all

six of CPLEX’s parameter response slices with two numerical parameters.

Every parameter response slice had at least one order for the configuration of

the parameters that yielded a configuration tied with optimal; however, there were

five cases among CPLEX’s parameter responses with two categorical parameters

for which no more than one of the two orders yielded a configuration that was tied

with optimal. This seems quite surprising; we would expect that in many cases a

change to a categorical parameter could yield a completely different response in

the remaining parameters. However, nearly all of CPLEX’s parameter response

slices with one numerical parameter and one categorical parameter were qualita-

tively similar to the right pane of Figure 6.3, wherein the change to the categorical

parameter mip strategy subalgorithm yielded no observable effect on the

response in the numerical mip limits submipnodelim parameter, other than

to translate it up or down. One of only four exceptions to this trend is shown in

the left pane of Figure 6.3, for which qualitatively different responses to the values

of simplex refactor can be seen for different values of mip strategy -

subalgorithm. The simplex refactor parameter determines the number

of iterations that must pass before the MIP instance’s basis matrix is refactored,

whereas mip strategy subalgorithm determines which optimization algo-

rithm is used to solve sub-problems in a MIP instance. These results suggest that

the optimal simplex refactoring frequency must be different for different optimiza-

tion algorithms, which may make more or less progress within each iteration.

6.4 Chapter Summary
In this chapter, we applied all of the methods of analysis from Chapter 3 to running

time minimization landscapes from several prominentNP-hard andNP-complete

AClib [94] scenarios spanning SAT, TSP and MIP. Due to prohibitively expensive

data collection times, we could not perform an analysis of the full algorithm config-

uration landscapes. Instead, we focused primarily on one-dimensional parameter

response slices with some limited analysis of the effects of parameter interactions

on two-dimensional parameter response slices.
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Figure 6.2: Four examples of two-dimensional parameter response slices that
include two numerical parameters. From top to bottom and left to
right: EAX’s Npop and Nch on the TSP-RUE-1000-3000 instance set;
CaDiCaL’s keepglue and reduceinit on the circuit fuzz instance
set; CaDiCaL’s keepglue and restartmargin on the circuit fuzz
instance set; and, CPLEX’s mip limits cutsfactor and sim-
plex refactor on the capacitated lot sizing (CLS) instance set.

Overall, the running time minimization landscapes we observed have several

characteristics similar to those of AutoML loss landscapes (see Chapter 4). For

example, we showed that FDC can often be misleading, since a landscape that is

completely flat, or one that is uni-modal but with very different penalties for being

too large or too small, yield low FDC despite being very easy to optimize. Both

of these cases appear to occur relatively frequently among algorithm configuration

landscapes.

Similar to in Chapter 4, we observed that most of the individual parameter

response slices appear to yield uni-modal and – surprisingly – often even convex

responses. The shapes of the landscapes that we observed in our limited analysis of
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Figure 6.3: Two examples of two-dimensional parameter response slices
that include both one numerical and one categorical parameter.
Left: CPLEX’s mip strategy subalgorithm and simplex -
refactor parameters on the capacitated lot sizing (CLS) instance
set; right: CPLEX’s mip strategy subalgorithm and mip -
limits submipnodelim parameters on the capacitated lot sizing
(CLS) instance set.

two-dimensional parameter response slices were qualitatively similar to those for

one-dimensional slices; however, many applications of the tests for uni-modality

lacked sensitivity when applied to the two-dimensional parameter response slices.

As a result, collecting more data on larger problem instance sets may be necessary

to detect deviations from such structure, if they are present. To save on computa-

tion costs, this could be done in an adaptive way, where additional runs are only

performed in high-variance regions of the landscapes. Nevertheless, the confidence

intervals of the parameter response slices still provide upper bounds on the size of

any barriers that can exist in the landscapes. In most applications, algorithm con-

figuration procedures do not evaluate configurations as extensively as we do in our

analysis. Therefore, it is unlikely that such deviations from uni-modality would be

detectable by an algorithm configurator.

Overall, the parameter interactions were surprisingly benign for all but one

outlying case: EAX’s population size, Npop, and number of children, Nch. These

two parameters yielded a basin of high-quality configurations that is slightly diag-

onally oriented relative to the axes of the parameters. It also contains a relatively

steep penalty when either parameter value is set too small. Otherwise the numerical

parameters had significant interactions that covered less than 3% of their response
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slices. In fact, even the response slices with two categorical parameters showed

significant interactions among less than 32% of their responses.

Furthermore, configuring each parameter independently, a single time and in a

random sequence, produced configurations that are tied with optimal for all but six

of the 201 two-dimensional parameter response slices we studied. While in many

cases, this may be due to the large size of the confidence intervals, it nevertheless

suggests that even relatively simple methods may obtain satisfactory performance

for many similar scenarios.

Compared to AutoML loss landscapes, the biggest difference we observed in

these landscapes is that the variance in the performance estimates is orders of mag-

nitude larger. In particular, in this chapter we performed 10 independent runs of

each algorithm configuration on each problem instance. We then recorded the per-

formance of a configuration as the median over per-instance median running times.

Each scenario had between 50 to 1 000 instances. In contrast, for the AutoML sce-

narios we typically studied means, a less robust statistic, over one to five indepen-

dent runs of the machine learning method. Despite this, we still observed that the

size of the confidence intervals were almost always substantially larger in the run-

ning time minimization scenarios relative to the AutoML scenarios when looking

at the one- and two-dimensional (hyper-)parameter response slices.

However, the difference in the variability of the performance in the two appli-

cations makes sense. In the AutoML scenarios, each problem instance corresponds

to a random training and validation split of a given data set. For most data sets, this

will likely result in problem instances that are relatively similar. In contrast, for the

running time minimization scenarios the diversity in the problem instances is likely

much larger. For example, consider the bounded model checking SAT instance

sets, for which each problem instance corresponds to unrolling different (possi-

bly unrelated) hardware circuits to different depths, thereby creating a much more

heterogeneous collection of problem instances. Furthermore, running time is an

inherently noisy metric, since even repeated calls to a deterministic algorithm for

solving the same problem instance will most often result in different running times

due to concurrently-running background processes on the machine. Conversely,

some of the performance metrics used in the AutoML loss landscapes such as ac-

curacy are bounded to the interval [0, 1], which further restricts the maximum size
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of the confidence intervals.

Nevertheless, despite this performance variability difference, we still see over-

all that algorithm configuration landscapes for running time minimization appear

to be relatively benign. This stands in contrast with the most popular algorithm

configuration procedures, which typically employ powerful diversification mecha-

nisms. Indeed, our results suggest that the main source of difficulty for the config-

uration of these scenarios is not that they are highly multi-modal, but rather that the

high variance in the performance measurements makes them appear highly rugged

to configuration procedures that do not properly account for their stochasticity.
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Chapter 7

Exploitation II: Running Time
Minimization Landscapes

As motivated in the introduction, automated algorithm configuration procedures

such as SMAC, GGA++ and irace can often find parameter configurations that

substantially improve the performance of state-of-the-art algorithms for difficult

problems – for example, a three-fold speedup in the running time required by

EAX, a genetic algorithm, to find optimal solutions to a set of widely studied

TSP instances. However, it is usually recommended to provide these methods

with running time budgets of one or two days of wall-clock time as well as dozens

of CPU cores. Most general-purpose algorithm configuration methods are based

on powerful meta-heuristics that are designed for challenging and complex search

landscapes; however, in Chapter 6 we showed that many scenarios for running time

minimization appear to have algorithm configuration landscapes with a relatively

simple structure. That is, most parameters typically yield responses in algorithm

performance that are uni-modal. Furthermore, many of the parameters do not inter-

act strongly, and even when they do, they frequently do not substantially increase

the complexity of the configuration scenarios.

In light of these results, we introduce in this chapter1 the golden parameter

1This chapter is based on joint work with Holger Hoos, which was published at GECCO
2020 [149], where it received the ECOM track best paper award. One award is given out each year
at GECCO to each of nine tracks, by a vote among the attendees. An early prototype of GPS was
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search (GPS) configuration procedure, which is designed to exploit this structure.

In contrast to our prototype methods in Chapter 5, which made assumptions that

were too strong to exploit similar structure in AutoML loss landscapes, we show

that GPS is competitive with state-of-the-art baselines. In particular, it often finds

similar or better parameter configurations using a fraction of the computing time

budget across a broad range of scenarios spanning TSP, SAT and MIP. We believe

there are four reasons behind this success when compared with our previous at-

tempts in Chapter 5.

First, in Chapter 5, we introduced two separate configurators, each of which

were designed to exploit a single structural property (uni-modality and benign pa-

rameter interactions) that we observed in AutoML loss landscapes. In GPS, we ex-

ploit both of these simultaneously. We exploit the simplicity of the parameter inter-

actions by configuring each parameter of the target algorithm semi-independently

in parallel using a coordinate-descent-based [192] approach. To exploit the uni-

modality of the parameter responses, the search procedure for each parameter em-

ploys a variant of the golden section search algorithm [102], which obtains optimal

worst-case performance for one-dimensional uni-modal functions.

We believe that the second reason GPS performs well is also due to the golden

section search algorithm. At each iteration, golden section search picks a new con-

figuration to evaluate that guarantees that it eliminates the largest possible fraction

of the search space in the worst case. In many line search applications, it is in-

stead frequently recommended to use quadratic or cubic interpolation to pick the

next candidate to evaluate – for example, the well-known Brent’s method [34],

which combines golden section search with interpolation. While it is possible that

interpolation could improve the performance of GPS, based on our observations

in Chapter 5, we do not expect this to be the case. In particular, given that in

Chapter 6 we observed that running time minimization landscapes tend to be sub-

stantially noisier than the AutoML loss landscapes, we suspect that most attempts

to interpolate would only result in worse performance due to over-fitting to random

noise.

Similarly, we believe that the use of a coordinate-descent-based [192] algo-

submitted as part of a course project for CPSC 521: Parallel Algorithms and Architectures, taught
by Mark Greenstreet.
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rithm is responsible for the third reason behind GPS’s strong performance. In

Chapter 5, when we used a spline model to exploit the weak parameter interac-

tions, the method failed to perform well in scenarios where there were strong in-

teractions, even though these scenarios were considered easy by our simplistic pa-

rameter configuration procedure. In particular, we refer to the diagonally-oriented

basin structure (for example, f (x,y) = |x− y|), that appears to be relatively com-

mon among parameters that interact strongly in various algorithm configuration

scenarios. For example, see a) our discussion of the momentum and learning rate

hyper-parameters in Chapter 5.3; b) EAX’s population size and number of children

parameters in Chapter 6.3; c) the population size and the number of fitness evalua-

tions of differential evolution [140]; or d) the acceleration and constriction factors

of particle swarm optimization [196].

And finally, fourth, to the best of our knowledge, there are no simple, universal

methods for obtaining low-fidelity approximations of an algorithm configuration’s

performance for NP-hard and NP-complete problems. Therefore, reducing the

number of configurations that need to be evaluated by a modest percentage will

yield a substantially larger speedup to the configuration procedure than for Au-

toML scenarios.

7.1 Golden Parameter Search (GPS)
GPS conducts an efficient search process on each parameter semi-independently.

It begins with a bracket Bp for each parameter p ∈ P, where a bracket corresponds

to a set of parameter values believed to contain the optimum parameter value. Each

bracket is evaluated in parallel and shrunk around the optimum value. A bracket

may be expanded if there is evidence that it no longer contains the optimum (due

to, for example, parameter interactions). For numerical parameters, this search

procedure is based on the golden section search algorithm [102], which has the op-

timal worst-case bound for one dimensional, uni-modal functions [145]. To save

on computational resources, GPS uses a racing procedure based on a permutation

test. Once a better value for a parameter is found, the search procedure for each of

the other parameters is updated to use this value. Since parameter interactions may

cause old target algorithm runs to become stale, these old runs are slowly forgotten

124



(down-weighted), and then eventually re-run. When GPS terminates, the incum-

bents for each parameter value are returned as the final incumbent configuration.

Many algorithms contain conditional parameters, whose values are only used

when their “parent” parameters are set to certain values. GPS configures the values

of all such child parameters in parallel by appropriately modifying their ancestors’

parameter values to enable the child parameters when they are being evaluated.

This avoids incorrectly discarding parent parameter values because their children

were sub-optimally configured.

To avoid wasting time evaluating poor configurations on a large number of in-

stances, GPS uses an intensification mechanism that determines how many runs are

performed for each value, and slowly introduces more instances into the set I′ ⊆ I

used to evaluate parameter values. A crucial component of many algorithm config-

uration procedures are capping mechanisms [35, 87], which limit the running time

cutoffs for each target algorithm run. GPS employs a novel capping mechanism

that avoids being overly aggressive.

The primary bottleneck in algorithm configuration is running many configura-

tions on sets of problem instances; therefore, GPS uses a master-worker process

design, whereby the master process loops through each parameter p ∈ P to check

for newly completed target algorithm runs, updates the bracket Bp and incumbent

value c∗[p], and then queues new runs. We show high-level pseudo-code for the

master process in Algorithm 3. The worker processes repeatedly query a queue

in a database to obtain new runs to perform. GPS queues an exponentially in-

creasing number of instances on which each parameter will be evaluated each time

new instances are queued for a given parameter. For some highly-parameterized

algorithms, only a small fraction of parameters affect the performance of the al-

gorithm (for example, see Falkner et al. [58] or Chapter 6). GPS therefore uses a

multi-armed bandit procedure to prioritize parameters believed to be important.

For some scenarios, GPS may be unable to keep the target algorithm run queue

sufficiently populated. Hence, GPS dynamically adjusts an instance increment pa-

rameter, instIncr, such that the intensification and queuing mechanisms operate on

batches of instIncr instances (target algorithm runs).

