
Theory and Practice of Logic Programming
http://journals.cambridge.org/TLP

Additional services for Theory and Practice of Logic
Programming:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Using sequential runtime distributions for the parallel
speedup prediction of SAT local search

ALEJANDRO ARBELAEZ, CHARLOTTE TRUCHET and PHILIPPE CODOGNET

Theory and Practice of Logic Programming / Volume 13 / Special Issue 4-5 / July 2013, pp 625 - 639
DOI: 10.1017/S1471068413000392, Published online: 25 September 2013

Link to this article: http://journals.cambridge.org/abstract_S1471068413000392

How to cite this article:
ALEJANDRO ARBELAEZ, CHARLOTTE TRUCHET and PHILIPPE CODOGNET (2013). Using
sequential runtime distributions for the parallel speedup prediction of SAT local search. Theory and
Practice of Logic Programming, 13, pp 625-639 doi:10.1017/S1471068413000392

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/TLP, IP address: 128.189.218.136 on 02 Oct 2013



TLP 13 (4–5): Online Supplement, July 2013. C© 2013 [ALEJANDRO ARBELAEZ,
CHARLOTTE TRUCHET and PHILIPPE CODOGNET]

URL: http://dx.doi.org/10.1017/S1471068413000392

625

Using sequential runtime distributions for the
parallel speedup prediction of SAT local search

ALEJANDRO ARBELAEZ�
JFLI / Univesity of Tokyo

CHARLOTTE TRUCHET

LINA, UMR 6241/ University of Nantes

(e-mail: charlotte.truchet@univ-nantes.fr)

PHILIPPE CODOGNET

JFLI-CNRS / UPMC / University of Tokyo

(e-mail: {arbelaez,codognet}@is.s.u-tokyo.ac.jp)

submitted 10 April 2013; revised 23 June 2013; accepted 5 July 2013

Abstract

This paper presents a detailed analysis of the scalability and parallelization of local search

algorithms for the Satisfiability problem. We propose a framework to estimate the parallel

performance of a given algorithm by analyzing the runtime behavior of its sequential version.

Indeed, by approximating the runtime distribution of the sequential process with statistical

methods, the runtime behavior of the parallel process can be predicted by a model based on

order statistics. We apply this approach to study the parallel performance of two SAT local

search solvers, namely Sparrow and CCASAT, and compare the predicted performances to

the results of an actual experimentation on parallel hardware up to 384 cores. We show that

the model is accurate and predicts performance close to the empirical data. Moreover, as

we study different types of instances (random and crafted), we observe that the local search

solvers exhibit different behaviors and that their runtime distributions can be approximated

by two types of distributions: exponential (shifted and non-shifted) and lognormal.

KEYWORDS: SAT, local search, parallelism, runtime distributions, statistical analysis

1 Introduction

Nowadays, SAT solvers are very effective to solve problems in a wide variety of

domains ranging from software verification to computational biology and automated

planning. Broadly speaking, there are two main categories of SAT solvers: complete

and incomplete. Complete solvers combine tree-based search with unit propagation,

conflict-clause learning, and intelligent backtracking. Incomplete solvers start with

an initial assignment for the variables (usually random); then the solver iteratively

� The first author was supported by the Japan Society for the Promotion of Science (JSPS) under the
JSPS Postdoctoral Program and the kakenhi Grant-in-aid for Scientific Research.



626 A. Arbelaez et al.

moves in the search space until a given stopping criteria is met. These solvers are

very good at tackling large and difficult (random) instances.

Research on parallel SAT solvers have been rapidly increasing in the last decade,

thanks to the the development and increasing availability of parallel hardware,

such as multi-core architectures, GPGPUs, grids, cloud systems, and massively

parallel supercomputers. A well-known approach for parallel SAT solving is search-

space splitting; it consists in dividing the problem space into several sub-spaces and

exploring them in parallel. Another approach consists in building a parallel portfolio

solver in which several algorithms compete and cooperate to solve a given problem

instance. Motivated by the results of the recent SAT competitions, most researchers

currently focus their attention on the development of parallel portfolios for multi-

core architectures. The computational benefit of the parallel portfolio is observed

in both capacity solving and speedup factor. Capacity solving, or Solution Count

Ranking (Van Gelder 2011), refers to the ability of improving the total number

of solved instances within a given timelimit, while speedup refers to the ability

of reducing the runtime (w.r.t. the sequential solver) to solve individual instances.

Previous work has been mainly focused on studying the capacity solving of complete

parallel SAT solvers, see (Martins et al. 2012, ) for a recent survey.

Up to now, most parallel SAT solvers have been designed for multi-core machines

or small clusters with a few tens of processors. A key question is therefore to

know if these approaches could scale up to massively parallel systems, i.e., with

thousands or tens of thousands of cores. To investigate this exiting new field of

endeavor, we studied in this paper the parallel performance of several SAT solvers

up to several hundreds of cores. Moreover, we propose a probabilistic model to

estimate the parallel performance of local search algorithms for SAT, using a simple

scheme for parallelization. By analyzing the sequential runtime, we can predict the

parallel behavior and quantify the expected parallel speedup. More precisely, we first

approximate the empirical sequential runtime distribution by a well-known statistical

distribution (e.g. exponential or lognormal) and then derive the runtime distribution

of the parallel version of the solver. Our model is related to order statistics, a rather

new domain of statistics (David and Nagaraja 2003), which is the statistics of sorted

random draws. This makes it possible to predict the parallel runtime of a given

algorithm for any number of cores.

The main contributions of this paper are as follows. First, we present the

application of a statistical model to predict and evaluate the performance of parallel

local search algorithms for SAT. Moreover, extensive experimental results (up to 384

cores) using state-of-the-art local search solvers showed that the predicted execution

times and speedups accurately match the empirical data and performance. Second,

we provide an understanding of the different speedups of parallel algorithms for

SAT from a theoretical and empirical point of view for two different families of

benchmarks.

This paper is organized as follows. After a brief presentation of parallel local

search for SAT in Section 2, Section 3 describes the framework of runtime distri-

butions and formally defines the probabilistic model used to predict the parallel

performance of local search algorithms. Section 4 details extensive experimental



Using RTDs for the Parallel Speedup Prediction of SAT Local Search 627

results performed to evaluate the model. Section 5 presents concluding remarks and

future research directions.

2 Parallel local search for SAT

Parallel implementation of local search methods for combinatorial problems has

been studied since the early 1990s, when parallel machines started to become widely

available (Pardalos et al. 1995; Verhoeven and Aarts 1995, ). Apart from domain-

decomposition methods and population-based method (e.g.,genetic algorithms), (Ver-

hoeven and Aarts 1995) distinguishes between single-walk and multi-walk methods

for Local Search. Single-walk methods consist in using parallelism inside a single

search process, e.g.,for parallelizing the exploration of the neighborhood. Multi-walk

methods (parallel execution of multi-start methods) consist in developing concurrent

explorations of the search space, either independently or cooperatively with some

communication between processes.

It is now currently admitted that an easy and effective manner to parallelize local

search solvers consists in executing in parallel multiple copies of a given solvers with

or without cooperation. The non-cooperative approach has been used in the past to

solve SAT and MaxSAT instances. gNovelty+ (Pham and Gretton 2007) executes

multiple copies of gNovelty without cooperation until a solution is obtained or a

given timeout is reached; and (Pardalos et al. 1996, ) executes multiple copies of

GRASP until an assignment which satisfies a given number of clauses is obtained.

Strategies to exploit cooperation between parallel SAT local search solvers have been

studied in (Arbelaez and Hamadi 2011) in the context of multi-core architectures

with shared memory and in (Arbelaez and Codognet 2012) in massively parallel

systems with distributed memory.

The analysis proposed in this paper for predicting performance on massively

parallel systems is set in the framework of independent multi-walk parallelism, as it

seems to be the most promising way to deal with large-scale parallelism. Cooperative

algorithms might perform well on shared-memory machines with a few tens of cores,

but are difficult to extend efficiently to distributed hardware.

3 Analysis using runtime distributions

Most papers on the performance of stochastic local search algorithms focus on the

average execution time in order to measure the performance of both sequential

and parallel executions. However, a more detailed analysis of the runtime behavior

could be done by looking at the execution time of the algorithm (e.g.,cpu-time or

number of iterations) as a random variable and performing a statistical analysis of

its probability distribution.

3.1 Approximating runtime behaviors

The notion of runtime distribution has been introduced by (Hoos and Stützle

1998) to characterize the cumulative distribution function of the execution time of



628 A. Arbelaez et al.

stochastic algorithms. Indeed, Stochastic Local Search (Hoos and Stütze 2005) can be

considered in the larger framework of Las Vegas algorithms, introduced a few decades

ago by (Babai 1979), i.e. randomized algorithms whose runtime might vary from one

execution to another, even with the same input. It has been applied to study random

3-SAT problems with the Walk-SAT solver (Hoos and Stützle 1999), combinatorial

optimization problems with the GRASP metaheuristics (Aiex et al. 2002, ) and path-

planning problems with state-graph search algorithms (e.g.,A*) (Munoz et al. 2012, ).

The study of the runtime behavior of parallel extensions of Las Vegas algorithm in

the framework of (independent) multi-walk processes has been proposed by (Truchet

et al. 2013, ), which presents a model for predicting the parallel performance of a

given Las Vegas algorithm by the statistical analysis of its sequential version.

The runtime distribution has also been used to define optimal restart strategies in

sequential and parallel algorithms in (Shylo et al. 2011, ) and to provide bounds

on the parallel expectation by (Luby et al. 1993, ). However, in this paper we are

using it to predict the parallel speedup in a multi-walk scheme from the study of

the initial sequential problem distribution.

Indeed, since (Verhoeven and Aarts 1995; Verhoeven 1996), it is believed that

combinatorial problems can enjoy a linear speedup when implemented in parallel by

independent multi-walks. However, this has been proven only under the assumption

that the probability of finding a solution in a given time t follows an exponential

law, that is, if the runtime behavior follows a (non-shifted) exponential distribution.

This behavior has been conjectured for SAT local search solvers in (Hoos and

Stützle 1999), and confirmed experimentally for the GRASP metaheuristics solver

on some other classical combinatorial problems (Aiex et al. 2002, ). The latter

authors have also developed, in the context of combinatorial optimization, a simple

tool (tttplot) to study the adequation of a given runtime behavior with an exponential

distribution (Aiex et al. 2007, ). The classical explanation for an exponential runtime

behavior is the fact that the solutions are uniformly distributed in the search space,

(and not regrouped in solution clusters Maneva and Sinclair 2008) and that the

random search algorithm is able to sample the search space in a uniform manner.

However, (Truchet et al. 2013, ) shows that the runtime distribution of local search

solvers for combinatorial problems can be not only exponential but also sometimes

lognormal or shifted exponential, in which cases the parallel speedup cannot be

linear and is asymptotically bounded. Indeed, not all combinatorial problems show

a perfect exponential behavior, and we will see in this paper how this applies to

SAT.