125



Algorithm 3 The main algorithm for Golden Parameter Search.
1: input
2: A, the algorithm to be configured
3: I, the training instance set
4: m, the metric with respect to which A is configured
5: P, the set of configurable parameters of A
6: C, the configuration space (ranges and constraints)
7: c0, the default configuration
8: numInitInst, an integer in [1,∞) (default: 1)
9: decayRate, a real number in [0,1] (default: 0.2)

10: α , a real number in (0,1) (default: 0.05)
11: instIncr, a positive Fibonacci number (default: 1).
12: output
13: c∗, the best configuration found so far
14: procedure GPS
15: # Initialization
16: Initialize the incumbent c∗ := c0
17: for each parameter p ∈ P, do
18: Initialize a bracket Bp
19: Initialize Ip with numInitInst random instances
20: Queue a run for the default value c0[p]
21: Initialize empty arrays R and Q
22: # Main Procedure
23: while budget not exhausted, do
24: # See Chapter 7.1.9 for the bandit queue
25: Sample a parameter p ∈ P using the bandit queue
26: # R and Q help make use of all workers (see Chapter 7.1.10)
27: Append values to R and Q
28: if sufficient time has elapsed, then
29: Update instIncr, if needed
30: Re-initialize R and Q as empty arrays
31: # Compare performances (see Chapter 7.1.1)
32: for each pair v1,v2 ∈ Bp, do
33: Perform permutation test with significance level α

34: # Incumbent update (see Chapter 7.1.6)
35: if there exists v such that m(c∗|p=v)≺α m(c∗), then
36: Update the incumbent c∗[p] := v
37: # Bracket Update (see Chapter 7.1.2)
38: if there is sufficient evidence for improvement, then
39: Expand/shrink the bracket, Bp
40: # Intensification (see Chapter 7.1.8)
41: Add instIncr random instances to Ip
42: else if each v ∈ Bp has been run on each i ∈ Ip, then
43: Add instIncr random instances to Ip
44: Append values to R and Q
45: # Offload tasks to the workers (see Chapter 7.1.8)
46: Queue new target algorithm runs as needed
47: return c∗
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7.1.1 Test for Significance (Permutation Test)

Algorithm performance measures are typically noisy, randomized objective func-

tions [88]. Therefore, a core component of GPS is a permutation test, which is

used to determine, in a distribution-free way, whether or not there is sufficient evi-

dence at a given significance level α to conclude that one parameter value is worse

than another. Let m(c∗|p=v1) ≺α m(c∗|p=v2) denote a significant difference, let

m(c∗|p=v1)≈α m(c∗|p=v2) denote a statistical tie, and let m(c∗|p=v1)�α m(c∗|p=v2)

denote that m(c∗|p=v1) ≺α m(c∗|p=v2) or m(c∗|p=v1) ≈α m(c∗|p=v2). Note that

m(c∗|p=v) is an estimate of the performance on a subset of I. If the intersection

of completed runs (technically: run equivalents – see Chapter 7.1.4) for m(c∗|p=v1)

and m(c∗|p=v2) is less than numInitInst, we skip the test and record m(c∗|p=v1)≈α

m(c∗|p=v2).

7.1.2 Expanding/Shrinking the Bracket

For a parameter p ∈ P, the bracket Bp is simply a set of values that are believed to

contain or bound the optimal value for p. Different rules for how to expand and

shrink the bracket are used for real-valued, integer-valued and categorical parame-

ters.

Real-Valued Parameters For real-valued parameters, the bracket updating proce-

dure is inspired by the golden section search algorithm [102], which provides opti-

mal worst-case performance for one-dimensional, uni-modal functions (an assump-

tion which we assume is true for most algorithms’ parameters – see Chapter 6). The

bracket contains two end points va and vb (believed to bound the optimal value)

and two interior points vc and vd , such that va < vc < vd < vb and vb−va
vd−va

= vb−va
vb−vc

=
√

5+1
2 ≡ φ (the golden ratio), which implies vd−va

vc−va
= vb−vc

vb−vd
= φ as well. Both an ex-

pand and shrink operation corresponds to replacing one parameter value in the set

{va,vb,vc,vd} with a new value. For example, we expand the bracket in the direc-

tion of va if we observe m(c∗|p=va) ≺α m(c∗|p=vc) �α m(c∗|p=vd ) �α m(c∗|p=vb),

where an expand operation corresponds to updating vd := vc and vc := va followed

by va := vc ·(φ +1)−vd ·φ . The value vb remains unchanged. Similarly, we shrink

the bracket around vc if we observe m(c∗|p=va) �α m(c∗|p=vc) ≺α m(c∗|p=vd ) �α
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m(c∗|p=vb), where a shrink operation corresponds to updating vb := vd and vd := vc

followed by vc := vb− vb−va
φ

. Note that GPS does not require that parameter values

stay within the maximum and minimum values specified in the parameter config-

uration space file. While this may lead GPS to evaluate configurations that cause

the algorithm to crash, it also allows GPS to recover from situations where the user

chose a poor maximum or minimum value.

Integer-Valued Parameters We use the same procedure as for real-valued param-

eters; however, parameter values are rounded to the nearest integer value not al-

ready contained in the bracket. Technically, this is similar to the Fibonacci search

algorithm [102] with a custom bracket initialization strategy (see Chapter 7.1.3).

Categorical Parameters The bracket Bp may contain any subset of the parame-

ter values available for p. When a bracket is shrunk, a value is simply removed

from the set. We perform this update as soon as we have seen sufficient evi-

dence that one value vbad ∈ Bp performs worse than the current incumbent (that

is, m(c∗)≺α m(c∗|p=vbad )). Parameter values may be re-added to the bracket if we

lose confidence in the target algorithm runs upon which we based this decision due

to parameter interactions (see Chapter 7.1.4).

7.1.3 Bracket Initialization

Real-Valued Parameters Existing algorithm configurators [7, 35, 87, 89] require

that a default, maximum and minimum value are provided. Our bracket initializa-

tion procedure guarantees that at least one of va,vb,vc and vd are the default value,

while making the bracket as large as possible, without exceeding the maximum

and minimum range. We further require that the golden ratio properties between

va,vb,vc and vd are satisfied (see Chapter 7.1.2).

Integer-Valued Parameters These brackets are initialized using the same proce-

dure as for real-valued parameters, with rounding.
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Categorical Parameters All parameter values are initially added to the bracket,

that is Bp =Vp.

7.1.4 Parameter Interactions (Decaying Memory)

Each time one of the concurrent search processes updates its incumbent parameter

value, the algorithm now contains stale performance measurements for the other

parameters. Instead of completely trusting or discarding this information, GPS uses

a heuristic to slowly forget stale information. For a target algorithm run performed

on instance i with configuration ci, we compute a weight, wi ∈ [0,1], which encodes

the amount of trust we have in the corresponding performance measurement. Let

c∗ be the current incumbent configuration and let ci be the configuration that was

the incumbent when the target algorithm run on i was performed. Then,

wi = decayRate∆(ci,c∗), (7.1)

where ∆(ci,c∗) denotes the difference between the previous incumbent ci and the

current incumbent c∗, and decayRate ∈ [0,1] is a parameter that controls how

quickly information is forgotten. Specifically,

∆(ci,c∗) =
√

∑
p∈Pi∩P∗

δ (ci[p],c∗[p])2, (7.2)

where Pi and P∗ denote the set of active parameters (see Chapter 7.1.5) in ci and c∗,

respectively and where δ (ci[p],c∗[p]) measures the difference in parameter values

ci[p] and c∗[p]. For numerical parameters,

δ (ci[p],c∗[p]) =
|ci[p]− c∗[p]|
|vmax− vmin|

, (7.3)

where vmax and vmin correspond to the maximum and minimum values for param-

eter p, respectively. For categorical parameters,

δ (ci[p],c∗[p]) =

0 ifci[p] = c∗[p],

1 otherwise.
(7.4)
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When performing permutation tests, we multiply the weights wi and w′i to com-

bine them for the target algorithm runs that approximately measure m{i}(c∗|p=v)

and m{i}(c∗|p=v′); this intuitively corresponds to adding the uncertainties associ-

ated with the respective performance estimates.

Throughout the following, we refer to the number of run equivalents performed

for a particular parameter value, which is simply the sum of the weights for the

target algorithm runs performed for that parameter value. Intuitively, this approxi-

mates the total number of reliable target algorithm runs for that parameter value.

7.1.5 Evaluating Conditional Parameters

Some parameters, known as conditional (or child) parameters, are only active if

their parent parameter is set to a certain value or set of values. With GPS, we

only allow parameters that have a single parent value that activates them (this only

affected one of the algorithms we studied, see Chapter 7.2). In practice, if there

are multiple parent values that activate a child, this can be encoded by creating

multiple copies of the child parameter, one for each parent value. To configure

a conditional parameter pc, with parent (or ancestor) pa, the value of pa must be

set to a specific value von. If c∗[pa] 6= von, then GPS will temporarily set c∗[pa] to

von when evaluating values of pc, that is, instead of evaluating m(c∗|pc=vc) it will

evaluate m(c∗|pc=vc, pa=von). If pa also has one or more ancestors, then each of these

are checked and set such that pa is active as well. An improvement to c∗[pc] will

not immediately improve m(c∗) when c∗[pa] 6= von, because the parameter value

will still be ignored. However, it will decrease the confidence in the old target

algorithm runs for m(c∗|pa=von) (see Chapter 7.1.4), which may eventually lead to

setting c∗[pa] := von.

7.1.6 Updating the Incumbent

GPS uses a conservative incumbent updating procedure, whereby an incumbent

parameter value is only updated if it is believed it improves the performance of the

incumbent configuration. This helps avoid over-fitting, losing confidence in old

target algorithm runs (see Chapter 7.1.4) and breaking things (on unseen instances)

that do not need fixing (on seen instances). GPS picks the incumbent for each
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parameter using a 7-step process. Steps 1–2 make sure that each candidate has

been run on a sufficient instance set and 3 checks to see if any challengers are

better than the incumbent. Steps 4–7 are a series of tie-breakers. The process

begins with all of the values in the bracket as candidates, and in each, a filter is

used to reject some of the candidates. Unless otherwise specified, if no candidate

remains at the end of a round, the previous incumbent is returned, and if only one

candidate remains, it becomes the new incumbent. Specifically, the steps are as

follows:

1. Admit candidates v with ≥ numInitInst run equivalents.

2. Admit candidates v that have been run on a (non-strict) super-set of the in-

stances upon which the last incumbent was run when it was chosen as the

incumbent.

3. Admit candidates v with statistically sufficient evidence of improved perfor-

mance compared to the previous incumbent, according to a permutation test,

that is, m(c∗|p=v)≺α m(c∗).

4. Admit candidates v that are not worse than any of the other candidates ac-

cording to the permutation test. If every candidate is eliminated (for exam-

ple, a triangle, m(c∗|p=va)≺α m(c∗|p=vb)≺α m(c∗|p=vc)≺α m(c∗|p=va), can

occur when each configuration is evaluated on different subsets of instances),

then skip this filter.

5. Admit candidates v with the best performance m(c∗|p=v).

6. Admit candidates v with the most run equivalents.

7. Select one of the remaining candidates uniformly at random.

7.1.7 “Adaptive” Adaptive Capping

An important component of many algorithm configurators, such as SMAC [89],

ParamILS [87] and irace [35], is a so-called “adaptive capping mechanism” that

selects running time cutoffs for individual target algorithm runs. This mechanism

is designed to avoid running a very poor configuration for a very long time on a
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single instance. All three previously mentioned configurators use a simple heuristic

for their adaptive capping mechanism, which is based on the performance of (one

of) the best known configuration(s) found so far. This mechanism can be easily

modified for use in GPS; for example, if m(·) = PAR10(·), then the adaptive cap is

calculated as

AC = PAR10(I∗∩Inew)∪{i′}(c
∗) · (|I∗∩ Inew|+1) ·BM

−PAR10I∗∩Inew(c
∗|p=vnew) · |I∗∩ Inew|,

(7.5)

where |I∗| and |Inew| denote the number of instances upon which c∗ and c∗|p=vnew

have each been evaluated so far, respectively; BM (the bound multiplier) is a con-

stant (typically set to 2); and where PAR10(·) denotes mean running time with

censored runs replaced by 10 times their running time cutoff.

However, this heuristic is overly aggressive, which causes high-quality chal-

lengers to be rejected before the permutation test used by GPS (see Chapter 7.1.6).

In fact, it often takes only a single unlucky target algorithm run for a challenger

to be prematurely rejected with this cap. Since GPS eliminates entire regions of

the configuration space after observing a poorly performing parameter value, such

a mistake can lead to a very large performance penalty for GPS’s final incumbent

(preliminary experiments indicated that slow-down factors of up to 10 were not un-

common). We therefore chose to modify the capping mechanism to make it even

more adaptive, by using a bound multiplier that depends on |I∗∩ Inew|.
We estimated safe values for BM(x) by performing a large number of repeated

simulations using two identical exponential distributions to simulate the running

times of two hypothetical algorithm configurations. We performed this analysis

for varying values of x, the number of independent runs of each simulated algo-

rithm configuration. We then calculated the ratio of the means for each pair of

running times for each value of x, to obtain a distribution of bound multipliers that

would not incorrectly lead GPS to reject one candidate as worse than the other.

Using these distributions for each x, we then calculated the 99.95% percentile of

the bound multipliers to obtain a bound multiplier that should work approximately

99.95% of the time (under the given assumptions). Finally, we plotted the data, per-

formed various log transforms, and then used the Levenberg-Mardquart algorithm
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to fit the function

f (x) = exp(7.21 · x−0.63), (7.6)

which provided a reasonably tight visual fit for the data, although we observed

that it slightly under-estimated new data that we generated for larger values of x.

Since this analysis makes several assumptions which may not hold for real-world

scenarios, we make the rule even more conservative by using

BM(x) = max(exp(7.21 · x−0.63),2), (7.7)

which ensures that it is never more aggressive than the original heuristic.

To incorporate the effects of the decaying memory (see Chapter 7.1.4), every-

where in Equation 7.5 we use the number of run equivalents instead of the size of

the instance sets (where we multiply the weights from m(c∗) and m(c∗|p=vnew) to

obtain a combined level of trust, as for permutation tests).

Finally, as soon as a run with a parameter value has exhausted an adaptive cap

for a single instance, we stop evaluating that value on new instances. Furthermore,

for the purposes of the permutation test (see Chapter 7.1.1), it is considered worse

than all other parameter values in its bracket which have not been capped.

7.1.8 Intensification & Queuing Runs

One of the most important components of algorithm configuration procedures are

intensification mechanisms [88, 89], which control the number of target algorithm

runs performed to evaluate each candidate configuration. Poorly performing con-

figurations can typically be eliminated using only a small number of runs, whereas

high-quality configurations require many more. It is also advantageous to use only

a small number of benchmark instances when comparing configurations at early

stages of the process (when the goal is to quickly distinguish between good and

very bad regions of the configuration space), and to increase this number slowly

as the search progresses. This is especially important in a parallel setting, where a

large number of target algorithm runs could otherwise be queued all at once for an

extremely bad configuration.

GPS addresses this with a two-part intensification mechanism: first, for each
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parameter p, GPS starts with a very small set of numInitInst random instances, Ip.

Each time Bp is updated, or when each v ∈ Bp has been evaluated on each i ∈ Ip,

the mechanism adds one randomly chosen instance (without replacement) to Ip. If

there are no more new instances to add to Ip, then GPS starts adding instances it

has already used with new random seeds.

The second component of the intensification mechanism is captured by how

many target algorithm runs GPS queues to be performed for each candidate. GPS

only queues target algorithm runs in powers of 2; that is, for parameter value v∈Bp,

we find the largest power q for which c∗|p=v has been run on at least 2q instances,

and then we queue all of the first 2q+1 instances in Ip that have not yet been queued.

If an old target algorithm run has become stale (w ≤ 0.05), then we also re-queue

that run. GPS does not queue any target algorithm runs for parameter values for

which there is sufficient information to reject those values as worse than the current

incumbent (unless it detects that the response for a given parameter is not uni-

modal, in which case it assumes that it does not yet have enough data to correctly

determine the ordering of the values and continues to queue runs for all of them).