3.2 Min distribution and parallel speed-up

A general statistical model for studying the performance of Las Vegas algorithms

and predicting the parallel performance of their parallel multi-walk extensions has

been recently proposed in (Truchet et al. 2013, ). We will now present a brief

summary of this model, which will be used in the rest of the paper to study the

behavior of two local search solvers on a variety of SAT instances.



Using RTDs for the Parallel Speedup Prediction of SAT Local Search 629

Let Y be the runtime of a Local Search algorithm on a given problem instance.

It can be considered as a random variable with values in � (number of iterations),

or in � (cpu-time). In general, it is more convenient to consider distributions with

values in � because calculations are easier. Y can be studied through its cumulative

distribution, which is by definition, the function FY s.t. FY (x) = Pr(Y � x). By

definition, the distribution of Y is the derivative of FY : fY = F′
Y . The expectation

of Y is defined as �[Y ] =
∫ ∞

0
tfY (t)dt

Assume that n copies of the base algorithm are running in parallel on n cores.

The first process finding a solution kills all others, and the overall parallel algorithm

terminates. The i-th process corresponds to a draw of a random variable Xi, following

the distribution fY . The variables Xi are thus independent and identically distributed

(i.i.d.). The computation time of the whole parallel process is also a random variable,

let Z (n), with a distribution fZ (n) that depends both on n and on fY . Since all the Xi

are i.i.d., the cumulative distribution FZ (n) and the distribution fZ (n) can be computed

as follows:

FZ (n) = Pr(Z (n) � x) = Pr(∃i ∈ {1...n}, Xi � x)

= 1 − Pr(∀i ∈ {1...n}, Xi > x) = 1 − (1 − FY (x))n

fZ (n) = (1 − (1 − FY )n)′ = nfY (1 − FY )n−1

Thus, knowing the distribution for the base algorithm Y , one can calculate the

distribution for Z (n). The formula shows that the parallel algorithm favors short

runs, by killing slower processes. Thus, compared to the distribution of Y , the

distribution of Z (n) moves toward the origin and is more peaked.

We can also compute the expectation �[Z (n)] for the parallel process, from which

we derive the expected speed-up Gn of the parallel algorithm versus the sequential

one:

�[Z (n)] = n

∫ ∞

0

tfY (t)(1 − FY (t))n−1dt

Gn = �[Y ]/�[Z (n)]

Again, no explicit general formula can be computed and the expression of the

speed-up will depend on the distribution of Y . We will thus study in the following

different specific distributions. This computation of the speed-up is actually related

to a field of statistics called order statistics, see (David and Nagaraja 2003) for

a detailed presentation. Order statistics are the statistics of sorted random draws.

For instance, the first order statistics of a distribution is its minimal value. For

predicting the speedup, we are indeed interested in computing the expectation of

the distribution of the minimum draw. As the above formula suggests, this may

lead to heavy calculations, but recent studies such as (Nadarajah 2008) give explicit

formulas defining this quantity for several classical probability distributions.

3.3 Exponential and lognormal distributions

Assume that Y has a shifted exponential distribution, as would be the case for an

ideal randomized algorithm. The minimum distribution can be computed by a direct



630 A. Arbelaez et al.

integration: fY (t) = λe−λ(t−x0) for t > 0; �[Y ] = x0 + 1/λ; and fZ (n) (t) = nλe−nλ(t−x0)

for t > 0.

In case of a non-shifted exponential, x0 = 0 and the speed-up is thus equal to the

number of cores n, up to infinity. This case has already been studied by (Verhoeven

and Aarts 1995). However for x0 > 0, the speed-up admits a finite limit, even when

n tends to infinity, which is
x0+

1
λ

x0
= 1 + 1

x0λ
. The closer to zero x0 is, the higher the

limit.

Other distributions can be considered, depending on the behavior of the base

algorithm. We will study the case of a lognormal distribution, which is the log

of a gaussian distribution, because it will appear in the following experiments for

some instances. The lognormal distribution has two parameters, the mean μ and the

standard deviation σ. Formally, a (non-shifted) lognormal distribution is defined as:

fY (t) = e
− (−μ+log(t))2

2σ2√
2π(t)σ

The formulas for the distribution of Z (n), its expectation and the theoretical speed-

up are quite complicated to compute, but (Nadarajah 2008) gives an explicit formula

for all the moments of lognormal order statistics with only a numerical integration

step, from which we can derive a computation of the speed-up. As for the shifted

exponential, it can be shown that the speed-up curve of the lognormal distribution

admits a finite limit.

4 Experimental settings and results

This section describes the benchmark instances used for tests, and we focus our

attention on two well-known problem families: random and crafted instances.

Moreover, we consider the two best local search solvers from the previous SAT

competition: CCASAT (Cai et al. 2012, ) and Sparrow (Balint and Fröhlich 2010).

Both solvers were used with their default parameters and with a timeout of 3

hours for each experiments. All the experiments were performed on the Grid’5000

platform, the French national grid for research. We used a 44-node cluster with 24

cores (2 AMD Opteron 6164 HE processors at 1.7 Ghz) and 44 GB of RAM per

node. We experimented with 10 random instances (6 around the phase transition)

and 10 crafted instances (see the appendix for a complete presentation of the

instances).

In order to obtain the empirical data for the theoretical distribution (predicted

by our model from the sequential runtime distribution), we performed 500 runs of

the sequential algorithm. The Mathematica software (Wolfram 2003), version 8.0,

was used to estimate the parameters of the theoretical distributions and to integrate

numerically the formulas of the lognormal distribution. In order to evaluate the

accuracy of the learned statistical model, we performed 50 runs of the multi-

walk parallel algorithms. The empirical speedup for a given parallel algorithm

is calculated against the mean performance of its sequential version as follows:

Speedup = Mean(Solver on 1 core)
Mean(Solver on N cores)



Using RTDs for the Parallel Speedup Prediction of SAT Local Search 631

Table 1. Performance of sequential algorithms on random instances

p-value

Instance Alg Min Max Mean Shifted exp. dist. Lognormal dist.

Rand-1
Sparrow 98.0 4860.0 793.9 5.6·10−19 0.76

CCASAT 103.6 1340.1 458.5 8.4·10−55 0.96

Rand-2
Sparrow 91.8 5447.0 1007.5 1.8·10−20 0.91

CCASAT 108.8 1652.9 497.9 5.1·10−58 0.71

Rand-3
Sparrow 104.8 3693.7 797.0 2.9·10−26 0.64

CCASAT 126.48 1125.4 359.6 2.3·10−108 0.90

Rand-4
Sparrow 162.4 3037.8 781.5 1.6·10−38 0.03

CCASAT 132.5 980.9 382.0 1.5·10−117 0.92

Rand-5
Sparrow 164.0 7946.3 952.4 1.8·10−31 0.16

CCASAT 158.6 1177.9 403.1 5.1·10−134 0.20

Rand-6
Sparrow 142.0 4955.8 763.5 1.6·10−31 0.64

CCASAT 142.9 890.9 354.1 9.6·10−137 0.46

Rand-7
Sparrow 35.5 10637.4 3464.2 0.01 1.5·10−4

CCASAT 61.6 6419.1 1801.0 1.0·10−5 0.13

Rand-8
Sparrow 23.2 10738.0 3412.9 0.05 4.7·10−4

CCASAT 35.9 10443.7 2007.6 0.50 0.03

Rand-9
Sparrow 6.8 5935.8 1028.2 0.23 3.7·10−3

CCASAT 18.1 2830.4 476.8 7.0·10−3 0.03

Rand-10
Sparrow 19.0 10800.0 1726.3 0.65 0.15

CCASAT 19.8 4854.5 758.4 7.6·10−10 0.18

4.1 Experimental results

In this section, we start by presenting the empirical and estimated results for random

and crafted instances; then we present a general analysis of the results.

We start our analysis with Table 1, which presents initial statistics for the sequential

version of Sparrow and CCASAT. We present the minimum, maximum, and mean

runtime values, as well as the outcome of the Kolmogorov-Smirnov (KS) test for two

types of distributions: shifted exponential and lognormal. In the following tables,

bold numbers indicate the distribution chosen to predict the performance of a given

solver.

The KS test compares a set of empirical measures to a given theoretical distribu-

tion. Its outcome is a p-value, indicating how likely it is that the measures admits the

theoretical distribution. The classical threshold for the p-value is 0.05. For greater

p-values, the KS test succeeds (more precisely, the null hypothesis is not rejected),

and the empirical distribution can be approximated by the theoretical one with good

confidence.

The results presented in this table are consistent with the results of the previous

SAT competition (random category) where CCASAT greatly outperformed Sparrow.

For this set of instances, we choose the shifted exponential distribution in lieu of



632 A. Arbelaez et al.

Table 2. Runtimes for random instances up to 384 cores

Sparrow - Runtime on k cores CCASAT - Runtime on k cores

Instance 48 96 192 384 48 96 192 384

Rand-1
Actual 163.8 140.4 125.2 113.7 160.0 143.0 122.8 112.0

Predicted 133.8 110.5 92.7 78.8 137.7 120.6 106.7 95.3

Rand-2
Actual 213.2 191.4 166.2 142.5 186.8 169.3 159.3 142.8

Predicted 183.5 152.8 129.2 110.6 153.4 134.7 119.6 107.1

Rand-3
Actual 175.9 151.2 135.8 123.5 166.7 155.6 143.5 132.2

Predicted 183.5 152.8 129.2 110.6 153.4 134.7 119.6 107.1

Rand-4
Actual 202.3 179.2 159.5 141.8 193.1 176.0 169.4 158.7

Predicted 175.7 149.5 128.9 112.4 170.6 155.9 143.5 132.8

Rand-5
Actual 219.6 201.0 182.5 161.9 212.2 191.3 176.8 165.8

Predicted 185.0 155.3 132.3 114.0 179.8 164.3 151.2 140.0

Rand-6
Actual 185.5 167.1 150.3 137.5 190.9 179.3 168.4 153.4

Predicted 158.3 133.6 114.4 99.1 160.6 147.0 135.4 125.6

Rand-7
Actual 151.2 102.7 63.8 51.1 22.9 33.7 54.3 67.8

Predicted 195.8 143.0 107.3 82.3 182.8 142.6 113.7 92.2

Rand-8
Actual 126.6 81.9 51.1 30.9 131.8 83.9 64.8 39.7

Predicted 93.8 58.5 40.8 32.0 76.9 56.4 46.1 41.0

Rand-9
Actual 33.9 18.4 13.1 9.0 45.0 31.0 22.7 16.3

Predicted 28.1 17.4 12.1 9.4 38.5 29.4 23.0 18.3

Rand-10
Actual 63.4 48.9 40.7 30.9 113.8 94.7 72.9 54.2

Predicted 54.6 36.8 27.9 23.4 105.6 85.3 70.2 58.6

the exponential distribution as the Min runtime value for the reference solvers is

not negligible compared to its mean value across 500 executions (about 100 times

smaller in the best case).

As can be seen from the table, both solvers report a tendency which indicates that

the empirical data for instances around the phase transition are better approximated

by a lognormal distribution; all these instances pass the KS test with a confidence

level (p-value) above 0.05, except for Sparrow on rand-4.