Sets of target algorithm runs are pushed into the queue in a random order.

7.1.9 Bandit Queue

Often, only a small fraction of parameters for highly-parameterized algorithms

affect the algorithm’s performance (for example, see Chapter 6 or Falkner et al.

[58]). To avoid spending a large amount of time evaluating parameters that are

unimportant, GPS uses a multi-armed-bandit-style mechanism to determine the

order in which parameters are considered for queuing runs. GPS approximates the

relative importance of each parameter p by counting the number of times kp that

p has been updated in c∗. Since most parameters are unlikely to be updated more

than a small handful of times, we need a mechanism that increases the probability

of choosing a parameter very quickly (for example, exponentially). We therefore

start with a set P′ = P, and when we are picking a new parameter to evaluate, we

sample parameter pnext with probability

Fib(kpnext)

∑p∈P′ Fib(kpnext)
, (7.8)
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where Fib(k) is the kth Fibonacci number. If we sample a parameter that has not

been updated, then we remove it from P′ and pick a new sample. Once a parameter

has been picked that has been updated, or once P′ is empty, we reinitialize P′ = P.

7.1.10 Instance Increment

When algorithm runs can be performed very quickly (for example ≤ 10 CPU sec-

onds per run) or when there are lots of parallel resources available, then GPS may

be unable to keep the queue sufficiently populated to keep all of the workers busy.

To compensate, GPS dynamically updates the value for an instance increment,

instIncr. This is a multiplier used to make the operations in the intensification

mechanism (see Chapter 7.1.8) operate on batches of I instances.

To dynamically update instIncr, GPS periodically records the number of worker

processes, r, that are currently performing target algorithm runs and the number of

tasks, q, that are waiting in the queue. Let R and Q denote the sequences of these

recently recorded values. If median(Q) < max(R)
2 or median(Q) ≤ 4, then instIncr

is increased. If median(Q) ≥ 2 ·max(R), then instIncr is decreased. Otherwise,

instIncr is left unchanged. To allow instIncr to quickly respond to changes, the

value is always set to a positive Fibonacci number. We use max(R) to approxi-

mate the number of available workers, since GPS can operate with a dynamically

changing amount of parallel resources.

7.1.11 The Worker Process

The worker processes query a database for new target algorithm runs (that is, a

parameter p, a value v and an instance i). For each run, the worker calculates an

adaptive cap (see Chapter 7.1.7), creates a temporary entry in the database that is

set to expire in twice that run’s cutoff time, and then begins the target algorithm

run to obtain m{i}(c∗|p=v). Once the run is complete, the worker pushes the result

to the database and removes the temporary entry. The temporary entry is a back-up

designed to prevent GPS from stalling in the event of an unexpected crash occurring

for a worker process. Once the temporary entry expires, if the result has not been

pushed to the database, the master process will re-queue the run.
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7.2 Experimental Setup
We compared GPS to the latest versions of three other state-of-the-art general-

purpose algorithm configurators: SMAC 3.02 [89], GGA++ [7] and irace 3.3 [35].

Due to time constraints, we did not compare GPS to earlier versions of these con-

figurators, nor to ParamILS, since the authors of ParamILS and SMAC recommend

to use SMAC, unless there is sufficient budget available to use both.3 GPS, irace

and GGA++ all support parallel execution; for each run of these configurators we

used 8 CPU cores. Unfortunately, to the best of our knowledge, the parallel ver-

sion of SMAC [91] was never made publicly available; however, the quality of the

configurations found between independent runs of SMAC can vary substantially,

and it is typically recommended to exploit this via multiple independent parallel

runs of SMAC [91, 172]. The so-called standard protocol is to evaluate all of the

final incumbents on the entire training set and return the one with the best perfor-

mance [172]. We applied SMAC in precisely this way by performing 8 independent

runs of SMAC per scenario.

However, one may wonder whether the quality of the configurations obtained

by GPS also varies substantially, and if the standard protocol might also benefit

GPS. To answer this question, we performed 5 independent runs of each paral-

lel algorithm configurator (and 40 independent runs of SMAC) for each scenario.

From this single set of results, we then performed an analysis that simulates two

experiments: One small parallel budget experiment, where each parallel configu-

rator was run only once and SMAC was run 8 times in parallel; and a second large

parallel budget experiment, where each parallel configurator was run 3 times inde-

pendently in parallel (using a total of 24 cores each) and SMAC was run 24 times

in parallel. We then used bootstrap sub-sampling to simulate 1 001 independent

trials of each type of experiment to obtain median speedups and 95% bootstrap

percentile confidence intervals.

We evaluated the performance of the configuration procedures on six ACLib [94]

scenarios, which we summarize in Table 7.1. Four of these scenarios (LKH [82]

and EAX [132] on TSP RUE 1000-3000 instances, CaDiCaL [25] on circuit fuzz
2We chose to use SMAC 3 after checking with the authors and in light of the fact that all recent

publications regarding SMAC also use SMAC 3.
3Personal communication with the authors.
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Table 7.1: The ACLib benchmark scenarios studied and their numbers of nu-
merical and categorical parameters.

Problem Algorithm Instance Set # Num # Cat

TSP LKH TSP RUE 1000-3000 12 11
EAX TSP RUE 1000-3000 2 0

SAT CaDiCaL Circuit Fuzz 40 22
probSAT 7SAT90 4 5

MIP CPLEX Regions200 22 63
RCW2 22 63

SAT instances and CPLEX [1] on Regions200 MIP instances) were chosen, be-

cause they were among the scenarios that we identified as having “interesting”

parameter responses in the landscape analysis (see Chapter 6) that inspired GPS.

However, since we found that the EAX scenario had only a very minor possible

speedup available over the default configuration, we modified the default param-

eter values to make this scenario more interesting. In particular, we changed the

default for the population size from 100 to 418 and the number of children from 30

to 36. In this landscape work we also found that one of the parameters for LKH, the

number of backbone trials, had a non-unimodal response; we hypothesize that this

was because the value 0 had a special meaning (that a particular heuristic should

be disabled). Between the scenarios, there were 10 other parameters (1 other for

LKH, 9 for CPLEX) where the algorithm’s documentation indicated that a sim-

ilar special meaning was encoded in a particular value of a numerical parameter.

GPS makes strong assumptions about the structure of algorithm configuration land-

scapes, therefore, when using GPS, parameters should not be encoded in this way.

We therefore modified these two scenarios to introduce additional categorical par-

ent parameters that control whether or not the special value for the numerical child

parameter is used, or if the child parameter is otherwise used as normal. Finally,

since GPS is also only able to handle conditional parameters that are active when

their parents take on a single value (rather than a set or range of values), we further

modified two of the parameters of CPLEX by creating multiple copies of the child

parameter (this causes the number of parameters for LKH and CPLEX in Table 7.1

to differ from the respective AClib scenarios [94]).

To compare the performance of each configurator for different overall config-
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uration budgets, we performed the previously described analysis for the anytime

incumbent configurations after 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours and

24 hours. We note that for most of these scenarios, ACLib recommends to use 48

hours for each configurator run; however, we shortened this to 24 hours to keep

the total CPU time required for our experiments within our available budget. Even

with this reduced budget, for all but the final scenario (CPLEX on RCW2), at least

one of the configurators was still able to find a configuration with a significant

speedup over the default with high probability. However, for CPLEX on RCW2,

only SMAC and GPS returned configurations better than the default, and most of

these were found within approximately 3 minutes, that is, when the configurators

had not yet evaluated the configurations on enough instances to have any kind of

statistical confidence of an improvement. Since this scenario was more challeng-

ing than the others, we turned it into a stretch test for GPS by increasing the total

degree of parallelism from 8 cores per run to 32 cores per run for the parallel con-

figurators (and increased the total SMAC runs from 40 to 160). In the following,

we report the results for this more challenging setting.

All experiments were run on a cluster of 20 nodes, each equipped with 32 2.10

GHz Intel Xeon E5-2683 v4 CPUs with 40 960 KB cache and 96 GB RAM each,

running openSUSE Leap 42.1 (x86 64). We allotted 3 GB of RAM to each core

used by an algorithm configurator, and further restricted each target algorithm run

to a maximum of 3 GB of RAM. We measured the performance of each target

algorithm using penalized average running time 10 (PAR10), where censored runs

(runs unable to complete within their running time cutoff or within the 3 GB RAM

limit) are replaced with 10 times their running time cutoff. When evaluating the

configurations on the test set, we ran each configuration on each instance in random

order, to ensure that background environmental noise effects (for example, cache

effects or dynamic CPU clock speed changes, which are designed to avoid over-

heating) were independently and identically distributed.

7.3 Results
We encountered varying degrees of difficulty with each of the configurators we

used as baselines. For SMAC, 2.5% of the runs we performed terminated early
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after raising an uncaught exception. We treated these runs as if the final incumbent

found remained unchanged for all time budgets after the runs crashed. For all of

GGA++’s runs on the CPLEX scenarios, we provided 52 hour job allocations on

our cluster (which should provide ample slack for the 24-hour configuration bud-

get). However, GGA++ was unable to complete any of these runs within the 52

hours. Since GGA++ does not output any information about its anytime config-

urations until the very end of its runs, we were unable evaluate its performance

on these scenarios. We suspect GGA++ did not respect its configuration budgets

on these scenarios because the running time cutoffs for CPLEX are 10 000 sec-

onds, which is much larger than all the other scenarios and it does not use adaptive

capping or intensification mechanisms.

When we gave irace a wall-clock budget of 24 hours we quickly observed

that it used only a small fraction of the available budget before terminating. Ini-

tially, irace estimates the performance of the default configuration and uses this

to convert the remaining time budget into a target algorithm run budget, a num-

ber which it consistently under-estimated. Since we still had most of irace’s

computational budget remaining, we repeated all of these runs with a configura-

tion budget of 48 hours of wall-clock time and report the anytime results for these

instead. Nevertheless, 80% of irace’s runs terminated after using between 25-

75% of the available budget (and the rest used less – as little as 3%); however, we

had exhausted the computational resources we had available to evaluate irace,

therefore, we treat these runs similarly to SMAC’s crashed runs.

In Table 7.2 we show selected results using the large parallel budget analysis

method as described in Chapter 7.2. In particular, we compare the 24 hour config-

uration budget results (which is on the small end of a typical algorithm configura-

tion budget) with the 6 hour budget results (a time for which the best configurator

for each scenario has typically found a high-quality solution). While the absolute

and relative performance of each configurator varies a little between configuration

budgets, the results presented here nevertheless reflect the main trends for each

scenario. The remainder of the results are available as supplementary material in

Appendix A.4. We mark the median speedups in boldface if they are not statisti-

cally worse than the best speedup within each configuration budget according to a

permutation test with a 5% significance level.
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Table 7.2: Large parallel budget analysis speedups (medians and 95% confi-
dence intervals). Median speedups not worse than the best speedup for
each time budget according to a permutation test with a 5% significance
level are shown in boldface.

TSP SAT MIP
LKH EAX CaDiCaL probSAT CPLEX

TSP RUE 1000-3000 Circuit Fuzz 7SAT90 Regions200 RCW2

Configuration budget (excluding validation) = 6.0 wall-clock hours

GPS 1.20 [0.95, 1.20] 3.05 [2.82, 3.21] 1.41 [1.12, 1.41] 3.76 [1.93, 4.73] 1.16 [1.00, 1.31] 1.01 [1.00, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.62 [2.53, 3.55] 1.25 [1.09, 1.36] 4.90 [4.28, 13.41] 0.96 [0.77, 1.18] 1.26 [1.22, 1.27]
irace3.3 0.94 [0.92, 1.11] 2.48 [1.85, 3.38] 0.87 [0.83, 0.95] 4.90 [4.90, 13.06] 0.01 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 0.66 [0.58, 1.05] 0.61 [0.61, 0.61] 0.92 [0.89, 1.02] 7.14 [5.38, 8.58] – –

Configuration budget (excluding validation) = 24.0 wall-clock hours

GPS 1.21 [1.18, 1.28] 3.22 [2.36, 3.46] 1.44 [1.16, 1.55] 3.03 [1.93, 5.52] 0.68 [0.01, 1.12] 1.41 [1.09, 1.41]
SMAC3.0 1.00 [1.00, 1.00] 2.73 [2.62, 3.08] 1.36 [1.16, 1.60] 5.76 [4.28, 13.41] 1.18 [0.77, 1.23] 1.26 [1.22, 1.27]
irace3.3 1.03 [0.79, 1.14] 2.72 [2.33, 3.00] 0.90 [0.84, 1.01] 5.86 [4.97, 12.92] 0.01 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 1.02 [0.77, 1.11] 0.61 [0.61, 0.61] 1.02 [0.84, 1.02] 8.87 [6.73, 8.89] – –

When we compare the small parallel budget analysis results (available in the

supplementary material) to the large parallel budget analysis results, we can see

that all procedures tend to perform better using the large budget analysis and that

GPS performs best (relative to the other configurators) in the large budget results.

We therefore refer the reader to the supplementary material for the complete re-

sults, and discuss the 6 and 24 hour large budget analysis results in the remainder

of this chapter.

Overall, we can see that GPS consistently obtained the greatest median speedup

for three of the five scenarios with 8 cores per configurator run: LKH and EAX

on TSP RUE 1000-3000 instances, and CaDiCaL on circuit fuzz instances, with

SMAC finding similar-performing configurations for EAX at 6 hours and for CaD-

iCaL at 24 hours.

In some cases, the configurators returned incumbents with speedups less than

one. Most often, this is early on in the configuration process when the configu-

rators have not evaluated the configurations on enough problem instances to have

a good approximation of their final performance. However, it can also happen

for larger budgets. For example, for the CPLEX on Regions200 scenario GPS

initially obtains the best speedup, but then suffers from some performance degra-

dation, such that SMAC ends up winning for the 24 hour configuration budget. In

cases where GPS’s performance degrades with larger budgets, it is possible that
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GPS updated two parameter values in short succession. When this happens, GPS’s

new incumbent may initially not have been evaluated on any problem instances

due to the decaying memory heuristic (see Chapter 7.1.4). If the two parameters

have a strong compensatory interaction, then the double update may cause GPS

to over-shoot the basin of high-quality configurations, thus possibly leading to an

incumbent with substantially worse performance.

Nevertheless, the only 8 core scenario for which GPS did not perform compet-

itively with all (in fact any) of the other configurators was probSAT on the 7SAT90

instance set. GPS did find configurations with speedups greater than 3 for both

time budgets; however, the other procedures obtained even greater speedups. De-

spite this, GPS still managed to statistically tie for the 3 hour configuration budget.

However, this tie is primarily because poorly-performing configurations are unable

to complete a relatively large fraction of their runs within the running time cutoff,

which substantially increases their variance. For example, 10.44% of the runs of

the default configuration are censored.

For CPLEX on the RCW2 instance set (the stretch test, for which we provided

the parallel configurators with 32 cores per run instead of 8), we see that SMAC

initially finds the greatest speedup, but that GPS’s median speedup eventually sur-

passes SMAC. Surprisingly, we actually see that SMAC obtains exactly the same

speedups for all configuration budgets (see Table A.10). In fact, only 17.5% of

the runs of SMAC updated the incumbent after the first 3 minutes; however, 100%

of the runs updated the incumbent within the first 3 minutes. This indicates that

SMAC may be getting lucky by finding better-than-default configurations prior

to having any statistical confidence of their improvement. Therefore, these im-

provements are likely due to the standard protocol when applied to mostly-random

configurations.

Overall, GPS appears to be the top-performing configuration procedure, fol-

lowed by SMAC. However, one advantage shared by GPS, GGA++ and irace is

that they are all able to make use of parallel resources within individual configura-

tor runs, whereas SMAC must be run multiple times independently in parallel. In

Figure 7.1, we show the anytime speedups obtained by the four configurators such

that the x-axis includes both the configuration budget and the budget required to

validate the anytime incumbent configurations with the standard protocol (see also
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Figure 7.1: The anytime performance results comparing the four configura-
tors. The wall-clock budgets include both the configuration and valida-
tion budgets, where the validation budgets are assumed to be perfectly
parallelizable. Configurations obtained for a given configuration budget
(excluding validation time) are considered tied for best if the difference
between the median speedups is not significant according to a permuta-
tion test with a 5% significance level.
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Table A.12, which includes these combined configuration budgets). The time to

validate all of SMAC’s configurations is sometimes very large. The most extreme

example is for the six hour configuration budget for CPLEX on Regions200, where

GPS required 1.64 hours for validation and SMAC required 139.79 hours. While

there are also some less extreme examples – for example, the 0.08 vs 0.63 hours

required to validate the 24 hour configuration budget runs on LKH – SMAC al-

ways required more validation time overall. This becomes even more pronounced

for scenarios with large and difficult instance sets. An alternative is to perform

fewer independent runs of SMAC; this gives it less total parallel resources, but a

fair chance during validation. However, for challenging scenarios, this typically

yields worse performance for SMAC.

7.4 Chapter Summary
In this chapter, we introduced a powerful automated algorithm configurator, GPS,

designed to operate in parallel and exploit the insights gained throughout each

chapter of this thesis. In particular, in Chapter 6 we observed that algorithm con-

figuration landscapes for running time minimization are often uni-modal and typi-

cally contain relatively weak parameter interactions. However unlike in Chapter 5,

where we attempted to exploit similar structure by using simple classes of sur-

rogate models (which proved to be too simple), we instead combined coordinate

descent with golden section search [102], which obtains optimal worst-case per-

formance on one-dimensional uni-modal functions without attempting to model

the landscape.

We believe that our choice of coordinate descent worked well, because it is

very efficient in situations where parameters do not interact strongly. Furthermore,

in cases where the structure of the interactions is similar to the function f (x,y) =

|x−y|, coordinate descent can solve the problem quite efficiently by updating only

a single one of the parameters. This likely helped GPS perform well, given that

it is a type of structure that appears to be rather common among those parameters

that do interact.

We also attribute GPS’s success to two other key attributes: the permutation

test used to quickly reject poorly performing configurations (see Chapter 7.1.1)
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and our “adaptive” adaptive capping procedure (see Chapter 7.1.7), which does the

same without causing GPS to eliminate candidates without reasonable statistical

(or heuristic) confidence that it should do so. In particular, in some preliminary

experiments with an early version of GPS that used a fixed bound multiplier, we

observed that GPS frequently eliminated good configurations, which caused it to

get stuck in very poor regions of the configuration space.

Despite strong assumptions made by GPS about algorithm configuration land-

scapes – that is, that parameter responses are uni-modal and that most parameters

do not strongly interact – GPS found the best configurations in 5 out of 6 scenarios,

often at a fraction of the time budget required by other methods. For example, for

CaDiCaL on the circuit fuzz SAT instance set, GPS achieved a median speedup of

1.41 after a 6-wall-clock-hour configuration budget and 0.51 wall-clock hours for

validation, compared to SMAC, which obtained a speedup of 1.25 after a 6-wall-

clock-hour configuration budget and 4.79 wall-clock hours for validation. (Note

that SMAC actually obtained a slightly better speedup of 1.31 within a 1-hour

configuration budget; this phenomenon might be caused by SMAC’s incumbent

updating procedure, which does not make use of statistical tests for performance

improvements.)

In two cases, GPS exhibited undesirable behaviour, that is, premature stag-

nation for probSAT on the 7SAT90 instances, and returning substantially worse

configurations after more configuration time for CPLEX on Regions200. We sus-

pect that parameter interactions may have caused this behaviour, since GPS can

occasionally return incumbents which have never been evaluated on any instances

(see the discussion of the CPLEX on Regions200 scenario in Chapter 7.3). How-

ever, two possible ways to safeguard against such effects include increasing the

decay rate and using the standard protocol, which validates a set of final incumbent

configurations (see Chapter 2.3.3).

Nevertheless, despite the overall strong performance of GPS on running time

minimization algorithm configuration scenarios, we do not include an analysis of

its performance on AutoML scenarios. Due to GPS’s iterative nature and its strong

reliance on a permutation test to avoid prematurely rejecting poor configurations,

it is unclear how to effectively make use of low-fidelity estimates of configuration

performance. Since our preliminary experiments showed that exploiting this infor-
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mation is required to obtain state-of-the-art performance for AutoML, we do not

expect GPS to be competitive on AutoML scenarios. We performed some prelimi-

nary experiments that supported this hypothesis; however, we did not fully evaluate

GPS on the AutoML scenarios in Chapter 5 as it did not seem an effective use of

our limited computational budget.
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Chapter 8

Conclusion

In this thesis, we provided the first statistically-principled methods for analyzing

the structure of landscapes of optimization problems with stochastic objectives (see

Chapter 3). We applied these methods to study the landscapes arising in two very

important and prominent application areas of automated algorithm configuration:

automated machine learning (AutoML – see Chapter 4), and the configuration of

algorithms for solving NP-hard and NP-complete problems (see Chapter 6). To

exploit the insights we learned, we developed and analyzed three new automated

algorithm configuration procedures; two were designed specifically for AutoML

scenarios (see Chapter 5) and one for running time minimization (see Chapter 7).

8.1 Algorithm Configuration Landscape Analysis
Very little previous work has been done to analyze the landscapes of AutoML sce-

narios and running time minimization scenarios. However, a third application area

of automated algorithm configuration, the optimization of meta-heuristic perfor-

mance for solving optimization problems, had a small amount landscape analysis

done prior to the work for this thesis. The methods used to perform these prior

analyses lacked statistical sophistication; however, their results suggested that this

class of algorithm configuration landscapes may be relatively simple. Most no-

tably, their results provided some evidence that these landscapes may often be uni-

modal. If this structure is pervasive among algorithm configuration landscapes, it
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raises questions about why nearly all existing automated algorithm configuration

procedures rely on powerful meta-heuristics to explore the full extent of the land-

scapes of algorithm configuration scenarios. Indeed, in some early work in this

space, Pedersen [140] even showed that a simple configuration procedure that as-

sumes uni-modality of the landscapes can perform well for differential evolution

and particle swarm optimization, when configuring up to 9 numerical parameters

to improve the final incumbent’s solution quality.

We showed that nearly all of the AutoML loss landscapes and running time

minimziation landscapes we studied share the structural simplicity suggested by

these early studies on meta-heuristic configuration landscapes. Most notably, we

showed that all 18 of the landscapes we studied between the two application areas

appear to be very close to uni-modal. Our statistical tests only detected deviations

from uni-modality in three of these landscapes. Two of these cases were for the

loss landscapes of FCNet [103] (when applied to two different data sets); however,

in each case, those deviations from uni-modality were very small. In particular,

the sub-optimal modes in the landscape accounted for up to 0.03% of the land-

scape, indicating that even a weak perturbation strategy should be sufficient for

escaping such local minima. The remaining case was for LKH when solving TSP

RUE instances, for which a single value (BACKBONE TRIALS= 0) of a parameter

yielded a sub-optimal local minimum.

We also performed an analysis of the parameters in these landscapes. Most

notably, we showed that a simplistic configuration procedure that naı̈vely assumes

each parameter can be configured independently, a single time and in a random or-

der, can obtain surprisingly high-quality results. In particular, this procedure found

configurations that were statistically tied with optimal in every AutoML scenario

we studied as well as for 97% of the 201 two-dimensional parameter response

slices we studied for the running time minimization scenarios. This result sug-

gests that even though there can be strong interactions between some parameters,

these interactions still tend to be rather simple. Intuitively, we surmise that many

of these interactions that are both “simple” and strong, can be explained by the

compensatory interaction that we would expect to observe between the time and

temperature used to bake a cake. That is, if one is slightly larger than optimal the

other can compensate by decreasing slightly (see Figure 1.1).
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Apart from these general trends, we observed a small handful of examples of

more complex behaviour. For example, when Xgboost’s subsample parame-

ter is set to 0.5, the algorithm frequently exceeded its running time cutoff of 960

seconds. This lead to the presence of numerous “spikes” and “ridges” in an other-

wise relatively smooth landscape. In fact, their presence was not enough to form

sub-optimal modes, as they could be circumnavigated. Nevertheless, automated al-

gorithm configuration procedures must still be equipped to occasionally encounter

such artifacts, as they could otherwise cause the configurators to incorrectly as-

sume that certain directions in the landscape are unlikely to yield improvement.

For a more thorough discussion of this and some other oddities we observed, see

Chapter 4.

8.2 Algorithm Configuration Landscape Exploitation
Most algorithm configuration landscapes appear to be relatively simple. This result

suggests that their structure should be exploitable. To this end, we introduced three

new automated algorithm configuration procedures.

The first two configuration procedures were targeted specifically for AutoML

scenarios (see Chapter 5). In particular, we modified an existing state-of-the-art

hyper-parameter configuration procedure, BOHB [59], which combines Bayesian

optimization with Hyperband [113] – that is, a procedure for exploiting the low-

fidelity approximations uniquely ubiquitous among AutoML scenarios (see Chap-

ter 2.3.2). Our two variants of BOHB swapped out the Bayesian optimization com-

ponent in favour of simple surrogate models that could be used to guide the search

process: a convex quadratic approximation model (CQA) and a spline model. The

choice of the CQA model was motivated by our observation that AutoML loss

landscapes are often uni-modal. We chose the spline model because the interac-

tions of the hyper-parameters tended to be rather benign. In each case, we showed

that the models can perform well under ideal circumstances – that is, when the

landscape is symmetric around the global minimum or that there are no parame-

ter interactions, respectively. However, we also showed that even small deviations

from these conditions caused the new methods to perform poorly, thereby revealing

why they were not competitive on the realistic application scenarios.
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Furthermore, while traditional Bayesian optimization does improve over the

random search normally employed by Hyperband, we observed that because Hy-

perband is able to eliminate poorly performing configurations at a very low cost,

the performance gains that can be realized by a more efficient landscape search

procedure are likely to be relatively small. We therefore concentrated our efforts

on algorithm configuration procedures for minimizing the running time of algo-

rithms for solving NP-hard and NP-complete problems instead, where cheap,

low-fidelity approximations are typically not readily available.

To this end, we introduced a powerful automated algorithm configurator, GPS,

designed to operate in parallel and exploit our insights on running time mini-

mization landscapes. GPS combines essential ingredients of state-of-the-art algo-

rithm configuration procedures [35, 87, 89] with a simple one-dimensional brack-

eting procedure [102] applied to each parameter semi-independently in parallel.

We compared GPS to three state-of-the-art baselines, SMAC [89], irace [35] and

GGA++ [7] on six scenarios spanning TSP, SAT and MIP. Despite strong assump-

tions made by GPS about algorithm configuration landscapes – that is, that param-

eter responses are uni-modal and that most parameters do not strongly interact –

GPS found the best configurations in five out of the six scenarios, often at a fraction

of the time budget required by other methods.

However, in two cases, GPS exhibited undesirable behaviour – that is, prema-

ture stagnation and returning substantially worse configurations after more config-

uration time. We suspect that parameter interactions and/or sub-optimal plateaus

may be responsible for this behaviour; however, future work needs to be done to

determine how frequently this occurs in practice, and whether or not our hypothe-

ses are correct.

We believe that there are several essential ingredients underlying GPS’s suc-

cess. First, it exploits the frequent uni-modality of the parameter responses via

golden section search [102]. Second, it exploits the relative simplicity of param-

eters interactions, by configuring each parameter semi-independently in parallel.

Note that this strategy is effective if strong interactions do not exist, but also when

parameters have strong but still simple, compensatory relationships. And third,

it uses a novel adaptive capping mechanism (a procedure for picking a running

time cutoff for each target algorithm run), that is less likely to incorrectly reject
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high-quality configurations before there is sufficient evidence to do so. This final

component is particularly important for the running time minimization landscapes

of algorithms for solvingNP-hard andNP-complete problems, since they exhibit

high stochasticity in algorithm performance relative to the AutoML loss landscapes

that we studied in Chapters 4 and 5.

8.3 Promising Directions for Future Research
As with most lines of research, digging deeper resolves many questions but often

raises even more. We therefore see many promising directions for future improve-

ments to the work we have done, as well as numerous promising ideas for future

work.

8.3.1 Landscape Analysis for Randomized Objectives

A common theme among the new landscape analysis techniques we introduced

in Chapter 6 was their ability to handle the noisy and randomized performance

measurements that arise in the configuration of algorithms. To the best of our

knowledge, all other existing fitness landscape analysis techniques – even those

that have been applied specifically to algorithm configuration landscapes [42, 79–

81, 134, 142, 157, 179, 196] – incorrectly assume the performance of a given con-

figuration is deterministic.

In particular, we believe that no existing measure of ruggedness (for example,

see Harrison et al. [80], Stadler and Schnabl [167], Vassilev et al. [184] or Wein-

berger [187]) is adequate for the analysis of algorithm configuration landscapes.

Ruggedness generally relates the tendency of neighbouring candidate solutions to

yield similar solution quality. However, for algorithm configuration scenarios, re-

peated calls to the target algorithm typically yields different solution qualities. This

is often true even when the algorithm is used to solve the exact same set of problem

instances. Existing measures of ruggedness may still be useful if they are applied to

some population statistic (for example, the mean or median) of the algorithm’s per-

formance on a suitably large population of problem instances with a suitably large

number of independent runs of the algorithm on each problem instance. However,

we firmly believe that new measures of ruggedness must be defined that treat and
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quantify each dimension of variability separately: the variability between inde-

pendent runs of the algorithm on different problem instances, and the variability

between nearby candidate configurations.

Similarly, other existing methods for performing fitness landscape analysis

would benefit greatly from improved handling of this additional source of vari-

ance. For example, Treimun-Costa et al. [179] generated local optima networks

using BasicILS [88]. They assumed that when BasicILS’s local search procedure

stopped, it stopped at a local optimum. However, that local search procedure re-

lies only on a fixed number of independent runs of the target algorithm, and thus

those “local optima” may have merely been artifacts introduced by the variability

in performance measurements.