For instances outside the phase transition, Sparrow reports enough statistical

evidence to infer that the shifted exponential distribution fits better the empirical

data. For CCASAT, 3 out of 4 instances outside the phase transition are better

characterized with a lognormal distribution and the remaining instance pass the KS

test for the shifted exponential distribution.

Let’s now look at the parallel performance of the solvers. Table 2 (resp. Table 3)

shows the empirical and predicted runtime (resp. speedup) for both Sparrow and

CCASAT on all instances using 48, 96, 192, and 384 cores. In Table 3, we observe

an important difference in the speedup factor between the two solvers which suggest

that in general Sparrow scales better than CCASAT.

Figure 1 shows a performance summary of the reference solvers to tackle an

instance on the phase transition (rand-4) and another instance outside the phase



Using RTDs for the Parallel Speedup Prediction of SAT Local Search 633

Table 3. Speedup for random instances up to 384 cores

Sparrow - Speedup on k cores CCASAT - Speedup on k cores

Instance 48 96 192 384 48 96 192 384

Rand-1
Actual 4.8 5.6 6.3 6.9 2.8 3.2 3.7 4.0

Predicted 5.9 7.1 8.5 10.0 3.3 3.8 4.3 4.8

Rand-2
Actual 4.7 5.2 6.0 7.0 2.6 2.9 3.1 3.4

Predicted 5.4 6.5 7.7 9.0 3.2 3.6 4.1 4.6

Rand-3
Actual 4.5 5.2 5.8 6.4 2.1 2.3 2.5 2.7

Predicted 5.4 6.5 7.7 9.0 3.2 3.6 4.1 4.6

Rand-4
Actual 3.8 4.3 4.8 5.5 1.9 2.1 2.2 2.4

Predicted 4.4 5.1 6.0 6.9 2.2 2.4 2.6 2.8

Rand-5
Actual 4.3 4.7 5.2 5.8 1.9 2.1 2.2 2.4

Predicted 5.0 6.0 7.0 8.1 2.2 2.4 2.6 2.8

Rand-6
Actual 4.1 4.5 5.0 5.5 1.8 1.9 2.1 2.3

Predicted 4.7 5.6 6.6 7.6 2.2 2.4 2.6 2.8

Rand-7
Actual 22.9 33.7 54.3 67.8 9.5 13.7 18.5 22.7

Predicted 32.3 48.5 64.8 77.8 10.5 13.4 16.9 20.8

Rand-8
Actual 26.9 41.7 66.8 110.6 15.2 23.9 30.9 50.5

Predicted 36.3 58.3 83.5 106.5 26.0 35.5 43.4 48.9

Rand-9
Actual 30.3 55.8 78.1 114.2 10.5 15.3 20.9 29.1

Predicted 36.5 58.8 84.6 108.3 13.2 17.3 22.2 27.9

Rand-10
Actual 27.2 35.2 42.3 55.7 6.6 8.0 10.3 13.9

Predicted 31.6 46.8 61.7 73.4 7.3 9.1 11.1 13.3

transition (rand-7). The y-axis gives the probability (Pr(Y � x)) of finding a solution

in a time less or equal to x and the x-axis gives the runtime in seconds. From now

on, in all figures ‘Emp’ stands for Empirical distribution, ‘LN’ stands for lognormal

distribution, and ‘SExp’ stands for shifted exponential distribution. As expected

CCASAT dominates the performance on one core. For example to solve rand-4,

CCASAT reports Pr(Y � 16-mins) ≈ 1.0, while Sparrow reports Pr(Y � 16-mins) ≈
0.75. Figures 1(c) and 1(f) show that for CCASAT increasing the number of cores

does not significantly improve the solving time. Consequently, Sparrow becomes

more effective for a large number of cores. Therefore, Figures 1(b) and 1(e) show

that Sparrow is better than CCASAT when using 384 cores. Interestingly, the same

pattern is observed for other random instances (see Table 2).

To illustrate the power of the predicted model, in Figure 1(c) we present the

predicted and empirical speedup curves for CCASAT and Sparrow. Here it can

be observed that in both cases the predicted curve follows the same shape as the

empirical one. Moreover, It is also important to note that the speedup factor of the

reference solvers for this problem family is far from linear (ideal), a phenomenon

described by the predicted model.

Finally, it can also be observed that random instances around the phase transition

exhibit a lower speedup factor than the remaining random instances. For instance,

the best empirical speedup factor obtained for instances in the phase transition is



634 A. Arbelaez et al.

0 1000 2000 3000 4000
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

So
l

Emp. CCASAT

LN. CCASAT

Emp. Sparrow

LN. Sparrow

(a) Empirical CDF vs. theoreti-
cal CDF (rand-4)

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

So
l

Emp. CCASAT

LN. CCASAT

Emp. Sparrow

LN. Sparrow

(b) Empirical CDF vs. pre-
dicted CDF using 384 cores
(rand-4)

0 100 200 300 400
0
2
4
6
8

10
12
14

Sp
ee

dU
p

Ideal
Pred. CCASAT
Emp. CCASAT
Pred. Sparrow
Emp. Sparrow

(c) Speedup (rand-4)

0 2000 4000 6000 8000
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

So
l

Emp. CCASAT
LN. CCASAT
Emp. Sparrow
SExp. Sparrow

(d) Empirical CDF vs. theoreti-
cal CDF (rand-7)

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

So
l

Emp. CCASAT

LN. CCASAT

Emp. Sparrow

SExp. Sparrow

(e) Empirical CDF vs. predicted
CDF using 384 cores (rand-7)

0 100 200 300 400
0

20
40
60
80

100
120
140

Sp
ee

dU
p

Ideal
Pred. CCASAT
Emp. CCASAT
Pred. Sparrow
Emp. Sparrow

(f) Speedup (rand-7)

Fig. 1. (Colour online) Performance summary to solve rand-4 and rand-7.