One potentially simple way to improve local optima networks for algorithm

configuration landscapes would be to adapt a statistical test to quantify the prob-

ability for which each vertex is in fact a local optimum compared to a random

artifact. This additional information would be extremely valuable: not only would

it help to quantify the likelihood that the full local optima network accurately de-

picts the global structure of the landscape, but it would also contrast that view with

a representation of the structure that a naı̈ve algorithm configuration procedure like

BasicILS believes is present in the landscape.

8.3.2 Low Fidelity Approximations

Perhaps the biggest limitation with our analysis of AutoML loss landscapes is that

we did not include any discussion of low-fidelity landscapes. That is, a low-fidelity

algorithm configuration landscape is the same as a typical algorithm configura-

tion landscape where the performance measurement for the algorithm has been

replaced by a low-fidelity approximation. For example, in Chapter 5, we obtained

low-fidelity approximations by decreasing the number of MCMC steps while train-

ing a Bayesian neural network or by decreasing the number of estimators used by

XGboost.

The main reason that we did not include an analysis of low-fidelity landscapes

in Chapter 4 is that most of the landscape data that was available for us to use sim-

ply did not contain the information necessary to perform this analysis. However,
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a better understanding of the extent to which low-fidelity algorithm configuration

landscapes resemble their full-fidelity counterparts would be immensely useful.

Clearly, the success of successive halving [95], Hyperband [113], ASHA [114]

and BOHB [59] indicates that there must be at least some similarity between low-

fideltiy landscapes and full-fidelity landscapes. However, while we observed that

the full-fidelity landscapes typically have relatively simple structure (for example,

uni-modality and simple parameter interactions – see Chapter 4), this may not nec-

essarily be true for their low-fidelity counterparts. For example, low-fidelity land-

scapes may have similar global structure to their full-fidelity counterparts; however,

they may also have substantially increased ruggedness, thereby introducing numer-

ous sub-optimal local minima. If true, this could serve as an additional explanation

for the relatively poor performance of the methods we introduced in Chapter 5 for

exploiting the structure of AutoML loss landscapes.

Furthermore, this finding would have a significant impact on the way in which

we believe the structure of AutoML loss landscapes could be exploited in future

work. For example, a simple adaptation of GPS (see Chapter 7) to support multi-

ple levels of fidelity would not be successful. Indeed, if the low-fidelity landscapes

prove to be highly rugged with numerous local minima then any method designed

to search these landscapes would need to make use of strong diversification mech-

anisms.

A second, but perhaps equally useful question to answer is the extent to which

different types of low-fidelity approximations yield landscapes that remain similar

for their full-fidelity counterparts. For example, it may be the case that decreasing

the number of training iterations [95] compared to decreasing the size of the train-

ing set [104] may yield low-fidelity landscapes that are either more or less similar

to their full-fidelity counterparts. In fact, the reality may be more nuanced; for ex-

ample, one type of low-fidelity approximation may tend to increase the ruggedness

of a landscape without substantially affecting the position of high-quality solutions.

A different type of approximation could instead cause the global shape of the land-

scape to change, thereby moving the high-quality configurations from one region

of the configuration space to another, while leaving the ruggedness of the land-

scape relatively unchanged. Insights such as these could help to further improve

methods which seek to make use of multiple types of low-fidelity landscapes, or

152



at least provide guidance regarding which types of low-fidelity approximations are

best suited for different types of configurators.

Another research direction that has the potential to be highly impactful is the

exploitation of low-fidelity approximations in applications other than those arising

in AutoML. However, the availability and applicability of a given method of obtain-

ing low-fidelity approximations of solution quality may vary substantially between

different algorithm configuration scenarios. Audet et al. [14] suggested that opti-

mization algorithms could be stopped early to obtain a surrogate function. Clearly,

this is an easy way that low-fidelity approximations could be obtained for anytime

optimization algorithms. However, it is also possible to imagine other methods

as well. For example, if configuring a sorting algorithm, it may be sufficient to

randomly sample a subset of the items being sorted. Similarly, for problems like

the TSP, it may be effective to randomly subsample cities from a given problem

instance in order to obtain one that is similar, but less costly to solve. Alterna-

tively, easier versions of bounded model checking SAT instances can be obtained

by simply unrolling the hardware circuits to smaller depths [150]. However, to

the best of our knowledge, all of these options remain almost entirely unexplored

for improving the performance of automated algorithm configuration outside of

AutoML.

While not motivated by our observations on low-fidelity approximations, we

spent some time working on a closely related problem. In particular, we searched

for features of a given problem instance that could be varied to control the difficulty

of individual problem instances, for example, the size of the problem instance.

We then hoped that by using methods related to those for empirical running time

scaling analysis (for example, see Mu and Hoos [130], Pushak and Hoos [150] or

Pushak et al. [152]) we could predict which configuration would perform well on

larger problem instances. More specifically, we hoped to identify which parameters

of an algorithm need to be modified to obtain configurations that scale well with

problem difficulty.

However, our results were mixed, with no clear indication that we had obtained

any method that could work robustly on a diverse set of application scenarios. In

hind sight, and in light of the success of existing methods in AutoML for exploit-

ing low-fidelity approximations, perhaps a more successful approach would be to
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search for features of a problem instance that can be varied such that the problem

difficulty can be scaled without needing to modify the parameters of an algorithm

in order to obtain optimal performance.

8.3.3 Other Objectives and Multi-objective Algorithm Configuration

In some applications, the running time of an algorithm may not be a huge concern

(provided that it stays within some reasonable limit). Similarly, there many not

necessarily be any meaningful notion of solution quality. For example, when the

target algorithm sorts a set of numbers, the resulting output is either sorted or it is

not. In these contexts, a very natural metric which may be useful to optimize is the

amount of energy that is consumed by running the algorithm, as this often directly

relates to the cost of running the algorithm. Energy consumption minimization is

particularly important in the context of mobile application development [188] and

data center operation [20].

One of the key challenges in minimizing the consumption of energy is in mea-

suring the energy that is used by the algorithm in isolation of other concurrently

running processes. A direct approach is to use a smart power meter that can mea-

sure and report the energy consumed by, for example, a laptop [177]; however,

obtaining accurate readings with such an approach requires minimizing all other

concurrent processes running on the machine. As a result, one of the most com-

mon practices is to use simple features to construct a model that can predict the

energy usage of an algorithm [60, 194, 197]. For example, Zhang et al. [197]

and Fan et al. [60] propose to simply predict energy as a function of CPU usage.

However, this method can clearly produce misleading results when an algorithm is

paralellized – particularly if it is parallelized across resources other than CPUs.

One potentially natural method for overcoming this limitation is to look at two

different measures of algorithm resource usage: the running time of the algorithm

and its average degree of parallelism when solving a particular problem instance.

Clearly, these metrics could be combined to produce a more accurate model of

energy consumption. Alternatively, they could both be used as two competing

objectives in a multi-objective algorithm configuration scenario, thereby allowing

the user to obtain a Pareto front of solutions that can trade off between running
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time and energy consumption.

In fact, multi-objective optimization is a very natural choice for many algorithm

configuration scenarios which can either include energy consumption as one of the

objectives (for example, see Balaprakash et al. [16], Gschwandtner et al. [74] or Ti-

wari et al. [177]) or those that focus only on other kinds of objectives (for example,

see Blot et al. [29] or Tari et al. [174]). However, to the best of our knowledge, no

existing multi-objective automated algorithm configuration procedure makes use

of insights from landscape analysis techniques. Indeed, the adaptation and appli-

cation of some of the recent advances in multi-objective fitness landscape analysis

techniques [48, 70, 85] remains a promising area for future research.

8.3.4 Additional Algorithm Configuration Landscape Analysis

In addition to improving algorithm configuration landscape analysis techniques,

there is still plenty of room for additional analysis using the methods we have

introduced in this thesis.

For example, our analysis contained only a limited number of scenarios with

categorical parameters. Overall, we observed that the effects of these categorical

parameters were relatively benign, in that they did not cause the landscapes to be-

come multi-modal. However, we speculate that this behaviour will not generalize

to, for example, the combinatorial landscapes induced by model and pre-processor

selection in machine learning pipelines. In particular, while a machine learning

method that uses model m1 might perform best with feature encoding mechanism

e1, it is not clear that e1 will be optimal for a qualitatively different machine learn-

ing method that relies on model m2. Therefore, if the choice for each pre-processor

and model are encoded as categorical hyper-parameters (as is often done, see for

example, Feurer et al. [63]) it is not clear that the neighbourhood relation we used

in this thesis will induce a uni-modal landscape.

In Chapter 4, we also observed that the FCNet landscapes were qualitatively

different from the rest that we studied. In particular, they exhibited surprisingly

large percentages of statistically significant high-order partial derivatives. Future

work should be done to investigate whether or not this behaviour should be at-

tributed to the fact that the FCNet landscape we studied may have been in the over-
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parameterized regime [19]. Given that we also saw relatively strong interactions

between two of the parameters of the Bayesian neural network that we configured

in Chapter 5, this seems to be at least a reasonable hypothesis.

Our new landscape analysis methods could also be applied to other similar al-

gorithm configuration problems. For example, another very common objective for

algorithm configuration is the solution quality returned by optimization algorithms

(for example, see Balaprakash et al. [15] or López-Ibáñez et al. [117]). Augment-

ing the existing analysis of these landscapes with our new statistically principled

techniques has the potential to bring similar insights and improvements to these

applications as well. Similarly, it would be useful to apply our analysis to more

scenarios from AutoML and for running time minimization, to determine whether

or not the observations we have made can be expected to be reproduced reliably

among many different applications, or whether or not there is some degree of vari-

ability among the landscapes, which would necessitate quantifying the frequency

with which exceptions occur or determining how they can be predicted without

performing such costly forms of analysis.

8.3.5 Extensions to GPS

Future work could combine multiple independent parallel runs of GPS with a rac-

ing procedure that evaluates the anytime incumbents of each GPS run as these runs

are performed. We believe that this could not only improve the performance of

GPS, but also remove the need for post-configuration validation. Such a procedure

could also be combined with a mechanism to detect stagnation and initiate random

restarts, if needed.

Given that we observed that most algorithm configuration landscapes appear

to be uni-modal, it may seem counter-intuitive for us to be recommending random

restarts, a diversification mechanism. However, one obvious failure mode for GPS

occurs in landscapes that contain a high degree of neutrality. In particular, we

expect this to occur for any scenario in which a large fraction of the landscape

contains poorly-performing configurations, thereby leading to censoring of the true

performance values. If GPS starts its search in any location for which two or more

parameters have bad default values, it is likely that GPS will fail to ever update
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its incumbent configuration. This is because GPS will see that by modifying each

parameter independently, no improvements to the performance can be obtained.

The detrimental effects of such stagnation in the presence of highly censored

landscapes may also be mitigated by modifying GPS to initialize its search pro-

cedure with random search. Random search been shown to be highly effective

under tight configuration budget constraints [59], which makes it a common ini-

tial search strategy for many configuration procedures (for example, see Ansótegui

et al. [7], Cáceres et al. [35], Falkner et al. [59] or Hutter et al. [89]). Initialization

with random search would also allow GPS to start off at a configuration that is

potentially much better than the default, thereby eliminating GPS’s dependence on

the quality of the default configuration.

Similarly, modifying GPS to make use of more general pattern search [178]

or mesh adaptive direct search [12] methods instead of coordinate descent may

help to improve the performance of GPS, both on landscapes with high degrees

of neutrality arising from censoring, and potentially also on landscapes with high

correlation among the high-quality values of two or more parameters. However,

one of the possible downsides of such adaptations is that GPS would no longer

be able to make use of golden section search to minimize the number of objective

evaluations that need to be performed at each iteration, which may outweigh the

benefits of searching along non-axis-aligned directions.

It may also be advantageous to improve GPS’s current bandit-queue procedure,

which helps GPS spend more time evaluating important parameters (see Chap-

ter 7.1.9). For example, consider the scenario where an important parameter is

initialized to a locally-optimal value, but for which compensatory parameter in-

teractions between it and another parameter mean that it will eventually need to

be updated to obtain optimal performance. In such cases, the first parameter may

initially appear unimportant, because it does not initially need to be updated. As

other parameters are updated, GPS’s bandit queue identifies them as important,

thereby decreasing the probability of selecting the first parameter exponentially.

This could lead to the first parameter never being evaluated during the later stages

of the configuration procedure. To help protect against this problem, a small but

constant fraction of the budget, for example 1%, could be reserved for evaluating

parameters that are believed to be unimportant. Alternatively, better methods for
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identifying which parameters are most important (for example, see Chapter 2.2.11)

could be adapted for use within GPS.

As stated in the introduction of Chapter 7, it may also be beneficial to include

interpolation in GPS’s bracketing procedure to help pick the next configuration to

evaluate, for example, using Brent’s method [34]. However, as indicated previ-

ously, we remain skeptical that this would be substantially beneficial, particularly

in the case of automated algorithm configuration for the minimization of running

time for algorithms that solve NP-hard and NP-complete problems, due to the

large variability in performance between independent runs of the algorithms. How-

ever, it may be more suitable for other types of objectives in other application sce-

narios, such as AutoML. Therefore, we believe that it is still a potential avenue for

improvement.

However, before GPS can be made a competitive option in AutoML scenarios,

it must be adapted to make use of low-fidelity approximations of configuration

performance. Future work should also be done to investigate the performance of

GPS on other algorithm configuration problems for solution quality minimization.

Furthermore, while we designed GPS with the goal that it would scale well to large

degrees of parallelism, all of the applications on which it has been applied so far

contained only a moderate degree of parallelism. It would be useful to perform

an extended analysis on configuration scenarios involving substantially increased

parallel computing resources.

Finally, it may be advantageous to extend GPS to allow for both soft and hard

bounds on numerical parameter values, since exceeding some bounds may lead

GPS to finding incumbents that produce incorrect output.

8.3.6 Explainability and Automated Algorithm Configuration

Recently, explainable artificial intelligence, and in particular, explainable machine

learning, has gained significant amounts of attention (for example, see Molnar

[128] and references therein). To the best of our knowledge, explainability has

not yet been adopted among the algorithm configuration community; however, we

believe that they are naturally complementary.

For example, the most obvious combination of the two uses methods for auto-
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mated machine learning to generate powerful (and potentially complex) machine

learning pipelines, and then uses explainability techniques to make the decisions

or predictions made by those pipelines more transparent to end users. Methods

for explaining the decisions made by complex machine learning pipelines, and in

fact, any powerful artificial intelligence tool, are increasingly important, as they

allow non-expert users to build trust in the complex, black-box AI technology that

they use. Explainability techniques also have a key role to play in any applications

where AI is used to make decisions that impact the lives of real people. In these

cases, there are an increasing number of regulations providing those impacted with

rights to explanations regarding why the particular AI system made a given deci-

sion regarding, for example, their application for a loan or permit.

While some of these situations may seem somewhat far removed from the top-

ics of this thesis, we also see many areas in which explainability can be used in

the context of algorithm configuration. For example, there exist numerous dif-

ferent methods for calculating the importance of features for a given machine

learning model. This can be done either globally (for example, Breiman [33] or

Frye et al. [68]) or locally (for example, Ribeiro et al. [155] or Štrumbelj and

Kononenko [169]). Clearly, any of these methods could be adapted for use to study

algorithm configuration scenarios in order to determine the importance of each

of the parameters, either globally or locally, thereby providing alternatives to the

methods discussed in Chapter 2.2.11. Similarly, techniques developed to help vi-

sualize the dependence of a machine learning model’s predictions upon individual

features (for example, see Apley and Zhu [8] or Friedman [67]) could be adapted

for the visualization of algorithm configuration landscapes (for some recent and

early work in this space, see Moosbauer et al. [129]).

The most straightforward way for any these methods to be applied to algorithm

configuration problems is through the use of a machine learning surrogate model

trained to predict the performance of the algorithm in question as a function of its

parameters. However, it may also be possible to adapt some of these methods to

bypass such a step, since many machine learning explainability techniques treat the

machine learning model as a black box function.
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8.4 Outlook
The landscape analysis techniques that we have developed and employed through-

out this thesis allowed us to obtain deep insights into the common patterns and

structure present in algorithm configuration landscapes. However, we believe that

we have only scratched the surface of what can be achieved through the study of

algorithm configuration landscapes.

Due to the substantial practical importance of techniques for automated al-

gorithm configuration, we believe that algorithm configuration landscape analysis

will attract significant attention in the years to come. In particular, future work

will be done that provides further support for (or perhaps against) the hypotheses

we have made regarding the common structure of algorithm configuration land-

scapes. Future work will also address other types of insights; for example, the

typical ruggedness of various kinds of algorithm configuration landscapes.

The algorithm configuration landscape analysis methods we have introduced

can help researchers to see which directions in the design space of algorithm con-

figuration procedures are likely candidates for improvements. Designing configu-

ration procedures that exploit specific types of landscape structure will necessitate

the creation of a variety of algorithm configurators with complementary strengths

and weaknesses. However, in their current form, our landscape analysis methods

remain prohibitively expensive to be useful as a means of selecting a given algo-

rithm configuration procedure for solving a particular algorithm configuration sce-

nario. Therefore, the logical next step from this line of research is to develop fea-

tures of algorithm configuration landscapes that can be cheaply computed, thereby

enabling an algorithm selection procedure [2, 18, 101, 119] to decide which au-

tomated algorithm configurator is most likely to produce high-quality results on a

given algorithm configuration scenario.

Nevertheless, we hope that our research – and the additional algorithm config-

uration landscape research it inspires – will lift the dense fog blanketing algorithm

configuration landscapes, thereby inspiring the next generation of automated algo-

rithm configuration procedures.
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Sciences de Paris, 25(1847):536–538, 1847. → page 47

[37] J. Cavazos and M. F. O’Boyle. Automatic tuning of inlining heuristics. In
Proceedings of the Eighteenth ACM/IEEE Conference on Supercomputing
(SC 2005), pages 14–14. IEEE, 2005. → page 4

[38] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the Twenty-Second ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD 2016), pages 785–794,
2016. → pages 68, 95

[39] T. Chen, E. Fox, and C. Guestrin. Stochastic gradient hamiltonian monte
carlo. In Proceedings of the Thirty-First International Conference on
Machine Learning (ICML 2014), pages 1683–1691. PMLR, 2014. → page
95

[40] C. W. Cleghorn. Particle swarm optimization: Understanding order-2
stability guarantees. In Proceedings of the International Conference on the
Applications of Evolutionary Computation (Part of EvoStar), pages
535–549. Springer International Publishing, 2019. → page 17

[41] C. W. Cleghorn and A. P. Engelbrecht. Particle swarm stability: A
theoretical extension using the non-stagnate distribution assumption.
Swarm Intelligence, 12(1):1–22, 2018. → page 17

[42] C. W. Cleghorn and G. Ochoa. Understanding parameter spaces using local
optima networks: A case study on particle swarm optimization. In
Proceedings of the Twenty-Third International Genetic and Evolutionary
Computation Conference Companion (GECCO 2021 Companion), pages
1657–1664, 2021. → pages 17, 150
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[195] Z. Yuan, T. Stützle, and M. Birattari. MADS/F-Race: Mesh adaptive direct
search meets F-race. In Proceedings of the Twenty-Third International
Conference on Industrial, Engineering and Other Applications of Applied
Intelligent Systems (IEA/AIE 2010), pages 41–50, 2010. → pages
16, 21, 40, 46

[196] Z. Yuan, M. A. M. De Oca, M. Birattari, and T. Stützle. Continuous
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Appendix A

Supporting Materials

A.1 Supporting Materials for Chapter 3
Theorem 1 (Correctness of Test for Uni-Modality). Let G′ = (V ′,E ′) be a neigh-

bourhood relation graph defined for a landscape that contains a set of pre-evaluated

configurations C, such that each configuration c ∈ C has a corresponding confi-

dence interval [m(c),m(c)] for the performance of the algorithm. If m(c∗)≤ m(c)

for all c ∈ C, and there exists c0 ∈ C that is not reachable from c∗, then no uni-

modal, piece-wise affine function exists that is contained within the confidence in-

tervals, and hence uni-modality can be rejected for the landscape.

Proof. Let c∗ be a global minimum of C, that is,

m(c∗)≤ m(c) for all c ∈C, (A.1)

and let c0 ∈ C be a configuration that is not reachable from c∗. Because this c0

exists, we cannot construct a piece-wise affine function that is contained within the

confidence intervals of C that also contains c∗ as a global minima. It remains to be

shown that this is a sufficient condition to conclude that no uni-modal, piece-wise

affine function exists that is contained within the confidence intervals of C.

Assumption. For eventual contradiction, assume that a piece-wise affine uni-modal

function does exists within the confidence intervals of C. This function must have
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Figure A.1: Illustration of the items used in the proof of correctness for the
test for statistically significant deviations from uni-modality.

at least one global minimum c′ ∈ C from which all other points c ∈ C must be

reachable. We will show (1) that there must exist a path p1 from c∗ to c′ and a

path p2 from c′ to c0 (see Figure A.1); however, since they cannot be concatenated

(otherwise c0 would be reachable from c∗), we will show (2) that c∗ must not have

been a global minimum of C, which is a contradiction.

Step 1. First, we show that there must exist a path p1 from (c∗,m(c∗)) to (c′,m1).

Since c∗ is reachable from c′, there must be a path p0 from (c′,m(c′)) to (c∗,m(c∗)).

Furthermore, based on the definition of reachability, the height of path p0 must

never exceed m(c∗), therefore m(c) ≤ m(c∗) for all c on p0. Combining this with

Equation A.1, we obtain

m(c)≤ m(c∗)≤ m(c) for all c on p0. (A.2)

Hence, we can clearly construct at least one path from c∗ to c′ with height less than

or equal to m(c∗) for all c on p0 that is the reverse of p0. Let p1 be the path from

(c∗,m(c∗)) to (c′,m1) with minimal height at all configurations c on p1. The final

height, m1, of p1 must be constrained by the lower bound of the configuration, c1,
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that has the smallest lower bound in p1, that is, m1 = m(c1)≤m(c) for all c on p1.

Combining this with Equation A.2, we have

m(c1) = m1 ≤ m(c∗). (A.3)

Step 2. Let p2 be the certifying path from (c′,m2) to (c0,m(c0)) with the maxi-

mum possible height for all configurations c on p2. The beginning height, m2, of

p2 must be constrained by the upper bound of the configuration, c2, that has the

smallest upper bound in p2, that is,

m2 = m(c2)≤ m(c) for all c on p2. (A.4)

Since c0 is not reachable from c∗, we must not be able to concatenate the paths p1

(from c∗ to c′) and p2 (from c′ to c0). This can only happen if the height, m1, at the

end of p1 is above the height, m2, at the beginning of p2, that is,

m2 < m1. (A.5)

Contradiction. Finally, combining Equations A.3, A.4 and A.5, we obtain

m(c2) = m2 < m1 ≤ m(c∗), (A.6)

that is,

m(c2)< m(c∗). (A.7)

However, this contradicts our precondition that c∗ is a global minimum of C (see

Equation A.1). Therefore, our original assumption must be false: no uni-modal,

piece-wise affine function exists within the confidence intervals of C. �

A.2 Supporting Materials for Chapter 4
In this section, we include the hyper-parameter grid used to evaluate Xgboost (see

Appendix A.2.1), we derive the maximum barrier height for a local minimum in
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online LDA’s landscape (see Appendix A.2.2), and we include several tables with

additional results from the analysis of the hyper-parameter interactions in the Au-

toML loss landscapes (see Appendix A.2.3).

A.2.1 Xgboost AutoML Loss Landscape Hyper-parameter Grid

The grid of hyper-parameters configurations we used to evaluate Xgboost on the

covertype dataset in Chapter 4 can be obtained by taking the cross product of the

lists of hyper-parameter values in Table A.1

Table A.1: XGBoost hyper-parameter grid.

Hyper-parameter Grid of Values

eta [0, 0.15, ..., 0.9]
gamma [0, 5, 10]
max dept [2, 6, 10]
min child weight [1, 10.5, 20]
max delta step [0, 5, 10]
subsample [0.01, 0.505, 1]
colsample bytree [0.5, 0.75, 1.0]
colsample bylevel [0.5, 0.75, 1.0]
lambda [1, 5.5, 10]
alpha [0, 5, 10]
num round [50, 150, 250]

A.2.2 Maximum Barrier Height for online LDA

Let ca be a configuration that is a sub-optimal local minimum with a corresponding

barrier cb, blocking it from the optimal configuration c∗. That is, cb is a configu-

ration with the smallest loss through which any path from ca to the c∗ must pass.

Technically, a barrier cb for a local-minimum ca is defined to be any configuration

such that

m(cb) = min
pca→c∗

max
c on p

m(c), (A.8)

where pca→c∗ denotes a path from ca to c∗.

Let the height of a barrier cb for local minimum ca be defined as

H(cb,ca) := m(cb)−m(ca). (A.9)
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Let s define the size of the intervals for a configuration c, that is,

m(c) := m(c) · (1+ s) and

m(c) := m(c) · (1− s).
(A.10)

If a test for uni-modality fails to reject its null hypothesis for a given interval

size s, then we can conclude that any barriers within the landscape must be small

enough that they are contained within the intervals (otherwise uni-modality would

be rejected). Therefore, the value s can be used to calculate an upper-bound on the

height of any barriers in the landscape.

Theorem 2 (Maximum Barrier Height). Any interval size, s < 1, for which the

landscape cannot have uni-modality rejected, bounds the height, H(cb,ca), of any

barrier, cb, for any local minima, ca, such that

H(cb,ca)≤ m(ca) ·
(

1+ s
1− s

−1
)
. (A.11)

Proof. By definition, since interval size s yields a landscape for which uni-modality

cannot be rejected, we know that ca must be reachable from c∗, and hence

m(cb)≤ m(ca) ⇐⇒ 0≤ m(ca)−m(cb). (A.12)

Trivially,

H(cb,ca) = m(cb)−m(ca)

≤ m(cb)−m(ca)+(m(ca)−m(cb))

≤ (m(cb)−m(cb))+(m(ca)−m(ca)) .

(A.13)

From the definition in Equation A.10, we know that

m(cb)−m(cb) = s ·m(cb) and

m(ca)−m(ca) = s ·m(ca),
(A.14)
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which we can substitute into Equation A.13 to obtain

m(cb)−m(ca)≤ s ·m(cb)+ s ·m(ca). (A.15)

By re-arranging and solving for m(cb) we obtain

m(cb)≤ m(ca) ·
1+ s
1− s

, (A.16)

which we can plug back into the definition in Equation A.9 to obtain the desired

result. �

Using Theorem 2, and the fact that a confidence interval of size s = 0.0136

yields a landscape for online lDA for which uni-modality cannot be rejected, we

know that the maximum height of any barrier for any sub-optimal local minimum

in the landscape can be no more than
(1+0.0136

1−0.0136 −1
)
≈ 0.0276 times the height of

the local minima.

A.2.3 Extended Hyper-Parameter Interaction Results

In Table A.2 we show the results of our analysis on the two-dimensional slices of

the landscapes. Throughout the remainder of the tables, we denote by “–” a re-

sult does not exist because there are not enough hyper-parameters to compute the

indicated quantity. In the case of the higher-order interaction tables wherein we

excluded the worst 50% or 75% of the landscapes, we denote by “nan” the scenar-

ios for which the exclusion of the indicated fraction of the configurations resulted

in us being unable to calculate any of the indicated partial derivatives because all

of them contained at least one such censored configuration. In Table A.3 we show

the remaining partial derivative significance summary for the scenarios with more

than seven hyper-parameters. In Table A.4 we show the sum of the variance ex-

plained by each order n of hyper-parameter interactions for each landscape. In

Tables A.5, A.6, A.7 and A.8 we show the same analysis used to determine the

fraction of the landscapes with locally significant partial derivatives of various or-

ders; however, in the first and second two sets of tables we drop the worst 50% and

75% of the configurations from the analysis, respectively.
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Table A.2: The mean percentage of locally significant hyper-parameter inter-
actions based on an analysis of the partial derivatives (Sig ∂ 2), the 2nd
order fANOVA scores (fANOVA), and the mean probability of obtain-
ing a configuration that is tied with optimal if each hyper-parameter is
configured once sequentially in a random order (Tied w Opt). All results
are for the two-dimensional hyper-parameter response slices centered
around the global optima of the AutoML loss landscapes.

Type # Slices Model Dataset Interval Sig ∂ 2 fANOVA Tied w Opt

N×N 15 FCNet NP 95% 52.80% 15.05% 76.67%
PS 95% 54.56% 4.26% 76.67%
PT 95% 50.56% 10.20% 83.33%
SL 95% 61.53% 11.36% 86.67%

3 LSSVM UP 95% 1.78% 5.38% 83.33%
6 LogReg MNIST 95% 20.97% 10.17% 91.67%

55 XGB CT 95% 20.91% 9.35% 84.55%
3 OLDA Wiki ± 8.70% 0.00% 16.61% 100.00%

± 0.16% 75.81% 16.61% 50.00%
± 0.00% 100.00% 16.61% 50.00%

N×C 18 FCNet NP 95% 63.89% 18.95% 72.22%
PS 95% 60.93% 4.14% 80.56%
PT 95% 43.89% 15.15% 72.22%
SL 95% 63.70% 15.26% 86.11%

C×C 3 FCNet NP 95% 0.00% 17.24% 66.67%
PS 95% 33.33% 3.38% 100.00%
PT 95% 66.67% 28.60% 50.00%
SL 95% 33.33% 2.81% 83.33%

Table A.3: The hyper-parameter partial derivative significance result sum-
mary – part 2.