7.0 for Sparrow and 3.4 for CCASAT; and the best speedup factor obtained for

instances outside the phase transition is 114.2 for Sparrow and 50.5 for CCASAT.

Let’s switch our attention now to crafted instances, for which we have to treat

differently CCASAT and Sparrow. For CCASAT, we were unable to find a theoretical

distribution which fits the empirical data. It should be also noticed that CCASAT

has been mainly designed and tuned to handle random instances. Let us look

for instance at Figure 2(a), which depicts the cumulative runtime distribution of

CCASAT to solve Crafted-1 using the two reference distributions detailed in this

paper (lognormal and exponential) and two extra distributions (Weibull and beta-

prime). None of the theoretical distributions seems to be a good approximation

of the empirical data. More precisely, the KS test reported a p-value of 2.7·10−7

(lognormal); 7.0·10−24 (exponential); 2.4·10−6 (Weibull); and 6.9·10−15 (beta-prime).

Therefore, none of the theoretical distributions pass KS test with a high-enough

p-value. We also experimented with other instances and observed a similar behavior.

For Sparrow on all crafted instances, the KS test shows a much better p-value

for the exponential distribution than for the lognormal one, see Table 4. The con-

fidence level is quite high for the instances Crafted-2,-3,-4,-5,-8,-9, with p-value up

to 0.97, while the p-value is between 0.01 and 0.02 for Crafted-1,-6,-7. Also, as the

minimum runtime is much smaller than the mean (at least 300 times smaller), we can

approximate the empirical data by a non-shifted exponential distribution (Truchet

et al. 2013, ).

As can be seen in Table 5 the multi-walk parallel approach scales well for Sparrow

on crafted instances as the number of cores increases. Indeed a nearly linear speedup

is obtained for nearly all the instances. As expected, the speedup predicted by our

model is optimal, and this result is consistent with those obtained in (Hoos and

Stützle 1999).



Using RTDs for the Parallel Speedup Prediction of SAT Local Search 635

Table 4. Sequential performance of Sparrow on crafted instances

p-value

Instance Alg Min Max Mean Exp. dist. Lognormal dist.

Crafted-1 Sparrow 9.9 10800.0 3440.3 0.02 1.2·10−4

Crafted-2 Sparrow 1.0 10800.0 2711.2 0.57 1.4·10−4

Crafted-3 Sparrow 8.7 10800.0 3432.7 0.14 1.1·10−3

Crafted-4 Sparrow 2.2 10800.0 2701.6 0.11 9.6·10−3

Crafted-5 Sparrow 4.1 10800.0 1564.1 0.95 9.2·10−4

Crafted-6 Sparrow 2.9 10800.0 3599.6 0.01 1.0·10−5

Crafted-7 Sparrow 4.4 10800.0 3598.7 0.01 7.8·10−6

Crafted-8 Sparrow 3.5 5456.0 972.046 0.67 0.17

Crafted-9 Sparrow 1.9 7876.5 1298.24 0.97 7.0·10−3

0 2000 4000 6000 8000 10 000
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

So
l

Beta Prime

Log Normal

Weibull

Exponential

Empirical

(a) Empirical CDF vs. theoret-
ical CDDs (CCASAT)

0 2000 4000 6000 8000 10 000
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

So
l

Emp. Sparrow

Exp. Sparrow

(b) Empirical CDF vs. theoret-
ical CDF (Sparrow)

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

So
l

Emp. Sparrow

Exp. Sparrow

(c) Empirical CDF vs. predicted
CDF using 384 cores (Sparrow)

0 100 200 300 400
0

100

200

300

400

Sp
ee

dU
p

Emp. Sparrow

Pred. Sparrow

(d) Speedup (Sparrow)

Fig. 2. (Colour online) Performance summary on crafted-1.

Figure 2 shows the empirical and predicted performance of Sparrow to solve the

instance Crafted-1. In particular, we would like to point out that the exponential

distribution fits well the empirical data on 384 cores (Figure 2(c)). On the other

hand, Figure 2(d) shows, as expected, the predicted (ideal) linear speedup, and the

speedup of the empirical data is also linear but with a slightly lower slope. In

addition, the same behavior can be observed for the remaining instances, see Table

5 for complete results.

4.2 Analysis

Several works have been devoted to the experimental study of parallel multi-walk

extensions of local search algorithms (Arbelaez and Codognet 2012, 2013; Hoos

and Stütze), but we presented in this paper the first approach (to our knowledge)



636 A. Arbelaez et al.

Table 5. Parallel performance of Sparrow on crafted instances

Runtime on k cores Speedup ok k cores

Instance 48 96 192 384 48 96 192 384

Crafted-1
Actual 97.7 43.7 19.1 9.8 35.1 78.6 179.6 349.8

Predicted 71.6 35.8 17.9 8.9 48.0 96.0 192.0 384.0

Crafted-2
Actual 67.8 36.4 17.5 7.2 39.9 74.4 154.7 375.2

Predicted 56.4 28.2 14.1 7.0 48.0 96.0 192.0 384.0

Crafted-3
Actual 94.8 49.3 23.2 11.9 36.1 69.6 147.6 286.1

Predicted 71.5 35.7 17.8 8.9 48.0 96.0 192.0 384.0

Crafted-4
Actual 87.5 42.0 17.3 9.7 30.8 64.2 155.4 277.8

Predicted 56.2 28.1 14.0 7.0 48.0 96.0 192.0 384.0

Crafted-5
Actual 33.7 15.1 7.6 4.2 46.3 103.2 204.1 371.6

Predicted 32.5 16.2 8.1 4.0 48.0 96.0 192.0 384.0

Crafted-6
Actual 130.0 69.8 25.6 12.8 27.6 51.5 140.5 279.5

Predicted 74.9 37.4 18.7 9.3 48.0 96.0 192.0 384.0

Crafted-7
Actual 95.0 51.3 28.4 11.6 37.8 70.0 126.3 308.0

Predicted 74.9 37.4 18.7 9.3 48.0 96.0 192.0 384.0

Crafted-8
Actual 17.2 10.8 5.3 2.6 56.4 89.6 181.1 363.6

Predicted 20.2 10.1 5.0 2.5 48.0 96.0 192.0 384.0

Crafted-9
Actual 27.2 12.1 5.9 3.6 47.5 106.6 217.3 358.0

Predicted 27.0 13.5 6.7 3.3 48.0 96.0 192.0 384.0

which applies order statistics in order to predict the parallel performance of local

search algorithms for SAT. Although most of the literature on runtime distributions

uses the exponential distribution to estimate the theoretical performance of the

parallel algorithm, results in Section 4.1 show that it is sometimes more suitable

to characterize the empirical runtime distribution by a lognormal or a shifted

exponential distribution.

Interestingly, the phase transition point also seems to have important consequences

in the parallel performance of local search algorithms. For Sparrow at least, which is

the solver with an overall better speedup factor, the instances in the phase transition

region are lognormally distributed, while instances outside the phase transition

are shifted-exponentially distributed. Another interesting aspect is that in theory

the probability of returning a solution in no iterations is non-null because of the

(uniform) random initialization. However, in practice a minimum number of steps

is in general required to reach a solution cf. (Hoos and Stützle 1999; Ribeiro et al.

2012, ) for the sequential case, and therefore experimental data may be better

approximated by a shifted distribution with x0 > 0, as it is the case in the random

instances. This leads to a non-linear speedup with a finite limit, even in the case

of an exponential distribution. Indeed, the experimental speedup for both CCASAT

and Sparrow on random instances is far from linear. On the contrary, Sparrow on

crafted instances has a linear speedup which could be explained by the fact that

the minimal runtime is negligible w.r.t. the mean time (i.e., 1/λ for an exponential

distribution). Therefore, the statistical test succeed for x0 
 0. This suggests that,



Using RTDs for the Parallel Speedup Prediction of SAT Local Search 637

in general, the comparison between the minimal time and the mean time is a key

element for the study of the parallel behavior.

We do not discard that other parameters for the reference solvers would lead to

other theoretical distributions (e.g. exponential distribution for random instances).

In (Kroc et al. 2010, ) the authors showed that a well-tuned version of WalkSAT is

exponentially distributed for instances in the phase transition region. However, we

experimented by increasing the ps (smoothing probability) parameter of Sparrow

and still obtained the same theoretical distribution. In addition, when ps is too

high the solver was unable to solve the instances within the 3 hour time limit.

Unfortunately, CCASAT is only available in binary form, and it is not possible to

experiment with other parameters for the solver.

We expect this work to have significant implications in the area of automatic

parameter tuning to devise scalable local search algorithms. Currently, most pa-

rameter tuning tools (e.g. Ansótegui et al. 2009; Hutter et al. 2009) are designed to

improve the expected mean (or median) runtime, however as observed in this paper,

unless the algorithms exhibit a non-shifted exponential distribution, their parallel

performance is far from linear and varies from algorithm to algorithm.

5 Conclusions and future work

This paper has presented a model to estimate and evaluate the performance of

parallel local search algorithms for SAT. This model, based on order statistics,

predicts the parallel runtime execution of a given local search algorithm by analyzing

the runtime distribution of its sequential version. Interestingly, we have observed

that, for the two different algorithms and the variety of instances considered in this

study, the runtime distribution can be characterized using two types of distributions:

exponential (shifted and non-shifted) and lognormal.

Extensive experimental results using the best local search solvers from the

previous SAT competition, indicate that the model accurately matches the parallel

performance of the empirical experiments up to 384 cores. Moreover, the theoretical

model confirms the empirical results reported in the literature for local search

algorithms (Shylo et al. 2011; Arbelaez and Codognet 2013, ) in showing that the

best sequential local search solver is not always the best one in parallel settings.

A natural extension of this work would consist in estimating the parallel per-

formance of a given algorithm for unseen instances, even without full sequential

execution. To this end, we plan to combine the statistical model presented in this

paper with the extensive literature for predicting the runtime a of a given sequential

algorithm (see Xu et al. 2008). In addition, we also plan to investigate the application

of more (complex) distributions to characterize the distribution of other local search

algorithms (e.g. CCASAT for crafted instances).

References

Aiex, R., Resende, M. and Ribeiro, C. 2002. Probability distribution of solution time in

GRASP: An experimental investigation. Journal of Heuristics 8, 343–373.



638 A. Arbelaez et al.

Aiex, R., Resende, M. and Ribeiro, C. 2007. TTT Plots: A perl program to create time-to-

target plots. Optimization Letters 1, 355–366.

Ansótegui, C., Sellmann, M. and Tierney, K. 2009. A gender-based genetic algorithm for

the automatic configuration of algorithms. In 15th International Conference on Principles

and Practice of Constraint Programming, I. P. Gent, Ed. LNCS, vol. 5732. Springer, Lisbon,

Portugal, 142–157.