Model Dataset Interval 7th 8th 9th 10th 11th

FCNet SL 95% 22.05 21.08 19.80 – –
PS 95% 23.23 23.36 23.80 – –
NP 95% 23.92 23.70 24.27 – –
PT 95% 22.24 22.05 20.20 – –

XGB CT 95% 2.92 2.97 3.05 3.14 3.04

A.3 Supporting Materials for Chapter 6
In this section, we show figures of the remaining one-dimensional parameter re-

sponse slices not shown in Chapter 6 (see Appendix A.3.1), we include a discus-

sion of the results of applying our tests for uni-modality and convexity to the one-

dimensional parameter response slices on the individual problem instances (see
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Table A.4: The hyper-parameter fANOVA importance result summary.

Model Dataset 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

FCNet SL 0.44 2.80 9.75 20.46 27.13 23.03 12.20 3.70 0.49 – –
PS 4.50 8.88 14.22 15.50 16.13 17.01 14.68 7.63 1.46 – –
NP 0.15 0.48 2.58 9.05 20.21 28.58 24.69 11.85 2.41 – –
PT 0.27 0.82 3.36 10.53 21.58 28.27 22.82 10.34 2.01 – –

XGB CT 58.94 12.96 14.47 9.24 3.70 0.24 0.15 0.14 0.10 0.11 0.02
LogReg MNIST 76.25 21.89 1.76 0.11 – – – – – – –
LSSVM UP 87.39 11.59 1.01 – – – – – – – –
OLDA Wiki 70.16 29.50 0.34 – – – – – – – –

Table A.5: The hyper-parameter partial derivative significance excluding the
worst 50% of the configurations – part 1

Model Dataset Interval 1st 2nd 3rd 4th 5th 6th

FCNet SL 95% 74.72 49.51 36.26 30.36 27.40 25.63
PS 95% 81.17 50.58 33.46 26.70 23.98 23.05
NP 95% 64.97 43.78 33.42 28.40 26.01 24.56
PT 95% 77.29 50.04 32.37 25.60 22.90 21.84

XGB CT 95% 54.98 13.41 4.34 3.44 3.36 3.36
LogReg MNIST 95% 32.70 11.18 4.79 3.01 – –
LSSVM UniProbe 95% 6.42 0.00 0.00 – – –
OLDA Wiki ± 1.36% 41.92 0.42 0.00 – – –

± 5.10% 1.23 0.00 0.00 – – –

Appendix A.3.2), and we discuss a more in-depth analysis of the results for the

FDC of the one-dimensional parameter response slices that uses bootstrap confi-

dence intervals (see Appendix A.3.3).

A.3.1 Remaining Interesting Parameter Response Slices

We plot the 14 additional interesting one dimensional parameter response slices for

the running time minimization algorithm configuration scenarios in Figures A.2

and A.3.

A.3.2 Uni-Modality and Convexity on Individual Instances

Since algorithm configuration landscapes are in fact comprised of the mean re-

sponse to parameters over a set of instances, we ran our tests for convexity and

uni-modality on the one-dimensional parameter response slices for each individual

problem instance in the running time minimization scenarios to determine to what
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Figure A.2: From left to right and top to bottom: CaDiCaL’s keepsize,
reduceinc, reduceinit and restartmargin on the circuit-
fuzz instance set and restartmargin on the BMC08 instance set;
and, LKH’s EXTRA CANDIDATES, MAX CANDIDATES and MOVE -
TYPE on the TSP-RUE-1000-3000 instance set.
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Figure A.3: From left to right and top to bottom: EAX’s Nch on the TSP-
RUE-1000-3000 instances; and CPLEX’s mip limits aggforcut
and mip limits cutpasses on the capacitated lot sizing (CLS)
instances and mip limits cutsfactor, mip strategy rin-
sheur and simplex refactor on the Regions200 instances.
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Table A.6: Hyper-parameter partial derivative significance excluding the
worst 50% of the configurations – part 2

Model Dataset Interval 7th 8th 9th 10th 11th

FCNet SL 95% 24.43 25.36 26.74 – –
PS 95% 23.11 24.60 22.00 – –
NP 95% 24.07 23.53 33.33 – –
PT 95% 21.98 23.34 21.05 – –

XGB CT 95% 3.41 3.47 3.51 3.40 3.70

Table A.7: Hyper-parameter partial derivative significance excluding the
worst 75% of the configurations – part 1.

Model Dataset Interval 1st 2nd 3rd 4th 5th 6th

FCNet SL 95% 75.30 50.46 35.61 29.34 26.52 23.74
PS 95% 81.34 51.28 32.41 26.60 24.65 nan
NP 95% 63.91 43.22 32.76 27.36 nan nan
PT 95% 72.67 46.60 30.42 24.86 nan nan

XGB CT 95% 64.86 15.53 3.95 3.35 3.28 3.26
LogReg MNIST 95% 38.25 14.34 6.44 3.82 – –
LSSVM UniProbe 95% 6.11 0.00 0.00 – – –
OLDA Wiki ± 1.36% 11.70 0.00 0.00 – – –

± 5.10% 0.00 0.00 0.00 – – –

extent our results hold for individual problem instances. While less useful than our

analysis on of the landscapes on the entire instance sets, this analysis nevertheless

provides additional insights into algorithm configuration landscapes for running

time minimization scenarios.

We consider the parameters independently by looking at statistics of their re-

sponses on each instance. For example, on the left pane of Figure A.4 we plot a

cumulative distribution function (CDF) showing on the y-axis the percentage of pa-

rameters that had convex responses on a percentage of instances less than or equal

to the value specified on the x-axis. Surprisingly, there is a large percentage of

parameters with convex responses slices for most instances. However, nearly half

of the parameters with interesting response slices on the entire instance set tend to

have much fewer convex parameter responses on the individual instances. Our pro-

cedures (outlined in Chapters 3.2.1 and 3.2.3), sometimes assume uni-modality or

convexity when there is insufficient data to perform a test because too many of the

parameter values yielded running times above the running time cutoff. On average,
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Table A.8: Hyper-parameter partial derivative significance excluding the
worst 75% of the configurations – part 2.

Model Dataset Interval 7th 8th 9th 10th 11th

FCNet SL 95% nan nan nan – –
PS nan nan nan – –
NP nan nan nan – –
PT nan nan nan – –

XGB CT nan nan nan nan nan

over all parameters, this happened for only 6.2% of the instances we considered

(the parameter for which this happened the most had 16.9% of the instances with

too few un-censored data points). Hence, even if all of these cases were instead

assumed to be non-unimodal or non-convex, our overall results would not be sub-

stantially different.

Furthermore, looking at the CDF of the average numbers of modes for each

instance parameter response slice on the right pane of Figure A.4, we see that just

under 50% of the interesting parameters have an average of more than one mode

for their individual problem instance responses. On the other hand, most of the

parameters have an average of only one mode per instance, which is consistent

with the fraction of parameters with primarily convex instance response slices.

Overall, there are a surprisingly large number of parameter response slices that

are both uni-modal and convex on most or all of their individual problem instances.

In Table A.9, we show a summary of these results. For comparison, we also include

the corresponding results for the one-dimensional parameter responses on entire in-

stance sets. Note that for the aggregate instance set parameter responses, we show

the percentage of uni-modal and convex parameter response slices observed on

different instance sets, whereas for the individual instances, we first computed the

percentage of instances with uni-modal and convex responses for each parameter,

and then report the average percentages over the set of all parameters.

Our analysis of the fitness distance correlation coefficient (FDC) for the param-

eter response slices supports our hypothesis that parameter responses on individual

instances are more rugged than the aggregate responses on entire instance sets. In

particular, we found that 80% of the parameters have an average instance response

slice FDC less than 0.25, compared to 0.41 for the instance set responses. How-
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Figure A.4: Cumulative distribution functions (CDFs) that summarize our
findings for the parameter response slices on individual instances. Left:
for each parameter we computed the percentage of instances on which
it had a convex response, and then we plot the CDF of these percent-
ages; right: the CDF of the average number of modes observed in the
responses for a parameter on each instance.

Table A.9: Left: the percentages of uni-modal and convex parameter re-
sponse slices on entire instance sets; right: we computed the percent-
age of instances with convex or uni-modal responses for each parameter,
and then show the average percentages over the parameters – that is, we
show the percentage of convex and uni-modal responses for an “average”
parameter on individual problem instances.

Instance Sets Single Instances
% Uni-M % Cvx % Uni-M % Cvx

All Parameters 99.5 99.5 95.3 92.6
Interesting Parameters 94.4 94.4 76.1 66.1

ever, through manual inspection of the instance parameter slices, we found that

some responses obtained low FDC scores simply because they are relatively flat

(hence deviations in parameter value have low correlation with deviations in algo-

rithm performance). Still, the high average numbers of modes observed for some

of the parameters indicate that these responses are truly rugged.

To check that these were not spurious results, we performed exact replicates

for three scenarios that were near the Pareto front of the largest average num-

ber of modes and the smallest average FDC: CaDiCaL’s posize and elimint

on circuit-fuzz instances, and CPLEX’s mip limits cutpasses on CLS in-

stances. Then, for each parameter, we chose three instances near to their respective
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Pareto fronts. Through manual inspection of the original and replicate parameter

responses in Figures A.5 and A.6, it is clear that in all cases the replicates were

qualitatively similar to the original ones.

These results show that the parameter response slights on individual instances

are somewhat more rugged than their counterparts on the full instance sets. This

observation suggests that future work should be done to search for alternative forms

of low-fidelity estimates of parameter configuration performance for running time

minimization scenarios (as suggested in Chapter 8.3.2). If an alternative means

of estimating configuration performance can be found for many scenarios, it may

produce landscapes that are less rugged than these. Since less rugged landscapes

are easier to optimize, such efforts may result a more effective means of reduc-

ing the cost of automated algorithm configuration for these scenarios than racing

procedures alone can provide.

A.3.3 FDC Analysis with Bootstrap Confidence Intervals

In the left of Figure A.7 we plot the CDF of the FDC for the one-dimensional

parameter response slices on the entire instance sets. Surprisingly, the variance

in the FDC across the bootstrap samples of the parameter slices is very high and

the median FDC is relatively low for most parameters, for example, 80% of the

parameter responses have their median FDC less than 0.41. This large variance in

the FDC indicates that the variation among the parameter responses on individual

instances is quite high, meaning that the aggregate response on the instance set,

and hence the FDC, depends strongly on the instances in a particular bootstrap

sample. However, we can also see that the FDC tends to be higher for parameters

with interesting, non-flat responses. As a result, we believe that the relatively low

FDC values are primarily due to relatively small fluctuations occurring in large, flat

regions of the parameter responses (which tend to occur for most parameters).

Despite the fact that many of the individual instance parameter response slices

appear to be uni-modal and convex, we see in the right of Figure A.7 that the

average FDC for many of the parameters is quite low, for example, 80% of the

parameter response slices have an average instance FDC less than 0.25. while

some of the instance parameter response slices have negative FDCs, this does not
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Figure A.5: Replicates of rugged parameter response slices for CaDiCaL’s
elimint and posize on three circuit-fuzz instances each. From top
to bottom and left to right: elimint on fuzz 100 634.cnf, fuzz 100 -
30719.cnf and fuzz 100 9873.cnf; and posize on fuzz 100 5082.cnf,
fuzz 100 29685.cnf and fuzz 100 16079.cnf.
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Figure A.6: Replicates of rugged parameter response slices for CPLEX’s
mip limits cutpasses on three capacitated lot sizing in-
stances. From top to bottom and left to right: the in-
stances named cls.T90.C3.F200.S3.mps, cls.T90.C3.F1000.S5.mps
and cls.T90.C5.F200.S5.mps.

necessarily indicate that they are highly rugged (consider 1
x + log(x), which has

very high values close to the right of the optimum near 2 and relatively low values

far to the left of 2). However, given that the bootstrap confidence intervals for the

FDCs are very small compared to those for the instance set parameter responses, we

can infer that the ruggedness we observe on individual instances is more often truly

reflective of the nature of the parameters’ responses, rather than being simply due

variation between independent runs of the algorithms. We can again see that the

parameters with interesting responses (on the instance sets), tend to have individual

instance responses with a higher FDC, again indicating that some of the low FDC

scores we are seeing are due to relatively flat regions of the parameter responses.
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Figure A.7: Left: the CDF of the median and 95% confidence interval of the
FDC coefficients of the parameter response slices on the entire instance
sets; right: for each parameter we took the average FDC over each
of the individual instance parameter response slices and we show the
resulting CDF of the average median and 95% confidence intervals.
The confidence intervals are based on bootstrap sampling.

A.4 Supporting Materials for Chapter 7
In Table A.10 we show the results from performing the large parallel budget anal-

ysis (see Chapter 7.2) for all of the anytime configurations that we evaluated. In

Table A.11 we show the same results, but using the small parallel budget analysis

(see Chapter 7.2). In both of these tables, we mark in boldface the configurations

with speedups that are not statistically worse than the best speedup within each

cell, according to a permutation test with a 5% significance level.

While each configuration procedure had the same total configuration budget

within in cell, this does mean that they all required the same amount of time to

validate the configurations. Table A.12 shows the total wall clock time (in hours)

for configuration and validation for our large parallel budget analysis. These num-

bers assume that the validation times can be perfectly parallelized using the same

number of processors as used during configuration. We also show the same results

for the small parallel budget analysis in Table A.13. However, we note that in this

case, since SMAC is the only configurator that requires validation of a set of con-

figurations, all the other methods required exactly the configuration budget times.

Rather than highlighting the configurators which had the smallest validation times,

in these tables we mark in boldface the corresponding entries to the tables above.

That is, to compare the configuration + validation budget of only the configurators
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Table A.10: The large parallel budget analysis speedups (with medians and
95% confidence intervals). Median speedups not worse than the best
speedup for each time budget according to a permutation test with a
5% signifance level are shown in boldface.