Arbelaez, A. and Codognet, P. 2012. Massivelly parallel local search for SAT. In ICTAI’12.

IEEE Computer Society, Athens, Greece, 57–64.

Arbelaez, A. and Codognet, P. 2013. From sequential to parallel local search for SAT.

In 13th European Conference on Evolutionary Computation in Combinatorial Optimisation

(EvoCOP’13), To appear.

Arbelaez, A. and Hamadi, Y. 2011. Improving parallel local search for SAT. In Learning

and Intelligent Optimization, 5th International Conference, LION’11, C. A. C. Coello, Ed.

LNCS, vol. 6683. Springer, 46–60.

Babai, L. 1979. Monte-Carlo algorithms in graph isomorphism testing. Research Report

D.M.S. No. 79-10, Université de Montréal.

Balint, A. and Fröhlich, A. 2010. Improving stochastic local search for SAT with a new

probability distribution. In SAT’10, O. Strichman and S. Szeider, Eds. LNCS, vol. 6175.

Springer, Edinburgh, UK, 10–15.

Cai, S., Luo, C. and Su, K. 2012. CCASAT: Solver description. In SAT Challenge 2012: Solver

and Benchmark Descriptions. Vol. B-2012-2 of Department of Computer Science Series of

Publications B. University of Helsinki, 13–14.

David, H. and Nagaraja, H. 2003. Order Statistics. Wiley series in probability and

mathematical statistics. Probability and mathematical statistics. John Wiley.

Hoos, H. and Stütze, T. 2005. Stochastic Local Search: Foundations and Applications. Morgan

Kaufmann.

Hoos, H. H. and Stützle, T. 1998. Evaluating las vegas algorithms: Pitfalls and remedies.

In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI’98.

Morgan Kaufmann, 238–245.

Hoos, H. H. and Stützle, T. 1999. Towards a characterisation of the behaviour of stochastic

local search algorithms for SAT. Artif. Intell. 112, 1–2, 213–232.

Hutter, F., Hoos, H. H., Leyton-Brown, K. and Stützle, T. 2009. ParamILS: An automatic

algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267–306.

Kroc, L., Sabharwal, A. and Selman, B. 2010. An empirical study of optimal noise and

runtime distributions in local search. In SAT’10, O. Strichman and S. Szeider, Eds. LNCS,

vol. 6175. Springer, Edinburgh, UK, 346–351.

Luby, M., Sinclair, A. and Zuckerman, D. 1993. Optimal speedup of las vegas algorithms.

In ISTCS, 128–133.

Maneva, E. and Sinclair, A. 2008. On the satisfiability threshold and clustering of solutions

of random 3-SAT formulas. Theoretical Computer Science 407, 1–3, 359–369.

Martins, R., Manquinho, V. and Lynce, I. 2012. An overview of parallel SAT solving.

Constraints 17, 304–347.

Munoz, P., Barrero, D. and Moreno, M. 2012. Run-time analysis of classical path-planning

algorithms. In Proceedings of SGAI 2012, Research and Development in Intelligent Systems

XXIX. Springer Verlag, 137–148.

Nadarajah, S. 2008. Explicit expressions for moments of order statistics. Statistics &

Probability Letters 78, 2 (Feb.), 196–205.

Pardalos, P. M., Pitsoulis, L. S., Mavridou, T. D. and Resende, M. G. C. 1995. Parallel

search for combinatorial optimization: Genetic algorithms, simulated annealing, tabu search



Using RTDs for the Parallel Speedup Prediction of SAT Local Search 639

and GRASP. In Parallel Algorithms for Irregularly Structured Problems (IRREGULAR),

317–331.

Pardalos, P. M., Pitsoulis, L. S. and Resende, M. G. C. 1996. A parallel grasp for MAX-

SAT problems. In 3rd International Workshop on Applied Parallel Computing, Industrial

Computation and Optimization, J. Wasniewski, J. Dongarra, K. Madsen and D. Olesen, Eds.

LNCS. Springer, Lyngby, Denmark.

Pham, D. N. and Gretton, C. 2007. gNovelty+. In Solver Description, SAT Competition 2007.

Ribeiro, C., Rosseti, I. and Vallejos, R. 2012. Exploiting run time distributions to compare

sequential and parallel stochastic local search algorithms. Journal of Global Optimization 54,

405–429.

Shylo, O. V., Middelkoop, T. and Pardalos, P. M. 2011. Restart strategies in optimization:

Parallel and serial cases. Parallel Computing 37, 1, 60–68.

Truchet, C., Richoux, F. and Codognet, P. 2013. Prediction of parallel speed-ups for Las

Vegas algorithms. In Proceedings of ICPP-2013, 42nd International Conference on Parallel

Processing, J. Dongarra and Y. Robert, Eds. IEEE Press.

Van Gelder, A. 2011. Careful ranking of multiple solvers with timeouts and ties. In SAT’11,

K. Sakallah and L. Simon, Eds. Lecture Notes in Computer Science, vol. 6695. Springer,

Ann Arbor, MI, USA, 317–328.

Verhoeven, M. G. A. 1996. Parallel local search. PhD thesis, University of Eindhoven,

Eindhoven, Netherlands.

Verhoeven, M. and Aarts, E. 1995. Parallel local search. Journal of Heuristics 1, 1, 43–65.

Wolfram, S. 2003. The Mathematica Book, 5th edition. Wolfram Media.

Xu, L., Hutter, F., Hoos, H. H. and Leyton-Brown, K. 2008. Satzilla: Portfolio-based

algorithm selection for sat. Journal of Artificial Intelligence Research 32, 565–606.