TSP SAT MIP
LKH EAX CaDiCaL probSAT CPLEX

TSP RUE 1000-3000 Circuit Fuzz 7SAT90 Regions200 RCW2

Configuration budget (excluding validation) = 0.5 wall clock hours

GPS 1.00 [0.92, 1.05] 2.13 [2.13, 3.55] 1.11 [1.00, 1.33] 2.26 [2.26, 2.26] 1.03 [1.00, 1.03] 1.03 [0.99, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.83 [2.49, 2.95] 1.25 [1.09, 1.36] 6.72 [5.57, 16.60] 1.00 [0.95, 1.22] 1.26 [1.21, 1.27]
irace3.3 1.00 [1.00, 1.00] 2.67 [2.08, 2.81] 0.94 [0.13, 0.94] 9.50 [4.91, 9.50] 1.00 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 0.59 [0.37, 0.72] 0.61 [0.61, 0.61] 0.84 [0.75, 0.85] 7.30 [5.86, 8.89] – –

Configuration budget (excluding validation) = 1.0 wall clock hours

GPS 0.99 [0.92, 1.00] 3.14 [3.05, 3.38] 1.11 [1.00, 1.33] 2.26 [2.26, 3.76] 1.00 [1.00, 1.05] 1.04 [0.99, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.63 [2.49, 3.10] 1.33 [1.16, 1.36] 7.10 [6.72, 16.60] 1.00 [0.85, 1.02] 1.26 [1.21, 1.27]
irace3.3 1.00 [1.00, 1.00] 2.81 [2.67, 3.09] 0.68 [0.13, 0.94] 6.92 [4.91, 9.50] 0.37 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 0.60 [0.43, 0.65] 0.61 [0.61, 0.61] 0.85 [0.75, 1.02] 7.30 [5.86, 8.89] – –

Configuration budget (excluding validation) = 3.0 wall clock hours

GPS 1.00 [0.94, 1.20] 3.05 [2.36, 3.21] 1.35 [1.00, 1.44] 3.76 [1.93, 4.73] 1.05 [0.95, 1.30] 1.05 [1.00, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.65 [2.62, 3.55] 1.25 [1.09, 1.36] 7.73 [4.28, 13.41] 1.00 [0.91, 1.18] 1.26 [1.22, 1.27]
irace3.3 1.00 [0.76, 1.00] 2.17 [2.17, 2.81] 0.87 [0.84, 0.98] 7.01 [4.81, 8.95] 1.00 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 0.72 [0.54, 1.01] 0.61 [0.61, 0.61] 0.89 [0.81, 1.02] 7.30 [5.86, 8.89] – –

Configuration budget (excluding validation) = 6.0 wall clock hours

GPS 1.20 [0.95, 1.20] 3.05 [2.82, 3.21] 1.41 [1.12, 1.41] 3.76 [1.93, 4.73] 1.16 [1.00, 1.31] 1.01 [1.00, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.62 [2.53, 3.55] 1.25 [1.09, 1.36] 4.90 [4.28, 13.41] 0.96 [0.77, 1.18] 1.26 [1.22, 1.27]
irace3.3 0.94 [0.92, 1.11] 2.48 [1.85, 3.38] 0.87 [0.83, 0.95] 4.90 [4.90, 13.06] 0.01 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 0.66 [0.58, 1.05] 0.61 [0.61, 0.61] 0.92 [0.89, 1.02] 7.14 [5.38, 8.58] – –

Configuration budget (excluding validation) = 12.0 wall clock hours

GPS 1.20 [1.01, 1.22] 3.21 [2.82, 3.21] 1.51 [1.31, 1.54] 3.03 [1.93, 5.52] 0.14 [0.14, 0.18] 1.11 [1.00, 1.33]
SMAC3.0 1.00 [1.00, 1.00] 2.93 [2.62, 3.08] 1.26 [1.16, 1.36] 4.90 [4.28, 13.41] 1.18 [0.78, 1.23] 1.26 [1.22, 1.27]
irace3.3 1.03 [0.79, 1.14] 2.72 [2.33, 3.00] 0.90 [0.84, 1.01] 5.86 [4.97, 12.92] 1.00 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 1.01 [0.77, 1.01] 0.61 [0.61, 0.61] 0.91 [0.87, 1.02] 8.87 [4.35, 19.84] – –

Configuration budget (excluding validation) = 24.0 wall clock hours

GPS 1.21 [1.18, 1.28] 3.22 [2.36, 3.46] 1.44 [1.16, 1.55] 3.03 [1.93, 5.52] 0.68 [0.01, 1.12] 1.41 [1.09, 1.41]
SMAC3.0 1.00 [1.00, 1.00] 2.73 [2.62, 3.08] 1.36 [1.16, 1.60] 5.76 [4.28, 13.41] 1.18 [0.77, 1.23] 1.26 [1.22, 1.27]
irace3.3 1.03 [0.79, 1.14] 2.72 [2.33, 3.00] 0.90 [0.84, 1.01] 5.86 [4.97, 12.92] 0.01 [0.01, 1.00] 1.00 [1.00, 1.00]
GGA++ 1.02 [0.77, 1.11] 0.61 [0.61, 0.61] 1.02 [0.84, 1.02] 8.87 [6.73, 8.89] – –

which found the best configurations, one only needs to look at the budgets that are

marked in boldface.
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Table A.11: The small parallel budget analysis speedups (with medians and
95% confidence intervals). Median speedups not worse than the best
speedup for each time budget according to a permutation test with a
5% signifance level are shown in boldface.

TSP SAT MIP
LKH EAX CaDiCaL probSAT CPLEX

TSP RUE 1000-3000 Circuit Fuzz 7SAT90 Regions200 RCW2

Configuration budget (excluding validation) = 0.5 wall clock hours

GPS 0.95 [0.92, 1.05] 2.13 [2.13, 3.55] 1.01 [1.00, 1.33] 2.26 [1.00, 2.26] 1.00 [0.88, 1.03] 1.00 [0.99, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.83 [2.46, 3.36] 1.19 [1.01, 1.36] 8.24 [5.36, 16.60] 0.96 [0.24, 1.22] 1.22 [1.00, 1.27]
irace3.3 1.00 [1.00, 1.00] 2.59 [1.85, 2.81] 0.13 [0.13, 0.94] 6.78 [4.67, 9.50] 0.01 [0.00, 1.00] 1.00 [1.00, 1.00]
GGA++ 0.46 [0.37, 0.72] 0.61 [0.61, 0.61] 0.84 [0.52, 0.85] 6.61 [3.49, 8.89] – –

Configuration budget (excluding validation) = 1.0 wall clock hours

GPS 0.99 [0.92, 1.00] 3.14 [2.27, 3.38] 1.01 [1.00, 1.33] 2.26 [1.32, 3.76] 1.00 [0.88, 1.05] 1.00 [0.99, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.68 [2.40, 3.36] 1.19 [1.01, 1.36] 7.73 [5.37, 16.60] 0.96 [0.30, 1.02] 1.22 [1.00, 1.27]
irace3.3 1.00 [1.00, 1.00] 2.76 [2.19, 3.09] 0.13 [0.13, 0.94] 6.78 [4.67, 9.50] 0.01 [0.00, 1.00] 1.00 [1.00, 1.00]
GGA++ 0.50 [0.43, 0.65] 0.61 [0.61, 0.61] 0.76 [0.52, 1.02] 6.61 [3.49, 8.89] – –

Configuration budget (excluding validation) = 3.0 wall clock hours

GPS 1.00 [0.94, 1.20] 3.05 [2.36, 3.21] 1.12 [1.00, 1.44] 2.26 [1.32, 4.73] 1.01 [0.90, 1.30] 1.00 [0.98, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.68 [2.62, 3.55] 1.19 [1.01, 1.36] 8.25 [4.28, 13.41] 0.98 [0.46, 1.18] 1.22 [1.00, 1.27]
irace3.3 1.00 [0.76, 1.05] 2.57 [2.17, 2.81] 0.85 [0.71, 0.98] 7.01 [4.81, 9.03] 0.01 [0.00, 1.00] 1.00 [1.00, 1.00]
GGA++ 0.58 [0.46, 1.01] 0.61 [0.61, 0.61] 0.85 [0.78, 1.02] 6.61 [3.49, 8.89] – –

Configuration budget (excluding validation) = 6.0 wall clock hours

GPS 1.01 [0.95, 1.20] 3.03 [2.36, 3.21] 1.31 [1.08, 1.41] 3.03 [1.32, 4.73] 0.65 [0.20, 1.21] 1.00 [0.99, 1.05]
SMAC3.0 1.00 [1.00, 1.00] 2.75 [2.53, 3.55] 1.19 [1.01, 1.36] 5.47 [4.28, 13.42] 1.18 [0.62, 1.55] 1.22 [1.00, 1.27]
irace3.3 0.94 [0.86, 1.11] 2.33 [1.85, 3.38] 0.85 [0.80, 0.95] 5.59 [4.90, 13.06] 0.15 [0.06, 1.00] 1.00 [0.00, 1.00]
GGA++ 0.66 [0.58, 1.05] 0.61 [0.61, 0.61] 0.90 [0.82, 1.02] 5.70 [5.36, 8.58] – –

Configuration budget (excluding validation) = 12.0 wall clock hours

GPS 1.12 [0.89, 1.22] 3.03 [2.36, 3.21] 1.36 [1.23, 1.54] 3.03 [1.51, 5.52] 0.14 [0.01, 0.18] 1.09 [0.96, 1.33]
SMAC3.0 1.00 [1.00, 1.00] 2.89 [2.62, 3.28] 1.19 [1.01, 1.36] 6.82 [4.28, 13.42] 0.83 [0.21, 1.23] 1.22 [1.00, 1.27]
irace3.3 0.91 [0.79, 1.14] 2.52 [2.33, 3.00] 0.87 [0.84, 1.01] 5.86 [4.97, 12.92] 0.01 [0.00, 1.00] 1.00 [0.00, 1.00]
GGA++ 0.82 [0.61, 1.01] 0.61 [0.61, 0.61] 0.88 [0.81, 1.02] 7.08 [4.35, 19.84] – –

Configuration budget (excluding validation) = 24.0 wall clock hours

GPS 1.20 [1.18, 1.28] 2.96 [2.36, 3.46] 1.44 [1.16, 1.55] 3.03 [1.51, 5.52] 0.14 [0.11, 1.08] 1.17 [1.05, 1.41]
SMAC3.0 1.00 [1.00, 1.00] 2.75 [2.62, 3.12] 1.23 [1.00, 1.60] 7.73 [4.28, 13.42] 0.96 [0.44, 1.01] 1.22 [1.00, 1.27]
irace3.3 0.91 [0.79, 1.14] 2.52 [2.33, 3.00] 0.87 [0.84, 1.01] 5.86 [4.97, 12.92] 0.15 [0.06, 1.00] 1.00 [0.00, 1.00]
GGA++ 0.86 [0.70, 1.11] 0.61 [0.61, 0.61] 0.89 [0.84, 1.02] 6.98 [5.70, 8.89] – –
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Table A.12: Median configuration budgets, including validation time for the
large parallel budget analysis. The configuration budgets that corre-
spond to median speedups not worse than the best speedup for each
time budget according to a permutation test with a 5% signifance level
are shown in boldface.

TSP SAT MIP
LKH EAX CaDiCaL probSAT CPLEX
TSP RUE 1000-3000 Circuit Fuzz 7SAT90 Regions200 RCW2

Configuration budget (excluding validation) = 0.5 wall clock hours
GPS 0.59 0.58 1.06 1.01 2.21 0.91
SMAC3.0 1.13 1.19 5.40 2.64 129.63 13.78
irace3.3 0.58 0.58 2.80 0.75 31.94 0.92
GGA++ 0.63 0.65 1.30 0.74 – –

Configuration budget (excluding validation) = 1.0 wall clock hours
GPS 1.09 1.08 1.56 1.41 2.71 1.41
SMAC3.0 1.63 1.66 5.86 2.97 130.57 14.28
irace3.3 1.08 1.08 3.30 1.25 43.03 1.42
GGA++ 1.13 1.15 1.77 1.24 – –

Configuration budget (excluding validation) = 3.0 wall clock hours
GPS 3.09 3.08 3.53 3.38 4.71 3.42
SMAC3.0 3.63 3.63 7.80 5.03 136.23 16.28
irace3.3 3.09 3.08 3.70 3.22 45.03 3.42
GGA++ 3.11 3.15 3.69 3.24 – –

Configuration budget (excluding validation) = 6.0 wall clock hours

GPS 6.09 6.08 6.51 6.38 7.64 6.42
SMAC3.0 6.63 6.62 10.78 7.95 145.79 19.28
irace3.3 6.09 6.08 6.70 6.22 48.03 6.42
GGA++ 6.11 6.15 6.68 6.24 – –

Configuration budget (excluding validation) = 12.0 wall clock hours
GPS 12.08 12.08 12.46 12.38 25.27 12.39
SMAC3.0 12.63 12.62 16.75 13.88 180.50 25.28
irace3.3 12.10 12.08 12.67 12.22 54.03 12.42
GGA++ 12.10 12.15 12.68 12.27 – –

Configuration budget (excluding validation) = 24.0 wall clock hours

GPS 24.08 24.08 24.47 24.38 24.38 24.36
SMAC3.0 24.63 24.62 28.68 25.86 199.97 37.27
irace3.3 24.10 24.08 24.68 24.22 66.03 24.42
GGA++ 24.10 24.15 24.65 24.23 – –
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Table A.13: Median configuration budget, including validation time for the
small parallel budget analysis. The configuration budgets that corre-
spond to median speedups not worse than the best speedup for each
time budget according to a permutation test with a 5% signifance level
are shown in boldface.

TSP SAT MIP
LKH EAX CaDiCaL probSAT CPLEX
TSP RUE 1000-3000 Circuit Fuzz 7SAT90 Regions200 RCW2

Configuration budget (excluding validation) = 0.5 wall clock hours
GPS 0.50 0.50 0.50 0.50 0.50 0.50
SMAC3.0 1.13 1.19 5.41 2.61 120.33 13.79
irace3.3 0.50 0.50 0.50 0.50 0.50 0.50
GGA++ 0.50 0.50 0.50 0.50 – –

Configuration budget (excluding validation) = 1.0 wall clock hours
GPS 1.00 1.00 1.00 1.00 1.00 1.00
SMAC3.0 1.63 1.66 5.85 2.92 125.51 14.29
irace3.3 1.00 1.00 1.00 1.00 1.00 1.00
GGA++ 1.00 1.00 1.00 1.00 – –

Configuration budget (excluding validation) = 3.0 wall clock hours
GPS 3.00 3.00 3.00 3.00 3.00 3.00
SMAC3.0 3.63 3.63 7.79 4.98 126.26 16.27
irace3.3 3.00 3.00 3.00 3.00 3.00 3.00
GGA++ 3.00 3.00 3.00 3.00 – –

Configuration budget (excluding validation) = 6.0 wall clock hours
GPS 6.00 6.00 6.00 6.00 6.00 6.00
SMAC3.0 6.63 6.62 10.76 7.91 145.31 19.28
irace3.3 6.00 6.00 6.00 6.00 6.00 6.00
GGA++ 6.00 6.00 6.00 6.00 – –

Configuration budget (excluding validation) = 12.0 wall clock hours
GPS 12.00 12.00 12.00 12.00 12.00 12.00
SMAC3.0 12.63 12.62 16.74 13.85 173.50 25.29
irace3.3 12.00 12.00 12.00 12.00 12.00 12.00
GGA++ 12.00 12.00 12.00 12.00 – –

Configuration budget (excluding validation) = 24.0 wall clock hours
GPS 24.00 24.00 24.00 24.00 24.00 24.00
SMAC3.0 24.63 24.62 28.68 25.81 198.42 37.28
irace3.3 24.00 24.00 24.00 24.00 24.00 24.00
GGA++ 24.00 24.00 24.00 24.00 – –
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